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ABSTRACT 

Present study implemented the Neural network (NN) and Partial least 

squares (PLS) based identification of process dynamics for single-input 

single output (SISO) as well as multi-input multi-output (MIMO) 

systems. In the present study, the Neural network (NN) based controller 

design has been implemented for a non-linear continuous bioreactor 

process. Multilayer feed forward networks (FFNN) were used as direct 

inverse neural network (DINN) controllers as well as IMC based NN 

controllers.  The training as well as testing database was created by 

perturbing the open loop process with pseudo random signals (PRS). 

DINN controllers performed effectively for set-point tracking. To 

address the disturbance rejection problems, which are very likely to be 

faced by the bioreactors, the IMC based neural control architecture was 

proposed with suitable choice of filter and disturbance transfer 

function. To assess the controllability of the various configurations, like 

conventional turbidostat and nutristat& concentration turbidostat and 

nutristat, the offset or degree of disturbance rejection by the proposed 

IMC based NN controllers were utilized. The ‘concentration turbidostat’ 

using the feed substrate concentration as the manipulated variable was 

found to be the best control configuration among the continuous 

bioreactor configurations.  

 A (2×2) distillation column was simulated to generate the time 

series data consisting various inputs and outputs of the process. 

Multivariate statistical technique PLS was used to relate the scores of 

input and output matrices. ARX as well as linear least squares 

techniques were used for inner relation development between the 

input-output scores. The PLS model of the distillation column dynamics 

could simulate the process with reasonable accuracy. 

Keywords: turbidostat; nutristat; DINN, IMC, controllability, FFNN, Filter 
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Introduction and Literature Review 

This chapter presents the theoretical foundation of Neural network and Partial least squares in 

identification of process Dynamics of CSTR, Bioreactor & Distillation processes. This chapter also 

documents the relevant previous work. The design of neural controllers especially for various 

continuous bioreactor configurations, related R&D activity undertaken over the last decade has 

been documented. 

1.1 Artificial Neural Networks  

As one branch of artificial intelligence, the theory of artificial neural networks (ANN) was first 

introduced in the middle of the 20th century and numerous advances have been made since then. 

ANNs have helped solve various problems, including pattern recognition, optimization, control, 

forecasting and prediction, etc. and is an area of continued research in diversifying the applications. 

In this section, important concepts and facts related to artificial neural networks shall be briefly 

reviewed. 

1.1.1 Basis of Artificial Neural Networks  

Artificial neural networks are inspired by the natural neurons that are in the human brain. 

Mathematically, they are very similar. A neural network is a massively parallel distributed 

processor made up of simple processing units, which has a natural propensity to for storing 

experimental knowledge and making it available for use. It resembles a brain in two respects 

(Haykin, 1999):  

• Knowledge is acquired by the network from its environment through a learning process.  

• Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.  

The natural neuron has a certain number of connections, called dendrites. These dendrites receive 

thousands of electrical stimulations called local potentials. A signal with a positive coefficient is 

called an excitation signal, while an inhibitor signal has negative coefficients. The dendrites meet at 
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a common point: the cellular body. If the sum of all local potentials is above a certain threshold to 

excite the cellular body, these are transformed into a big electrical stimulation. The stimulation then 

propagates quickly on the output part of the neuron: the axon. The axon is then spanned into 

several little links, which lead to synaptic connections with other neurons. All these operations are 

chemically realized. Billions of neurons are interconnected with each other to form the human 

brain’s neural network. These send information back and forth to each other; the result is an 

intelligent being capable of learning, analysis, prediction and recognition. 

Artificial neural networks are formed from up to thousands of simulated neurons that are 

connected in much the same way as the brain’s neurons and are thus able to learn in a similar 

manner to human beings. In artificial neural networks, we reproduce the chemical reactions within 

biological neuron with a computational model: each neuron receives signals from the others. Before 

entering a neuron, a signal is multiplied by a coefficient, called a synaptic coefficient. Then, the 

signals are added together. A particular function is applied to this sum. The output response from 

the neuron is obtained, which become the input for other neurons. 

1.1.2 Advantages of Artificial Neural Networks 

Artificial neural networks are good at pattern recognition, trend prediction, modeling, control, 

signal filtering, noise reduction, image analysis, classification, and evaluation. In fact, the uses for 

neural networks are so numerous and diverse that these applications may seem to have nothing in 

common. However, they all share the ability to make associations between known inputs and 

outputs by observing a large number of examples (Lawrence, 1994). The use of ANNs offers the 

following useful properties and capabilities:  

• Nonlinearity  

• Input-Output Mapping  

• Adaptivity  
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• Evidence Response  

• Contextual Information  

• Fault Tolerance  

• Neurobilogical Analogy  

An artificial neural network is excellent for any application requiring pattern recognition. A pattern 

may consist of visual, numeric, or symbolic data. Artificial neural networks are able to recognize 

patterns even when the data have inherent noise, or have a great amount of variation. To train a 

neural network to recognize patterns, large input sample space with the correct identification are 

needed. Pattern recognition is the easiest thing to train a neural network to do. If the problem 

involves recognition or classification, a neural network will do it faster, more consistently, and 

often better than a person. 

Artificial neural networks are clever and intuitive, they learn by example rather than by following 

programmed rules. An artificial neural network can be used to solve a problem, by having only a 

general understanding of what the important factors are. One must know which information is 

important so that a good variety of data can be selected to train a network with. One does not need 

to be certain how important each type of data is. Once the network is trained and the relationships 

between the factors have been learnt, the network can predict which factors are most important or 

have the greatest effect on the output. 

Often engineering problems are difficult to compute and do not require perfect answers, but quick 

good answers. ANNs also handle these circumstances very well. Precision (A feature of traditional 

computational techniques) is not always desirable. It is often more important, for example, that a 

robot arm be moved quickly in some general direction rather than slowly in exactly the right 

direction.  A program that uses complicated formulae to calculate direction, speed, volume, or any 

other quantity can be a lot slower to respond than a neural network. A neural network does not 
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need detailed measurements or calculations. It learns the positions and angles in space directly. It 

can make generalizations about the spatial relationships after learning from a few examples, and it 

can relearn with new values as the equipment wears and changes with age. ANNs are thus used 

instead of traditional programming methods when the rules are not certain or when they change 

over time. They are a supplement to, not a replacement for conventional computer programs. They 

are currently ineffective in performing serial logic and precise complicated arithmetic. Serious 

attempts are being made to better understand the biological mechanisms of thought and to 

incorporate them into artificial neural networks. 

1.1.3 Computational Models of Neuron  

Neurons process input and produce output. Each neuron takes in the output from many other 

neurons. Once inside the neuron, the weighted signals are summed to a net value. In most models, 

they are simply added together. The inhibitory signals have a negative weight value. Thus, when 

added in with excitatory signals they reduce to the overall signal input. The equation below is basic 

to all neural networks. (Haykin, 1999): 

               

���	 
��
	����																																																																																													�1.1��
��� 	

 The equation means the net value for neuron i, ���	  equals the sum of the weight times the input 

signal for all the inputs to the neuron i from neuron j starting at output of neuron j = 1 and ending at 

j = p. It is the addition of the signals that are coming into this neuron, taking the connection 

strengths of each signal into account. After finding the weighted sum of its inputs ���	 , the neuron 

calculates its output by applying an activation function, which produces an activation level �	 inside 

the neuron. The activation is passed through an output, or transfer function	�	 , which produces the 

actual output for that neuron for that time, �	���. 
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In the simplest models, the activation function is the weighted sum of the neuron’s inputs; the 

previous state is not taken into account. In more complicated models, the activation function also 

uses the previous output value of the neuron, so that the neuron can self-excite. These activation 

functions slowly decay over time. Sometimes the activation function is stochastic, i.e . it includes a 

random noise factor. The state of activation is a way to refer to the state of the neural network at a 

given time. Each neuron has an individual activation value which can be written as �	���, where a 

means activation, i is the neuron and t is a particular time. The activation function specifies what 

the neuron is to do with the signals after the weights have had their effect. The activation function 

could even be used to do some sort of time integration of the inputs, so that the neuron and the 

network exhibit time dependent behavior. This behavior is an area of active research, but there are 

generally no useful results or understanding yet. 

The activation is passed through a transfer function, which produces the actual output for that 

neuron. The transfer function of a neuron defines how the activation value is output. McCulloch and 

Pitts, (1943) proposed a binary threshold unit as the transfer function. Their model is shown in 

Figure 1.1. Mathematically, it can be represented as: 

�	 
 ���
	��� � ���
��� 																																																																																						�1.2�	

                                                           

where �	 is the output of the neuron i, θ is a unit step function, and 
	�  is the synapse weight 

associated with jth input. For simplicity of notation, the threshold u can be considered as another 

weight 
� and be attached to the sum with a constant input �� 
 1. McCulloch & Pitts(1943) 

proved that, in principle, suitably chosen weights let a synchronous arrangement of such neurons 

perform universal computation. This model contains a number of simplifying assumptions. This 

neuron model has been generalized in many ways. One of them is to use a transfer function other 
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than the threshold function, such as piecewise linear, sigmoidal, or Gaussian. The most common is 

the sigmoid function. It is a strictly increasing function that exhibits smoothness and has the 

desired asymptotic properties. The standard form is the logistic function, defined by 

���� 
 1�1 � �� !�"�#�																																																																																						�1.3�	
                                                                                 

where, β is the slope parameter.  

The sigmoid function is a particularly useful nonlinear transfer function. This transfer function is a 

saturation function; excitation above some maximum firing level has no further effect. The sigmoid 

function has a high and a low saturation limit, and a proportional range in between. This function 

usually produces a 0 when the activation value is a large negative number and a 1 when the 

activation value is a large positive number, and makes a smooth transition in between. The sigmoid 

transfer function thus produces an output from -1 to +1 in some networks. Regardless of the exact 

transfer function, a neuron fires when it recognizes a particular value combination of incoming 

signals. In other words, the operation of a neuron is defined by the match between the input vector, 

consisting of incoming signals, and a weight vector of internal parameter set. 

1.1.4 Neural Network Architecture  

Artificial neural networks can be viewed as weighted and directed graphs in which artificial 

neurons are nodes and directed edges (with weights) are connections between neuron outputs and 

neuron inputs (Jain, 1996). Based on their connection patterns, neural networks can be grouped 

into two categories:  

• Feed-forward networks, in which no loop exists.  

• Feedback (recurrent) networks, in which loops occur because of feedback connections.  
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Artificial neural networks consist of different types of layers. There is the input-layer, one or more 

hidden layers and an output layer. All these layers can consist of one or more neurons. A neuron in 

a particular layer is connected to all neurons in the next layer, which is why this is called a feed-

forward network. In other networks the neurons might be connected in other ways. An example of 

a different network is a recurrent neural network where there are also links that connect neurons 

to other neurons in a previous layer. Feed forward neural networks can be supervised or 

unsupervised. A supervised network compares its answers during training to known correct 

answers, whereas and unsupervised network (self-organizing) does not. Different network 

architectures require different learning algorithms (Lawrence, 1994). The next section will discuss 

the most common learning processes. 

1.1.5 Learning Algorithms  

The ability to learn is a fundamental trait of artificial neural networks. The most attractive 

characteristics of artificial neural networks is their ability to mathematically learn by examples and 

repetitions.  

There are basically two learning paradigms: supervised learning and unsupervised learning. 

Supervised learning is the most elementary form of adaptation. During training, it requires an a 

priori knowledge of what the result should be. Output neurons are told what the ideal response to 

input signals should be. For one-layer networks in which the stimulus-response relation can be 

controlled closely, this is easily accomplished by monitoring each neuron individually. In multi-

layer networks, supervised learning is more difficult. It is harder to correct the hidden layers. On 

the contrary, unsupervised learning does not have specific corrections made by an observer. 

Supervised and unsupervised learning are methods used exclusive of each other.  

In the supervised learning, there exists a “teacher”, which may be implemented in various ways. 

This trainer corrects the network’s responses to a set of inputs. Pairs of inputs and outputs are 
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presented to the network. The network takes each input and produces an output, then it compares 

to the correct output. The trainer causes the network to construct an internal representation that 

captures the regularities of the data in a generalized way. This is the form of learning which is best 

understood, and is presently most suitable to real applications.  

In unsupervised learning, no “teacher” is involved. Instead, the network is simply exposed to a 

number of inputs. The network organizes itself in such a way as to come up with its own 

classifications for inputs.  

Back-propagation  

The gradient-descent back-propagation originates from error-correction rule. The idea behind this 

rule is that the learning algorithm modifies the parameters of the network in the direction in which 

the total error decreases most rapidly for the current point. The algorithm modifies synaptic 

weights and biases of the network in search of the global minimum of the objective function. It 

moves across the error surface in the direction of steepest descent. This is a stochastic process, 

which means that it zig-zags its way about the true direction to the minimum of the error surface. 

For a multiple-layer linear feed-forward network using back-propagation learning, there is only one 

minimum and all other critical points are saddle points.  

Gradient-descent back-propagation may not reach the optimum in all cases, because it can be 

caught in a local minimum or diverge. It is also a relatively slow learning algorithm. For those 

reasons, there are modifications of the gradient-descent back-propagation algorithm that improve 

the convergence. A momentum term is added in order to prevent the training from getting stuck in 

local minima. This momentum term makes the algorithm take the running average of the gradient 

to make it less sensitive to small fluctuations. Also, the learning rate can be modified dynamically. 

Dynamic modification of the learning rate allows the network to learn faster when the error 

gradient is large but keeps it from overshooting when the gradient is small. Finally, batch training 
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can be used instead of sequential training to make the training process less sensitive to anomalous 

data points. Batch mode training is generally more stable than pattern-mode training because the 

effect of anomalous data points is small when they are aggregated with a large number of “normal” 

data points. 

 In the learning process, the multiple-layer perceptron network uses two different kinds of signals: 

function signals and error signals. Function signals are signals that enter the network through the 

input nodes, propagate through the network, and emerge as output signals. Error signals are signals 

that originate at the output layer of the network and propagate backwards though the network 

(Haykin, 1999). To train a multiple-layer perceptron, a function signal is placed through the 

network, and its output is compared to some desired output. The resulting error signal is passed 

backward through the network. In the forward pass, when the function signal is passing through 

the network, the weights and biases of the network are fixed. The function signal appearing at the 

output of neuron i at iteration n is computed as 

�	��� 
 ���	����																																																																																											�1.4� 

where �	��� is the net internal activation level of neuron i , defined by 

�	��� 
��
�	����������
��� 																																																																										�1.5�	

where, p is the total number of inputs (excluding the threshold) applied to neuron j , and 
�	�n� is 

the synaptic weight connecting neuron j to neuron i, and	����� is the input signal of neuron i or, 

equivalently, the function signal appearing at the output of neuron j (Haykin, 1999). This can also 

be written as the dot product of w and y vectors.  
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In the backward pass, when the error signal is passing backward through the network, the weights 

and biases of the network are modified. The synaptic weights of the network in layer l are adjusted 

for the n + 1 iteration according to the rule: 


	��(��� � 1� 
 
	��(���� � ) *
	��(���� � 
	��(��� � 1�+ � ,-	�(�������(./��� � 1�																							�1.6�	
                        

where, δ and η are constants and -	�(� is the local gradient of network for the ith neuron in the lth 

layer and is computed from 

-	�(���� 
 �	�(���� *1 � �	�(����	+�-1�(2/����
1��(2/����1 																																												�1.7� 

for any layer l and 

-	�4���� 
 �	�4����51 � 6	���	7																																																																															�1.8� 
for output layer L where, 6	��� is the ith output at iteration n and �	�4����  is the error of that output 

defined as 

 

�	�4���� 
 9	��� �	�	���																																																																																											�1.9�    

with, the desired output 9	��� at iteration n.  

The gradient descent back-propagation algorithm is the most commonly used training algorithm. It 

is a recursive algorithm, which means that the points can be given to the algorithm one at a time. It 

is mostly stable, but it is slow.        
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1.1.6 Steps in Design of a Network  

• Creating a network.  

• Training the network.  

• Simulating the network.  

For training a network using back-propagation algorithm the commonly used inbuilt MATLAB 

functions are train, traingd, traingda, trainrp. There is also different performance parameters used 

while training a network using MATLAB simulator like epochs, show, goal, time, min grad etc. It is 

an iterative trial and error procedure. In this work the optimum architecture evolved out through 

an elaborate trial and error procedure of selecting the right number of nodes, activation function 

and inputs. After a network has been created and trained with an optimal number of data, the 

network can be used to simulate unknown inputs to predict the result.  

1.1.7 Limitations of ANN  

Although artificial neural networks are very powerful tools for dealing with complex problems they 

are not cure-all. ANNs heavily rely on their training samples. If the training samples are insufficient 

or do not cover all the typical conditions of the problem, errors can be large with testing samples. If 

the training samples are too much, they can also cause the over fitting problem. The most important 

limitation of ANNs is that they do not reveal the exact nature of the relationship between inputs and 

outputs; Thus ANN models are hard to convert to rules. Besides, confidence intervals for 

predictions are not always available. Multiple models can be created from the same training data, as 

the nonlinear multivariable optimization for weight and biases is a ”hard problem” with no 

guarantee of finding the global optimum. Due to compounding nonlinearity, the model behavior 

could be erratic in localized regions of the multidimensional input space. 
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1.1.8 Continuous Stirred Tank Reactor (CSTR) & NN Controller  

 CSTR is extensively used in industry because of its flexibility in operation. It is a preferred 

reactor for high volume manufacturing processes. Hugo and Steinbach (1986) described CSTR as 

open dynamic system and there may be other side reactions; if it is not properly controlled. This out 

of control situation leads to runaway conditions, whereby the temperature and pressure of the 

reactor may exceed endurance limit. The NN based identification of CSTR operation and design of 

DINN SISO controllers have been one of the objectivity of the present Project. 

1.1.9 Design of Neural Controllers & Bioreactor 

The Neural network stores knowledge in two forms a) the connection between the nodes b) the 

weight factors of these connections, Neural networks are better suited for processing noisy, 

incomplete, or inconsistent data and Neural networks mimic human learning processes. In the 

recent years, there have been significant advances in control system design for non-linear 

processes. One such method is the non-linear inverse model based control strategy. This method is 

dependent on the availability of the inverse of the system model. Neural networks (NN) have the 

potential to approximate any non-linear system including their forward & inverse dynamics. 

Inverse neural network have been utilized as the controller. For training the neural network, the 

process input-output data is generated by applying a pseudo random signal to the open loop 

process and the learning is carried out by considering the future process outputs as the reference 

set point. IMC (Internal model control) strategy integrates the plant model and its inverse in a 

feedback control loop. NN based IMC scheme is used; especially for disturbance rejection problem. 

Application of NN based controllers in chemical processes have gained huge momentum as a result 

of focused R&D activities taken up by several researchers over the decade. (Donat, 1990); (Ydstie, 

1990); (Hernandez, 1990); (Dimitris, 1991); (Dirion, 1995) (Hussain, 2001) (Varshney, 2009).  

Bioreactor control has been an active area of research over a decade or so. For optimization of cell 

mass growth and product formation continuous mode of operation of bioreactors are desirable not 
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the traditional fed batch bioreactors. Several researchers like Edwards(1972), Agrawal(1984), 

Menawat (1991), have studied the continuous bioreactor problem.  A (2×2) bioreactor process have 

been taken up to state its different desirable control configuration at the various operating points of 

the bio-process. The parameters like specific growth rate (;�, yield constant (<� , & saturation rate 

constant (=/ , =? ) of the kinetic models are either inadequately determined or vary from time to 

time regarding the process operation. The aforesaid parameters have been considered as 

disturbance to the process. The disturbance rejection has given a consideration in selecting suitable 

control configuration for the continuous bioreactors. The primary aim of a continuous bioreactor is 

to avoid wash out condition which ceases reaction. This may be done either by controlling cell mass 

(X g/L) or substrate concentrations (S or �@A  g/L). In order to maintain the reaction rate and 

product quality both of them may be controlled with dilution rate (D=F/V (h-1)) and feed substrate 

concentration (BA  or �@AC	g/L) as manipulated variables, thus two degrees of freedom is available 

for control. However this is expensive and redundant probably, because microorganisms have 

intracellular regulatory mechanisms, and there exist strong interaction between the two outputs 

(Zhao, 1997) Four numbers of (1×1) control configurations are possible which are as follows: 

• Conventional turbidostat �D → F�: Dilution rate is used to control cell concentration 

• Conventional nutristat �D → B�: Dilution rate is used to control substrate concentration 

• Concentration turbidostat �BA → F�: Feed substrate concentration is used to control 

biomass or cell concentration 

• Concentration nutristat �BA → B�: Feed substrate concentration is used to control substrate 

concentration 

Considering the immense commercial significance of the continuous bioreactor process the ANN 

based non-linear controller design have been implemented for various configurations of it. In the 

present study, the direct inverse neural network controllers (DINN) were designed for conventional 

turbidostat and nutristat for set point tracking at an operating condition where the cell growth is 

substrate limited. IMC based NN controllers were designed for conventional turbidostat and 
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nutristat & concentration turbidostat and nutristat with which their disturbance rejection 

performance were tested; as well as controllability of those configurations were assessed. 

1.2 Partial Least squares 

Partial Least Squares (PLS) attempts to find so-called latent variables that capture the variance in 

the data and at the same time achieves maximum correlation between predicted variables Y and 

predictor variables X. Originally, PLS was a technique that would produce a static linear model, 

although also non-linear and dynamic versions have been published in the literature. As principal 

components in principal component analysis, the use of latent variables in PLS can reduce the 

dimensionality of the problem considerably. (Roffel & Betlam, 2006) 

The design of controllers for MIMO process is possible only after the development of complete 

model describing the effects of all the process inputs on all the process outputs. The first principles 

based models are not always available especially when the process is complex and they are not 

suitable in control system design. The multivariable process model is usually obtained empirically 

by performing an identification experiment and analyzing the recorded plant input-output data. 

The presence of different time scales, different delays, different orders of inputs and outputs in 

MIMO system poses a challenge in their identification. Several commercial identification and 

control packages MATLAB System Identification Toolbox (1992), ADATPx (1992) are capable of 

estimating linear SISO and/or MIMO dynamic models from observed plant data. In the 

identification of MIMO processes, a high degree of correlation is often observed between process 

variables. In such cases, use of identification software based on ordinary least squares will result in 

parameter estimates with large variance owing to the ill-conditioned nature of the problem. One 

way to circumvent these problems is to use multivariate statistical techniques such as PCA and PLS, 

which have been proposed and applied by several researchers like Kresta (1992); Qin & McAvoy 

(1992a); Qin (1993) in Chemical Engineering problems. The data compression features offered by 
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those techniques provide a low-dimensional subspace/window to look into the process and 

facilitates the process monitoring, fault detection & diagnosis. Ku et al. (1995) proposed an 

extension of the standard PCA technique in order to handle dynamic auto correlated data. Kaspar 

and Ray (1992, 1993) proposed the PLS technique in identifying process dynamics with its possible 

merits and demerits. Lakshminarayanan et al. (1997) proposed a strategy for the design of 

multivariable feed forward controller in the PLS frame work. 

1.2.1 PLS Architecture and Process dynamics 

The idea of PLS is to develop a model that relates the scores of the X data to the scores of the Y data. 

The PLS model consists of outer relations (X and Y data individually) and an inner relation that 

links the X data to the Y data. Two attributes are important while choosing the latent variables for 

an estimator: (i) stability (ii) obtaining good fit. 

The outer relationship for the input matrix or matrix with predictor variables is written as:  

F 
 �/ /G � �@ @G �⋯� �I IG � J 
 KLG � J																																																																�1.10� 

Similarly, the outer relationship for the output matrix or matrix with predicted variables can be 

written as:  

< 
 �/N/G � �@N@G �⋯� �INIG � O 
 PQG � O																																																												�1.11� 

Where, T and U represent the matrices of scores, P and Q represent the loading matrices for the X 

and Y data. If all components are described, E and F will become zero.   

Through the inner relationship, X and Y should be correlated to the best extent, therefore ||F|| 

should be minimized. The simplest model relating X to Y is one that relates the scores T to the 

scores U:  

P 
 KR																																																																																																		�1.12� 
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in which B is the regression matrix. Combining (1.11) with (1.12):  

< 
 KRQG � O																																																																																				�1.13� 

To determine the dominant directions in which the data should be projected, we calculate the 

covariance within X and Y. The first set of loading vectors p1 and q1, representing the dominant 

direction, is obtained by maximizing the covariance between X and Y. Projection of the X data on p1 

and Y data on q1 results in the first set of score vectors t1 and u1. This procedure is known as 

establishing the outer relation (Lakshminarayanan, 1997). The matrices X and Y are related 

through their respective scores, which is called the inner model, representing a linear regression 

between t1 and u1: û1 = t1b1.The first two dimensions are shown in Figure 1.2. The residuals are 

then computed as:  

J/ 
 F � �/ /G; 							O/ 
 < � T/�/N/G 																																																																								�1.13� 

Using the newly computed residuals, the procedure of determining scores and loading vectors is 

repeated, until the residuals are below a set tolerance. In practical problems, the number of PLS 

dimensions (number of latent variables) is determined based on the percentage variance explained. 

Irrelevant directions due to noise and redundancy are confined to errors E and F. PLS is a technique 

that breaks a multivariate regression problem into a series of univariate regression problems. 

 

1.2.2 The PLS Algorithm 

The procedure for calculating the PLS model given by (Geladi, 1986). The procedure starts with 

assuming a score vector chosen as any column of matrix X, say x1, and a score vector u which is any 

column of matrix Y, say y1. Once X and Y are auto-scaled, the following steps are carried out: for 

each component take the following starting values: 

1. u = y1  
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2. t_old = x1  

Calculations for the X matrix:  

3. w = (uT * X / (uT * u))T 

 4. w = w / ||w||  

 5. t = X * w / (wT* w)  

 Calculations for the Y matrix:  

        if number of Y variables > 1  

6.     q = (tT * Y / (tT* t))T 

7.     q = q / ||q||  

8.     u = Y * q / (qT* q)  

        else 

         q=1  

        end if  

Improvement last step > threshold  

9. if ||t-t_told|| > threshold  

         t_old = t  

      return to step 3  

    end if  
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Calculate the X loadings and rescale the scores and weights:  

10. p = (tT * X / (tT * t))T 

11. p = p / ||p||  

12. w = w * ||p||  

13. t = t / ||p||  

Calculate for each component i:  

14. bi = ui
Tti / (ti

T ti)  

Calculate the residuals.  

15. X = X – ti pi
T 

16. Y = Y – bi ti qi
T 

1.2.3 Dynamic Extensions of PLS 

If the U block contains past values of the process inputs and outputs, the PLS model would be a 

dynamic model of the form (Roffel & Betlam, 2006): 

< 
 U/��/�N/G � U@��@�N@G �⋯� O 
 UQG � O																																											�1.14� 

(Kaspar, 1993) developed dynamic PLS models by filtering the process inputs and subsequent 

application of the standard  PLS algorithm. (Lakshminarayanan, 1997) proposed the modification of 

the PLS inner relation to be able to identify dynamic models. Instead of using the input scores ti and 

output scores ui, a dynamic ARX model Gi was used. The general ARX model structure can be 

described by: 

V�W./���=� 
 R�W � 1���= � �� � ��=�																																																														�1.15� 
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where y is the process output and x	 the process input Gi(ti)qiT  is the measure of the Y space that is 

explained by the i-th PLS dimension. The matrix G is a diagonal matrix, comprising the dynamic 

elements identified at each of the n PLS dimensions: 

U 
 YU/ 0 0 0 … 00 U@ 0 0 … 0… 	 	 	 	 	0 0 0 0 … UI[																																																											�1.16�	 
 

in Figure 1.3  z–1  is the backward shift operator (xk–1=z–1xk).  

The output variable Y can be calculated from: 

<�W./� 
 5QU�W./�L7F�W./�																																																																							�1.17� 
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Figure 1.1: McCulloh Pitts model of neuron 

 

Figure 1.2: Standard linear PLS Algorithm 

 

 

Figure 1.3: PLS based dynamic model 
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Design of Neural Network Controller & Application 

2.1 Continuous Stirred Tank Reactor 

Chemical reactors are generally the most important unit operations in a chemical plant. Chemical 

reactors come in many forms, but two of the most common idealizations are continuous stirred 

tank reactor Figure 2.1 (CSTR) and the plug flow reactor (PFR). These two serve as limiting hounds 

for the behavior of many operating reactors. The CSTR is used in dynamic modeling studies, as it 

can be modeled as a lumped parameter system. (William, 1996) 

2.1.1 Van De Vusse Reaction 

Reaction schemes often exhibit a maximum in the concentration of product versus flow rate. 

Consider a system consisting of the following reactions (Bequette, 1998) (Varshney, 2009): 

V 1/\] R 1@\] ^; 		2V 1_\] D 

The desired product is B. We assume that the feed stream contains pure component A.  

2.1.2 Material Balance 

Assuming constant density and constant volume 

99̀� 
 0;	O	 
 Oa																																																																																																						�2.1� 
for the four components, 

9� b̂�9� 
 Ò � b̂A � b̂� � =/ b̂ � =_ b̂@																																																																			�2.2� 

9� ĉ�9� 
 Ò ĉ � =/ b̂ � =@ ĉ 																																																																																			�2.3� 
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9� d̂�9� 
 � Ò d̂ � =@ ĉ 																																																																																													�2.4� 

9�^e�9� 
 � Ò ^e � 12=_ b̂@																																																																																								�2.5� 

Solving the steady state equations for components A and B we get, 

b̂C 
 �f=/ � OC̀g2=_ � hf=/ � OC̀g@ � 4=_ fOC̀g2=_ 																																																																			�2.6� 

ĉC 
 =/ b̂COC̀ � =@ 																																																																																																																													�2.7� 

2.1.3 State Space Model �i 
 V� � Rj 

k 
 ^� 

Where,  

� 
 	 l b̂ � b̂Cĉ � ĉCm																																																																																											�2.8� 

� 
 lÒ � OC̀m																																																																																																�2.9� 

k 
 	 l b̂ � b̂Cĉ � ĉCm																																																																																								�2.10� 

For this system the state-space matrices are: 

 



25 

 

V 
	 YOC̀ � =/ � 2=_ b̂C 0
=/ �OC̀ � =@[																																																	�2.11� 

R 
 l b̂AC � b̂C� ĉC m																																																																																				�2.12� 

 

 

2.1.4 Direct Inverse Control 

For the first step of training a network, the input-output pairs of data is generated using the CSTR 

model developed earlier. The input is the space velocity and the output is the concentration of 

species B (Both values in deviation form). At the steady state operating point CBs = 1.117mol/L for F 

/V = 4/7min−1 other parameters are k1 = 5/6min−1 k2 = 5/3min−1 k3 = 1/6Lmol−1min−1. The input 

signal is a Pseudo Random Signal generated using Matlab. The sampling time used is 0.8s refer 

Figure 2.2 & Figure 2.3. The data generated is divided into three parts each for training, validation 

and testing of the network. 

The inverse neural model shown in Figure 2.4 is a structure representing the inverse of system 

dynamics once training is complete. During training the network is fed with past inputs and outputs 

of the system and the present input to system is the target set. The network predicts the output of 

the controller (space velocity) which is the input to the process. Here we chose four inputs to the 

controller and the network can be represented as,  

���� 
 �./5��� � 1�, ����, ��� � 1�, ��� � 1�7																																										�2.13�	
The network used was Feed-forward network, training algorithm being Levenberg-Marquardt 

backpropagation method. The choice of network architecture was based on the performance 

criteria (i.e) the mean squared error (MSE) between the network output and target. The number of 
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nodes in the hidden layer is such that the network gives best performance. Upon completion of 

training, the network was tested. . The closed loop block diagram for servo is shown in Figure 2.5 

2.1.5 NN Based Internal Model control 

The regulatory problem was studied by giving the disturbance in the feed concentration, CA0. A unit 

step disturbance was given to the process. The setpoint was kept constant. The performance of the 

DIN controller was not good as it gave an offset (Figure 2.6). To combat this, a NN forward model 

was placed across the process see Figure 2.7. Thus becoming an IMC structured closed loop 

(Anuradha 2009) (Hussain, 2001).Here the disturbance transfer function was taken to be same as 

the process transfer function.  

2.1.6 Results & Discussion 

The online performance of the DINN as a controller was compared with a PID based controller for 

servo problem. The control parameters for PID are taken as Kc = 1.87, τI = 1.1 and τD = 0.26 

(Anuradha 2009).The response is shown in Figure 2.8. The DIN controller shows perfect set point 

tracking. The ANN based IMC also showed good regulatory performance (Figure 2.9). 

2.2 A First Order System  

In this section the process model has a first order transfer function (Dirion, 1995). The chosen 

equation is:  

9�9� � 13.5 � 
 13.5 �																																																																																			�2.14� 

The learning database is generated using a pseudo random binary signal PRBS (Figure 2.10 & 

Figure 2.11).The network structure had three layers with four inputs and one output. 

The number of neurons in the hidden layer was similarly chosen which minimizes the MSE. Once 

the training was complete the network was tested for tracking time varying setpoint (Figure 2.12). 
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2.3 Bioreactor  

Biochemical Reactors (Bequette, 1998) are used to produce products that include pharmaceuticals, 

food and beverages. Biochemical reactor models are similar to chemical reactor models. We 

develop the dynamic model by writing the material balances on the biomass and substrate. Biomass 

grows by feeding on the substrate. The study is based on single biomass-single substrate process. 

The following are the model equation based on first principle. 

2.3.1 Material Balance 

RATE OF ACCUMULATION= INFLOW-OUTFLOW + GENERATION - CONSUMPTION 

For biomass 

9�`�/�9� 
 O�/A � O�/ � `n/																																																										�2.15�	
 

For substrate 

9�`�@�9� 
 O�@A � O�@ � `n@																																																									�2.16�	
             

The reaction rate is given by 

n/ 
 ;�/																																																																																					�2.17�	
              

Where �/A  & �@A   are the biomass concentration and the feed substrate concentration, respectively. 

�/ & �@ are the biomass and substrate composition, respectively. ; , the specific growth is a function 

of substrate concentration and given by the substrate inhibition model growth rate expression: 
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; 
 ;?op�@=? � �@ � =/�@@ 																																																												�2.18�	
               

The relation between the rate of generation of cells and consumption of nutrients is defined by the 

yield Y 

< 
 n/n@ 																																																																																							�2.19�	
                                                              

Introducing the dilution rate ( D 
 qr ) and assuming there is no biomass in the feed 

We get the following model equations 

9�/9� 
 �; � D��/																																																																							�2.20� 
            

9�@9� 
 D��@A � �@� � ;�/< 																																																					�2.21�	
             

The inputs are dilution rate and substrate concentration and the outputs are the concentrations of 

substrate and biomass (All values in deviation form). The values of steady state dilution rate (DC), 

feed substrate concentration (�@AC�, and the various parameters are presented in Table. 

2.3.2 State Space Model �i 
 V� � Rj 

k 
 ^� 

Where,  
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� 
	 *�/ � �/C�@ � �@C+ 																																																																								�2.22� 

j 
 l D � DC�@A � �@ACm																																																																				�2.23� 

k 
 	 *�/ � �/C�@ � �@C+																																																																						�2.24� 

 

The state-space matrices are as follows: 

V 
 s; � DC �/C;Ct�;< �DC � �/C;Ct< u																																																				�2.25� 
        

R 
 l �/C 0�@A � �@C DCm																																																																	�2.26�	
                   

^ 
 *1 00 1+																																																																																		�2.27�	
                              

;C′  represents the derivative of growth rate with respect to substrate concentration at steady state 

and given by 

;Ct 
 9;C9�@C 																																																																																		�2.28�	
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;Ct 
 ;?op�=? � =/�@C@ ��=? � �@C � =/�@C@ �@ 																																																			�2.29�	
                 

  The above state space matrices were used to find turbidostat and nutristat transfer 

functions for set point tracking problems. Solving the steady state equations (2.20) & (2.21), we get 

three different equilibrium points depending on the initial conditions.  

• When biomass concentration is zero, it is a washout condition with zero gain, trivial 

solution. 

• When both the concentrations (biomass & substrate) are high it leads to unstable 

equilibrium 

• When there is substrate limiting condition it is a stable equilibrium. 

 

The system model around the second equilibrium point renders unbounded outputs when excited 

with pseudo random binary signals (PRBS). So the steady state values of third equilibrium; x1s = 

1.5302g/L, x2s = 0.1746g/L were considered for the database development required for training the 

NNs. For disturbance rejection problems, which were implemented using IMC based NN scheme, a 

state space model was developed to determine a (2×5) disturbance transfer function matrix.  The 

various disturbances considered were	;?op , 	=? 	<, �@AC , &	DC	 and the disturbance transfer 

function transfer functions were of same order to that of the process. Following are the state space 

matrices.  

 

V 
 s; � DC �/C;Ct�;< �DC � �/C;Ct< u																																																																																										�2.30�	
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R 
 wxx
y ;;? 																 �;?�@C�=? � �@C � =/�@C@ � 													0												 � �/C													0
��/C ;;? 					 �;?�@C�=? � �@C � =/�@C@ � �/C< 					; �/C<@		 			� ��@C � �@AC�				DCz{{

|									�2.31�	
                        

^ 
 *1 00 1+																																																																																																																								�2.32�	
                          

D 
 *0	0	0	0	00	0	0	0	0+																																																																																																															�2.33�	
                    

Where load matrix is 

� 

}
~�
;?op	=?<D�@AC �

��																																																																																																																	�2.34�	
               

 2.3.3 Direct Inverse Control 

In the direct method, a NN is trained with observed input-output data from the open loop process 

to represent its inverse dynamics. Hence the resulting inverse NN model can be used as a controller 

typically in a feed forward fashion. In an IMC based NN scheme, a NN based process model is placed 

parallel with the process. The difference between the process and the network output is used for 

the feedback purpose. This feedback signal is then processed by the inverse NN in the forward path. 

It is to be noted that the implementation of IMC based NN is limited only to open loop stable 

processes. The learning phase of the network is an off-line process and the historic data base of the 

process is used for training and testing the networks. In the present study, the training as well as 
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testing database was created by exciting the open loop process with pseudo random binary signals 

(PRBS). 

In order to develop DINN controller, the training of the proposed multi layer FF NN (4, 3, and 1) 

was performed using the gradient based Levenberg-Marquardt method. Performance criterion was 

MSE between the network output and target. The network predicted the outputs of the controller 

(DC , &	�@AC) which actually are the manipulated variable to the process. The inputs and outputs of 

NN (4, 3.1 or N1, N2 & N3) regarding the training & control phase were as follows, 

Training Phase 

  

�1 
 !����, ��� � 1�, ��� � 2�, ��� � 2�#																																																											�2.35� 
  

�3 
 ��� � 1�																																																																																																												�2.36� 
Control Phase 

 

�1 
 !��� � 1�, ����, ��� � 1�, ��� � 1�#																																																											�2.37�	
       

�3 
 ����																																																																																																																				�2.38� 

Figure 2.4 presents the network architecture in the control mode. Sampling time of 0.8 time unit 

and 2 time unit were used for training the two kinds of turbidostat �D → F�  servo networks, each 

of the networks demonstrated minimum offset of 0.001 with simulation intervals of 2 time unit and 

4 time unit respectively. For nutristat �D → B� servo networks, sampling time of 0.8 time unit and 2 

time unit were used for training, each of them demonstrated minimum offset of 0.001 with 

simulation intervals of 4 time unit and 3 time unit, respectively.   
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2.3.4 NN Based Internal Model control 

An IMC structured closed loop was used with a disturbance transfer function of same order to that 

of process transfer function. The various disturbances considered were  ;?op , <, 	=? , DC , &	�@AC� . In 

IMC scheme, the proposed FF network (6, 3, and 1), which is actually the process model, used the 

following inputs & outputs, 

 

Training phase 

 

�1 
 !��� � 3�, ��� � 2�, ��� � 3�, ��� � 2�, ��� � 1�, ����#																									�2.39� 

�3 
 ��� � 1�																																																																																																														�2.40� 
 

Simulation Phase 

 

 �1 
 !��� � 2�, ��� � 1�, ��� � 3�, ��� � 2�, ��� � 1�, ����#																								�2.41� 

�3 
 ����																																																																																																																						�2.42� 

Figure 2.13 represents the block diagram of closed loop IMC scheme. The following filter transfer 

function was used in the closed loop simulation. 

          

UA 
 )B � 1��� � 1�@ 																																																																																																					�2.43�	
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 Where  � 
 �� 5� , and ) 
 �@���.�����  

2.3.5 Results & Discussion 

 The performance of the developed controllers was tested of their set point tracking ability. The 

closed loop response in biomass concentration for unit step change in dilution rate at t=20 th time 

instant using the conventional turbidostat servo controllers are shown in Figure 2.14 & Figure 2.15, 

which reflect a perfect set point tracking. For monitoring substrate concentrations, the closed loop 

response of the substrate concentration for unit step change in dilution rate at t=24 th time instant 

using designed conventional nutristat controllers are shown in Figure 2.16 & Figure 2.17, which 

also ensures the perfect set point tracking. 

To assess the controllability of each of the continuous bioreactor configurations, the closed loop 

disturbance rejection performance of them were taken in to consideration. Table.2 represents the 

offset in disturbance rejection by all 4 continuous bioreactor configurations in closed loop without 

any adjustment of bias.  For the present equilibrium point where the cell growth is substrate 

limited, the concentration turbidostat using the feed substrate concentration as the manipulated 

variable seems the best control configuration. The performance of conventional turbidostat is poor 

in rejecting the disturbance in the yield  <. This study reveals that conventional nutristat is 

unacceptable control configuration when it is the case of disturbance rejection in ;?op  & 	=?. 

Concentration nutristat is incapable of disturbance rejection in DC	�9�����6�	n����. Figure 2.18 

shows the open loop responses in biomass and substrate concentration for unit step changes in all 

the load variables (disturbance + manipulated variables) as mentioned in eq. (2.34). The 

disturbance rejections of conventional turbidostat and nutristat & concentration turbidostat and 

nutristat in closed loop are shown in Figure 2.19 through Figure 2.38, respectively. 
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Table 2.1: Parameters for substrate inhibition kinetics & steady state values of manipulated 

variables 

Disturbances Value ;?op 0.53 h
-1 

	=? 0.12 g/L �/ 0.4545 L/g < 0.4 �@AC 4.0 g/L DC 0.3 h
-1

 

 

Table 2.2: Disturbance Rejection performance by closed loop bioreactor 

configurations 

Configurations/ 

Disturbances 

D—>X D—>S �@AC—>X �@AC—>S 

;?op 0.4711 

 

8.3554 

 

0.3551 

 

-0.239 

 	=? -3.15 

 

10.3195 -3.021 

 

-0.392 

 < 1.2874 

 

-5.6397 

 

1.0027 

 

0.5639 

 DC -0.608 

 

-6.0281 

 

-0.458 

 

1.4473 

 �@AC 0.1342 

 

-1.1808 

 

0.1011 

 

0.0035 
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Figure 2.1: Schematic of CSTR 
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Figure 2.2: Input PSR for training network 

 

Figure 2.3: System output (Target) for training 
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Figure 2.4: DINN structure at completion of training 

 

Figure 2.5: Closed loop block for Servo configuration 
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Figure 2.6: Disturbance rejection of DINN controller 

 

 

 

Figure 2.7: Closed loop block for Regulatory configuration 
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Figure 2.8: Servo response of DINN controller 

 

 

Figure 2.9: Regulatory response of ANN based IMC 
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Figure 2.10: Input PRBS for training 

 

 

Figure 2.11: Output of system (target) for training 
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Figure 2.12: Setpoint tracking of DINN 

 

 

Figure 2.13: Block diagram of closed loop IMC scheme for Biorector 
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Figure 2.14: Servo response of DINN in (D-X) configuration (Sampling 

Time=0.8hrs) 

 

Figure 2.15: Servo response of DINN in (D-X) configuration (Sampling Time=2hrs) 
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Figure 2.16: Servo response of DINN in (D-S) configuration (Sampling Time=2hrs) 

 

 

Figure 2.17: Servo response of DINN in (D-S) configuration (Sampling Time=0.8hrs) 
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Figure 2.18: Open Loop Respose 
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Figure 2.19: Rejection of disturbance in Ds by NN-IMC in (D-X) configuration

 

Figure 2.20: Rejection of disturbance in km by NN-IMC in (D-X) configuration 
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Figure 2.21: Rejection of disturbance in 				
 by NN-IMC in (D-X) configuration

 

Figure 2.22: Rejection of disturbance in Sf by NN-IMC in (D-X) configuration 
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Figure 2.23: Rejection of disturbance in Y by NN-IMC in (D-X) configuration

 

Figure 2.24: Rejection of disturbance in Ds by NN-IMC in (D-S) configuration 
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Figure 2.25: Rejection of disturbance in km by NN-IMC in (D-S) configuration

 

Figure 2.26: Rejection of disturbance in 				
 by NN-IMC in (D-S) configuration 



50 

 

 

Figure 2.27: Rejection of disturbance in Sf by NN-IMC in (D-S) configuration 

 

Figure 2.28: Rejection of disturbance in Y by NN-IMC in (D-S) configuration 
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Figure 2.29: Rejection of disturbance in Ds by NN-IMC in (Sf-X) configuration

 

Figure 2.30: Rejection of disturbance in km by NN-IMC in (Sf-X) configuration 
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Figure 2.31: Rejection of disturbance in 				
 by NN-IMC in (Sf-X) configuratio

 

Figure 2.32: Rejection of disturbance in Sf by NN-IMC in (Sf-X) configuration 
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Figure 2.33: Rejection of disturbance in Y by NN-IMC in (Sf-X) configuration 

 

Figure 2.34: Rejection of disturbance in Ds by NN-IMC in (Sf-S) configuration 
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Figure 2.35: Rejection of disturbance in km by NN-IMC in (Sf-S) configuration

 

Figure 2.36: Rejection of disturbance in 				
 by NN-IMC in (Sf-S) configuration 
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Figure 2.37: Rejection of disturbance in Sf by NN-IMC in (Sf-S) configuration 

 

Figure 2.38: Rejection of disturbance in Y by NN-IMC in (Sf-S) configuration 
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Partial Least Square Based Identification of Process Dynamics 

3.1 Problem Specification 

An attempt on modeling a distillation column for separating methanol-water was made.(Wood, 

1973) The composition of top and bottom products is the controlled variable both expressed in 

weight percentage of methanol and the manipulated inputs are the reflux and reboiler steam flow 

rates (lb/min). Time is in minutes. They gave the following transfer function 

 

l�/����@���m 
 }
� 12.8�.C16.7� � 1 �18.9�._C21� � 16.6�.�C10.9� � 1 �19.4�._C14.4� � 1 �

�l�/����/���m																																																					�3.1� 
 

The relationship of the model was extracted by exciting the plant with a series of step changes to 

inputs. The signal to noise ratio (SNR) was set to 10 by adding measurement noise. 

(Lakshminarayanan, 1997) The inputs ranged between +1 and -1. Delay was incorporated in both 

dimensions of PLS. The scaling procedure was to simply divide each variable dimension by the 

range of that variable. The scaling matrixes were found to be the following: 

Bp 
 *3.7 00 3.8264+ ;								B� 
 *11.315 00 18.163+																																																				�3.2� 
The values of loading matrixes are  

L 
 *0.6939 �0.91180.7201 0.4107 + ; 				Q 
 *0.6093 0.92760.7929 0.3736+																																																�3.3� 
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3.2 Results & Discussion 

The open loop simulation of the system is shown in Figure 3.1. The inner relation was first 

developed using ARX second order model. The prediction is given in Figure 3.2 and Figure 3.3. The 

fit for idealized decoupled PLS model case is shown in Figure 3.4 through Figure 3.7. 

The input and output scores were correlated by 4 th order polynomial to describe the static non-

linearity of the dynamic. The resulted scores were then correlated by linear least squares as a part 

of the dynamic inner model. The input matrix used by the least square technique consisted of 

lagged inputs-outputs (historical data up to previous 4 time intervals). The PLS model simulations 

are   given in Figures 3.8 through Figure 3.11 with a reasonable accuracy. 

The incorporation of a non-linear static element also improved the prediction fit of the least square 

fit as seen in Figure 3.12 through Figure 3.15 
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Figure 3.1 Linear simulation of Wood Berry Column model 

   

 

Figure 3.2: Top product composition prediction by PLS(ARX inner model) 
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Figure 3.3: Bottom product composition prediction by PLS(ARX inner model) 

 

 

Figure 3.4: Top product composition prediction by PLS (ideal decoupling) (ARX 

inner model) 
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Figure 3.5: Bottom product composition prediction by PLS (ideal decoupling)(ARX 

inner model) 

 

 

 

Figure 3.6: Top product composition prediction by PLS (steady state 

decoupling)(ARX inner model) 
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Figure 3.7: Bottom product composition prediction by PLS (steady state 

decoupling (ARX inner model) 

 

 

Figure 3.8: Top product composition prediction by PLS (LS inner model) 
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Figure 3.9: Bottom product composition prediction by PLS (LS inner model) 

 

 

 

Figure 3.10 Data fit for Top product composition 
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Figure 3.11 Data fit for Bottom product composition 

Figure 3.12 Top product composition prediction by PLS (LS inner model with 

nonlinear static element) 
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Figure 3.13 Bottom product composition prediction by PLS (LS inner model with 

nonlinear static element) 

 

 

Figure 3.14 Data fit for Top product composition (with nonlinear static element)) 
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Figure 3.15 Data fit for Bottom product composition (with nonlinear static 

element)) 
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Conclusions & Future Recommendation 

The executed works under the scope of the present dissertation project are as follows, 

• Neural network based identification of the first order process dynamics with and without 

lag. 

• Neural network based identification of CSTR process. 

• Neural network based identification of continuous Bioreactor Process. 

• Design of DINN controllers for CSTR . 

• Design of DINN controllers for various bioreactor configurations. 

• Design of IMC based neural controllers for various bioreactor configurations. 

• PLS based identification of distillation column dynamics. 

The following recommendations can be made for future course of work: 

• PLS based identification of minimum phase of Process dynamics. 

• Design of multivariable neural controllers. 

• Design of multivariable controllers in PLS framework. 
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