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ABSTRACT 

The present thesis aims to make an in-depth study of Radar pulse compression, Neural 

Networks and Phase Coded pulse compression codes. Pulse compression is a method which 

combines the high energy of a longer pulse width with the high resolution of a narrow pulse 

width. The major aspects that are considered for a pulse compression technique are signal to 

sidelobe ratio (SSR) performance, noise performance and Doppler shift performance. 

Matched filtering of biphase coded radar signals create unwanted sidelobes which may mask 

important information. The adaptive filtering techniques like Least Mean Square (LMS), 

Recursive Least Squares (RLS), and modified RLS algorithms are used for pulse radar 

detection and the results are compared.  

In this thesis, a novel approach for pulse compression using Recurrent Neural 

Network (RNN) is proposed. The 13-bit and 35-bit barker codes are used as signal codes to 

RNN and results are compared with Multilayer Perceptron (MLP) network. RNN yields 

better signal-to-sidelobe ratio (SSR), error convergence speed, noise performance, range 

resolution ability and doppler shift performance than neural network (NN) and some 

traditional algorithms like auto correlation function(ACF) algorithm. But the SSR obtained 

from RNN is less for most of the applications. Hence a Radial Basis Function (RBF) neural  

network is implemented which yields better convergence speed, higher SSRs in adverse 

situations of noise and better robustness in Doppler shift tolerance than MLP and ACF 

algorithm. There is a scope of further improvement in performance in terms of SSR, error 

convergence speed, and doppler shift. A novel approach using Recurrent RBF is proposed for 

pulse radar detection, and the results are compared with RBF, MLP and ACF. Biphase codes, 

namely barker codes are used as inputs to all these neural networks. The disadvantages of 

biphase codes include high sidelobes and poor Doppler tolerance. 

The Golay complementary codes have zero sidelobes but they are poor Doppler 

tolerant as that of biphase codes. The polyphase codes have low sidelobes and are more 

Doppler tolerant than biphase codes. The polyphase codes namely Frank, P1, P2, P3, P4 

codes are described in detail and autocorrelation outputs, phase values and their Doppler 

properties are discussed and compared. The sidelobe reduction techniques such as single Two 

Sample Sliding Window Adder(TSSWA) and double TSSWA after the autocorrelator output 

are discussed and their performances for P4 code are presented and compared. Weighting 
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techniques can also be applied to substantially reduce the range time sidelobes. The 

weighting functions such as Kaiser-Bessel amplitude weighting function and classical 

amplitude weighting functions (i.e. Hamming window) are described and are applied to the 

receiver waveform of 100 element P4 code and the autocorrelation outputs, Peak Sidelobe 

Level (PSL), Integrated Sidelobe Level (ISL) values are compared with that of rectangular 

window. The effects of weighting on the Doppler performance of the P4 code are presented 

and compared. 

 

Keywords 

Radar Pulse Compression, LMS, RLS, Modified RLS, MLP, RNN, RBF, RRBF, 

Golay complementary codes, Polyphase codes, TSSWA, Kaiser Bessel window, Hamming 

window. 
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1.1. Background 

RADAR is an acronym of Radio Detection And Ranging. There was a rapid growth in 

radar technology and systems during world war II. In the recent years, there were many 

accomplishments in radar technology. The major areas of radar applications includes 

military, remote sensing, air traffic control, law enforcement and highway safety, aircraft 

safety and navigation, ship safety and space [1.1, 1.2]. 

The rapid advances in digital technology made many theoretical capabilities practical 

with digital signal processing and digital data processing. Radar signal processing is defined 

as the manipulation of the received signal, represented in digital format, to extract the desired 

information whilst rejecting unwanted signals. Pulse compression allowed the use of long 

waveforms to obtain high energy simultaneously achieve the resolution of a short pulse by 

internal modulation of the long pulse. The resolution is the ability of radar to distinguish 

targets that are closely spaced together in either range or bearing. The internal modulation 

may be binary phase coding, polyphase coding, frequency modulation, and frequency 

stepping. There are many advantages of using pulse compression techniques in the radar 

field. They include reduction of peak power, relevant reduction of high voltages in radar 

transmitter, protection against detection by radar detectors, significant improvement of range 

resolution, relevant reduction in clutter troubles and protection against jamming coming from 

spread spectrum action [1.3]. 

In pulse compression technique, the transmitted signal is frequency or phase 

modulated (but not amplitude modulated) and the received signal is processed in the receiver, 

into a specific filter called "matched filter". In 1950-60, the practical realization of radars 

using pulse compression have taken place. At the starting, the realization of matched filters 

was difficult using traverse filters because of lack of delay line with enough bandwidth. Later 

matched filters have been realized by using dispersive networks made with lumped-constant 

filters. In recent years, instead of matched filters, many sophisticated filters are in use. 

Barker code is the binary phase-coded sequence of 0, π values that result in equal 

side-lobes after passes through the matched filter. J.S.Fu and Xin wu proposed adaptive 

filtering techniques using LMS and RLS algorithms to suppress the sidelobes of barker code 

of length 13 [1.4]. The SSR and doppler performance of this type of filters are very poor. 

B.Zrnic et,al. proposed a self –clutter suppression  filter design using modified RLS 

algorithm that gave better performance compared to iterative RLS and ACF algorithms [1.5]. 
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A multilayered  neural network approach using back propagation algorithm which 

yielded better SSR than basic ACF approach was presented by Kwan and Lee [1.6]. Khairnar 

et,al. [1.7] proposed a RBFN for pulse compression that yielded high SSRs in different 

adverse situations of noise, with misalignment of clock. This approach also has better range 

resolution and robustness in doppler shift interference. Frank proposed a polyphase code 

called as Frank code which is more Doppler tolerant and has lower sidelobes than binary 

codes [1.8]. Kretschmer and Lewis have presented the variants of Frank polyphase codes, 

namely P1, P2, P3, and P4 that have better properties than Frank code [1.9, 1.10]. 

1.2. Motivation 

The pulse compression in radar has major applications in the recent years. For better 

pulse compression, peak signal to sidelobe ratio should be as high as possible so that the 

unwanted clutter gets suppressed and should be very tolerant under Doppler shift conditions. 

Many pulse compression techniques have come into existence including neural networks. The 

recurrent networks have inherent memory for dynamics that makes them suitable for dynamic 

system modelling. They provide better stability, more robust to estimation errors and good 

performance with more past information relevant to prediction. Hence the recurrent 

connections are applied to the MLP and RBF networks for pulse radar detection to achieve 

overall better performance. The study of polyphase codes and their sidelobe reduction 

techniques are carried out since the polyphase codes have low sidelobes and are better 

Doppler tolerant and better tolerant to precompression bandlimiting. 

1.3. Thesis Organization 

Chapter-1 Introduction 

Chapter-2 Adaptive Filtering Techniques for Pulse radar Detection 

The concept of pulse compression in radar is described in detail. The adaptive 

filtering techniques using LMS, RLS and modified RLS algorithms are discussed for pulse 

compression and the results are compared. 
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Chapter-3 Recurrent Neural Network Approach for Pulse Radar Detection 

This chapter presents a novel recurrent neural network based pulse radar detection. 

The simulation results are compared with that of MLP and ACF algorithms. 

Chapter-4 Recurrent RBF Approach for Pulse Radar Detection 

This chapter proposes a novel recurrent RBF network based pulse radar detection 

technique which provides significant improvement in convergence rate, noisy conditions and 

under Doppler conditions. The proposed network is compared with the other networks like 

RNN, MLP and ACF. 

Chapter-5 A Study of Polyphase Codes and their Sidelobe Reduction techniques 

This chapter deals with the different polyphase codes such as Frank, P1, P2, P3, P4 

and complementary codes namely Golay complementary codes. The study of these codes and 

their properties, sidelobe reduction techniques are carried out.  

Chapter-6 Conclusion and Scope for Future Work 

The concluding remarks for all the chapters is presented in this chapter. It also 

contains some future research topics which need attention and further investigation. 
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2.1. Introduction 

Radar is an electromagnetic system for detection and location of reflecting objects 

such as aircraft, ships, spacecraft, vehicles, people and natural environment [2.1]. It operates 

by radiating energy into space and detecting the echo signal reflected from object or target. 

The reflected energy that is returned to the radar not only indicates the presence of the target, 

but by comparing the received echo signal with the signal that was transmitted, its location 

can be determined along with other target-related information. 

The basic principle of radar is simple. A transmitter generates an electro-magnetic 

signal (such as a short pulse of sine wave) that is radiated into space by an antenna. A portion 

of the transmitted signal is intercepted by a reflecting object (target) and is re-radiated in all 

directions. It is the energy re-radiated in back direction that is of prime interest to the radar. 

The receiving antenna collects the returned energy and delivers it to a receiver, where it is 

processed to detect the presence of the target and to extract its location and relative velocity. 

The distance to the target is determined by measuring the time taken for the radar signal to 

travel to the target and back. The range is 

                                                                   (2.1) 

where TR is the time taken by the pulse to travel to target and return, c is the speed of 

propagation of electromagnetic energy (speed of light). Radar provides the good range 

resolution as well as long detection of the target. 

The most common radar signal or waveform, is a series of short duration, somewhat 

rectangular-shaped pulses modulating a sinewave carrier [2.2]. Short pulses are better for 

range resolution, but contradict with energy, long range detection, carrier frequency and 

SNR. Long pulses are better for signal reception, but contradict with range resolution and 

minimum range. At the transmitter, the signal has relatively small amplitude for ease to 

generate and is large in time to ensure enough energy in the signal as shown in Figure 2.1. At 

the receiver, the signal has very high amplitude to be detected and is small in time [2.5]. 

A very long pulse is needed for some long-range radar to achieve sufficient energy to 

detect small targets at long range. But long pulse has poor resolution in the range dimension. 
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                 Figure 2.1. Transmitter and receiver ultimate signals 

Frequency or phase modulation can be used to increase the spectral width of a long 

pulse to obtain the resolution of a short pulse. This is called “pulse compression”. 

2.2. Pulse Compression 

The term radar signal processing incorporates the choice of transmitting waveforms 

for various radars, detection theory, performance evaluation, and the circuitry between the 

antenna and the displays or data processing computers. The relationship of signal processing 

to radar design is analogous to modulation theory in communication systems. Both fields 

continually emphasize communicating a maximum of information in a special bandwidth and 

minimizing the effects of interference. 

Although the transmitted peak power was already in megawatts, the peak power 

continued to increase more and more due to the need of longer range detection. Besides the 

technical limitation associated with it, this power increase poses a financial burden. Not only 

that, target resolution and accuracy became unacceptable. Siebert [2.3] and others pointed out 

the detection range for a given radar and target was dependent only on the ratio of the 

received signal energy to noise power spectral density and was independent of the waveform. 

The efforts at most radar laboratories then switched from attempts to construct higher power 

transmitters to attempts to use pulses that were of longer duration than the range resolution 

and accuracy requirements would allow. 

Increasing the duration of the transmitted waveform results in increase of the average 

transmitted power and shortening the pulse width results in greater range resolution. Pulse 

compression is a method that combines the best of both techniques by transmitting a long 

coded pulse and processing the received echo to get a shorter pulse. 
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The transmitted pulse is modulated by using frequency modulation or phase coding in 

order to get large time-bandwidth product. Phase modulation is the widely used technique in 

radar systems. In this technique, a form of phase modulation is superimposed to the long 

pulse increasing its bandwidth. This modulation allows discriminating between two pulses 

even if they are partially overlapped. Then upon receiving an echo, the received signal is 

compressed through a filter and the output signal will look like the one. It consists of a peak 

component and some side lobes. 

2.2.1. Phase coded pulse compression 

In this form of pulse compression, a long pulse of duration T is divided into N sub-

pulses each of width τ as shown in Figure 2.2. An increase in bandwidth is achieved by 

changing the phase of each sub-pulse. The phase of each sub-pulse is chosen to be either 0 or 

π radians. The output of the matched filter will be a spike of width τ with an amplitude N 

times greater than that of long pulse. The pulse compression ratio is N = T/τ ≈ BT, where B ≈ 

1/τ = bandwidth. The output waveform extends a distance T to either side of the peak 

response, or central spike. The portions of the output waveform other than the spike are 

called time side-lobes. 

2.2.2. Barker codes 

  The binary choice of 0 or π phase for each sub-pulse may be made at random. 

However, some random selections may be better suited than others for radar application. One 

criterion for the selection of a good “random” phase-coded waveform is that its 

autocorrelation function should have equal time side-lobes [2.1]. The binary phase-coded 

sequence of 0, π values that result in equal side-lobes after passes through the matched filter 

is called a Barker code. An example is shown in Figure 2(a). This is a Barker code of length 

13. The (+) indicates 0 phase and (−) indicates π radians phase. The auto-correlation function, 

or output of the matched filter, is shown in Figure 2(b). There are six equal time side-lobes to 

either side of the peak, each of label 22.3 dB below the peak. The longest Barker code length 

is 13. The barker codes are listed in Table 2.1. When a larger pulse-compression ratio is 

desired, some form of pseudo random code is usually used. To achieve high range resolution 

with-out an incredibly high peak power, one needs pulse compression. 
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(a) 13-element Barker Code 

 

 

(b) Autocorrelation Output 

Figure 2.2. Pulse compressed signal 

 

Table 2.1 Barker codes 

Code Length Code Elements Sidelobe level, dB 

2 +  −, + + −6.0 

3 + + − −9.5 

4 + + − +, + + + − −12.0 

5 + + + − + −14.0 

7 + + + − − + − −16.9 

11 + + + − − − + − − + − −20.8 

13 + + + + + − − + + − + − + −22.3 

 

2.3. Matched filter  

A matched filter is a linear network that maximises the output peak-signal to noise 

(power) ratio of a radar receiver which in turn maximizes the detectability of a target. It has a 

frequency response function which is proportional to the complex conjugate of the signal 

spectrum. 

                                       (2.2) 
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where Ga is a constant, tm is the time at which the output of the matched filter is a 

maximum (generally equal to the duration of the signal), and S
*
(f) is the complex conjugate 

of the spectrum of the (received) input signal s(t), found from the Fourier transform of the 

received signal s(t) such that 

                                             (2.3) 

A matched filter for a transmitting a rectangular shaped pulse is usually characterized 

by a bandwidth B approximately the reciprocal of the pulse with τ or Bτ ≈ 1. The output of a 

matched filter receiver is the cross-correlation between the received waveform and a replica 

of the transmitted waveform. 

Instead of matched filter, an N-tap adaptive filter is used, by taking input as 13-bit 

barker code [1 1 1 1 1 -1 -1 1 1 -1 1 -1 1] and desired output as [12zeros 1 12zeros], and 

weights are trained using different adaptive filtering algorithms.  

2.4. Adaptive Filtering Techniques 

The adaptive filter is a powerful device for signal processing and control applications 

because of its ability to operate satisfactorily in an unknown environment and track time 

variations of input statistics. Adaptive filters have been successfully applied in many diverse 

fields such as radar, sonar, communications, seismology and biomedical engineering [2.7]. 

The architecture of an adaptive filter which is a linear combiner is depicted in Figure 2.3. The 

basic feature of any adaptive filter in common is that an input vector X and desired response 

d are used to compute an estimated error e which in turn controls the values of a set of 

adjustable filter coefficients. There are many algorithms that are in use for updating of these 

filter coefficients. The Least Mean Square (LMS) algorithm, Recursive Least Squares (RLS) 

algorithm and modified RLS algorithms for adaptive linear combiner are described in this 

thesis and their performances are compared. 

2.4.1. LMS Algorithm 

The LMS algorithm is very significant algorithm for many adaptive signal processing 

applications because of its ease of computation and its simplicity and it doesn’t require 

repetitions of data and off-line gradient estimations. Let Xk= [ xk, xk-1, xk-2,…, xk-N+2, xk-N+1] 

is input vector given to combiner in serial form [2.7, 2.8]. Wk = [w0, w1, w2,…, wN-2, wN-1] is 

weight vector which are tap weights. Now the linear combiner output is given by 
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k

T

kk WXy                                                                              (2.4) 

The error signal with time index k is given by 

                                          kkk yde  

            k

T

kk WXd                                                                         (2.5) 

Where kd  is the desired response at time index k.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The architecture of adaptive linear combiner. 
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                       (2.6) 

Where the derivatives of ke  with respect to weights is computed by equation (2.5). 

The method of steepest descent type of adaptive algorithm is expressed as 

k
WW kk

^

1
                                                       (2.7) 

Substituting (2.6) in (2.7) we get the updation equation of weights in LMS algorithm as 

follows 

kkkk XeWW 21                                               (2.8) 

Where  is the gain constant that regulates the step size. It has the dimensions 

reciprocal to that of signal power. The weights are updated for each iteration until the 

estimate of the gradient gets minimised. 

2.4.2. RLS Algorithm 

RLS algorithm was developed based on matrix inversion lemma. The main advantage 

of RLS over LMS algorithm is that its convergence rate is faster than that of LMS filters [2.7, 

2.8]. But this advancement in performance is attained at the expense of an increase in 

computational complexity of the RLS filter. To derive the RLS algorithm, let Xk represents 

the input vector and dk represents desired response of the RLS filter. 

2.4.2.1. Steps in RLS Algorithm 

The steps involved for updating optimal weight vector is given in this section. The 

inverse of autocorrelation function, Rk
-1 

is assumed to exist. The steps then proceed as 

follows. 

 Accept {xk, dk} as new samples. 

 Form X(k) by shifting x(k) into information vector. 
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 Compute the aprior output  

)()( 0

0 kXWky T

k
                                                      (2.9) 

 Compute a priori error  

)()()( 00 kykdke                                                      (2.10) 

 Compute the filtered information vector 

)()( 1 kXRkZ k
                                                           (2.11) 

 Compute the normalised error power 

)()( kZkXq T                                                              (2.12) 

 Compute the gain constant 

q1

1
                                                                       (2.13) 

 Compute normalised information vector 

)()( kZkZ                                                                 (2.14) 

 Compute the optimal weight vector 0

kW  to 0

1kW  

)().(0

00

1 kZkeWW kk                                                   (2.15) 

 Update the inverse correlation matrix  

)().(11

1 kZkZRR
T

kk                                                   (2.16) 

1

kR  is initialised as follows 

Nk IR 1                                                                          (2.17) 

Where NI  is an identity matrix of order NxN.  value is initialised as a large number 

of about 10
3
 or 10

4
. 

2.4.3. Modified RLS Algorithm 

A modification of standard RLS algorithm has been performed by introducing a 

criterion: 

                                                  THek                                                         (2.18) 

Where TH represents a threshold value to which the instantaneous error value is being 

compared. If the instantaneous error value is greater than or equal to the threshold value, then 
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the updation of estimated filter coefficients vector Wk is performed. Otherwise the correction 

of weight vector is not performed [2.10]. 

The threshold value is initialised to a less value and later it is updated for each 

iteration based on the maximum error value at that iteration. The updation for threshold value 

at jth iteration is given by                                                      

)max(_ kj eERRMAX                                                 (2.19) 

jj ERRMAXTH _.                                                     (2.20) 

Where ke  is the error vector at jth iteration. 
jERRMAX _  is the maximum value of 

all the errors in error vector.  is the constant whose value is close or equal to 1 and it affects 

the rate of convergence. 

Hence the estimated weight vector updation is performed only at the time instants 

when the instantaneous error exceeds or comes close to maximum error value from last 

iteration step. The modified RLS algorithm attempts to minimise the maximum error value at 

the filter output. 

2.5. Simulation Results and Discussion 

The 13-tap adaptive filter is taken and the weights are trained by using LMS, RLS and 

modified RLS algorithms. The 13-bit barker code is given as the input to the filter. The 

desired output must be only main lobe and all sidelobes should be zeros. So desired output 

will be [12zeros 1 12zeros] for 13-bit barker code. The filter should be trained such a way 

that all sidelobes should be minimized and only main lobe should be present. The signal-to-

sidelobe ratio (SSR) performance and noise performances are compared for LMS, RLS, 

modified RLS algorithms. 

2.5.1. SSR Performance:  

Signal-to-sidelobe ratio is an important parameter in pulse compression. SSR is the 

ratio of peak signal amplitude to maximum sidelobe amplitude. 

sidelobe

signal

dB
P

P
SSR 10][ log20                                                  (2.21) 



CHAPTER 2: ADAPTIVE FILTERING TECHNIQUES FOR PULSE RADAR DETECTION 

15 
 

The SSR is calculated when 13-bit barker code is given as input to filter and the 

values are compared for matched filter (ACF), LMS, RLS, modified RLS and are depicted in 

table 2.2. The SSR value is large for modified RLS and its value is 25.74dB. The compressed 

waveforms using ACF, LMS, RLS and modified RLS algorithms are shown in Figure 2.4. 
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(c) 

 
(d) 

Figure 2.4. Compressed waveforms for 13-bit barker code using (a) ACF (b) LMS (c) RLS 

(d) Modified RLS algorithms. 

 

2.5.2. Noise Performance: 

The additive white Gaussian noise is added to input signal code then the output is 

degraded and SSR is decreased gradually.  The noise performance at different SNRs using 

13-bit barker codes for ACF, LMS, RLS and modified RLS are shown in Figure 2.5 and SSR 

at different SNRs are listed in Table 2.2.  
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Table 2.2. SSR performance and SSR comparison for different SNRs for 13-bit barker code 

Algorithms SSR in 

dB 

SSR in dB for different SNRs 

SNR=1dB 5 dB 10 dB 15 dB 20 dB 25 dB 

ACF 22.27 2.98 8.39 13.08 16.38 18.61 20.08 

LMS 23.56 2.55 9.03 15.05 19.89 22.70 23.39 

RLS 24.00 4.20 10.47 16.32 20.95 23.89 23.94 

Modified RLS 25.74 4.01 10.31 16.23 20.98 23.99 24.74 

 

 

Figure 2.5. Noise performance at different SSRs for 13-bit barker code for LMS, RLS, 

Modified RLS algorithms 

 

2.6. Summary 

In this section the concept of pulse compression in radar is discussed. The concept of phase 

coded pulse compression and different barker codes are studied. The Adaptive filtering 

techniques such as LMS, RLS, and modified RLS algorithms are described in detail and their 

application to pulse compression are discussed. The simulation results using all these three 

algorithms are discussed and they are compared. 
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3.1. Introduction 

In radar, high range resolution and range accuracy is obtained by short duration 

pulses. If the radar is operating with sufficiently narrow pulse widths, then it has the ability to 

perform limited target classification. But to achieve long ranges with short pulses, a high 

peak power is required for large pulse energy [3.1]. Also, a reduction in pulse widths reduces 

the maximum range of radar. Pulse compression allows radar to achieve the energy of a long 

pulse and resolution of a short pulse simultaneously, without high peak power required of a 

high energy short-duration pulses. In pulse compression technique a long coded pulse is 

transmitted and the received echo is processed to obtain a relatively narrow pulse. Thus 

increased detection capability of a long pulse radar system is achieved while retaining the 

range resolution capability of a narrow pulse system. The range resolution is determined by 

bandwidth of the signal. Wide bandwidth is necessary for good range resolution. The signal 

bandwidth is obtained by modulating phase or frequency of the signal, while maintaining 

constant pulse amplitude.  Mostly biphase pulse compression is used in radar system in which 

the phase of the transmitted signal is 0 degree relative to a local reference for a ‘+1’ in the 

binary code and 180 degree for a ‘-1’.There are two different approaches for pulse 

compression. The first one is to use a matched filter where codes with small side lobes in 

their ACF are used. In second approach, two kinds of inverse filters, namely, recursive time 

variant and non recursive time invariant causal filter are used.  

The importance of the detection filter design is to reduce the output range sidelobe 

level to an acceptable level. To suppress the sidelobes of Barker code of length 13, an 

adaptive finite impulse response(FIR) filter is placed next to a matched filter pulse[3] and the 

filter is implemented via two approaches: least mean square (LMS) and recursive least square 

(RLS) algorithms [3.4]. Zrnik et. al [3.5] proposed a self -clutter suppression filter design 

using the modified recursive least square (RLS) algorithm which gives better performance 

compared to iterative RLS and ACF algorithms. A multilayered neural network approach 

which yields better SSR than basic autocorrelation approach is reported in [3.6]. There is a 

scope of further improvement in performance in terms of SSR, error convergence speed, and 

doppler shift. In this chapter, a new approach using Recurrent Neural Network (RNN) is 

proposed, and the results are compared with neural networks and other algorithms like ACF. 

The concept of neural networks, Multilayer perceptron and recurrent neural networks are 

described and their simulation results are compared. 
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3.2. Artificial Neural Network 

In recent years, the Artificial neural network (ANN) has become as a powerful 

learning tool to perform complex tasks in non-linear signal processing environment because 

of its good learning capability and massively parallel distributed structure. These are 

extensively used in the field of communication, control, instrumentation and forecasting. The 

ANN commonly called as ‘neural networks’ takes its name from the network of nerve cells in 

the brain. ANN was found to be an important technique for many classification and 

optimization problems. McCulloch and Pitts have developed the neural networks for different 

computing machines [3.7]. The ANN is capable of performing nonlinear mapping between 

the input and output space due to its massive parallel interconnection between different layers 

and the nonlinear processing characteristics.  

An artificial neuron basically consists of a computing element that performs the 

weighted sum of the input signal and the connecting weight. The sum is added with the bias 

or threshold and the resultant signal is then passed through activation function like sigmoid or 

hyperbolic tangent type which is non-linear in nature. Each neuron consists of three 

parameters namely, the connecting weights, the bias and the slope of the nonlinear function 

whose learning can be adjusted. From the structural point of view, a NN may be single layer 

or multilayer. In multilayer structure, there is more than one layer, and in each layer there are 

more than one artificial neuron. Each neuron of the one layer is connected to each and every 

neuron of the following layer. The two types of NNs namely Multi Layer Perceptron (MLP), 

and Recurrent Neural Network (RNN) are discussed in the thesis and the results are 

compared. 

3.2.1. Single Neuron Structure 

 

 

 

 

 

 

 

 

Σ f (.) 
 

b(k) 

 

. . 
y(k) 

output 

input 

x1 

x2 

wj(k) 

xN 

Activation 

Function 

Figure 3.1.  Structure of single neuron 
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The structure of a single neuron is shown in figure 3.1. The output associated with the 

neuron  is computed as, 

)()()()(
1

kbkxkwfky
N

j

jj                                         (3.1) 

Where x1, x2,.., xN are inputs to neuron, wj is the synaptic weights of the jth input, bk 

is the bias or threshold, N is the total number of inputs given to the neuron and f(.) is the 

nonlinear activation function. Some non-linear activation functions are discussed here. 

Log-Sigmoid function: 

This transfer function takes the input and squashes the output into the range of 0 to 1, 

according to expression given below [3.8]. 

             
xe

xf
1

1
)(                                                                      (3.2) 

This function is most commonly used in multilayered networks that are trained by 

back propogation algorithm. 

Hyperbolic tangent Sigmoid:       

This function is represented as 

        
xx

xx

ee

ee
xxf )tanh()(                                                  (3.3) 

Where x is input to the hyperbolic function 

Signum Function: 

The expression for this activation function is given by 

          

0,1

0,0

0,1

)(

xif

xif

xif

xf                                                              (3.4) 

Threshold Function: 

This function is given by the expression  

      
0,0

0,1
)(

xfor

xfor
xf                                                                 (3.5) 
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Piecewise linear Function:  

This function represented as follows 

0,0

2

1

2

1
,

2

1
,1

)(

xif

xifx

xif

xf                                                       (3.6) 

where the amplification factor inside the linear region of operation is assumed to be unity. 

3.2.2. Multilayer Perceptron 

In the multilayer perceptron, the input signal propagates through the network in the 

forward direction, on a layer by layer basis. This network has been applied successfully to 

solve some difficult and diverse problems by training in a supervised manner with a highly 

popular algorithm known as the error back-propagation algorithm. The structure of MLP for 

three layers is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Structure of MLP 
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The Three layers are input, hidden and output layers. Let each layer has its own index 

variable, ‘k’ for output nodes, ‘j’ for hidden nodes and ‘i’ for input nodes. The input vector is 

propagated through a weight layer V. The output of jth hidden node is given by, 

                                                         (3.7)        

where                                                       (3.8) 

 and  is output of jth hidden node before activation.  is the input value at ith node.  is 

the bias for jth hidden node, and  is the activation function. The logistic function is used as 

activation function for both hidden and output neurons and is represented by, 

                                                                            (3.9) 

  The output of the MLP network is determined by a set of output weights, W, and is 

computed as,  

                                                    (3.10) 

                                             (3.11) 

Where  is the final estimated output of kth output node. The cost function for nth 

epoch is given by, 

                                        (3.12) 

   Where N is the total number of training patterns and q represents pattern given to the 

network. 

  The learning algorithm used in training the weights is backpropagation [3.7]. In this 

algorithm, the correction to the synaptic weight is proportional to the negative gradient of the 

cost function with respect to that synaptic weight and is given as, 

                                                                          (3.13) 

   Where  is the learning rate parameter of the back propagation algorithm. 

  The local gradient for output neurons is obtained to be,  
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                                                                                            (3.14) 

and for  hidden neurons, 

 

                                                                          (3.15) 

   

The correction to output weights is given by, 

                                                                   (3.16) 

And for hidden layer weights, 

                                                                    (3.17) 

Hence all weights are updated based on the corresponding weight correction equations. 

3.2.3. Recurrent Neural Network 

The recurrent neural network is a network with feedback connections and has an 

inherent memory for dynamics that makes them suitable for dynamic system modelling. 

These networks are computationally more efficient and stable than traditional feed forward 

networks. Toha and Tokhi [3.13] have used Elman RNN for modeling the twin rotor multi 

input multi output system. RNN is used for Arabic speech recognition instead of traditional 

hidden Markov models as described in [3.12].  

The simple recurrent network used here is Elman’s network as shown in Figure 3.3. 

This two-layer network has recurrent connections from the hidden neurons to a layer of 

context units consisting of unit delays [3.13]. These context units store the outputs of hidden 

neurons for one time step and feed them back to the input layer.  

The inputs to the hidden layers are combination of the present inputs and the outputs 

of the hidden layer which are stored from previous time step in context layer. The outputs of 
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the Elman network are functions of present state, previous state (that is stored in context 

units) and present inputs. 

 

 

 

 

 

 

 

Figure 3.3.  Elman’s network 

  

Let ‘h’ represents the index for hidden nodes for recurrent connections. The input 

vector is propagated through a weight layer V and combined with the previous state 

activation through an additional recurrent weight layer, U [3.11]. The output of jth hidden 

node is given by, 

                                                     (3.18)        

where                          (3.19) 

and  is output of jth hidden node before activation.  is the input value at ith node.  is the 

bias for jth hidden node, and  is the activation function. 

This hidden node is used to compute the final output of Elman’s network similarly as 

in the case of equation (3.10). The local gradients for output neurons and hidden neurons are 

obtained in similar way as in equations (3.14), (3.15). The correction to output weights and 

hidden layer weights are also computed using (3.16), (3.17).  

The correction to recurrent weights is given by, 

                                           (12) 

   Hence all weights are updated based on the corresponding weight correction 

equations. 
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3.3. Simulation Results and Discussion 

The input signal codes used are 13-bit barker code having the sequence (1,1,1,1,1,-1,-

1,1,1,-1,1,-1,1) and 35-bit barker code, which are phase modulated waveforms. The 35-bit 

code is obtained by Kronecker tensor product of 5-bit and 7-bit barker codes. These input 

codes are time shifted and given as training samples for the network to be trained.  The target 

or desired signal code whose length is equal to length of autocorrelation function of input, is 

‘1’, when training set at the network is input code, and for the other sets it is ‘0’. Both the 

MLP and RNN networks are trained by using back propagation algorithm which is discussed 

in previous section. 

The training is performed for 1000 iterations. The weights of all the layers are 

initialized to random values between ±0.1 and the value of  is taken as 0.99. After the 

training is completed, the networks are employed for radar pulse detection. In this section, the 

performances of RNN, MLP and ACF are compared by taking 13-bit and 35-bit barker codes. 

The convergence performance, SSR performance, noise performance, range resolution 

ability, and Doppler shift performance are obtained. 

3.3.1. Convergence Performance 

The mean square error curves of recurrent neural network and MLP for 13-bit and 35-

bit barker codes are shown in Figure 3.4.  
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(b) 

Figure 3.4.  Mean Square Error Curve of RNN and MLP for (a) 13-bit and (b) 35-bit barker 

code 

It is observed from the figure that, the RNN provides better convergence speed than that of 

MLP. 

3.3.2. SSR Performance 

Signal-to-sidelobe ratio is the ratio of peak signal amplitude to maximum sidelobe 

amplitude [3.6]. The SSR in this case is calculated using RNN based approach.  
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(b) 

 

(c) 

Figure. 3.5. Compressed waveforms for  (a) ACF (b) MLP (c) RNN for 13-bit barker code 

It is compared with those obtained by MLP and ACF algorithms for 13-bit and 35-bit 

barker codes. The results are tabulated in Table 3.1, which shows that RNN gives improved 

SSR than other algorithms. The compressed waveforms for 13-bit barker code are shown in 

Figure 3.5.  
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Table 3.1. SSR comparison in dB 

 

 

 

 

 

 

3.3.3. Noise Performance 

The additive white Gaussian noise is added to input signal code then the output is 

degraded and SSR is decreased gradually. The noise performance at different SNRs using 13-

bit and 35-bit barker codes for RNN and MLP are shown in Figure 3.6 and SSR at different 

SNRs are listed in Table 3.2 and 3.3. The results show that RNN achieved higher SSR 

compared to all other approaches.  
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(b) 

Figure 3.6.  Noise performances for different SNRs using  (a) 13-bit and (b) 35-bit barker 

codes 

Table  3.2. SSR Comparison for Different SNRs for 13-Bit Barker Code 

Algorithms SNR= 

1dB 

5dB 10dB 15dB 20dB 25dB 

ACF 2.98 8.39 13.08 16.38 18.61 20.08 

MLP 27.00 41.67 43.97 45.05 45.08 45.10 

RNN 31.78 44.30 46.01 46.88 47.34 47.59 

 

Table 3.3. SSR Comparison for Different SNRs for 35-Bit Barker Code 

Algorithms SNR= 

1dB 

5dB 10dB 15dB 20dB 25dB 

ACF 9.26 10.86 12.09 12.87 13.34 13.61 

MLP 12.34 31.62 40.84 42.84 43.87 44.11 

RNN 24.85 41.14 45.35 46.73 47.24 47.45 
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3.3.4. Range Resolution Ability 

Range resolution is the ability of radar to resolve two or more targets at different 

ranges. If two targets are considered, they should be separated by minimum range equal to 

the width of processed echo pulse. The two waveforms are overlapped by delaying the 

second one by some delays and are applied as input to the network and SSR is calculated. 

The performance of RNN is observed to be better than others and is depicted in Table 3.4, 

varying the delays from 2 to 5. Figure 3.7 shows the compressed waveforms of the added 

pulse trains with five-delay-apart having same magnitude for 13-bit barker code.  
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(c) 

Figure 3.7.  Compressed waveforms for 13-bit barker code having same IMR and 5 DA  

(a) ACF (b) MLP (c) RNN 

 

By varying the magnitude of one input or changing the input magnitude ratio (IMR), 

which is the ratio of magnitude of the first pulse train to the delayed one, the SSR values are 

calculated and listed in Table 3.5. 

 

Table 3.4. SSR Comparison  in dB for Range Resolution Ability of Two Targets 

Having Same IMR but Different Delays for 13-Bit Barker Code 

Algorithms 2-DA 3-DA 4-DA 5-DA 

ACF 16.90 22.3 16.90 22.3 

MLP 45.09 45.1 45.10 45.08 

RNN 47.89 47.88 47.89 47.87 
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Table 3.5.  SSR Comparison  in dB for Range Resolution Ability of Two Targets Having 

Different  IMRs and  Different Delays for 13-Bit Barker Code 

Algorithms 2-DA 

2-IMR 

3-DA 

3-IMR 

4-DA 

4-IMR 

5-DA 

5-IMR 

ACF 13.97 12.74 10.63 8.29 

MLP 44.97 44.44 36.18 11.00 

RNN 45.45 47.57 42.15 22.16 

 

3.3.5. Doppler Tolerance 

The Doppler sensitivity is caused by shifting the phase of individual elements of the 

phase code. In the extreme case, the codeword is no longer matched with the replica, if the 

last element is shifted by 180º. For 13-bit barker code, the code is changed from (1,1,1,1,1,-

1,-1,1,1,-1,1,-1,1) to (-1,1,1,1,1,-1,-1,1,1,-1,1,-1,1) and is fed to the network. The SSR is then 

calculated for both 13-bit and 35-bit barker codes and depicted in Table 3.6. The compressed 

waveforms under Doppler shift conditions for ACF, MLP and RNN are shown in Figure 3.8. 

The results show that RNN gives better SSR compared to other networks. 
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(b) 

 

(c) 

Figure 3.8. Compressed waveforms for Doppler tolerance for 13-bit barker code (a) ACF 

(b) MLP (c) RNN 

Table 3.6. Doppler shift performance in dB 
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Algorithms 13-bit barker 

code 

35-bit barker 

code 

ACF 12.74 13.97 

MLP 16.38 44.34 

RNN 27.68 47.71 



CHAPTER 3: A RECURRENT NEURAL NETWORK APPROACH FOR PULSE RADAR 

DETECTION 

 

35 
 

 

3.4. Summary 

In this chapter, the concepts of artificial neural network, multilayer perceptron and 

recurrent neural network are studied. Elman’s recurrent neural network is applied for 

achieving improved pulse compression. The simulation results clearly demonstrate that the 

RNN gives improved performance than other networks like the MLP and ACF. The RNN 

gives better error convergence performance compared to that of MLP. From the simulations it 

is shown that RNN gives significant improvement in noise performance and range resolution 

ability. Finally under doppler shift conditions, the RNN gives much better SSR of 27.68dB 

compared to the MLP which is only 16.38dB for 13-bit barker code. 
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4.1. Introduction 

Pulse compression plays a significant role in radar systems in achieving good signal 

strength and high resolution. The good signal strength is achieved by long duration pulses, 

which reduces the peak power. Transmitting longer pulse increases the sensitivity of radar 

system by increasing the average transmitted power. But the longer pulse deteriorates the 

range resolution of the radar [4.7]. For limited target classification, range resolution should be 

high enough which is obtained by narrow pulses. Hence as a compromise, pulse compression 

technique is employed in which a long duration pulse is either frequency or phase modulated 

to increase the bandwidth. This long duration modulated pulse is compressed at the receiver 

using matched filter [4.1]. In pulse compression technique a long coded pulse is transmitted 

and the received echo is processed to obtain a relatively narrow pulse. The signal to sidelobe 

ratio performance, noise performance and Doppler tolerance performance must be considered 

as major aspects for a pulse compression technique. Based on these considerations many 

pulse compression techniques have been evolved. 

In the previous chapters, the adaptive linear combiner trained by LMS, RLS, modified 

RLS was implemented for pulse compression. Also, RNN trained by back propagation 

algorithm was proposed and implemented for pulse radar detection and the simulation results 

are compared with that of MLP and ACF. There is a scope of further improvement in 

performance in terms of SSR, error convergence speed, and doppler shift. In this chapter, the 

concept of radial basis neural network (RBF) is discussed and from that a new approach 

using Recurrent RBF is proposed. Both the networks are applied to the radar pulse detection 

application and the results are compared with MLP and ACF.  

4.2. Radial Basis Function Neural Network (RBF) 

The neural networks, in which the hidden units provide a set of functions that 

constitute an arbitrary basis for input patterns when they are expanded into hidden space 

which are radial basis functions are called radial basis function neural networks [4.8]. The 

structure of RBF neural network is given in Figure 4.1. In its basic form, RBFNN consists of 

3 layers, an input layer, a hidden layer and an output layer. The input layer consists of the 

source nodes, which are also called sensory units, that connect the network to its 

environment. The unique hidden layer in the network, applies a nonlinear transformation 

from input space to hidden space using radial basis functions. The hidden space is of higher 
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dimensionality in most of the applications. The response of the network is supplied by the 

output layer which is linear in nature. 

 

 

 

 

 

 

 

Figure 4.1. Structure of RBF 

The output of the network is given by 

                                           (4.1) 

Where est is the estimated output of RBF network. Index ‘k’ represents the number of 

hidden neurons.  represents the weight between kth hidden node and output node.  is the 

center of kth hidden node.  represents the kth radial basis function that computes 

the Euclidean distance between input vector   and center    at kth node and qth  input 

pattern. 

Radial basis functions: 

According to Micchelli [4.8], the element of interpolation matrix ф which is non singular 

is given by   , where  denotes the Euclidean norm. 

1. Multiquadrics: 

                         (4.2)   

2. Inverse Multiquadrics: 

                         (4.3) 

3. Gaussian functions: 

                                 (4.4) 
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In this thesis, the Gaussian function is used as the radial basis function. Now we get 

the interpolation matrix ф as follows 

                                                   (4.5)                      

The output of the kth hidden node by is given by 

                            (4.6) 

Where q is the pattern given to the network. 

In RBFNN, the three parameters that are to be updated are connecting weights 

between hidden and output units, , centre  and the Gaussian spread . These are 

updated by using the supervised learning method, which is similar to LMS algorithm. The 

cost function that is to be minimised is given by 

  

eq represents the error signal which is the difference between desired output d and the 

output obtained by , 

                                           

 

                 (4.8)  

  

According to stochastic gradient descent method, in order to minimise cost function, 

we use the following equations. 

                                                                          (4.9)    

                                                        (4.10) 

                                                        (4.11) 
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The correction to weights between hidden layer and output layer is given by 

                                      (4.12) 

Where  is the convergence parameter. 

The correction to center of kth hidden node is given by 

               (4.13) 

The correction to gaussian spread of kth hidden node is given by 

               (4.14) 

Hence all the weights, center and spread are updated according to their corresponding 

equations. 

4.3. Recurrent RBF 

The recurrent RBF combined temporal local property of the recurrent neural networks 

and spatial local property exhibited by standard RBF algorithm. Combination of these two 

properties has advantages in that the learning process and its convergence is faster while 

maintaining modelling capability of neural networks. 

Bambang developed the RRBF network for adaptive noise cancellation (ANC) 

systems to compensate non linearity that exist in various loops [4.9]. Ryad and Daniel 

implemented RRBF network for simple temporal sequence recognition using IBM/ZISC 

(Zero Instruction Set Computer) [4.10]. This type of network combines features from the 

spatial representation of time of the Multi Layer Perceptron and the RBF networks. RRBF 

network used for time series prediction to increase the prediction accuracy is reported in 

[4.11]. Mimura et. al [4.12] designed a RRBF network for digital communication systems in 

which the channel characteristics are non linear in nature. The RRBF is used to estimate all 

noise free received signals of nonlinear channel. Hardier proposed a recurrent RBFN for 

suspension system modeling and wear diagnosis of a damper [4.13]. A dynamic RRBF is 

applied for color image restoration, which employs a hybrid of two algebraic networks, 

namely a radial basis function and a MLP network [4.14].The RBFN effectively suppress the 

noise while preserving the image details. 
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The proposed RRBF network for pulse radar detection is shown in Figure 4.2. The 

structure of RRBF is similar to RBF with an input layer, one hidden layer and an output 

layer. A recurrent connection is added across the hidden neurons on a standard RBF network. 

The output of each hidden neuron is fed back to the corresponding neuron as input through 

recurrent weights with unit delay. 

 

 

 

 

 

Figure 4.2. Recurrent RBF network 

The output of the RRBF network is computed using (4.1). The output of the kth 

hidden node by considering recurrent weights U is computed as  

              

(4.15) 

Where q is the pattern given to the network and n is the present epoch number. 

The correction to recurrent weights is obtained as 

                                                      (4.16) 

 Where  is the convergence factor which is close to 1. is the cost function at nth epoch 

and is given by 

                                                           (4.17) 

Where N is the total number of training sets given to the network.   is the error for qth 

training set is 
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                                                        (4.18) 

By derivative chain rule, 

                     (4.19) 

Where      

  (4.20) 

Substituting (4.20) in (4.19) and finally in (4.16) we get the correction to recurrent 

weights for kth hidden node as 

  (4.21) 

The correction to weights between hidden layer and output layer, center and Gaussian 

spread are computed in similar way using equations (4.12), (4.13) and (4.14). Hence all the 

weights, center and spread are updated according to their corresponding equations and the 

network is trained accordingly. 

4.4. Simulation Results and Discussion 

The input signal code used is 13-bit barker code having the sequence [1 1 1 1 1 -1 -1 1 

1 -1 1 -1 1], which is a phase modulated waveform. This input code is time shifted and given 

as training samples for the networks to be trained.  The target or desired signal code, d, whose 

length is equal to length of autocorrelation function of input, is ‘1’, when training set at the 

network is input code, and for the other sets it is ‘0’.  

The training of RRBF is done for both 500 and 1000 epochs. The number of neurons 

in input layer are taken as 13, in hidden layer are 7 and that of output layer is 1. The 

convergence factor  in all updation equations is taken as 0.9. This section discusses about 

the simulation results obtained by both RBF and RRBF networks and comparison between 

results of both the networks with RNN, MLP and ACF algorithms by taking 13-bit barker 

code as input.  
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4.4.1. Error performance 

The error convergence performance for all the neural networks RRBF, RBF, RNN 

and MLP is clearly illustrated in Fig 2. The mean square error converges to the values, 

5.88x , 5.38x , 3.11x   and 1.48x  for MLP, RNN, RBF and RRBF 

networks respectively for 500 epochs and  converges to values 2.71x , 2.52x , 

8.27x  and 6.53x  for 1000 epochs. It is obvious that RRBF gives better convergence 

speed than all other networks.  

 

(a) 

 

(b) 

Figure 4.3. Mean square error curves for MLP, RNN, RBF and RRBF for 13-bit barker code 

(a) 500 epochs (b) 1000 epochs 
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4.4.2. SSR performance 

The Signal to sidelobe ratio (SSR) is the ratio of main lobe amplitude to the peak 

sidelobe amplitude. The SSR is calculated for MLP, RNN, RBF and RRBF networks and 

results are compared for both 500 and 1000 epochs and are depicted in Table 4.1 and this 

shows that RRBF gives higher SSR than RNN, MLP and RBF. The compressed waveforms 

for 13-bit barker code for MLP, RNN, RBF and RRBF for 500 epochs are given in Figure 

4.4. 
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(c) 
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(e) 

Figure 4.4. Compressed waveforms for 13-bit barker code for 500 epochs (a) ACF (b) MLP 

(c) RNN (d) RBF (e) RRBF 

                                   Table 4.1. SSR comparison in dB 

 

Algorithms 

SSR in dB 

500 epochs 1000 epochs 

ACF 22.27  22.27 

MLP 41.63  45.13 

RNN 44.53  47.91 

RBF 49.78  53.51 

RRBF 52.71  54.53 

  

4.4.3. Noise performance:  

The noise performance is obtained by calculating SSRs at different SNRs by adding 

additive white Gaussian noise to the input code. The SSRs at different SNRs for 500 and 

1000 epochs are listed in Table 4.2 and 4.3 for MLP, RNN, RBF and RRBF. The noise 

performance at different SNRs for both 500 and 1000 epochs are shown in Figure 4.5. From 

all this it is clear that RRBF gives better performance than RBF and RNN, MLP. 
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(a) 

 

(b) 

Figure 4.5. Noise performance at different SSRs for 13-bit barker code (a) 500 epochs (b) 

1000 epochs 
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Table 4.2. Noise performance at different SSRs for 500 epochs 

Algorithms SNR=5dB 10dB 15dB 20dB 25dB 

ACF 8.39 13.08 16.38 18.61 20.08 

MLP 8.61 24.09 33.72 38.56 41.04 

RNN 14.95 31.66 39.15 42.45 44.04 

RBF 27.01 38.62 43.67 46.27 47.77 

RRBF 34.05 46.25 50.47 51.99 52.58 

 

Table 4.3. Noise performance at different SSRs for 1000 epochs 

Algorithms SNR=5dB 10dB 15dB 20dB 25dB 

ACF 8.39 13.08 16.38 18.61 20.08 

MLP 8.61 26.30 36.74 41.85 44.43 

RNN 16.33 34.70 42.50 45.85 47.44 

RBF 29.92 42.27 47.49 50.12 51.61 

RRBF 29.32 46.75 50.71 52.53 53.45 

 

4.4.4. Doppler performance 

The Doppler sensitivity is caused by phase shifting the individual elements of the 

input phase code.  The input phase code will not match with its replica if the phase of its last 

element is shifted by 180°. So the input code is changed to [-1 1 1 1 1 -1 -1 1 1 -1 1 -1 1] and 

is fed to the network. The SSR is calculated for MLP, RNN, RBF and RRBF networks for 

both 500 and 1000 epochs and are tabulated in Table 4.4. The compressed waveforms for 13-

bit barker code for 500 epochs under Doppler shift conditions are shown in Figure 4.6. It is 

shown that RRBF is more robust to Doppler shift interference than MLP, RBF and ACF. 
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(c) 
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(e) 

Figure 4.6. Compressed waveforms for 13-bit barker code under Doppler shift conditions for 

500 epochs (a) ACF (b) MLP (c) RNN (d) RBF (e) RRBF 

Table 4.4.  Doppler shift performance in dB 

 

 

 

 

 

 

4.5. Summary 

In this chapter, the concepts of RBF, and RRBF are discussed. The RBF and proposed 

RRBF network are used for pulse radar detection to compress the unwanted self-clutter 

sidelobes. In the simulations, error performance, SSR performance, noise performance and 

Doppler shift performances are done for RBF and RRBF networks and are compared with 

MLP, RNN and ACF algorithms. From simulation results it is clear that the recurrent RBF 

gives better results compared to MLP, RNN and RBF. The error converges fast in case of 
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Algorithms 

SSR in dB 

500 epochs 1000 epochs 

ACF 12.74 12.74 

MLP 15.06 16.38 

RNN 25.78 27.68 

RBF 26.56 31.63 

RRBF 28.23 32.06 
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RRBF than in MLP, RNN and RBF. The calculated SSR is higher in case of RRBF than 

MLP, RNN, RBF and traditional algorithms like ACF algorithm. Simulation results also 

demonstrate that RRBF yields better noise performance at different SSRs than MLP, RNN, 

RBF and ACF. The RRBF network is very robust to Doppler shift interference than MLP, 

RNN, RBF. Under Doppler shift conditions, the SSR is calculated as 15.06dB for MLP, 

25.78dB for RNN, 26.56dB for RBF, whereas RRBF gives better SSR of 28.23dB for 500 

epochs. 
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5.1. Introduction 

If the phases of subpulses in phase coded pulse compression are other than the binary 

phases of 0 and , then the phase codes are called polyphase codes [5.1]. They have lower 

sidelobes than binary codes and are more Doppler tolerant if the Doppler frequencies are not too 

large. Frank proposed a polyphase code with good non-periodic correlation properties and named 

the code as Frank code [5.4]. Kretscher and Lewis proposed different variants of Frank 

polyphase codes called p-codes which are more tolerant than Frank codes to receiver 

bandlimiting prior to pulse compression [5.5, 5.6]. Lewis has proven that the sidelobes of 

polyphase codes can be substantially reduced after reception by following the autocorrelator with 

two sample sliding window subtractor for Frank and P1 codes and TSSWA for P3 and P4 codes.  

This chapter is about the different polyphase codes and their properties. First the golay 

complementary codes are discussed followed by the discussion polyphase shift keying 

techniques which contain Frank, P1, P2, P3, P4 codes. For each code, the phase characteristics, 

autocorrelation properties and doppler properties are examined. Also the TSSWA and double 

TSSWA after autocorrelator are described in detail and are applied for P4 code. The weighting 

techniques are applied using Kaiser Bessel and Hamming windows and the results are compared.  

5.2. Golay Complementary codes 

Golay complementary codes [5.2] have properties that are useful in radar and 

communications systems. The sum of autocorrelations of each of a Golay complementary code 

pair is a delta function. This property can be used for the complete removal of sidelobes from 

radar signals, by transmitting each code, match–filtering the returns and combining them. 

Consider two discrete binary sequences of length N, p1(n) and p2(n), are termed Golay 

complementary sequences if the sum of their autocorrelations is zero except at zero lag, i.e. 

                                                      (5.1) 

Where the Rp1, Rp2 are the autocorrelations of p1 and p2 codes respectively. The 

properties of golay complementary codes are as follows, 
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                                            (5.2) 

                                                   (5.3) 

                                                    (5.4) 

                                                                                                    
(5.5) 

It is also the case that 

                                                   (5.6) 

provided that the Golay sequences are constructed in a standard manner from a length–2 seed 

and are not permuted. A length–8 Golay pair and its complementary property is illustrated in 

Figure 5.1.  
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(c) 

 

(d) 

 

(e) 

Figure 5.1. (a, b) Golay complementary codes (b, c) their respective autocorrelation functions (e) 

sum of the autocorrelations 

0 5 10 15
-4

-2

0

2

4

6

8

0 5 10 15
-4

-2

0

2

4

6

8

0 5 10 15
-2

0

2

4

6

8

10

12

14

16



CHAPTER 5: A STUDY OF POLYPHASE CODES AND THEIR SIDELOBE REDUCTION 

TECHNIQUES 

 

57 
 

Individual Golay sequences have relatively flat spectra. The peak–to–mean envelope 

power ratio of a Golay sequence can be shown to be bounded by length of the sequence [2]. This 

has application in OFDM power control. 

5.2.1. Modified Golay Complementary Code 

Let p1(n) and p2(n) be a Golay complementary pair. The modification is done for p2 code 

and the modified code q in terms of p2 is expressed as 

                                                         (5.7) 

The autocorrelations of original code p2 and modified code q are related as follows 

                                                              (5.8) 

The square of autocorrelation functions of p1, p2, and q are related as follows 

 

                       (5.9) 

And hence 

                                        (5.10) 

From the above equation it is evident that the square of autocorrelation functions of  

and  are complementary to each other. The complementarity of the modified golay code with 

the other code and its sum of squared autocorrelation functions are illustrated in Figure 5.2. 
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(d) 

 

(e) 

Figure 5.2. (a) Modified Golay code  (b) its autocorrelation function (c) its squared 

autocorrelation (d) squared autocorrelation of  (e) sum of squared autocorrelations of  and  

Hence if both the sequences are multiplied by  then they are complementary to each 

other but only one of the codes is multiplied by   results in a pair which is complementary in 

the square [5.3]. 

Even though the Golay complementary codes provide complete sidelobe cancellation, 

they are not tolerant of doppler shifts caused by targets moving relative to the radar. Hence we 

go for polyphase codes that has many applications which include low sidelobe levels, good 

doppler tolerance for search radar applications and ease of implementation. 
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5.3. Polyphase codes  

The codes that use any harmonically related phases based on a certain fundamental phase 

increment are called Polyphase codes. Polyphase codes exhibit better Doppler tolerance for 

broad range-Doppler coverage than do the biphase codes, and they exhibit relatively good side 

lobe characteristics. 

Polyphase compression codes have been derived from step approximation to linear 

frequency modulation waveforms (Frank, P1, P2) and linear frequency modulation waveforms 

(P3, P4). These codes are derived by dividing the waveform into subcodes of equal duration, and 

using phase value for each subcode that best matches the overall phase trajectory of the 

underlying waveform. In this section the polyphase codes namely Frank, P1, P2, P3, P4 codes 

and their properties are described. 

5.3.1. Frank Code 

The Frank code is derived from a step approximation to a linear frequency modulation 

waveform using N frequency steps and N samples per frequency [5.4]. Hence the length of Frank 

code is N
2
. The Frank coded waveform consists of a constant amplitude signal whose carrier 

frequency is modulated by the phases of the Frank code.  

The phases of the Frank code is obtained by multiplying the elements of the matrix A by 

phase (2π/N) and by transmitting the phases of row1 followed by row 2 and so on. 

2)1(...)1(2)1(0

.

.

)1(3...630

)1(2...420

)1(...210

0...000

NNN

N

N

N

A                            (5.11) 

The phase of the ith code element in the jth row of code group is computed as  

                                                    (5.12) 
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Where i and j ranges from 1 to N. For example, the Frank code with N = 4, by taking 

phase value modulo 2  is given by the sequence, 

22

3
0

00
2

3

2
0

0000

44x  

The autocorrelation function under zero Doppler, Doppler of 0.05 and the phase values of 

Frank code with length 100 are given in Figure 5.3.  
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(c) 

Figure 5.3. Frank Code for length 100 (a) Autocorrelation  under zero Doppler shift (b) 

Autocorrelation under doppler = 0.05 (c) phase values 

From the above figure it is evident that the Frank code has the largest phase increments 

from sample to sample in the center of the code. Hence, when the code is passed through a 

bandpass amplifier in a radar receiver, the code is attenuated more in the center of the waveform. 

This attenuation tends to increase the sidelobes of the Frank code ACF. Hence it is very 

intolerant to precompression bandlimiting. But comparing with binary phase codes, the Frank 

code has a peak sidelobe level (PSL) ratio of -29.79dB which is approximately 10 dB better than 

the best pseudorandom codes [5.1].  

In the presence of Doppler shift, the autocorrelation function of Frank codes degrades at 

much slower rate than that for binary codes, however the peak shifts in position rapidly and a 

range error occurs due to this shift. The correlation under Doppler frequency fd is obtained by 

correlating the transmitted one with received one multiplied by  , where T is the length 

of the code.  The PSL value under Doppler of 0.05 is calculated as -8.42dB. 

5.3.2. P1 Code 
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by placing the synchronous oscillators at the center frequency of the step chirp IF waveform and 

sampling the baseband waveform at the Nyquist rate [5.5].  

 

(a) 

 

(b) 

Figure 5.4. P1 Code for length 100 (a) its Autocorrelation (b) its phase values 

The P1 code has N
2
 elements and the phase of ith element of the jth group is represented 

as 
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Where i and j are integers ranges from 1 to N. For example, the P1 code with N = 4, by taking 
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The autocorrelation function and the phase values of P1 code with length 100 are given in 

Figure 5.4. The PSL value is obtained as -23.99dB. P1 code has the highest phase increments 

from sample to sample at the two ends of the code. Thus, when waveforms phase coded with 

these codes are passed through band pass amplifiers in a radar receiver, P1 code is attenuated 

most heavily at the two ends of the waveform. This reduces the sidelobes of the P1 code 

autocorrelation function. Hence this exhibits relatively low sidelobes than Frank code. This 

results that P2 code is very precompression bandwidth tolerant than Frank code. Also, the P1 

code has an autocorrelation function magnitude which is identical to the Frank code for zero 

Doppler shift. 

5.3.3. P2 Code 

The P2 code has the same phase increments within each phase group as the P1 code, 

except that the starting phases are different [5.1]. The P2 code has N
2
 elements and the phase of 

ith element of the jth group is represented as 

                                (5.14) 

Where i and j are integers ranges from 1 to N.The value of N should be even in order to 

get low autocorrelation sidelobes. An odd value of N results in high autocorrelation sidelobes. 

For example, the P2 code with N = 4, by taking phase value modulo 2  is given by the sequence, 
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The autocorrelation function under zero Doppler, Doppler of 0.05 and the phase values of 

P2 code with length 100 are given in Figure 5.5.  
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(c) 

 

Figure 5.5. P2 Code for length 100 (a) Autocorrelation  under zero doppler shift (b) 

Autocorrelation under doppler = 0.05 (c) phase values 

The peak sidelobes of the P2 code are the same as the Frank code for zero Doppler case 

and the mean square sidelobes of the P2 code are slightly less. The value of PSL obtained as -

29.79dB which is same as that of Frank code. Under  Doppler of 0.05 the PSL value is computed 

as -8.79dB which is slightly lower than that of Frank code. The phase changes in P2 code are 

largest towards the end of the code. 

The significant advantage of the P1 and P2 codes over the Frank code is that they are 

more tolerant of receiver band limiting prior to pulse compression. But P1 and P2 suffers from 

high PSL value. PSL value is obtained by the ratio of peak sidelobe amplitude to the main lobe 

amplitude. To obtain low PSL values, we go for P3 and P4 codes. 

5.3.4. P3 Code  

The P3 code is conceptually derived by converting a linear frequency modulation 

waveform to baseband using a local oscillator on one end of the frequency sweep and sampling 

the inphase I and quadrature Q video at the Nyquist rate [5.6].  

The phase sequence of the P3 signal is given by 

                                                            (5.15) 
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Where  varies from 1 to N and N is the compression ratio. For example, the P3 code with N = 

16, by taking phase value modulo 2  is given by the sequence, 

 

The autocorrelation function and the phase values of P3 code with length 100 are given in 

Figure 5.6. The PSL value is obtained as -26.32dB. 
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Figure 5.6. P3 Code for length 100 (a) its Autocorrelation (b) its phase values 
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precompression bandwidth limitation tolerant but is much more Doppler tolerant than the Frank 

or P1 and P2 codes. 

5.3.5. P4 Code 

P4 code is derived from conceptual coherent double sideband detection of a linear 

frequency modulation waveform and sampling at the Nyquist rate [5.6]. The phase sequence of 

the P4 signal is given by 

                                          (5.15) 

Where  varies from 1 to N and N is the compression ratio. For example, the P4 code with N = 

16, by taking phase value modulo 2  is given by the sequence, 

 

The autocorrelation function under zero Doppler, Doppler of 0.05 and the phase values of 

P4 code with length 100 are given in Figure 5.7. The PSL value is obtained as -26.32dB under 

zero Doppler, and -22.31dB under Doppler of 0.05 which are similar to P3 code.  
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(b) 

 
(c) 

Figure 5.7. P4 Code for length 100 (a) Autocorrelation  under zero doppler shift (b) 

Autocorrelation under doppler = 0.05 (c) phase values 

The largest phase increments from code element to code element are on the two ends of 

the P4 code but are in the middle of the P3 code. Thus the P4 code is more precompression 

bandwidth limitation tolerant but has same Doppler tolerance than the P3 code.  

5.4. Two Sample Sliding Window Adder (TSSWA) 

TSSWA is applied for polyphase codes inorder to reduce the PSL values. It is a new type 

of pulse compression technique that compresses the pulse to the width of several subpulses and 

not to the width of single subpulse by reducing bandwidth [5.8].  
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(b) 

Figure 5.8. (a) Auto-correlator followed by single TSSWA (b) Auto-correlator followed by 

double TSSWA 
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Figure 5.9. (a) Correlator output (b) Single TSSWA output (c) Double TSSWA output 
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The TSSWA is added after the autocorrelator of the code. The block diagram of 

autocorrelator followed by single TSSWA and double TSSWA are shown in Figure 5.8. The 

spectrum bandwidth of the coded signal is approximately the inverse of the subpulse width τ in 

the conventional autocorrelation output which is given in Figure 5.9(a). Hence the pulse is then 

compressed to a single subpulse. The function of TSSWA is to divide the signal into two, delay 

one of them by τ and add it to the other one [5.8]. The output of the autocorrelator followed by a 

single TSSWA is given in Figure 5.9(b). 

The compressed width after single TSSWA will be 2τ. Further if again one more TSSWA 

is added to single TSSWA output then autocorrelator followed by double TSSWA is formed and 

its output has compressed width of 3τ as shown in Figure 5.9(c). From the spectral point of view, 

the TSSWA is carried out once, if the weighting function (1+cosωτ) is multiplied by the spectral 

intensity of the input signal so that bandwidth becomes narrowed. For double TSSWA, the 

weighting function (1+cosωτ)
2
 is multiplied by the spectral intensity of the input signal so that 

the signal bandwidth becomes narrower and so on. 

In this section, single TSSWA and double TSSWA are applied for P4 code of length 100. 

The autocorrelation output, the output of autocorrelation followed by single TSSWA, followed 

by double TSSWA are shown in Figure 5.10. The corresponding PSL values are depicted in 

Table 5.1. 

Table 5.1. Comparison of PSL values 

P4 code (N=100)  PSL (in dB)  

ACF  -26.32  

Single TSSWA output  -34.00  

Double TSSWA output  -34.28  
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Figure 5.10. 100-element P4 code (a) Autocorrelation output (b) Single TSSWA output after 

autocorrelator (c) Double TSSWA output after autocorrelator 

5.5. Weighting Techniques for Polyphase Codes 

There will be significant reduction in sidelobes and PSL values than TSSWA by 

implementing time weighting function to the signal code. This sidelobe reduction technique can 

be analysed in two ways [5.9], one is matched weighting with weighting window at the 

transmitter and the receiver and two is mismatched weighting, where amplitude weighting is 

performed only at receiver site . In this section, simulations are done using mismatched 

weighting. 

In this section, Kaiser-Bessel time weighting function is analysed due to β parameter and 

its influence on sidelobe suppression and efficiency in Doppler shift domain, as well. The PSL 

and integrated sidelobe level (ISL) values are compared for different weighting functions such as 

Kaiser-Bessel, hamming, hanning, blackmann etc. 

Inorder to determine the quality of a coding scheme and sidelobes suppression method, 

the peak sidelobe level (PSL) and the integrated sidelobe level (ISL) of ACF are computed [5.16] 

and can be defined (in decibels) as follows  

)(

)(max
log10

2

2

10][
MR

kR
PSL dB                                           (5.16) 

12

1
2

2

][
)(

)(
log10

M

k

dB
MR

kR
ISL                                                   (5.17)    

Where k is the index for the points in the ACF, R(M) is the peak of the ACF at k = M, R(k) is 

ACF for all of the output range sidelobes except that at k = M. 

The PSL is bounded by the code length N and its level is approximately given (in 

decibels) by  

6log10 10][ NPSL dB                                                     (5.18) 
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Here the weighting techniques are applied to P4 code. The PSL's of the P4 codes 

diminish as the number of code element N (or equivalently the time-bandwidth product) 

increases. The PSL value for P4 code of length N=100 is -26.32dB. The Hamming window and 

Kaiser-Bessel windows are explained in detail and they are applied to P4 code and the values of 

PSL and ISL are compared. 

5.5.1. Hamming Window 

Hamming window belongs to the family of raised cosine windows. The window is 

optimized to minimize the maximum (nearest) side lobe, giving it a height of about one-fifth that 

of the Hann window, a raised cosine with simpler coefficients [5.19]. The coefficients of a 

Hamming window are computed from the following equation. 

                            (5.19) 

The 100- point hamming code is shown in Figure 5.11. 

 

Figure 5.11. Hamming code of length 100 
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5.5.2. Kaiser-Bessel Window 

For a Kaiser-Bessel window of a particular length N, the parameter β controls the 

sidelobe height and it affects the sidelobe attenuation of the fourier transform of the window. 

This parameter also trades off main lobe width against side lobe attenuation [5.20]. The Kaiser-

Bessel window in sampled version with β is computed as follows 

otherwise

Nnif
I

N

n
I

nw

,0

1,
)(

1
1

2
1

][

0

2

0

                           (5.20) 

Where I0 is the zeroth order modified Bessel function of the first kind, β is an arbitrary real 

number that determines the shape of the window, N is the length of the window. The design 

formula that is used to calculate β parameter value due required a sidelobe level  

21,0

5021,)21(07886.0)21(5842.0

50,)7.8(1102.0

4.0
               (5.21) 

Where α is sidelobe level in decibels. As β increases, the main lobe width widens and the 

sidelobe attenuation increases [5.19, 5.20]. For β = 0, the Kaiser-Bessel window is a rectangular 

window. For β= 5.44, the Kaiser-Bessel window is close to the Hamming window.  

Typically, the value of β is in the range from four to eight and for a given parameter, the 

sidelobe height is fixed with respect to window length. The Kaiser-Bessel window of length 100 

for different values of β is plotted in Figure 5.12. 
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Figure 5.12. Kaiser-Bessel code of length 100 for different β values 

For any given window, the signal-to-noise loss (SNR loss) can be calculated by the 

formula [5.1] 
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5.5.3. Simulation Results and Discussion 

The Hamming window and Kaiser Bessel windows are applied as sidelobe reduction 

techniques for P4 code. At the receiver side, the code signal is multiplied with the window 

coefficients and the weighted code and transmitted one are subjected to autocorrelation.  
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Figure 5.13. Autocorrelation function of P4 signal, N=100, Kaiser-Bessel window for various β 

parameter value 

 

Figure 5.14. ACF of P4 signal, N=100, with Hamming window and Kaiser-Bessel window 

(β=5.44) 

The autocorrelated output using Kaiser Bessel window for different values of β for P4 

code of length 100 is given in Figure 5.13. A comparison of ACFs using Hamming window and 

Kaiser Bessel window of β = 5.44 for 100-element P4 code is given in Figure 5.14. The PSL and 

ISL values for the same are depicted in Table 5.2. 
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Table 5.2. Performance for 100 element P4 code 

Window name 
Peak Sidelobe 

Level (dB) 

Integrated Sidelobe 

Level (dB) 

Weighting SNR 

loss 

Rectangular -26.32 -12.00 0 

Hamming -40.08 -19.73 -1.37 

Kaiser-Bessel β=4 -29.78 -18.29 -0.98 

K-B, β=5.44 -40.34 -19.89 -1.52 

K-B, β=6 -35.06 -19.72 -1.71 

K-B, β=7 -26.19 -18.28 -1.99 

K-B, β=8 -21.77 -16.28 -2.26 

 

 

5.5.3.1. Doppler Properties of P4 weighted Code 

 The effect of amplitude weighting of Hamming and Kaiser Bessel windows of P4 

code under Doppler shift conditions are examined. Figure 5.15(a) shows the ACF of P4 signal 

for various Doppler shifts, where the one is normalized to the signal bandwidth. Figure 5.15(b) 

shows the effects of Hamming and Kaiser Bessel windowing techniques under Doppler of -0.05. 

The PSL and ISL values under Doppler of -0.05 for weighed P4 code are depicted in Table 5.3. 
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(a) 

 

(b) 

Figure 5.15. Autocorrelation function of 100-elementP4 signal (a) and weighted P4 code (b) for 

various windows and Doppler =-0.05 
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Table 5.3. Performance of p4 weighted code under Doppler=-0.05 

 

 

 

 

 

 

 

 

 

 

 

5.6. Summary 

In this chapter, the Golay complementary codes and polyphase codes are described. The 

performances of polyphase codes namely Frank, P1, P2, P3, P4 codes, their autocorrelation 

properties, their phase values and their properties under Doppler shift conditions are discussed. 

The Single TSSWA and double TSSWA outputs for P4 code are explained in detail and proved 

that this technique reduces the PSL value. Inorder to reduce the PSL values further, weighting 

techniques are employed. The Hamming and Kaiser Bessel windowing functions are studied and 

their effects to P4 code under Doppler of 0 and -0.05 are discussed. 

Window name 
Peak Sidelobe Level 

(dB) 

Integrated Sidelobe Level 

(dB) 

Rectangular -22.38 -10.66 

Hamming -37.29 -19.01 

Kaiser-bessel β=4 -27.14 -17.35 

K-B, β=5.44 -37.98 -19.38 

K-B, β=8 -21.78 -16.21 
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6.1. Conclusion 

In this thesis, we have presented novel techniques for pulse radar detection. The concepts 

of pulse compression, phase coded pulse compression and different barker codes are studied. The 

major aspects for any pulse compression technique are signal to sidelobe ratio performance, 

noise performance and Doppler tolerance performance. Many techniques were employed to 

detect a radar pulse which include Adaptive filtering techniques using LMS, RLS, and modified 

RLS algorithms, multilayered neural network approach and RBF approaches. We proposed the 

Elman’s recurrent neural network for pulse radar detection which gave better results compared to 

other techniques. There is a scope of futher improvement in all the aspects for most of the 

applications. 

In another chapter, the recurrent RBF is proposed for pulse radar detection to compress 

the unwanted self-clutter sidelobes. The performance of the RRBF is found to be the best in 

terms of convergence rate and signal to sidelobe ratio (SSR) for sidelobes reduction over a wide 

range of SNR. Also, RRBF network is more tolerant to Doppler shift in comparison to other 

networks like RBF and MLP. 

In other chapter, Golay complementary codes and polyphase codes are described. In this 

study, the performances of polyphase codes namely Frank, P1, P2, P3, P4 codes, their 

autocorrelation properties, their phase values and their properties under Doppler shift conditions 

are discussed. 

The sidelobe reduction techniques for polyphase codes are presented. The Single TSSWA 

and double TSSWA outputs for P4 code are explained in detail and proved that this technique 

reduces the PSL value. In order to reduce the PSL values further, weighting techniques are 

employed. The Hamming and Kaiser Bessel windowing functions are studied and the 

performances of both the windows for P4 code are presented. The performance of Kaiser Bessel 

window depends on β parameter and proper choice of this parameter significantly reduces 

sidelobe level of compressed P4 signal. Also, this window has an additional advantage of being 

less sensitive to Doppler shift. 
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6.2. Scope of Future Work 

The work can be extended by improving SSR performance, error convergence, noise 

performance and doppler shift interference by using the networks trained by evolutionary 

algorithms. There is a scope of designing a polyphase code which has lower sidelobes and is 

more Doppler tolerant than the codes discussed in the thesis by using Multiobjective 

Optimization techniques. 
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