DESIGN OF AN APPLICATION SPECIFIC
INSTRUCTION SET PROCESSOR USING LISA

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

in Electronics and Communication Engineering

Umakanta Nanda

By

ROURKELA

Department of Electronics and Communication Engineering
National Institute of Technology
Rourkela, Orissa, 769 008, India
May 2010

DESIGN OF AN APPLICATION SPECIFIC
INSTRUCTION SET PROCESSOR USING LISA

A Technical Report submitted in partial fulfillment

of the requirements for the degree of
Master of Technology
m
Electronics and Communication Engineering
by

Mr. Umakanta Nanda

under the guidance of

Prof. K.K.Mahapatra

Y

ROURKELA

Department of Electronics and Communication Engineering
National Institute of Technology
Rourkela-769 008, Orissa, India

May 2010

To my parents

Department of Electronics and Communication Engineering
% g National Institute of Technology Rourkela
Rourkela-769 008, Orissa, India.

ROURKELA

Certificate

This is to certify that the work done for the direction of thesis entitled ” Design
of an Application Specific Instruction set Processor using LISA” sub-
mitted by Mr. Umakanta Nanda in partial fulfillment of the requirements for
the award of Master of Technology Degree in Electronics and Communication En-
gineering with specialization in VLSI Design and Embedded Systems at National
Institute of Technology, Rourkela is an authentic work carried out by him under

my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not
been submitted to any other University/Institute for the award of any Degree

or Diploma.

Place: NIT Rourkela Dr.Kamala Kanta Mahapatra
Date: 28th May, 2010 Professor

Acknowledgement

My first thanks are to the Almighty God, without whose blessings I wouldn’t have
been writing this “acknowledgments”.

I then would like to express my heartfelt thanks to my guide, Prof.Kamalakanta
Mahapatra, for his guidance, support, and encouragement during the course of my
master study at the National Institute of Technology, Rourkela. I am especially
indebted to him for teaching me both research and writing skills, which have
been proven beneficial for my current research and future career. Without his
endless efforts, knowledge, patience, and answers to my numerous questions, this
research would have never been possible. The experimental methods and results
presented in this thesis have been influenced by him in one way or the other. It
has been a great honor and pleasure for me to do research under supervision of
Prof. Kamalakanta Mahapatra.

I am very much indebted to Prof. S. K. Patra, Head of the Department,
Electronics and Communication Engineering, National Institute of Technology,
Rourkela for his support during my work.

I am grateful to Dr. D. P. Acharya for teaching me the right way to present
the motivation of my thesis. His insightful feedback helped me improve the pre-
sentation of the thesis in many ways.

I am also thankful to Prof. G. S. Rath, Prof. S. K. Das, Prof. S. K. Behera,
Prof. NVLN Murty for giving encouragement during my thesis work.

I thank all the members of the Department of Electronics and Communica-
tion Engineering, and the Institute, who helped me by providing the necessary
resources, and in various other ways, in the completion of my work.

Finally, I thank my parents and all my family member for their unlimited
support and strength. Without their dedication and dependability, I could not
have pursued my MTech. degree at the National Institute of Technology Rourkela.

Umakanta Nanda

i

Abstract

A Digital Signal Processor with specific instruction sets and meant for a specific
application is called as Application Specific Instruction set Processor(ASIP). To
design an ASIP many approaches are available. However optimization of an ASIP
becomes handy if it is designed in a higher level of abstraction that is higher than
Register Transfer Level (RTL). Application Description Languages (ADLs) are
becoming popular recently because of its quick and optimal design convergence
achievement capability during the design of ASIPs. Several stages are required to
design a processor which are architecture design implementation, software devel-
opment, instruction and system verification. Verification of such ASIPs at various
design stages is a tedious job to do. This thesis presents the architecture descrip-
tion of a simple DSP processor using ADL based instruction set description. The
design process is more consistent after allowing maximum flexibility here. Further-
more, it enables the design process in both instruction and cycle accurate modes.
The design process of a three stage pipelined FIR Filter processor is demonstrated
as a case study. Further optimization can be done with respect to resources, mem-
ory size and power consumption by changing the LISA code written in CoWare

platform.

il

Contents

Certificate i
Acknowledgement ii
Abstract iii
List of Figures vi
List of Tables viii
1 Introduction 2
1.1 Motivation Lo 2
1.2 Related Work oo 4
1.3 Organization of this Thesis 5

2 Design Methodology Of ASIP 7
2.1 Implementation of DSP Application 7
2.1.1 Implementation on General Purpose Processor (GPP) 7

2.1.2 Implementation on General Purpose DSP Processor 8

2.1.3 Implementation on Application Specific Integrated Circuit

(ASIC) . . . 8

2.1.4 Implementation on Application Specific Instruction Set Pro-
cessor (ASIP)o 9
2.2 ASIP Design Flow 10
2.2.1 Architecture Exploration 12
2.2.2 Architecture Implementation 13
2.2.3 Software Application Design 14
2.2.4 System Integration and Verification 14
2.3 Field of Applicationo 15

v

3 Overview Of LISA

3.1 Building a LISA model

3.1.1 Modeling Instructions

3.1.2 Operation Hierarchy Of a Processor in LISA model
3.2 ISS Design vs Processor Design
3.3 Instruction Accurate vs Cycle Accurate Modeling
3.4 The Instruction Set Designer
3.5 Processor Debuggero
3.6 Major Benefits

4 Test Case: Two Processors Design Comparision

4.1 The Instruction Set Designer
4.2 Implementation of General Purpose Processor
4.3 Operation profiling
4.4 Resource profiling
4.5 Memory profiling
4.6 Optimized implementation result

4.6.1 The generated HDL model structure

4.6.2 Comparison of the HDL codes generated

4.6.3 Synthesis Report collected from Cadence DC
4.7 Layout using MAGMA

5 Conclusion
5.1 Main Contributions
5.2 Conclusion

5.3 Future Work
Reference

Dissemination of Work

18
18
20

21
22
24
25
26

28
28
31
31
33
35
35
36
38
39
40

46
47
47
47

49

52

List of Figures

2.1 DSP Processor Architecture 9
2.2 The ASIP Design flow 11
2.3 Phases of ASIP Design 12
2.4 Comparision of HDL And LISA model 13
2.5 Exploration and Implementation. 15
3.1 Resource Section 19
3.2 Operation Section 20
3.3 Operation hierarchy o000 21
3.4 CoWare Processor Designer 22
3.5 Instruction Set Designer 24
3.6 Processor Debugger Window 25
4.1 Debugger Windowo o 29
4.2 Instruction Set Designer 30
4.3 Part of LISA code of Processor-1 32
4.4 Operation Profiling Window 33
4.5 General Purpose Register Window 34
4.6 Optimized Implementation Result 36
4.7 Generated HDL Code Structure 37
4.8 Toplevel Schematic 39
4.9 Design Objects 40
4.10 Technology Schematic 41
4.11 Blast Create Layout Flow 42
4.12 Blast Fusion Flow oo 43

vi

4.13 Layout

vil

List of Tables

4.1 Comparision Between Two Processors

4.2 Synthesis Report

viil

Chapter 1

INTRODUCTION

Motivation

Organization of this Thesis

Chapter 1

Introduction

1.1 Motivation

Today’s market has a high demand on mobile and automotive devices due to ro-
bustness, performance, power, efficiency, flexibility, development time, and price of
these systems. Unfortunately the decreasing structure size has the drawback of ex-
ponentially increasing non-recurring engineering (NRE) costs. The major factors
of the NRE cost breakdown are chip design, chip verification and the development
of the mask sets. Further more time to market is also an important factor for
any processor. By taking into consideration of all these factors a better balance
between the parameters like flexibility, efficiency and speed can be achieved by
combining processor and ASIC technology. The result is an application specific
instruction-set processor (ASIP). ASIPs [1,2] combine the two advantages of pro-
cessors and ASICs: reconfigurability and efficiency with respect to performance,
power and area. If we consider cost function ASIP design achieve an overhead
factor of 103 — 107 compared to ASIC implementation. They can be optimized in
the form of instruction set, general purpose registers, memory size. Compared to
digital signal processors (DSPs have ATE-costs of 107 — 10%) ASIPs are tailored
to a smaller domain of applications. This allows for dedicated optimizations and
significantly reduces ATE-costs. But ASIP design becomes challenging when we
go for hardware model which is required for synthesis. So a software tool suite
needs to be created and verified which include assembler, linker, simulator, and

profiler [2]. Additionally the design process always involves an architecture ex-

1.1 Motivation

ploration phase where architectural alternatives are evaluated and traded for best
matching of the design constraints.

We describe an approach for application-specific processor design [3] based on
an extendible microprocessor core. Core-based design allows to derive application-
specific instruction processors from a common base architecture with low non-
recurring engineering cost. The results of this application-specific customization
of a common base architecture are families of related and largely compatible pro-
cessor families. These families can share support tools and even binary compatible
code which has been written for the common base architecture. Critical code por-
tions are customized using the application-specific instruction set extensions. We
describe a hardware/software co-design methodology which can be used with this
design approach. The presented approach uses the processor core to allow early
evaluation of ASIP design options using rapid prototyping techniques.

Application-Specific Instruction-set Processors (ASIP) can improve execution
speed by using custom instructions. Several ASIP design automation flows have
been proposed recently. One can investigate two techniques to improve these
flows, so that ASIP can be efficiently applied to simple computer architectures in
embedded applications. Firstly, we efficiently generate custom instructions with
multi-cycle 10 (which allows multi-outputs), thus removing the constraint imposed
by the ports of the register file. Secondly, we allow identical portions of different
custom instructions to be shared, thus allowing more custom instructions under
the same area constraint. To handle the greatly increased exploration space, we
propose several heuristics to keep the problem tractable. Experimental results
show that we can achieve 3x speedup in some cases.

This thesis particularly focuses on the optimization of a digital signal processor
with respect to instruction set, memory and general purpose registers. Then by
using Coware tool the RTL file of the processor has been generated to compare

the parameters like area, power and lines of HDL code [4] of two processors.

1.2 Related Work

1.2 Related Work

The concept of instruction set oriented ASIPs is well known in the technical liter-
ature. In a concise overview of ASIP design issues [5] is given. The reviewed ASIP
design flows are targeted at performance constraints and do not take into account
the energy consumption of the implementation. Furthermore, the described design
flows frequently separate ASIP architectural design space exploration from ASIP
instruction set synthesis. In the currentwork, these design steps are combined,
because the instruction set is viewed as an interface to the architecture with mu-
tual dependencies. As a consequence, architecture and instruction set are jointly
optimized in order to obtain optimum results.

There are various ASIP design tools for the complete ASIP design flow from
application to implementation. In the PEAS [6] design environment is described
which generates an instruction set simulation model and a synthesizable model
from an architectural processor description. The MetaCore DSP development
system [7] is an ASIP design tool which supports design space exploration and
design generation. In the design flow, the development tools like C compiler,
assembler, and ISA simulator as well as the HDL description of the processor are
generated. In [8] the ISDL machine description language is used to generate a bit-
true instruction level simulator and a synthesizable Verilog processor description.

There are also some design tools presented in the literature focusing on a subset
of the ASIP design flow. A framework for Compiler-ASIP codesign with feedback
from an optimizing compiler to the ASIP design is described in [9]. In [10] the
RECORD compiler is presented which uses a structural RTL model of a DSP as
a starting point of the compiler generation.

Furthermore, there are some commercial approaches to ASIP design. For in-
stance, Tensilica, Improv and ARC Cores offer configurable processor cores to-
gether with design environments to generate the necessary development tools. For
an overview refer to [11].

For the current case study, the processor description language LISA has been

used to generate assembler and instruction set simulator as well as parts of the

1.8 Organization of this Thesis

HDL description. The underlying design methodology provides a power-conscious
design flow. Power saving techniques similar to the ones that have been used for
MCORE [12] but also ASIP-typical power saving techniques have been applied.
Furthermore, by using the quantitative results of these optimizations, the impor-
tant parameters computational performance, area, and energy consumption have
been optimized simultaneously. This is especially challenging due to the large
design space which is offered by ASIPs compared to systems using off-the-shelf

Processors.

1.3 Organization of this Thesis

Chapter 2 of this thesis lets us to know about the methodology of design an ASIP.
Different approaches have been described and compared with each other. In chap-
ter 3 the LISA (Language for Instruction Set Architecture) has been described
and corresponding tool suits have been analyzed. In chapter 4 we have imple-
mented the architecture of an Embedded DSP processor using LISA where the
description for each instruction of the instruction set (of that specific architec-
ture) is described properly in CoWare platform. At last in chapter 5 the main
contribution with conclusion has been written. Then the future scope of work of

this thesis have been described.

Chapter 2

DESIGN METHODOLOGY OF ASIP

ASIP Design Flow

Architecture Ezxploration
Architecture Implementation
Software Application Design
System Integration and Verification

Field of Application

Chapter 2

Design Methodology Of ASIP

An ASIP [13] has a dedicated instruction set and dedicated data types. Functions
are mapped to subroutines consisting of assembly instructions when designing an
ASIP DSP [14]. But at the time of ASIC design, the algorithms are directly
mapped to circuits. However, most DSP applications are so complicated that
mapping functions to circuits is becoming increasingly difficult. On the other
hand, it is becoming more popular to map DSP functions to an instruction set [14]
because the challenge of complexity is handled in both software and hardware, and

conquered separately.

2.1 Implementation of DSP Application
There are various ways of implementing a DSP application. They are:

2.1.1 Implementation on General Purpose Processor (GPP)

Many DSP applications, with or without real-time requirements, can be imple-
mented on a general-purpose processor (GPP). There are two reasons for imple-

menting a DSP application on a general-purpose computer:

e To quickly supply the application to the final user within the shortest pos-

sible time.

e To use this implementation as a reference model for the design of an embed-

ded system.

2.1 Implementation of DSP Application

2.1.2 Implementation on General Purpose DSP Processor

Many DSP applications are implemented using a general-purpose DSP (off-the
shelf processor). Here, general-purpose DSP stands for a DSP available from a
semi-conductor supplier and not targeted for a specific class of DSP applications.
A general purpose DSP has a general assembly instruction set that provides good
flexibility for many applications. However, high flexibility usually means fewer
application specific features or less acceleration of both arithmetic and control
operations. Therefore, a general-purpose DSP is not suitable for applications with
very high performance requirements. High flexibility also means that the chip
area will be large. A general-purpose DSP processor can be used for initializing a
product because the system design time will be short. When the volume has gone
up, a DSP ASIP could replace the general-purpose processor in order to reduce

the component cost.

2.1.3 Implementation on Application Specific Integrated
Circuit (ASIC)

There are two cases when an ASIC is needed for digital signal processing. The
first is to meet extreme performance requirements. In this case, a programmable
device would not be able to handle the processing load. The second case is to
meet ultralow power or ultra-low silicon area, when the algorithm is stable and
simple. In this case, there is no requirement on flexibility, and a programmable
solution is not needed.

ASIC implementation is to map algorithms directly to an integrated circuit.
Comparing a programmable device supplying the flexibility at every clock cycle,
an ASIC has very limited flexibility. It can be configurable to some extent in order
to accommodate very similar algorithms, but typically it cannot be updated in

every clock cycle.

2.1 Implementation of DSP Application

2.1.4 Implementation on Application Specific Instruction
Set Processor (ASIP)

A DSP ASIP has an instruction set optimized for a single application or a class of
applications. On one hand, a DSP ASIP is a programmable machine with a certain
level of flexibility, which allows it to run different software programs. On the other
hand, its instruction set is designed based on specific application requirements
making the processor very suitable for these applications. Low power consumption,
high performance, and low cost by manufacturing in high volume can be achieved.
The specialization of an ASIP provides a tradeoff between the flexibility of a
general purpose CPU and the performance of an ASIC. The flexibility of these
processors can be achieved by many ADLs like LISA, EXPRESSION, MIMOLA
etc.

An ASIP DSP has a dedicated instruction set and dedicated data types. When
designing an ASIP DSP, functions are mapped to subroutines consisting of assem-
bly instructions. When designing an ASIC, the algorithms are directly mapped
to circuits. However, most DSP applications are so complicated that mapping
functions to circuits is becoming increasingly difficult. On the other hand, map-
ping DSP functions to an instruction set is becoming more popular because the
challenge of complexity is handled in both software and hardware, and conquered
separately.

A simplified block diagram of DSP processor architecture is shown in figure

2.1.

[nput/output, busses, and other peripherals —
]:[AN A II 1/O
r connections
Programmable " Data processing |to outside
FSM ! unit: DU world
ﬁ 9.4 N7 ﬁ
Program memory Data memory and addressing

Figure 2.1: DSP Processor Architecture

2.2 ASIP Design Flow

A DSP processor contains five key components:

e Program memory (PM) is used to store programs (in binary machine code).

PM is part of the control path.

e Programmable FSM block consists of a program counter (PC) and an in-
struction decoder (ID). It supplies addresses to the program memory for
fetching instructions. Meanwhile, it also performs instruction decoding and

supplies control signals to the data processing unit and data addressing unit.

e Data memory (DM) stores information to be processed. Three types of data
are stored in Data Memory. Those are input/output data, intermediate data
in a computing buffer (a part of the data memory), and parameters or co-
efficients. The data memory addressing unit is controlled by programmable

FSM and supplies addresses to data memories.

e The data processing unit, or datapath, performs arithmetic and logic com-
puting. A DU includes at least a register file (RF), a multiplication and
accumulation unit (MAC), and an arithmetic logic unit (ALU). A data pro-

cessing unit may also include some special or accelerated functions.

e 1/0 serves as an interface for functional units connected to the outside world.
/0O also handles the synchronization of external signals. Memory buses and

peripherals are also included.

2.2 ASIP Design Flow

Instruction set design is the first and most important step for the design of pro-
cessor. There is tradeoff among a multiple parameters including performance,
functional coverage, flexibility, power consumption, silicon cost and design time.
The complete design flow has been shown in the figure 2.2. It starts from
the requirement specification and finishes after the microarchitecture design. The
design of an ASIP is based mostly on experience, and it is essential to minimize

the cost of design iteration.

10

2.2 ASIP Design Flow

Specily function coverage, performance, and cost. Conduct the
source code profiling

v

Specify an assembly instruction set

Implement instruction set simulator and assembler

Y

Assembly instruction set benchmarking and usage profiling

w

Instruction set optimization: trade oftf performance and costs

No

satisfied

Release the instruction set architecture

W

Microarchitecture design, RTL, and VLSI implementation

Figure 2.2: The ASIP Design flow

With some automation support by the vendors of embedded processors [15]
and integrated circuits, Application Specific Instruction Set Processors design are
being carried out traditionally. Four design phases [13, 16]are needed to describe
the ASIP design which are shown in the figure 2.3. In all the design phases different
development teams are required. So there should exist a good communication

between the teams.

11

2.2 ASIP Design Flow

* instruction-set design
* micro-architecture
= HW/SW partitioning

/ Architecture
Exp oration

+ realization of HDL

Architecture :
del (VHDL, Veril
Imp ementation s enileg)

= synthesis
Z
J
'b‘
- » SW development tools
/ SotNare : - C-compiler .
CApnica ion Design) - assembler, linker
rif el J - simulator, debugger
-
~
‘System Integration - system simulation =
and Verification = verification
-

Figure 2.3: Phases of ASIP Design

2.2.1 Architecture Exploration

Architecture exploration phase is used to effectively map an application onto a

Hardware
Designer

Software
Designer

System
Integrator

dedicated processor architecture. Until a hardware implementation is found this

process iteratively evaluates the alternatives. Hardware/soft-ware partitioning is

also included here. Decisions are made to divide different parts of the application
which will be executed either on dedicated hardware circuits or will be imple-

mented in software. This phase has the central component which is the processor

model. This is either specified in a low abstraction level that is in hardware de-

scription language or in the processor simulator which is in higher abstraction
level. The complete micro architecture of the model is described in HDL where
as the simulator tells only the architecture aspects of the processor resources,

instruction coding, and the temporal behavior of operations.

12

2.2 ASIP Design Flow

2.2.2 Architecture Implementation

RTL processor model is created in this phase. Register Transfer Level is a Hard-
ware Description Language (HDL) coding style that describes the processor in the
form of registers and interconnected logic. The LISA compiler should derive all
the necessary information from the given LISA description [13] since the generated
HDL model does not have any predefined components. Then the generated HDL
model can be compared to the LISA model [4,17] components as shown in the

figure 2.4.

LISA model

| Resource Model

HDL model
Structure

Memory Model

Instruction Set

Functional Units Behavioral Model

Memory Configuration

Timing Model
Micro-Architecture | |

Decoder
Pipeline Controller |i

Figure 2.4: Comparision of HDL And LISA model

e LISA memory model derives the memory configuration which summarizes

the registers and the memory sets

e Resource models gives the idea about the structure of the architecture such

as pipeline stages and pipeline registers.

13

2.2 ASIP Design Flow

e Functional units are either generated as empty frames or with fully func-

tionality depending on the HDL language used.

e Coding information in the instruction set model and the timing model results

the decoders.

e Pipeline controller is also generated from the above.

The designer will have full control over the generated HDL model with all its
components. The generated HDL model can be analyzed with respect to power,
area and time constraints and the optimized HDL model can be replaced with the
handwritten HDL code written by the experienced designers.

A synthesis tool can be used to generate a gate level netlist automatically
which specifies all logic gates and interconnects that are part of the processor
model. In an automatic place and route step the location of the gates and the
conducting paths are determined. The result of this step is a geometric description
of the processor hardware. In this phase no further addition is allowed in the
architecture of the programmer’s model. Only the architecture can be optimized

wrt. Instructions and addressing modes etc. Verification is the major focus here.

2.2.3 Software Application Design

In this phase the software development tools like assembler, linker and debugger
are developed those are used to create the application’s binary code. Ultimately
it is clear that after the architecture exploration phase C compiler is created.
Furthermore support libraries (e.g. standard library, floating point emulation)
need to be created. Additionally the operation system (e.g. Windows/Unix) needs
to be considered. The complete toolchain is usually driven by a graphical user
interface - an integrated design environment (IDE), that needs to be developed,

too.

2.2.4 System Integration and Verification

A processor simulator without the simulation environment of the entire SOC is

not very useful. Through this approach we can interact with other processors, co

14

2.8 Field of Application

processors, ASICs, busses and other peripherals.

2.3 Field of Application

A consistent design flow for system level, processor architecture and software archi-
tecture is needed which can be done at LISA processor design platform (LPDP)
environment. CoWare Inc. has the commercial version of the above platform.
LISA describes the behavior, structure and the input/output interfaces of a pro-
cessor architecture in a hierarchical manner. Different types of processors are
supported by this environment including ARM7, C62, C54x and ASIPs.

Out of the above said four phases mainly two phases are taken into considera-
tion in this project for architecture design. However for implementation purpose
hardware description languages are used to model the underlying hardware [17]

as shown in the figure 2.5.

F

Target Architecture

»

I

M
E P
A L
P E
L M
0 E
R 3 | VHDL Description N
A | LISA azsembler {|asr ¢ T
7 i L 1 , _ i
| gy Synthesis Tools T
0O LiSA simulator (lsim)) 1 I
N Gate Level Model 3

Figure 2.5: Exploration and Implementation

It is very advantageous to combine both of the development process and the

15

2.8 Field of Application

HDL description. Here the LISA compiler can generate both of these. After
design exploration and application design the target architecture needs to be im-

plemented.

16

Chapter 3

OVERVIEW OF LISA

Building a LISA model

Modeling Instructions

1SS Design vs Processor Design

Instruction Accurate vs Cycle Accurate Modeling
The Instruction Set Designer

Processor Debugger

Chapter 3
Overview Of LISA

The acronym of LISA [4] that is " Language for Instruction Set Architecture” give
a clear idea that it is a language by which we can model any architecture that
is driven by an instruction set. LISA is a mixed behavioral/structural modeling
language for the formalized description of programmable processor architectures,
their peripherals and interfaces. LISA is having so much flexibility that the ele-
ments of this language are generic enough to build any kind of target architectures
like general purpose processors, RISC processor, DSPs, ASIPs, and so on. The
instruction resource is often a register that is referred as IR (Instruction Register).
Instruction resource in LISA can be a memory location, an input pin array, or a

concatenation of multiple storage elements.

3.1 Building a LISA model

Generally a processor model written in LISA has two sections those are Resource
and Operation section [18]. Again the Operation section contains three subsections
those are Coding, Syntax and Behavior.

Processor resources include the internal storage elements of the processor as
well as dedicated input/output pins and global variables. The internal storage
elements of the processor are represented by its registers and its internal memories.

But in cycle accurate models there are other types of processor resources, like
pipeline registers and internal signals [19]. Processor resources are generally de-

clared in the resource section, indicated by the keyword RESOURCE. An example

18

8.1 Building a LISA model

is shown in figure 3.1.

RESOUELCE

{

MEMORY MAP
'RANGE(Cx 0000, 0x0fF) > prog_mem[(31..0)]
RANGE((x 1000, 0x 1) > data_men[(31.0)]:

’;{?ﬂ'}[ﬂ} 37bat words of daa meawory ®
*FLAGSate set to EW meaning that data_mem is -eadablie and writable *
MEMDEY un:32 dats mem

1.
SLZE(0m 1004y,
BLOCESIZE(32);
ELAGRRWY:

1-

{* 0z 1000 32bik words of progzam memory ™)
(FFLAGS ate set to FX meaning hat prog_mem = reedable and sxecotble ®
MEMITETY uini3l prog men
SIZE(0x10003;
BLOCKSIZE(32):
FLAGR{RX):

*Bemeer flewih 32 repisters %
REGISTER nf32 GER[(.51]
/* Fzich program counter registas®
PROGRAN COUNTER umt32 FPC:
{* 31 bitinstruchon register ¥/
REGIZTER. ninti2 IR

¥

Figure 3.1: Resource Section

As shown in the above example a resource declaration typically consists of an
identifier, a data type specifier, and an optional keyword defining the semantic
type of the resource. All resources that are declared in a resource section are
global to the entire LISA model. The resource identifier must be unique in the
whole LISA model.

Registers are declared within the resource section using the keyword REGIS-
TER. Here there are 32 general purpose registers having 32 bits each. Every LISA
model needs to have a unique resource that is labeled as program counter, using
the keyword PROGRAM COUNTER. This information is used by the Processor
Debugger [14]. Here memory of the processor has been declared using the key-
word MEMORY MAP and different subordinate keywords are evaluated by the

19

8.1 Building a LISA model

Processor Designer tools that include Processor Debugger, Compiler Generator,
and Processor Generator to extract the information which memories are present

in the model, and what are their parameters.

3.1.1 Modeling Instructions

The concept of a LISA operation is explained in this section with the help of a

flat example.

OPERATION addi

{
DECLARE

{
BEFERENCE dest,

}

CODING. { 0b0D01000 }
STYNTAX {"addi"}
BEHAVIOR

{

* Compute and write-back the value into the destination register *
GPR[dest] = operandl + operand?;
}
H

Figure 3.2: Operation Section

In this flat example. Assume that we would like to model an instruction that
adds two particular values and writes the result to a particular general-purpose
register.

Operation section [14] usually uses the the keyword OPERATION to initialize
any operation which describes about the particular instruction. In the BEHAVIOR
section of the model the instruction behavior is described which is in C block code.
In the syntax part the assembly syntax of an instruction is modeled. This section
starts from the keyword SYNTAX. The binary image or coding of an instruction
is modeled in the coding section of an operation. The coding section consists of
the keyword CODING. The coding consists of sequence of bit fields or terminal
bit patterns which consists of the prefix ”0b” followed by 70”7, ”1” or ”X” (Don’t

care).

20

3.2 ISS Design vs Processor Design

3.1.2 Operation Hierarchy Of a Processor in LISA model

According to the LISA 2.0 description of the processor, the processor designer
generates the software development tools. In figure 3.3 the hierarchy of the in-
structions [18] has been shown for an assembly language code to find out the

convolution of two sequences using FIR filter.

Figure 3.3: Operation hierarchy

3.2 1ISS Design vs Processor Design

LISA can be utilized as a unique language by designers with very different in-
tentions. Depending on the intention, different use models of the LISA language
and the Processor Designer product family are distinguished. The two main used
models [18] are processor design and instruction set simulator (ISS) design.

ISS design is required to model the processor that allows to simulate its in-
struction set at very high speed. The simulation speed in terms of instructions

per second is the main metric for the model quality.

21

3.8 Instruction Accurate vs Cycle Accurate Modeling

On the other side, processor design is useful for them whose intention is mainly
to design a processor, or any feature around the processor that needs to be aware
of the processor architecture. Here LISA works as an Architecture Description

Language.

3.3 Instruction Accurate vs Cycle Accurate Mod-
eling

Instruction accurate modeling is a synonym for ISS model [18] because in ev-
ery simulation control step, the complete behavior of an instruction is executed
instantly. Instruction Set Simulator has no notion of pipeline.

In pipelined architectures [14], a single instruction is executed in the span of
multiple clock cycles. Thus multiple instructions are simultaneously active. In
processor design we do need a cycle accurate description of the processor architec-
ture [20] in order to reflect the effect of the pipeline effects. So the cycle accurate

modeling is used as a synonym for ISS design.

Adjust Generate

_ L0 Description Applrﬂunn)

e A L {-Compiler
=) depletl Assembler

T R

B L 2
i

Architecture Debugging & Profiling

Design goals
met?

RTL Generation

Analyze

CoWare Software RTL
Platform Architect Tools Implementation
SystemC Models (Verilog, VHDL, System()

Figure 3.4: CoWare Processor Designer
This language is more suitable with the processor designer tool called CoWare

22

3.8 Instruction Accurate vs Cycle Accurate Modeling

[21] for its advanced and flexible features such as,
e Automatic generation of synthesizable RTL with both control and datapath.
e Accurate profiling capabilities for high speed instruction set simulator.

e Compatible with extensively used synthesis tool like SYNOPSYS [22]and
physical design tool like MAGMA [23].

e Software development tool generation like assembler, linker, debugger, C-

compiler.

e Integrated profiling [16] helps to optimize instructions for the target archi-

tecture.
e Enables the design team to develop flexible and reusable ASIPs rapidly.

The design flow of an ASIP [21] is shown in the figure 3.4. As illustrated in
figure 3.4 LISA 2.0 is a language for processor description which incorporates all
processor-specific components such as pipelines, pins, register files, memory and
caches, and instructions. The efficient automatic generation of ISS(Instruction
Set Simulator) is generated as well as the complete suite of software development
tools, like Linker, Archiver, Assembler, and C-Compiler, and synthesizable RTL
code. Having extensive profiling capabilities [14] the development tools of the
debugger, enable rapid analysis and exploration of the application-specific proces-
sor’s instruction set architecture to determine the optimal instruction set for the
target application domain. Furthermore Processor Designer enables the designer
to optimize processor micro-architecture [16], instruction set design and memory
sub-systems including caches.

Operating at a high level of abstraction [24], Processor Designer not only elim-
inates the time and cost inherent in HDL-based processor design and manual tool
development, but also enables hardware and software designers to customize the

instruction set to their needs.

23

8.4 The Instruction Set Designer

3.4 The Instruction Set Designer

The Instruction-Set Designer is a GUI for viewing, editing, and creating LISA
processor models. Having a graphical representation of a processor model rather
than just the source code makes it much easier to get an overview and understand
its hierarchy. Instruction sets can be designed and maintained in an intuitive way
without having to cope with all the details of the syntax of the LISA language.

Figure 3.5 shows the Instruction Set Designer Window.

il LOATIE O Frncesa0s Doslger i (L], [tk spddnfi. [topdis].

F ER BT Whew DeEIo: hoe

[E a8 | EE'“%&EEOWI EHC QE"@. [R Y

L1 HisE

Biamleiaan

il el el B B L=

 Amwwwwl o

L

b Sonesl

EECETEEEEH!

1|d~"|1dns]|¢|ils§n| s [al=TssTa 21z iulmm-arm

[e e [rim 32ge =]

1 [eptamin Flryidon F

'npul:ll:lmm
R]

Aifia g aialsale ong et
_w—‘m!
_M"

[
pirs
Free

o0 0ol S

Instruction-set browser o

,ua,_m_

o

g

q.w._,._....,aouo;u!nuu

-uf Dpera‘nons window
—;Ilv_

CEEFET _T“]”I'

1 n nn s P 3
Izl B Tl ek e [If
L) 3
Bl
[P ey P o x|
e i = Hiew Uperaber,
M | =
T — Properties window |
/
e = T L;I A
Lo o man
i = s .l
?'Qﬂ"._‘tam Hreomt i |
T e W watey — - I
BEscl | Message window |
N i
S R T
=k is a=aay and 1 Buwd Lal - dio; Ll i =
= u‘fd‘. o Ltpa :-: i ::“3.1 :rl\.ﬂbcr ::i :la Tlecase. sustinint o % —I
ety ’ \
/ \
ter paay :m| 21 Jj.k IR b T L FLE BSIA0E L BN Lieae eIk A0 LT FTR VSRS 2PL D'—“Pm window
PR an h 3
™ im Chreat I‘!NHJ[H.I.‘I FETRAIL) e ———
WU IR DMLY FIFCFEED - Wiw 408 38 3o 4 200N 7
b B F

]
[s e e s s o e g

Figure 3.5: Instruction Set Designer

The Instruction-Set Designer [18] does not replace the text editor; rather com-
plements it. You can arbitrarily switch between the graphical and the textual
representation. Changes made to the model in the GUI only result in minimal
changes to the LISA code. All comments and formatted code are preserved. While
the LISA hierarchy and the encoding of the instruction set is most efficiently de-

signed with the GUI, the processor’s resources and the hardware behavior is still

manually written as LISA code.

24

3.5 Processor Debugger

3.5 Processor Debugger

The Processor Debugger GUI allows us to observe, debug, and profile the executed
application source code and the state of the processor by visualizing all processor
resources and the output which is produced by the executed application.
Furthermore, this GUI [18] is intended to analyze and debug the LISA 2.0
processor model with special regard to the hardware behavior, instruction set,
micro-architecture, and memory subsystem. The debugger GUI can either be
connected to a single Processor Designer simulator back-end or to an embedded
simulator in a SOC simulation. The underlying ISS is derived from the LISA 2.0
model of the processor architecture. This simulator may be run either as a stand
alone application, or alternatively it may be attached to the graphical Processor

Debugger.

Il H-cdﬂ- 1&.!] i.r.mq ji- 'r-ll'llu xm ﬂ-‘ 'ﬂl.

T e Xl ma.-.»\ Bae s imiuoan] | fary
| —

o iy B | ECTTE

et i lnhntl-.m- . ImHl-m

F L | =
> 1-"'"#- Rk hi'«hlil' i promnin 2 e Bl
)] LT -
IO wr 1 + B Latnh
e df M [Crpe—— |..; [
Pt AL § [T 3 :—:::,.r“-.
L1 o ey i T e o pB, G b Bale gy
i [EE - 'r::" : Ly g L4, dncid
‘s Lamines i Las i Cliss
Jan s = Flopy| SIS ary sl sl i
& L ioar ekl iedg
IR i
[T ! et s e ik oE P A Kt
{oRIATE i o
EH—— T
it e mi g i||- l!!; 'Dl'bu nu..!'_-qﬂ.q-.
LT i sEnes . o] o o
* & [ETE * T fow pRel d e BEELI 0 ieiiide
[T R e faanieoney Fliagre] riimi; [T L it AT
|eEitEEe saiioot l [T (TG i [
el P 4 Eﬂ_}a [L L
™ peRE 8 J [T It |3 B ‘I
T AT]
:-ﬂm-:- : ':: e et atisens [Goe il S II]lIrnp.lu\-le TR 1|
[Ptnipty T T T T =T T [T
¥ { X 1_! e EEE armibad B v sendtey
OOy 0N - F g bl wrsbled B s osssiey
LR Do = il
IR ¥ s
4l o) ® % premoainm i B 3
i NS LT TUSRPale) LALLC SALT TTCE TURLLISN: Rk Vel
N Skt i B - wank e ar Line womber ol owmtson -aitd o
#v &1 0 del Bl 13 ¢l Belda o S=AL0E 1= L. sarer w47 =
b e T
1 - iy TR Ve (et
— ot |bid T ki Nagi L]
vl i o i . e LA
s i s ~ : sl slep
e " 1 [b
i W} i i B B PR
s AT 3 u TP bl b oe ST o
e S [IIE T i
LT ey FERTIRES B ESrN) L Lags |4 | ~mm—
TSN w113 T [PPSR,
LT = o 2 H Pag (bt ok ee BEEL Gand -
8 i
o [arf|a=
Lgtas S 11 | -ww-b

Fwabdin Wi (uioesl b Conmioh Siton & g

i Camoand LHLA T Dbl Fovilkes B0k 1 e Ui

Figure 3.6: Processor Debugger Window

25

3.6 Major Benefits

3.6 Major Benefits

e Design teams can rapidly develop flexible and re-usable application specific
embedded processors section [20] which include essential SoC functionality

[19], through:
— Rapid architecture design with LISA 2.0 by any designer conversant
with C/C++
— Automatic generation of software development tools and simulator [21]

— Instruction set profiling and optimization are easy to meet or beat per-

formance objectives

— Synthesizable RTL for both control and datapath hardware can auto-
matically generated, with robust links to established RTL simulation

and synthesis tools

— An automated , unified methodology that ensures consistency of hard-
ware implementation, simulation model and software development tools

implementations with the high level design specification

e Enables embedded software application development and debug with greatly

reduced time to market through:

— Early commencement of software development
— Reduced software application design and development time

— Fast and accurate instruction set simulator

26

Chapter 4

TEST CASE: TWO PROCESSORS DESIGN COMPARISION

The Instruction Set Designer

Implementation of General Purpose Processor
Operation profiling

Resource profiling

Memory profiling

Optimized implementation result

Chapter 4

Test Case: Two Processors
Design Comparision

A simple FIR filter with three stage pipelining is implemented here with the help
of LISA in Coware platform [21]. Then the resource section of this model has been
optimized. A major decrease in total architecture design time can be seen, as the
LISA model results from the design exploration phase.

The software development tool suit includes assembler, linker and simulator as
well as a graphical debugger frontend. The tools are the enhanced version of those
tools used for architecture exploration. The enhancements for the software sim-
ulate the ability to graphically visualize the debugging process of the application
under test. The LISA debugger frontend [18] is a generic graphical user interface
for the generated LISA simulator as shown in the figure 4.1.

It visualizes the internal state of simulation process. Here the C source code,
the disassembly of the application as well as all the configured memories and
registers (pipeline) are displayed. In this frontend all contents can be changed at
the run time of the application. Tools like assembler and linker can be enhanced
in functionality as well. More than 30 assembler directives, labels and symbols

are supported by the assembler.

4.1 The Instruction Set Designer

Through this Graphical User Interface [18] we can view, edit and create any pro-

cessor model. By understanding its hierarchy it is much easier to design any

28

4.1 The Instruction Set Designer

¥ Processor Debugger: fhome/NIS/MTECH_08-10/ Deskiop/C d/pddata/2007.1.2_linux/bin/a.out el
Elle Program Debug Wiew Profiing Windows Extras Help
== e =l s == e = BN

| 8ymbol Set I@Image Symhbals :J Goto Symbol LI Goto Address |0x00000000 j“ﬂDefault jﬂ Izk ;”
= T Py E—
: ISymbo\s-|Address |\nstruction |Disasaemb\y |Loop “Ec E E]_I‘ D\SplayAddreEsI L‘ Mame |Value |
5 00000000 d00an00z 1dm0x00a, 00002 s = = = E —(lrepc 13
00000001 d00a0002 1dm0=00a,0x0002 R []
w T RO JEOTTL gooozooofooooonoofooooooon[oooo0oo0fooonooog). % T =
| e LA TT DabhisE 00001004|00000000]00000000{00000000[00000000].] 3
2] Tl 1dm0x01 5. 0x0006 10001 008| 00000000/ 00000000{00000002[00000000]. A =
B i ey LdmD=01b, 020007 0000100¢| 00000000[00000000{00000000[00000000]. e]
20000006 82020000 mowi 10, 0x0000C 00001010|00000004]00000005{00000000[00000000]. crrl4] =
00000007 84000000 mowi r0, 02000000 10001014|00000000[00000000{00000000[00000000]. aPR5] 7
00000008 64080000 mowi r@,0x00000C 00001018|00000000[00000000{00000006[00000007]. sPRTe] B
00000009 84020002 movi r2,0x00000C 1000101 ¢| 00000000[00000D0D|00000000{00000000]. GeR7]
0000000a 90410000 1dr ¥0, [¢2+r1] 00001020|00000000[00000000{00000000{00000000]. GoR(8] 2
0000000b 84020000 movi r2,0x00000C 10001 024| 00000000]00000000{00000000[D0000000]. GPR[9] i
0000000¢ 84030010 movi r3,0x00000C 10001028| 00000000/ 00000000{00000018[0000003]. GER[10] 2
+ 00000004 00000000 nop 0000102¢| 00000000[00000000{00000000[00000000]. GPR[11] [}
0000000e 30682000 1dr rd, [r3+rd] 00001030{00000000[00000000[00000000[00000000}....... GPR[12] 0
0000000f 30283000 1dr ré, [r5+r8] gonninz4]0o0000000| 00000000{00000000{00000000). GPR[13] 0
00000010 00862008 mil rd,rd, re 00001 038| 00000000]00000006|00000000[00000800}. GPR[14] 0
HOEALEAE Inda 00T add wdprdyrd 0000103¢| 00000000[00000000 00000000[00000000]. GPR[15] 0
NONRNO1E (AeaE0N7E i, (IR IO TEOZ A, 00001040[00000000[00000000|00000000[0D0000A0). GPR[16] 0
LR RIS N ANONE iner rib fPAn1044| nonannnn| 0000ADOA|DODAANDD|AABDABAD] GPR[17] g
Egggggig gégggggz b ig 0001 04B| DO0000AD| 0OADAANG| 000DOANG[OODOOOND]. gi‘;ﬁg% g
i M——— G — 0000204 ¢| 00000000[00000D0A|[00000000[00000000]. A i
SEm Lt non 00001 050[00000000 00000000|00000000[00000000}. i 3
o s go001054| 00000000[00000000|00000000[D0000000 e 5
BT 00001 058| 00000000[0000OD00|00000000[00000000] . . e 5
00001054 00000000(00000000{00000000{00000000). . GPR[24] 0
00001060 00000000(00000000{00000000{00000000 GDR[25] 0
00001064) 00000000(00000000{00000000{00000000)%. GER[26] i}
0B001068|00000000|00000000|00000000{00000000f. GPR[27] o
0000106 00000000{00000000|00000000(00000000. GDRIZB] o]
00001070| 0ooo0ooo0]oooooooo{oooooooojoodoooog). COR[29] 0
gonoz074|00000000]00000000{00000000[00000000]. GPR[30] o
g0o01078[00000000 00000000{00000000[00000000]. GPR[31] [
10001 07¢ 00000000/ 00000000[00000000] 00000000 SET [
gooozo80foooo0000]o0oooo0n[o0000000]0000000g). . . . BRC 13
uluuuwaq 00000000/ 00000000100000000 uuuuuuluu
.
Al | Z\data mem Aprog mem / Registers [/
\ Root /

| Line: 0 Col: 0 | [c) Co'Ware Processar Designer Yersion 2007 1.2 Linux - July, 2008

Figure 4.1: Debugger Window

processor resource section. Instruction sets can be designed and maintained in an
intuitive way without having to cope with all the details of the syntax of the LISA
language. The figure 4.2 shows our optimized processor’s ISD window.

The Instruction-Set Designer [18] does not replace the text editor; rather com-
plements it. You can arbitrarily switch between the graphical and the textual
representation. Changes made to the model in the GUI only result in minimal
changes to the LISA code. All comments and formatted code are preserved. While
the LISA hierarchy and the encoding of the instruction set is most efficiently de-
signed with the GUI, the processor’s resources and the hardware behavior is still
manually written as LISA code.

The processor debugger provides extensive hardware and software profiling
capabilities. Operation profiling gives us the information about Calls/Total which
shows the proportion of operation executions for a specific operation to all executed

operations.

29

4.1 The Instruction Set Designer

dspl (dspLiph) - [dspl.lisa]

= instruction
= Idr
¥ dest
H srcz
+ srot Al
=l Idm il
imm_value e
imm_addr il o[,
= mvm 0o 000 & “mvm”~ " [dest "+ addr N pipe S| EX
addr_value il | ot [sic dest ofolold
& dest [|] o [sit et ulinlald
st il o[| T 3G dest ool alo ,
Sine Boo “Ine” - dest”,"sre " SY pipe N SEN
addr o dest
i+ dest Jg=it
¥ src deat
= movi
imrvalue
¥ dest
=mul
+ dest
B srcz
sro1
alu
 opcode 1
[dest i
[+ srcz I
#srct (i]
Hiner | |
H sro @

nop

Idr™ ~ " " dest ".[" src1 "+"

B 1dm” Imm_addr=#X12 " |

“movi”~" " dest ", immvaluepige | UEK

0 "mul” ~" " dest”,” srel "

opeode ~” ” dest”,” src1 ”,”|

dest i ooeode
dest 0 AT D epCode
dest L0 e] falslofa]s]
Jest olojojofo opcode

Figure 4.2: Instruction Set Designer

Here in the above debugger window we can see that our processor can under-
stand the assembly code written for the FIR filter with 2 coefficients. Those are
Al=4, A2=5 and X1=6, X2=T7.

So the output should come as 59(Decimal) and we can see it got the result as
GPR[2]=59. Now we can conclude that our processor is correct by giving correct

result. The resources we have taken here are:
e General purpose registers: 32
e Instruction set having number of instructions = 15

e Memory(data and program) allocation =0x0000 to Oxffff

30

4.2 Implementation of General Purpose Processor

4.2 Implementation of General Purpose Proces-
sor

A General Purpose Processor is first implemented in CoWare Processor Designer
Platform. The instruction set of this processor is selected so as to cover the
most recurring instructions and having 19 instructions. As stated before, LISA
code consists of processor resources and operations. Part of the LISA code of the
processor is given in figure 4.2.

To increase the design efficiency and in order to exploit common properties
of instructions, operation hierarchy is defined. Figure 3.3 shows the operation
hierarchy of the processor implemented. Operation main activates operation fetch
which is in the stage 'FE’ of the pipeline. Operation fetch activates operation
decode which is in the stage 'DC’ of the pipeline. The operation decode activates
all other operations in the stage ’EX’ of the pipeline.

4.3 Operation profiling

The operation profiling window of our processor has been shown in the figure
4.3. For each of the pipelining stages a separate field exists at the bottom of the

window. It shows the operations that are located in the respective pipeline stage.

The operations which are not assigned to any pipeline stage are under a sepa-
rate folder called as main(no pipe).
For each LISA 2.0 operation the following aspects are shown in the Profiling

window.

e Name contains the operation name as it is specified in the underlying LISA

2.0 model.

e Calls contains the total number of operation calls (executed operations) for

each of the visualized operations.

e (Calls/Total shows the proportion of operation executions for a specific op-

31

4.8 Operation profiling

RESOURCE {
MEMORY MAP |
RANGE/0Ox0000, 0x0fff) -= prog_mem{[31..0)]:
RANGE{0x1000, 0x1ff) -> data_mem[(31..0)];

i
MERORY wimt32 prog_mem

&

MEMORY wint32 dota_ mem |

#

REGISTER int32 GPR[0..31]:
FPROGRAM _COUNTER uint32 FPC;

REGISTER uint32 IR
PIPELINE_REGISTER IN pipe{

!

!

OPERATION reset {
BEHAVIOR {
!

h

OPERATION fetch IN pipe.FE {
OPERATION decode IN pipe.DC {
OPERATION alu IN pipe.DC{
OPERATION add IN pipe.EX{
Figure 4.3: Part of LISA code of Processor-1

eration to all executed operations. As an equation this looks as follows:

calls ~ Numbero f speci ficoperationsexecution

Total ~ Numberofallopeartionsexecution
e Similarly Calls/Max contains information containing the proportion of the

32

4.4 Resource profiling

Procaseor Dehugger: Name NISMTECH_ 5618/ uknanda/Desbion Cow am/nd/pddatapa07. 12 linushinjs out - [LISA Operation Profls]

rﬁhmwmwmawwmwﬁma ezl

Bas exewm (@ ez S il nuoios) o || @#a% e _
ua«mmm [Bimage Symools =] Geto Symbe| _J ;‘amm.s;shnnnmnnn Hlicerzure =] G2k =

[cals jr:anmmse [Cataar |camua>a [5tl Caues | Fiush Caise] df—

1 10.53% 1] 1]

& -1 LU% 15.759% o

] b.a0% b.00% i} o

2 1.33% 5.20% o o

1] b.00% 0.00% i} o

2 1.33% 5.20% i} 1}

] b.o0% 0.00% i} o

a 0. 00 0.00% o o

T d.97% 18.44% i} o

& 4. 00% 15,74y o o

a b.oos 0.00% i} o

2 1.33% 5.20% o o

< 1.33% 5.26% i} o

o 0. 00 0.00% o o

3 3.33% 13.10% i} a

\pat P AL bl DT e\ E X In poe [

 Simulation Mode | JTCEE [Step 157 [c) CoWare Frocessor Gebugger Varsion 2007 12 Linx = July, 2608

Figure 4.4: Operation Profiling Window

execution of a specific operation to the execution of the LISA operation
which has been executed the highest number of times.

calls Numbero f speci ficoperationsexecution

Max Mazimumnumberofspeci ficopeartionsexecution

e These information can be shown graphically also.

e Stall cause shows the total number of stalls invoked by the respective LISA

2.0 operation.
e Flush cause shows the total number of flushes invoked by the respective

LISA 2.0 operation.

4.4 Resource profiling

Resource profiling shows the access statistics for all resources modeled with the
resource specifier as one of register, program counter and control register in the

LISA model as shown in the figure 4.5.

33

4.4 Resource profiling

v Processor Debugger: (home/NIS/MTECH_08-10/ /Desktop/C /nd 007.1.2_li i ut- [Resource Profile] ~ (5] *
[0 Eile Program Debug Wiew Profiing Windows Extras Help =lai=
e == o e = o e WA = s T RN =
|[Eymbol Set |E|\mage Symbols j Goto Symbcdl Ll Goto Address |0><00000000 '_ﬂ |[oefauie L”Hl azk j}
i Name | Reads | Reads/Total | Reads/Max | Fleads/Max |Writes |Writeszota\ |Writes/Max |Writes/Maz<. | E - '
M F 36 — — R == o Name [Value |
™ GPR[O] 4 --- -—- 5 - - FEC [%]
@ [eerii) 3 - - 1 e = IR (i}
o |eERLZI 3 == == 5 = = GPR[O] 4
6\ GPR[3] 2 i et 2 i e GPRI1] [i]
é‘ GPR[4] 4 - - 5 - - GER[Z] 59
=1 |GBR[5] 2 - == Z = == GPR[3] 16
GPR[6] 2 . S 3 = T GPR[4] 35
GER[7] 0 i = 1 i = GFR[S] 26
GPR[8] 6 - —- 4 — = GPR[6] 7
GPR[9] 0 == e i e] GPR[7]
GER[10] 4 - === a - == GPR[B] 7
GPR[11] 0 - - 1 e o GPR[9] (i}
GPR[12] 0 == =S 1 — = GPR[10] z
GPR[13] 0 = = 1 e = GPR[11] 0
GPR[14] o - - 1 - - GPR[12] 0
GPR[15] 0 - - 1 e = GPR[13] i}
GPR[16] 0 == == 1 = = GPR[14] 0
GER[1T] D --- -=- i - - GPR[15] i
GPR[18] (i - —- 1 S = GPR[16] 0
GPR[19] 0 == e 1 e = GPR[17]]
GPR[20] 0 . S 1 = T GPR[18] 0
GPR[21] a = = 1 i i GPR[19]]
cPR[22] 0 - —- 1 — = GPR[20] i
GDR([23] 1} - - i - - GPR[21] i}
GPR[24] D - === 1 - == GPR[22] i
GPR[25] 0 - - 1 e o GPR[23] (i}
GPR[26] 0 == =S 1 — = GPR[24] i
GER[Z7] 0 = = 1 e = GPR[25] 0
GPR[28] (i - —- 1 e = GPR[26] 0
CPR[29] 0 - - 1 e = GPR[27] (i}
GPR[30] 0 == == 1 = = GPR[28] 0
GER[3L] D —- -=- i - - GPR[29) i
SET[0] 38 - - == I = —— = GPR[30] i
BPC[O] 2 == = 3 == =] GPR[31] a
SET 0
BEC i3
Registers - Registers

| Simulation Mode : JIT-CCS Step : 57| {¢) Co'Ware Processor Debugger Yerslon 2007.1.2 Linus - July, 2008

Figure 4.5: General Purpose Register Window

The following information were gathered from the above model:
e Name tells about the name of the resource.
e Reads shows the absolute number of reads on the respective resource.

e Reads/Total Contains the proportion of the reads of the specific resource to
the number of total reads of all labeled resources. The equation looks as

follows:
Reads — Numbero fspeci ficresourcereads

Total — Totalnumberofallresourcereads

e Reads/Max: It tells about the proportion of reads of specific register resource
to the maximal number of register resource reads is given in this column.

The equation looks as follows:

Reads Numberofspeci ficresourcereads

Mazx M azimumnumbero f speci ficresourcereads

e Writes shows the absolute number of writes on the respective resource.

34

4.5 Memory profiling

e Writes/Total contains the proportion of the writes of the specific resource
to the number of total writes of all labeled resources. The equation looks as

follows:
Writes Numbero fspeci ficresourcewrites

Total — Totalnumberofallresourcewrites
e Writes/Max shows the proportion of writes to a specific register resource
to the maximal number of register resource writes. The equation looks as

follows:
Writes Numberofresourcewrites

Max — Totalnumberofallresourcewrites

e These information are visualized graphically also.

The values in the different columns may be sorted by a simple click with the
mouse on the top of the column (where the criterion of the respective column is
visualized). With one click, the values are sorted in an ascending sequence, with

further click in a descending sequence.

4.5 Memory profiling

Similarly memory profiling tells about the access statistics for the memories con-
tained in the processor model. This model has the program memory range 0x0000
to 0x1111 and data memory range Ox1111 to Oxffff.

These profiling information is very much required to optimize our design. This
architecture was designed on the respective abstraction level with LISA and soft-

ware development tools [14] were generated successfully.

4.6 Optimized implementation result

Here in the operation profiling window we can see that the instruction resources
like decr, alui, mac, alulop, jmp, mov have not been called yet. So writing the
behavioral code for these instructions is not required. And if we remove these
resources from our specific model we can reduce the area without affecting the re-
sult. To reduce the area further we can remove the descriptions of the instructions

like sub, and, or also.

35

4.6 Optimized implementation result

» Processor Debugger: /home/NIS/MTECH_08-10/uknanda/Deskiop/C: /pd/pdd 7.1.2_linux/bin/a.out — |

Eile Program Debug Wiew Profiing Windows Extras Help

[Ee (e od e =1 a5 [N (6] (1 e oo] el [T = W
|| Symbol et |%Image Symbols 1! Goto Symbol _vJ Goto Address |0x00000000 jl“lDefault Ell[22x ;]l
;, Sration Brofle: il =
e [+ Mame Calls CalsiTotl | Callsiax | Callsia — || Name |Value
® [Eror q 2.87% 10.53% 1 FEC 13
@ [F|incr [3 4.00% 15.75% IR 0
iz [Eaw 2 1.33% 5.26% GPR[0] 1
U [2 1.33% 5.26% GRR[L] 0
o [Emovt ki 1.67% 18.42% GPR[2] 59
= [F]tan 6 4.00% 15.79% GPR[3] 18
| 3ne 2 1.33% 5.26% GPR[4] 35
v 2 1.33% 5.26% GRR[S] 26
= 1dr 5 3.33% 13.16% GPR[6] 7
GPR[7] 0
GPR[8] 2
__l_l GER([9] 2
4 _ : | b |leerrio] f
o Pipe AFE in pipe ADC in pipe A EX in pipe GPR[11]]
GPR[12] 0
GPR[13] il
GDPR[14] 0
GPR[15] 1}
SET 0
BPC 13
| l\Registers

| Simulation Mode : JIT-CCS [Step : 37| [¢) CoWare Processor Debugger Yersion 2007.1.2 Linux - July, 2008

Figure 4.6: Optimized Implementation Result

In the optimized model we have less space allocated for data and program
memory. Program memory starts from 0x0000 to 0x0015 and Data memory starts
from 0x0016 to 0x0042 reducing the area further.

To reduce the resource section further we can take 16 general purpose registers
(GPR) instead of 32 which will reduce the area of our model.It has been shown

in the figure 4.6.

4.6.1 The generated HDL model structure

The Processor Generator tool provided in the Processor Designer generated the
synthesizable RTL for both the processors. The structure of the generated HDL
is given in the figure 4.7.

Resource model and memory model of LISA tells the information about reg-
ister, memory configuration, pipeline sets and pipeline registers. To generate the
base structure of a HDL model this information is used. Different entities are there

in the base structure for the register resources, memory resources and the pipeline.

36

4.6 Optimized implementation result

Memories Pipeline Registers
Mhope F e e pipe_gen Regderbde_gen

Architecture
(2 e A

FE gen (T X _gen

Fet. Unit Fet. Unit m
U FETCH gen U COMTROL gan

Figure 4.7: Generated HDL Code Structure

To model the register behavior the register resources are completely generated at
RTL level. As the memory entity is left empty the designer has the freedom to
place any desired memory model into this entity.

In the pipeline there are several entities representing the pipeline registers and
stages. Further the pipeline has the controller which has been derived from the
LISA model. LISA has the ability to provide a formalized way to initiate several
pipeline functions like stall, flush. So the HDL generator can use these informa-
tion. The pipeline decoder which is placed in the pipeline stage entities drives
the pipeline controller. The entities having the functional units are contained in
the pipeline stages. More precisely, the functional units implement the data path
and will be discussed in detail later. Besides decoder, multiplexers are generated
to avoid driver conflicts. the information about the exclusiveness from the coding
information included in the LISA instruction set model is derived by the HDL
generator. The RTL schematic and the technology schematic of our optimized

model are shown in figure 4.8, 4.9 and 4.10 respectivly.

37

4.6 Optimized implementation result

4.6.2 Comparison of the HDL codes generated

The next work in this project is to compare the HDL codes generated from the two
different processors. This gives the idea about the number of lines of code of the
HDL models it has been observed that the HDL code of our optimized model has
very less number of lines compared with that of the previous processor(without
optimization). Then both the processors have been compared with respect differ-

ent parameters like area, power, memory used and number of lines of HDL code.

Table 4.1: Comparision Between Two Processors

Processor Area(um?) Power(watt) Memory used(kb) Lines of HDL code

Processor-1 78122 0.15568 222468 6716
ASIP 30339 0.14122 176268 5070

The RTL was synthesized using Cadence Encounter [25] and the results are
tabulated as shown in Table 4.1. The library used for the synthesis was TSMC
(65nm). Thus we can see a drastic reduction in the area and power requirement.

The HDL code generated was synthesized using Xilinx ISE 10.1.03 [26]and the
RTL Schematics are shown in the figures 4.8, 4.9. Thechnology schematics has
been shown in figure 4.10.

In top level schematic which has been shown in figure 4.8 we can see that it

has 10 terminals those are:

e Program memory (input)

e Program memory (output)
e Data memory (input)

e Data memory (output)

e Program memory address
e Data memory address

e Clock main

38

4.6 Optimized implementation result

e Reset main
e Data memory
e Program memory

In design objects schematic we can see the internal parts of each and every
blocks of the entire architecture. Further we can observe all the interconnects as
shown in figure 4.9. Here except 3 blocks all other blocks have not been shown.
Lastly in the technology schematic all the blocks have been combined and shown

in one window as shown in figure 4.10.

(3 [Terminal] =4 Xilinx - ISE - /home/NIS/MTECH_08-10/ukna 0 Thu May 13, 12:02 PM Q)
v | Xilinx - ISE - /home/NIS/MTECH_08-10/uknanda/processor/processor.ise - [pipedsp.ngr] BEx
[File Edit View Project Source Process Window Help =18]>
[DraaLdnbx[=aB[poxx PR |x= e ooi]p e al Aeza|szexxax]c|e o

v [Z2Z2[annn o MInN[VO 2%k R n[AATEERG[a=xe]

— data_mem_data_out_cp0(31:0) data_mem_data_in_cp0(31:0) —
data_mem_rw_addr_cp0(11:0) =
= prog_mem_data_out_cp0(31:0)
prog_mem_data_in_cp0(31:0) [~

— clk_main prog_mem_rw_addr_cp0(11:0)

) nstance = pipedsp data_mem_ew_cp0 ——
— rst_main ype = pipedsp
prog_mem_ew_cp0 ——

- Design Summary | [)pipedsp_gen.vhd® | [Zlpipedspngc | [pipedsp.ngr |
X

Design Objects of
Top Level Symbol
[=] Console I @Ermors | !\ Wamings | &l Tcl Shell | a4 Find in Files | [View by Category ‘ EH View by Name I

Properties of Instance
plpedsp

Figure 4.8: Toplevel Schematic

4.6.3 Synthesis Report collected from Cadence DC

Coware supports the universally used synthesis tool like Cadence. So using Ca-

dence DC we have observed the following parameters.

39

4.7 Layout using MAGMA

s ? Xilinx - ISE - fhome/NIS/MTECH_08-10/uknanda/processor/procassor.ise - [pipedsp.ngr] . i .
[l File Edit View Project Source Process Window Help 8;

[oFEaoaeEx]auB]Eexx 35 (A% s n o] &6 al Hla e e &= e 0|9
v [2l A% h) WK 36 <00 b [kl A A AEEERD[x=E]

o
—
—

Instance = ARC_pipe

The tooltip text for this object has been truncated|
Press Ctil+Alt+T to see the entire tooltip in 1

he console area of this program

1 Design Summary I [pipedsp. gen.vhd® I [=] pipedsp.nge J 5l pipedsp.ngr I

Design Objects of Properties
pipedsp No object Is selected
2| Conscle I @Erors I ' Wamings] R Tcl Shell I (34 Findl in Files] [#] View by Category \ E8 View by Name |

Figure 4.9: Design Objects

Table 4.2: Synthesis Report

Parameters Used Total Percentage
Number of slices 2611 4656 56
Number of slice FFs 640 9312 6
Number of 4 i/p LUTs 5096 9312 54

Here the number of 1/Os used is 156 and the Clock period is 20.909ns (fre-

quency: 47.825MHz). Further more we can see that the total memory used here

is 576760 kilobytes.

4.7 Layout using MAGMA

The final layout was extracted using MAGMA Blastcreat and Blastfusion tool [23].
Blast Create is a gain-based RTL synthesis tool that provides fast, high-capacity
synthesis, integrated into an RTL-to-GDSII design flow. Blast Create performs

logic synthesis, data-path synthesis, physical synthesis, power optimization, scan-

40

4.7 Layout using MAGMA

Xilinx - ISE - jhome/NIS/MTECH_08-10/uknanda/processor/processor.ise - [pipedsp.ngc]

. File Edit View Project Source Process Window Help
DaHdLlseax[naB]eoxxmE|[H]=e oo ||] ElEEE et]
(e g e S A B e

e

g Sourc| || Files | Snapsh| I Librar| B3 Design

= et = ARC RegisterFile’REG_GPR_0(0)

Branch count = 1
Processes for: ARG pipedsp - pipedsp - Behavior /O Marker count = 0

I Add Existing Source

1 Create New Source

E View Design Summary
% Design Utilities

-3 User Constraints

=82\ Synthesize - XST

i+ [E1@View Synthesis Report

+ 20 Generats Post-Synthesis Simulation |
-2 Implement Design

=80 Generate Programming File
#-83 Configure Target Device

i _>||

#{ Processes

|5 Design Summary | Cpipedspgr | [pipstspinge |

i

Design Objects of Properties
pipedsp No object Is selected
[vame [Type =1 I name Value

|§|Gunsafa'| @Enors] ' Wamings] 1 Tel Shell | ‘g4 Find in Files | EHiView by Category \ [E8 View by Name]

Figure 4.10: Technology Schematic

based DFT, and static-timing analysis. Blast Create provides fast and early pre-
dictability of results before handing off to a back-end tool. Blast Create stream-
lines chip planning and design by eliminating the numerous, cumbersome, and
error-prone data transfers between point tools in traditional flows. Blast Cre-
ate outputs a design that is a placed, timing-correct physical design, with DFT
structures inserted and that is ready for routing. Figure 4.2 shows the flow and
commands for the Blast Create tool. Figure 4.11 shows the complete flow of layout
and figure 4.13 shows the complete layout of our optimized processor model.
Floorplanning, analyzing and refining the floorplan, power routing, physical
implementation and synthesis are possible in the Blast Fusion Environment shown

in figure 4.12. Floorplanning is the process of:

e Positioning blocks on the die or within another block, thereby defining rout-

ing areas between them.

e Creating and developing a physical model of the design in the form of an

41

4.7 Layout using MAGMA

initial optimized layout.

Step 1
Step 2

Step 3
Step 4

Step 5

Step 6

Step 7

Step 8

Import library Volcano import volcano
v

Import RTL import rtl
v

Perform high-level optimization fix rtl
v

Perform area-based optimization fix netlist
v

z : import edc

Apply timing constraints Ecine tining
v

Flatten user hierarchy data flatten
v

Check DFT rules and insert scan

run aft check -pre scan
run dft repair

force dft

run dft scan insert

v

Perform constraint-based optimization £ix time

Figure 4.11: Blast Create Layout Flow

42

4.7 Layout using MAGMA

RTL

Tix netiist

Hetlisr

fix time -1t

Floarplanning

I — -
1 Power Planning
and Routing

Tix =il

fix clock

fix wire

Figure 4.12: Blast Fusion Flow

43

4.7 Layout using MAGMA

@ Applications Actions @ &% £ I

@ tueApr 6, 318PM @

Layout - Magma Design Automation

layout_0 MworkiCFG_Wrap_fir/CFG_Wrap_fir
File View Select Add Edit Plan Pin Power Tools Help
:Eﬁlﬁ A EEEEE:
= T
T i -
e s
b =" i
)
S e e Pt e
e e a T
T |
T e
e e e o 5 o o e 8810 = e e s e
e e e H i e T, i e |
i T 0 o
e s i i i
o Ve
= e B i
b Sl el e HMWI—-\H—#HTH—‘TH“\
T R 18 e e 1 n
Ty i £ WAL1 1110 e i e ' U B8 RN B 2 5t e
I ey 5 = e e
=1
e s
e e e

s

1
Su il meass

V1 e '

i)
T

inm= i

i
=i 1 10

T g

Task View

Choose the View most
appropriate to your current
task

Floorplanning
DRC Editing
Congestion || Pin Assign...

View-Related Layers
W v METAL1

[VI METAL?
v METALS
V] Via Overhangs
(1l Via Layers
(/W] All Metal and Via Layers
[vi Pad Cells
(V! Hard Macros.
[¥ Soft Macros
[V Floorplans
v/ Logic Cells
(11 Placement Blockages
117] Routing Blockages
VI AllPins (VI Text
[Vl Clock Routing
View/Edit Depth
© Top-level only
@ All levels
2 View all, edit top-level

Show Advanced Controls.

Point or drag to select. SHIFT to select multiple. CTRL to deselect.

| x275.986u y:356. 538u | Current Mode:

elect | Selected: 1; 1 other choice

A<

Figure 4.13: Layout

44

|[show Messages!

Chapter 5

Summary and Conclusion

Main Contributions

Conclusion

Future Work

Chapter 5

Conclusion

Especially in the mobile and automotive application domain robustness, perfor-
mance, power eficiency, flexibility, development time, and price per device are
opposing design goals that can only be reached with specialized (i.e. application
specific) and highly integrated circuits [13]. These goals are the drivers for system
on chips (SOCs) that mainly contain fast and power eficient hard wired parts with
little flexibility (ASICs) in combination with highly flexible but slow and power
hungry programmable parts (Microcontrollers, DSPs).

On the other hand it is quite hard to face the recent trend of applications be-
coming more versatile and multimedia oriented with this kind of architectures. A
more economic compromise between flexibility and power eficiency can be achieved
by incorporating application specific instruction-set processors (ASIPs) in the
SOC. In this thesis, we have developed a processor with 19 possible instructions.
Afterwards we have taken the initiative to design an ASIP(FIR filter). Then we
have compared both the processors.

Applications that are becoming more and more complex make an assembly
programmers model for the ASIP very tedious and error prone. Thus the utiliza-
tion of compiler technology - as it is already common in the domain of general
purpose processors - is becoming an important productivity factor in ASIP de-
sign [13]. A state of the art approach is to implement a C compiler relatively late
in the ASTP design process. This chapter concludes the thesis by summarizing the
contributions and describing future directions.

The chapter is organized as follows: Section 5.1 highlights the main con-

46

5.1 Main Contributions

tributions of the thesis. Finally, Section 5.3 summarizes the results and their

implications.

5.1 Main Contributions

In this thesis, using LISA and the CoWare Processor Designer Platform a processor
model was implemented. The processor includes arithmetic, branch, logical and
data transfer instructions. The functionality of all the instructions was checked
and found to be correct using Processor Debugger. The same model was then
optimized to an ASIP, an FIR filter in our case.

According to the profiling results, the optimization was with respect to re-
sources like data memory, program memory, instruction set and number of general
purpose registers. The RTL for both the processors was generated and synthe-
sized. The synthesis results were compared and ASIP was found to be much better
than the general purpose processor in terms of power, area, memory used and lines
of HDL code generated. Thus the CoWare design flow was explored. By consider-
ing the profiling any ASIP can be implemented and optimized taking our general

purpose processor as a reference.

5.2 Conclusion

This thesis has presented an optimized design of an Application Specific Instruc-
tion set Processor. The experimental results reported in the thesis have shown
that the proposed ASIP design is better than the general purpose processor with
respect to area, power and memory size. Further more we can see that the lines
of HDL code of ASIP, generated from CoWare processor designer tool are very

much less than the General purpose processor.

5.3 Future Work

In future we can go for designing a complex five stage pipelined FIR filter and we

can compare that with a hand written HDL coded design of the same. Further we

47

5.8 Future Work

can explore our design process by modeling more and more real world processor
architectures. How ever the optimized generation of data path, considering the

resource sharing issue, is another area of research.

48

Bibliography

1]

Dandian Zhang Rainer Leupers Gerd Ascheid A Chattopadhaya, A Sinha and
Henrich Meyr. Integrated verification approach during adl driven processor

design. Microelectronics journal 40, 2009.

Manuel Hohenauer Welhua Sheng, Jianjiang Ceng and Hanno Scharwachter.
A novel approach for fexible and consistent adl driven asip design. DAC"04,
June 2004.

Michael Gschwind. Instruction set selection for asip design. In Yorktown

Heights, NY 10598. Technische University at Wien,Vienna, Austria.

Achim Nohl Gunnar Braun Oliver Schliebush Oliver Wahlen Andreas Hoff-
man, Tim Kogel and Andreas Wieferink. A novel methodology for the design
of application specific instruction set processors (asips) using a machine de-
scription language. IEEFE transaction on Computer Aided Design of integrated

circuits and systems, 20(11), November 2001.

A Hoffmann T Glo Kler and H Meyr. Methodical low-power asip design
space exploration. pages 229-246. Journal of VLSI Signal Processing, Kluwer
Academic Publishers, 2003.

et al. M. Itoh. Peas-iii: An asip design environment. pages 430-436. IEEE
Int. Conf. on Computer Design: VLSI in Computers and Processors, 2000.

J.-H. Yang et al. Metacore: An application-specific programmable dsp devel-
opment system. pages vol.8 no.2,173-183. IEEE Transactions on Very Large
Scale Integration Systems, April 2000.

49

Bibliography

8]

[10]

[11]
[12]

[13]

[14]

18]

P. Russo G. Hadjiyiannis and S. Devadas. A methodology for accurate per-
formance evaluation in architecture exploration. New Orleans, 36th Design

Automation Conference, June 1999.

A. Nicolau F. Onion and N. Dutt. Incorporating compiler feedback into the
design of asips. pages 508-513. Proc. of European Design and Test Confer-
ence, 1995.

R. Leupers. Retargetable Code Generation for Digital Signal Processors.
Kluwer Academic Publishers, 1997.

http://www.eetimes.com /story/OEG20001120S-0028 M. Santarini. 2000.
www.mot.com/SPS/MCORE/pdf container/lowpower.pdf. 2001.

Oliver Wahlen. C Compiler Aided Design of Application-Specific Instruction-
Set Processors Using the Machine Description Language LISA. PhD thesis,
Shaker Verlag, 2004.

Y. Bajot and H. Mehrez. Customizable. Dsp architecture for asip core design.
Proc. of the IEEE Int. Symposium on Clircuits and Systems (ISCAS), May
2001.

Wayne Wolf. Computers as Components. Morgan Kaufmann, first edition,

2005.

D Kammler O. Schliebusch, E M Witte and G. Ascheid. Optimization tech-
niques for adl driven rtl processor synthesis. IEEE workshop on rapid system

prototyping(RSP), Montreal, Canada, June 2005.

A Hoffmann Oliver Schliebusch and Achim Nohl. Architecture implementa-
tion using machine description language lisa. In Proceedings of 15th Inter-
national Conference on VLSI Design (VLSID02). Computer Society IEEE,
2002.

CoWare. CoWare, The ESL design Leader reference manuals, v2007.1.2 edi-
tion, June 2008.

20

Bibliography

[19]

[20]

Anantha Chandrakasan Jan Rabaey and Borivoje Nikolic. Digital Integrated

Circuits, A Design Perspective. Pearson, Prentice Hall, second edition.

J G Mazidi M A Mazidi. Microcontroller and Embedded Systems. Pearson
Education, fourth edition, 2002.

Coware,inc,http: //www.coware.com.

Synopsis. http://www.synopsis.com.

MAGMA Blast Create and Blast Fusion Manuals.

T Givargis F Vahid. Embedded System Design. Wiley India, 2008.
Cadence. http://www.cadence.com.

Xilinx. http://www xilinx.com.

o1

Dissemination of Work

1. U K Nanda, K K Mahapatra "Design of an Application Specific Instruc-
tion set Processor using LISA”, First International Conference on Advanced
Computing and Communication, pages 206-209, 3-4 May 2010, AJCE, Kan-

jirapally, Kerala, India.

2. U K Nanda, K K Mahapatra "Design of a FIR filter using Application
Description Language “, National Conference on Wireless Communication
and VLSI Design, 27-28 March 2010, Gwalior, India.

PAPER ACCEPTED:

3. V Dodani Nikhil Kumar, Umakanta Nanda and K K Mahapatra " Optimization
of an Application Specific Instruction Set Processor using Application De-
scription Language”, IEEFE International Conference on Industrial and In-
formation Systems - 2010 (ICIIS 2010), July 29th-Aug 1st 2010, NIT, Suratkal,

Karnataka.

52

