
DESIGN OF AN APPLICATION SPECIFIC

INSTRUCTION SET PROCESSOR USING LISA

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

in Electronics and Communication Engineering

by

Umakanta Nanda

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela, Orissa, 769 008, India

May 2010

DESIGN OF AN APPLICATION SPECIFIC

INSTRUCTION SET PROCESSOR USING LISA

A Technical Report submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

in

Electronics and Communication Engineering

by

Mr. Umakanta Nanda

under the guidance of

Prof. K.K.Mahapatra

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela-769 008, Orissa, India

May 2010

To my parents

Department of Electronics and Communication Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Orissa, India.

Certificate

This is to certify that the work done for the direction of thesis entitled ”Design

of an Application Specific Instruction set Processor using LISA” sub-

mitted by Mr.Umakanta Nanda in partial fulfillment of the requirements for

the award of Master of Technology Degree in Electronics and Communication En-

gineering with specialization in VLSI Design and Embedded Systems at National

Institute of Technology, Rourkela is an authentic work carried out by him under

my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not

been submitted to any other University/Institute for the award of any Degree

or Diploma.

Place: NIT Rourkela Dr.Kamala Kanta Mahapatra
Date: 28th May, 2010 Professor

Acknowledgement

My first thanks are to the Almighty God, without whose blessings I wouldn’t have

been writing this “acknowledgments”.

I then would like to express my heartfelt thanks to my guide, Prof.Kamalakanta

Mahapatra, for his guidance, support, and encouragement during the course of my

master study at the National Institute of Technology, Rourkela. I am especially

indebted to him for teaching me both research and writing skills, which have

been proven beneficial for my current research and future career. Without his

endless efforts, knowledge, patience, and answers to my numerous questions, this

research would have never been possible. The experimental methods and results

presented in this thesis have been influenced by him in one way or the other. It

has been a great honor and pleasure for me to do research under supervision of

Prof. Kamalakanta Mahapatra.

I am very much indebted to Prof. S. K. Patra, Head of the Department,

Electronics and Communication Engineering, National Institute of Technology,

Rourkela for his support during my work.

I am grateful to Dr. D. P. Acharya for teaching me the right way to present

the motivation of my thesis. His insightful feedback helped me improve the pre-

sentation of the thesis in many ways.

I am also thankful to Prof. G. S. Rath, Prof. S. K. Das, Prof. S. K. Behera,

Prof. NVLN Murty for giving encouragement during my thesis work.

I thank all the members of the Department of Electronics and Communica-

tion Engineering, and the Institute, who helped me by providing the necessary

resources, and in various other ways, in the completion of my work.

Finally, I thank my parents and all my family member for their unlimited

support and strength. Without their dedication and dependability, I could not

have pursued my MTech. degree at the National Institute of Technology Rourkela.

Umakanta Nanda

ii

Abstract

A Digital Signal Processor with specific instruction sets and meant for a specific

application is called as Application Specific Instruction set Processor(ASIP). To

design an ASIP many approaches are available. However optimization of an ASIP

becomes handy if it is designed in a higher level of abstraction that is higher than

Register Transfer Level (RTL). Application Description Languages (ADLs) are

becoming popular recently because of its quick and optimal design convergence

achievement capability during the design of ASIPs. Several stages are required to

design a processor which are architecture design implementation, software devel-

opment, instruction and system verification. Verification of such ASIPs at various

design stages is a tedious job to do. This thesis presents the architecture descrip-

tion of a simple DSP processor using ADL based instruction set description. The

design process is more consistent after allowing maximum flexibility here. Further-

more, it enables the design process in both instruction and cycle accurate modes.

The design process of a three stage pipelined FIR Filter processor is demonstrated

as a case study. Further optimization can be done with respect to resources, mem-

ory size and power consumption by changing the LISA code written in CoWare

platform.

iii

Contents

Certificate i

Acknowledgement ii

Abstract iii

List of Figures vi

List of Tables viii

1 Introduction 2

1.1 Motivation . 2

1.2 Related Work . 4

1.3 Organization of this Thesis . 5

2 Design Methodology Of ASIP 7

2.1 Implementation of DSP Application 7

2.1.1 Implementation on General Purpose Processor (GPP) 7

2.1.2 Implementation on General Purpose DSP Processor 8

2.1.3 Implementation on Application Specific Integrated Circuit

(ASIC) . 8

2.1.4 Implementation on Application Specific Instruction Set Pro-

cessor (ASIP) . 9

2.2 ASIP Design Flow . 10

2.2.1 Architecture Exploration . 12

2.2.2 Architecture Implementation 13

2.2.3 Software Application Design 14

2.2.4 System Integration and Verification 14

2.3 Field of Application . 15

iv

3 Overview Of LISA 18

3.1 Building a LISA model . 18

3.1.1 Modeling Instructions . 20

3.1.2 Operation Hierarchy Of a Processor in LISA model 21

3.2 ISS Design vs Processor Design . 21

3.3 Instruction Accurate vs Cycle Accurate Modeling 22

3.4 The Instruction Set Designer . 24

3.5 Processor Debugger . 25

3.6 Major Benefits . 26

4 Test Case: Two Processors Design Comparision 28

4.1 The Instruction Set Designer . 28

4.2 Implementation of General Purpose Processor 31

4.3 Operation profiling . 31

4.4 Resource profiling . 33

4.5 Memory profiling . 35

4.6 Optimized implementation result 35

4.6.1 The generated HDL model structure 36

4.6.2 Comparison of the HDL codes generated 38

4.6.3 Synthesis Report collected from Cadence DC 39

4.7 Layout using MAGMA . 40

5 Conclusion 46

5.1 Main Contributions . 47

5.2 Conclusion . 47

5.3 Future Work . 47

Reference 49

Dissemination of Work 52

v

List of Figures

2.1 DSP Processor Architecture . 9

2.2 The ASIP Design flow . 11

2.3 Phases of ASIP Design . 12

2.4 Comparision of HDL And LISA model 13

2.5 Exploration and Implementation . 15

3.1 Resource Section . 19

3.2 Operation Section . 20

3.3 Operation hierarchy . 21

3.4 CoWare Processor Designer . 22

3.5 Instruction Set Designer . 24

3.6 Processor Debugger Window . 25

4.1 Debugger Window . 29

4.2 Instruction Set Designer . 30

4.3 Part of LISA code of Processor-1 32

4.4 Operation Profiling Window . 33

4.5 General Purpose Register Window 34

4.6 Optimized Implementation Result 36

4.7 Generated HDL Code Structure . 37

4.8 Toplevel Schematic . 39

4.9 Design Objects . 40

4.10 Technology Schematic . 41

4.11 Blast Create Layout Flow . 42

4.12 Blast Fusion Flow . 43

vi

4.13 Layout . 44

vii

List of Tables

4.1 Comparision Between Two Processors 38

4.2 Synthesis Report . 40

viii

INTRODUCTION

Motivation

Organization of this Thesis

Chapter 1

Introduction

1.1 Motivation

Today’s market has a high demand on mobile and automotive devices due to ro-

bustness, performance, power, efficiency, flexibility, development time, and price of

these systems. Unfortunately the decreasing structure size has the drawback of ex-

ponentially increasing non-recurring engineering (NRE) costs. The major factors

of the NRE cost breakdown are chip design, chip verification and the development

of the mask sets. Further more time to market is also an important factor for

any processor. By taking into consideration of all these factors a better balance

between the parameters like flexibility, efficiency and speed can be achieved by

combining processor and ASIC technology. The result is an application specific

instruction-set processor (ASIP). ASIPs [1,2] combine the two advantages of pro-

cessors and ASICs: reconfigurability and efficiency with respect to performance,

power and area. If we consider cost function ASIP design achieve an overhead

factor of 103 − 107 compared to ASIC implementation. They can be optimized in

the form of instruction set, general purpose registers, memory size. Compared to

digital signal processors (DSPs have ATE-costs of 107 − 108) ASIPs are tailored

to a smaller domain of applications. This allows for dedicated optimizations and

significantly reduces ATE-costs. But ASIP design becomes challenging when we

go for hardware model which is required for synthesis. So a software tool suite

needs to be created and verified which include assembler, linker, simulator, and

profiler [2]. Additionally the design process always involves an architecture ex-

2

1.1 Motivation

ploration phase where architectural alternatives are evaluated and traded for best

matching of the design constraints.

We describe an approach for application-specific processor design [3] based on

an extendible microprocessor core. Core-based design allows to derive application-

specific instruction processors from a common base architecture with low non-

recurring engineering cost. The results of this application-specific customization

of a common base architecture are families of related and largely compatible pro-

cessor families. These families can share support tools and even binary compatible

code which has been written for the common base architecture. Critical code por-

tions are customized using the application-specific instruction set extensions. We

describe a hardware/software co-design methodology which can be used with this

design approach. The presented approach uses the processor core to allow early

evaluation of ASIP design options using rapid prototyping techniques.

Application-Specific Instruction-set Processors (ASIP) can improve execution

speed by using custom instructions. Several ASIP design automation flows have

been proposed recently. One can investigate two techniques to improve these

flows, so that ASIP can be efficiently applied to simple computer architectures in

embedded applications. Firstly, we efficiently generate custom instructions with

multi-cycle IO (which allows multi-outputs), thus removing the constraint imposed

by the ports of the register file. Secondly, we allow identical portions of different

custom instructions to be shared, thus allowing more custom instructions under

the same area constraint. To handle the greatly increased exploration space, we

propose several heuristics to keep the problem tractable. Experimental results

show that we can achieve 3x speedup in some cases.

This thesis particularly focuses on the optimization of a digital signal processor

with respect to instruction set, memory and general purpose registers. Then by

using Coware tool the RTL file of the processor has been generated to compare

the parameters like area, power and lines of HDL code [4] of two processors.

3

1.2 Related Work

1.2 Related Work

The concept of instruction set oriented ASIPs is well known in the technical liter-

ature. In a concise overview of ASIP design issues [5] is given. The reviewed ASIP

design flows are targeted at performance constraints and do not take into account

the energy consumption of the implementation. Furthermore, the described design

flows frequently separate ASIP architectural design space exploration from ASIP

instruction set synthesis. In the currentwork, these design steps are combined,

because the instruction set is viewed as an interface to the architecture with mu-

tual dependencies. As a consequence, architecture and instruction set are jointly

optimized in order to obtain optimum results.

There are various ASIP design tools for the complete ASIP design flow from

application to implementation. In the PEAS [6] design environment is described

which generates an instruction set simulation model and a synthesizable model

from an architectural processor description. The MetaCore DSP development

system [7] is an ASIP design tool which supports design space exploration and

design generation. In the design flow, the development tools like C compiler,

assembler, and ISA simulator as well as the HDL description of the processor are

generated. In [8] the ISDL machine description language is used to generate a bit-

true instruction level simulator and a synthesizable Verilog processor description.

There are also some design tools presented in the literature focusing on a subset

of the ASIP design flow. A framework for Compiler-ASIP codesign with feedback

from an optimizing compiler to the ASIP design is described in [9]. In [10] the

RECORD compiler is presented which uses a structural RTL model of a DSP as

a starting point of the compiler generation.

Furthermore, there are some commercial approaches to ASIP design. For in-

stance, Tensilica, Improv and ARC Cores offer configurable processor cores to-

gether with design environments to generate the necessary development tools. For

an overview refer to [11].

For the current case study, the processor description language LISA has been

used to generate assembler and instruction set simulator as well as parts of the

4

1.3 Organization of this Thesis

HDL description. The underlying design methodology provides a power-conscious

design flow. Power saving techniques similar to the ones that have been used for

MCORE [12] but also ASIP-typical power saving techniques have been applied.

Furthermore, by using the quantitative results of these optimizations, the impor-

tant parameters computational performance, area, and energy consumption have

been optimized simultaneously. This is especially challenging due to the large

design space which is offered by ASIPs compared to systems using off-the-shelf

processors.

1.3 Organization of this Thesis

Chapter 2 of this thesis lets us to know about the methodology of design an ASIP.

Different approaches have been described and compared with each other. In chap-

ter 3 the LISA (Language for Instruction Set Architecture) has been described

and corresponding tool suits have been analyzed. In chapter 4 we have imple-

mented the architecture of an Embedded DSP processor using LISA where the

description for each instruction of the instruction set (of that specific architec-

ture) is described properly in CoWare platform. At last in chapter 5 the main

contribution with conclusion has been written. Then the future scope of work of

this thesis have been described.

5

DESIGN METHODOLOGY OF ASIP

ASIP Design Flow

Architecture Exploration

Architecture Implementation

Software Application Design

System Integration and Verification

Field of Application

Chapter 2

Design Methodology Of ASIP

An ASIP [13] has a dedicated instruction set and dedicated data types. Functions

are mapped to subroutines consisting of assembly instructions when designing an

ASIP DSP [14]. But at the time of ASIC design, the algorithms are directly

mapped to circuits. However, most DSP applications are so complicated that

mapping functions to circuits is becoming increasingly difficult. On the other

hand, it is becoming more popular to map DSP functions to an instruction set [14]

because the challenge of complexity is handled in both software and hardware, and

conquered separately.

2.1 Implementation of DSP Application

There are various ways of implementing a DSP application. They are:

2.1.1 Implementation on General Purpose Processor (GPP)

Many DSP applications, with or without real-time requirements, can be imple-

mented on a general-purpose processor (GPP). There are two reasons for imple-

menting a DSP application on a general-purpose computer:

• To quickly supply the application to the final user within the shortest pos-

sible time.

• To use this implementation as a reference model for the design of an embed-

ded system.

7

2.1 Implementation of DSP Application

2.1.2 Implementation on General Purpose DSP Processor

Many DSP applications are implemented using a general-purpose DSP (off-the

shelf processor). Here, general-purpose DSP stands for a DSP available from a

semi-conductor supplier and not targeted for a specific class of DSP applications.

A general purpose DSP has a general assembly instruction set that provides good

flexibility for many applications. However, high flexibility usually means fewer

application specific features or less acceleration of both arithmetic and control

operations. Therefore, a general-purpose DSP is not suitable for applications with

very high performance requirements. High flexibility also means that the chip

area will be large. A general-purpose DSP processor can be used for initializing a

product because the system design time will be short. When the volume has gone

up, a DSP ASIP could replace the general-purpose processor in order to reduce

the component cost.

2.1.3 Implementation on Application Specific Integrated
Circuit (ASIC)

There are two cases when an ASIC is needed for digital signal processing. The

first is to meet extreme performance requirements. In this case, a programmable

device would not be able to handle the processing load. The second case is to

meet ultralow power or ultra-low silicon area, when the algorithm is stable and

simple. In this case, there is no requirement on flexibility, and a programmable

solution is not needed.

ASIC implementation is to map algorithms directly to an integrated circuit.

Comparing a programmable device supplying the flexibility at every clock cycle,

an ASIC has very limited flexibility. It can be configurable to some extent in order

to accommodate very similar algorithms, but typically it cannot be updated in

every clock cycle.

8

2.1 Implementation of DSP Application

2.1.4 Implementation on Application Specific Instruction
Set Processor (ASIP)

A DSP ASIP has an instruction set optimized for a single application or a class of

applications. On one hand, a DSP ASIP is a programmable machine with a certain

level of flexibility, which allows it to run different software programs. On the other

hand, its instruction set is designed based on specific application requirements

making the processor very suitable for these applications. Low power consumption,

high performance, and low cost by manufacturing in high volume can be achieved.

The specialization of an ASIP provides a tradeoff between the flexibility of a

general purpose CPU and the performance of an ASIC. The flexibility of these

processors can be achieved by many ADLs like LISA, EXPRESSION, MIMOLA

etc.

An ASIP DSP has a dedicated instruction set and dedicated data types. When

designing an ASIP DSP, functions are mapped to subroutines consisting of assem-

bly instructions. When designing an ASIC, the algorithms are directly mapped

to circuits. However, most DSP applications are so complicated that mapping

functions to circuits is becoming increasingly difficult. On the other hand, map-

ping DSP functions to an instruction set is becoming more popular because the

challenge of complexity is handled in both software and hardware, and conquered

separately.

A simplified block diagram of DSP processor architecture is shown in figure

2.1.

Figure 2.1: DSP Processor Architecture

9

2.2 ASIP Design Flow

A DSP processor contains five key components:

• Program memory (PM) is used to store programs (in binary machine code).

PM is part of the control path.

• Programmable FSM block consists of a program counter (PC) and an in-

struction decoder (ID). It supplies addresses to the program memory for

fetching instructions. Meanwhile, it also performs instruction decoding and

supplies control signals to the data processing unit and data addressing unit.

• Data memory (DM) stores information to be processed. Three types of data

are stored in Data Memory. Those are input/output data, intermediate data

in a computing buffer (a part of the data memory), and parameters or co-

efficients. The data memory addressing unit is controlled by programmable

FSM and supplies addresses to data memories.

• The data processing unit, or datapath, performs arithmetic and logic com-

puting. A DU includes at least a register file (RF), a multiplication and

accumulation unit (MAC), and an arithmetic logic unit (ALU). A data pro-

cessing unit may also include some special or accelerated functions.

• I/O serves as an interface for functional units connected to the outside world.

I/O also handles the synchronization of external signals. Memory buses and

peripherals are also included.

2.2 ASIP Design Flow

Instruction set design is the first and most important step for the design of pro-

cessor. There is tradeoff among a multiple parameters including performance,

functional coverage, flexibility, power consumption, silicon cost and design time.

The complete design flow has been shown in the figure 2.2. It starts from

the requirement specification and finishes after the microarchitecture design. The

design of an ASIP is based mostly on experience, and it is essential to minimize

the cost of design iteration.

10

2.2 ASIP Design Flow

Figure 2.2: The ASIP Design flow

With some automation support by the vendors of embedded processors [15]

and integrated circuits, Application Specific Instruction Set Processors design are

being carried out traditionally. Four design phases [13, 16]are needed to describe

the ASIP design which are shown in the figure 2.3. In all the design phases different

development teams are required. So there should exist a good communication

between the teams.

11

2.2 ASIP Design Flow

Figure 2.3: Phases of ASIP Design

2.2.1 Architecture Exploration

Architecture exploration phase is used to effectively map an application onto a

dedicated processor architecture. Until a hardware implementation is found this

process iteratively evaluates the alternatives. Hardware/soft-ware partitioning is

also included here. Decisions are made to divide different parts of the application

which will be executed either on dedicated hardware circuits or will be imple-

mented in software. This phase has the central component which is the processor

model. This is either specified in a low abstraction level that is in hardware de-

scription language or in the processor simulator which is in higher abstraction

level. The complete micro architecture of the model is described in HDL where

as the simulator tells only the architecture aspects of the processor resources,

instruction coding, and the temporal behavior of operations.

12

2.2 ASIP Design Flow

2.2.2 Architecture Implementation

RTL processor model is created in this phase. Register Transfer Level is a Hard-

ware Description Language (HDL) coding style that describes the processor in the

form of registers and interconnected logic. The LISA compiler should derive all

the necessary information from the given LISA description [13] since the generated

HDL model does not have any predefined components. Then the generated HDL

model can be compared to the LISA model [4, 17] components as shown in the

figure 2.4.

Figure 2.4: Comparision of HDL And LISA model

• LISA memory model derives the memory configuration which summarizes

the registers and the memory sets

• Resource models gives the idea about the structure of the architecture such

as pipeline stages and pipeline registers.

13

2.2 ASIP Design Flow

• Functional units are either generated as empty frames or with fully func-

tionality depending on the HDL language used.

• Coding information in the instruction set model and the timing model results

the decoders.

• Pipeline controller is also generated from the above.

The designer will have full control over the generated HDL model with all its

components. The generated HDL model can be analyzed with respect to power,

area and time constraints and the optimized HDL model can be replaced with the

handwritten HDL code written by the experienced designers.

A synthesis tool can be used to generate a gate level netlist automatically

which specifies all logic gates and interconnects that are part of the processor

model. In an automatic place and route step the location of the gates and the

conducting paths are determined. The result of this step is a geometric description

of the processor hardware. In this phase no further addition is allowed in the

architecture of the programmer’s model. Only the architecture can be optimized

wrt. Instructions and addressing modes etc. Verification is the major focus here.

2.2.3 Software Application Design

In this phase the software development tools like assembler, linker and debugger

are developed those are used to create the application’s binary code. Ultimately

it is clear that after the architecture exploration phase C compiler is created.

Furthermore support libraries (e.g. standard library, floating point emulation)

need to be created. Additionally the operation system (e.g. Windows/Unix) needs

to be considered. The complete toolchain is usually driven by a graphical user

interface - an integrated design environment (IDE), that needs to be developed,

too.

2.2.4 System Integration and Verification

A processor simulator without the simulation environment of the entire SOC is

not very useful. Through this approach we can interact with other processors, co

14

2.3 Field of Application

processors, ASICs, busses and other peripherals.

2.3 Field of Application

A consistent design flow for system level, processor architecture and software archi-

tecture is needed which can be done at LISA processor design platform (LPDP)

environment. CoWare Inc. has the commercial version of the above platform.

LISA describes the behavior, structure and the input/output interfaces of a pro-

cessor architecture in a hierarchical manner. Different types of processors are

supported by this environment including ARM7, C62, C54x and ASIPs.

Out of the above said four phases mainly two phases are taken into considera-

tion in this project for architecture design. However for implementation purpose

hardware description languages are used to model the underlying hardware [17]

as shown in the figure 2.5.

Figure 2.5: Exploration and Implementation

It is very advantageous to combine both of the development process and the

15

2.3 Field of Application

HDL description. Here the LISA compiler can generate both of these. After

design exploration and application design the target architecture needs to be im-

plemented.

16

OVERVIEW OF LISA

Building a LISA model

Modeling Instructions

ISS Design vs Processor Design

Instruction Accurate vs Cycle Accurate Modeling

The Instruction Set Designer

Processor Debugger

Chapter 3

Overview Of LISA

The acronym of LISA [4] that is ”Language for Instruction Set Architecture” give

a clear idea that it is a language by which we can model any architecture that

is driven by an instruction set. LISA is a mixed behavioral/structural modeling

language for the formalized description of programmable processor architectures,

their peripherals and interfaces. LISA is having so much flexibility that the ele-

ments of this language are generic enough to build any kind of target architectures

like general purpose processors, RISC processor, DSPs, ASIPs, and so on. The

instruction resource is often a register that is referred as IR (Instruction Register).

Instruction resource in LISA can be a memory location, an input pin array, or a

concatenation of multiple storage elements.

3.1 Building a LISA model

Generally a processor model written in LISA has two sections those are Resource

and Operation section [18]. Again the Operation section contains three subsections

those are Coding, Syntax and Behavior.

Processor resources include the internal storage elements of the processor as

well as dedicated input/output pins and global variables. The internal storage

elements of the processor are represented by its registers and its internal memories.

But in cycle accurate models there are other types of processor resources, like

pipeline registers and internal signals [19]. Processor resources are generally de-

clared in the resource section, indicated by the keyword RESOURCE. An example

18

3.1 Building a LISA model

is shown in figure 3.1.

Figure 3.1: Resource Section

As shown in the above example a resource declaration typically consists of an

identifier, a data type specifier, and an optional keyword defining the semantic

type of the resource. All resources that are declared in a resource section are

global to the entire LISA model. The resource identifier must be unique in the

whole LISA model.

Registers are declared within the resource section using the keyword REGIS-

TER. Here there are 32 general purpose registers having 32 bits each. Every LISA

model needs to have a unique resource that is labeled as program counter, using

the keyword PROGRAM COUNTER. This information is used by the Processor

Debugger [14]. Here memory of the processor has been declared using the key-

word MEMORY MAP and different subordinate keywords are evaluated by the

19

3.1 Building a LISA model

Processor Designer tools that include Processor Debugger, Compiler Generator,

and Processor Generator to extract the information which memories are present

in the model, and what are their parameters.

3.1.1 Modeling Instructions

The concept of a LISA operation is explained in this section with the help of a

flat example.

Figure 3.2: Operation Section

In this flat example. Assume that we would like to model an instruction that

adds two particular values and writes the result to a particular general-purpose

register.

Operation section [14] usually uses the the keyword OPERATION to initialize

any operation which describes about the particular instruction. In the BEHAVIOR

section of the model the instruction behavior is described which is in C block code.

In the syntax part the assembly syntax of an instruction is modeled. This section

starts from the keyword SYNTAX. The binary image or coding of an instruction

is modeled in the coding section of an operation. The coding section consists of

the keyword CODING. The coding consists of sequence of bit fields or terminal

bit patterns which consists of the prefix ”0b” followed by ”0”, ”1” or ”X” (Don’t

care).

20

3.2 ISS Design vs Processor Design

3.1.2 Operation Hierarchy Of a Processor in LISA model

According to the LISA 2.0 description of the processor, the processor designer

generates the software development tools. In figure 3.3 the hierarchy of the in-

structions [18] has been shown for an assembly language code to find out the

convolution of two sequences using FIR filter.

Figure 3.3: Operation hierarchy

3.2 ISS Design vs Processor Design

LISA can be utilized as a unique language by designers with very different in-

tentions. Depending on the intention, different use models of the LISA language

and the Processor Designer product family are distinguished. The two main used

models [18] are processor design and instruction set simulator (ISS) design.

ISS design is required to model the processor that allows to simulate its in-

struction set at very high speed. The simulation speed in terms of instructions

per second is the main metric for the model quality.

21

3.3 Instruction Accurate vs Cycle Accurate Modeling

On the other side, processor design is useful for them whose intention is mainly

to design a processor, or any feature around the processor that needs to be aware

of the processor architecture. Here LISA works as an Architecture Description

Language.

3.3 Instruction Accurate vs Cycle Accurate Mod-

eling

Instruction accurate modeling is a synonym for ISS model [18] because in ev-

ery simulation control step, the complete behavior of an instruction is executed

instantly. Instruction Set Simulator has no notion of pipeline.

In pipelined architectures [14], a single instruction is executed in the span of

multiple clock cycles. Thus multiple instructions are simultaneously active. In

processor design we do need a cycle accurate description of the processor architec-

ture [20] in order to reflect the effect of the pipeline effects. So the cycle accurate

modeling is used as a synonym for ISS design.

Figure 3.4: CoWare Processor Designer

This language is more suitable with the processor designer tool called CoWare

22

3.3 Instruction Accurate vs Cycle Accurate Modeling

[21] for its advanced and flexible features such as,

• Automatic generation of synthesizable RTL with both control and datapath.

• Accurate profiling capabilities for high speed instruction set simulator.

• Compatible with extensively used synthesis tool like SYNOPSYS [22]and

physical design tool like MAGMA [23].

• Software development tool generation like assembler, linker, debugger, C-

compiler.

• Integrated profiling [16] helps to optimize instructions for the target archi-

tecture.

• Enables the design team to develop flexible and reusable ASIPs rapidly.

The design flow of an ASIP [21] is shown in the figure 3.4. As illustrated in

figure 3.4 LISA 2.0 is a language for processor description which incorporates all

processor-specific components such as pipelines, pins, register files, memory and

caches, and instructions. The efficient automatic generation of ISS(Instruction

Set Simulator) is generated as well as the complete suite of software development

tools, like Linker, Archiver, Assembler, and C-Compiler, and synthesizable RTL

code. Having extensive profiling capabilities [14] the development tools of the

debugger, enable rapid analysis and exploration of the application-specific proces-

sor’s instruction set architecture to determine the optimal instruction set for the

target application domain. Furthermore Processor Designer enables the designer

to optimize processor micro-architecture [16], instruction set design and memory

sub-systems including caches.

Operating at a high level of abstraction [24], Processor Designer not only elim-

inates the time and cost inherent in HDL-based processor design and manual tool

development, but also enables hardware and software designers to customize the

instruction set to their needs.

23

3.4 The Instruction Set Designer

3.4 The Instruction Set Designer

The Instruction-Set Designer is a GUI for viewing, editing, and creating LISA

processor models. Having a graphical representation of a processor model rather

than just the source code makes it much easier to get an overview and understand

its hierarchy. Instruction sets can be designed and maintained in an intuitive way

without having to cope with all the details of the syntax of the LISA language.

Figure 3.5 shows the Instruction Set Designer Window.

Figure 3.5: Instruction Set Designer

The Instruction-Set Designer [18] does not replace the text editor; rather com-

plements it. You can arbitrarily switch between the graphical and the textual

representation. Changes made to the model in the GUI only result in minimal

changes to the LISA code. All comments and formatted code are preserved. While

the LISA hierarchy and the encoding of the instruction set is most efficiently de-

signed with the GUI, the processor’s resources and the hardware behavior is still

manually written as LISA code.

24

3.5 Processor Debugger

3.5 Processor Debugger

The Processor Debugger GUI allows us to observe, debug, and profile the executed

application source code and the state of the processor by visualizing all processor

resources and the output which is produced by the executed application.

Furthermore, this GUI [18] is intended to analyze and debug the LISA 2.0

processor model with special regard to the hardware behavior, instruction set,

micro-architecture, and memory subsystem. The debugger GUI can either be

connected to a single Processor Designer simulator back-end or to an embedded

simulator in a SOC simulation. The underlying ISS is derived from the LISA 2.0

model of the processor architecture. This simulator may be run either as a stand

alone application, or alternatively it may be attached to the graphical Processor

Debugger.

Figure 3.6: Processor Debugger Window

25

3.6 Major Benefits

3.6 Major Benefits

• Design teams can rapidly develop flexible and re-usable application specific

embedded processors section [20] which include essential SoC functionality

[19], through:

– Rapid architecture design with LISA 2.0 by any designer conversant

with C/C++

– Automatic generation of software development tools and simulator [21]

– Instruction set profiling and optimization are easy to meet or beat per-

formance objectives

– Synthesizable RTL for both control and datapath hardware can auto-

matically generated, with robust links to established RTL simulation

and synthesis tools

– An automated , unified methodology that ensures consistency of hard-

ware implementation, simulation model and software development tools

implementations with the high level design specification

• Enables embedded software application development and debug with greatly

reduced time to market through:

– Early commencement of software development

– Reduced software application design and development time

– Fast and accurate instruction set simulator

26

TEST CASE: TWO PROCESSORS DESIGN COMPARISION

The Instruction Set Designer

Implementation of General Purpose Processor

Operation profiling

Resource profiling

Memory profiling

Optimized implementation result

Chapter 4

Test Case: Two Processors
Design Comparision

A simple FIR filter with three stage pipelining is implemented here with the help

of LISA in Coware platform [21]. Then the resource section of this model has been

optimized. A major decrease in total architecture design time can be seen, as the

LISA model results from the design exploration phase.

The software development tool suit includes assembler, linker and simulator as

well as a graphical debugger frontend. The tools are the enhanced version of those

tools used for architecture exploration. The enhancements for the software sim-

ulate the ability to graphically visualize the debugging process of the application

under test. The LISA debugger frontend [18] is a generic graphical user interface

for the generated LISA simulator as shown in the figure 4.1.

It visualizes the internal state of simulation process. Here the C source code,

the disassembly of the application as well as all the configured memories and

registers (pipeline) are displayed. In this frontend all contents can be changed at

the run time of the application. Tools like assembler and linker can be enhanced

in functionality as well. More than 30 assembler directives, labels and symbols

are supported by the assembler.

4.1 The Instruction Set Designer

Through this Graphical User Interface [18] we can view, edit and create any pro-

cessor model. By understanding its hierarchy it is much easier to design any

28

4.1 The Instruction Set Designer

Figure 4.1: Debugger Window

processor resource section. Instruction sets can be designed and maintained in an

intuitive way without having to cope with all the details of the syntax of the LISA

language. The figure 4.2 shows our optimized processor’s ISD window.

The Instruction-Set Designer [18] does not replace the text editor; rather com-

plements it. You can arbitrarily switch between the graphical and the textual

representation. Changes made to the model in the GUI only result in minimal

changes to the LISA code. All comments and formatted code are preserved. While

the LISA hierarchy and the encoding of the instruction set is most efficiently de-

signed with the GUI, the processor’s resources and the hardware behavior is still

manually written as LISA code.

The processor debugger provides extensive hardware and software profiling

capabilities. Operation profiling gives us the information about Calls/Total which

shows the proportion of operation executions for a specific operation to all executed

operations.

29

4.1 The Instruction Set Designer

Figure 4.2: Instruction Set Designer

Here in the above debugger window we can see that our processor can under-

stand the assembly code written for the FIR filter with 2 coefficients. Those are

A1=4, A2=5 and X1=6, X2=7.

So the output should come as 59(Decimal) and we can see it got the result as

GPR[2]=59. Now we can conclude that our processor is correct by giving correct

result. The resources we have taken here are:

• General purpose registers: 32

• Instruction set having number of instructions = 15

• Memory(data and program) allocation =0x0000 to 0xffff

30

4.2 Implementation of General Purpose Processor

4.2 Implementation of General Purpose Proces-

sor

A General Purpose Processor is first implemented in CoWare Processor Designer

Platform. The instruction set of this processor is selected so as to cover the

most recurring instructions and having 19 instructions. As stated before, LISA

code consists of processor resources and operations. Part of the LISA code of the

processor is given in figure 4.2.

To increase the design efficiency and in order to exploit common properties

of instructions, operation hierarchy is defined. Figure 3.3 shows the operation

hierarchy of the processor implemented. Operation main activates operation fetch

which is in the stage ’FE’ of the pipeline. Operation fetch activates operation

decode which is in the stage ’DC’ of the pipeline. The operation decode activates

all other operations in the stage ’EX’ of the pipeline.

4.3 Operation profiling

The operation profiling window of our processor has been shown in the figure

4.3. For each of the pipelining stages a separate field exists at the bottom of the

window. It shows the operations that are located in the respective pipeline stage.

The operations which are not assigned to any pipeline stage are under a sepa-

rate folder called as main(no pipe).

For each LISA 2.0 operation the following aspects are shown in the Profiling

window.

• Name contains the operation name as it is specified in the underlying LISA

2.0 model.

• Calls contains the total number of operation calls (executed operations) for

each of the visualized operations.

• Calls/Total shows the proportion of operation executions for a specific op-

31

4.3 Operation profiling

Figure 4.3: Part of LISA code of Processor-1

eration to all executed operations. As an equation this looks as follows:

calls

Total
=

Numberofspecificoperationsexecution

Numberofallopeartionsexecution

• Similarly Calls/Max contains information containing the proportion of the

32

4.4 Resource profiling

Figure 4.4: Operation Profiling Window

execution of a specific operation to the execution of the LISA operation

which has been executed the highest number of times.

calls

Max
=

Numberofspecificoperationsexecution

Maximumnumberofspecificopeartionsexecution

• These information can be shown graphically also.

• Stall cause shows the total number of stalls invoked by the respective LISA

2.0 operation.

• Flush cause shows the total number of flushes invoked by the respective

LISA 2.0 operation.

4.4 Resource profiling

Resource profiling shows the access statistics for all resources modeled with the

resource specifier as one of register, program counter and control register in the

LISA model as shown in the figure 4.5.

33

4.4 Resource profiling

Figure 4.5: General Purpose Register Window

The following information were gathered from the above model:

• Name tells about the name of the resource.

• Reads shows the absolute number of reads on the respective resource.

• Reads/Total Contains the proportion of the reads of the specific resource to

the number of total reads of all labeled resources. The equation looks as

follows:
Reads

Total
=

Numberofspecificresourcereads

Totalnumberofallresourcereads

• Reads/Max: It tells about the proportion of reads of specific register resource

to the maximal number of register resource reads is given in this column.

The equation looks as follows:

Reads

Max
=

Numberofspecificresourcereads

Maximumnumberofspecificresourcereads

• Writes shows the absolute number of writes on the respective resource.

34

4.5 Memory profiling

• Writes/Total contains the proportion of the writes of the specific resource

to the number of total writes of all labeled resources. The equation looks as

follows:
Writes

Total
=

Numberofspecificresourcewrites

Totalnumberofallresourcewrites

• Writes/Max shows the proportion of writes to a specific register resource

to the maximal number of register resource writes. The equation looks as

follows:
Writes

Max
=

Numberofresourcewrites

Totalnumberofallresourcewrites

• These information are visualized graphically also.

The values in the different columns may be sorted by a simple click with the

mouse on the top of the column (where the criterion of the respective column is

visualized). With one click, the values are sorted in an ascending sequence, with

further click in a descending sequence.

4.5 Memory profiling

Similarly memory profiling tells about the access statistics for the memories con-

tained in the processor model. This model has the program memory range 0x0000

to 0x1111 and data memory range 0x1111 to 0xffff.

These profiling information is very much required to optimize our design. This

architecture was designed on the respective abstraction level with LISA and soft-

ware development tools [14] were generated successfully.

4.6 Optimized implementation result

Here in the operation profiling window we can see that the instruction resources

like decr, alui, mac, alu1op, jmp, mov have not been called yet. So writing the

behavioral code for these instructions is not required. And if we remove these

resources from our specific model we can reduce the area without affecting the re-

sult. To reduce the area further we can remove the descriptions of the instructions

like sub, and, or also.

35

4.6 Optimized implementation result

Figure 4.6: Optimized Implementation Result

In the optimized model we have less space allocated for data and program

memory. Program memory starts from 0x0000 to 0x0015 and Data memory starts

from 0x0016 to 0x0042 reducing the area further.

To reduce the resource section further we can take 16 general purpose registers

(GPR) instead of 32 which will reduce the area of our model.It has been shown

in the figure 4.6.

4.6.1 The generated HDL model structure

The Processor Generator tool provided in the Processor Designer generated the

synthesizable RTL for both the processors. The structure of the generated HDL

is given in the figure 4.7.

Resource model and memory model of LISA tells the information about reg-

ister, memory configuration, pipeline sets and pipeline registers. To generate the

base structure of a HDL model this information is used. Different entities are there

in the base structure for the register resources, memory resources and the pipeline.

36

4.6 Optimized implementation result

Figure 4.7: Generated HDL Code Structure

To model the register behavior the register resources are completely generated at

RTL level. As the memory entity is left empty the designer has the freedom to

place any desired memory model into this entity.

In the pipeline there are several entities representing the pipeline registers and

stages. Further the pipeline has the controller which has been derived from the

LISA model. LISA has the ability to provide a formalized way to initiate several

pipeline functions like stall, flush. So the HDL generator can use these informa-

tion. The pipeline decoder which is placed in the pipeline stage entities drives

the pipeline controller. The entities having the functional units are contained in

the pipeline stages. More precisely, the functional units implement the data path

and will be discussed in detail later. Besides decoder, multiplexers are generated

to avoid driver conflicts. the information about the exclusiveness from the coding

information included in the LISA instruction set model is derived by the HDL

generator. The RTL schematic and the technology schematic of our optimized

model are shown in figure 4.8, 4.9 and 4.10 respectivly.

37

4.6 Optimized implementation result

4.6.2 Comparison of the HDL codes generated

The next work in this project is to compare the HDL codes generated from the two

different processors. This gives the idea about the number of lines of code of the

HDL models it has been observed that the HDL code of our optimized model has

very less number of lines compared with that of the previous processor(without

optimization). Then both the processors have been compared with respect differ-

ent parameters like area, power, memory used and number of lines of HDL code.

Table 4.1: Comparision Between Two Processors

Processor Area(µm2) Power(watt) Memory used(kb) Lines of HDL code

Processor-1 78122 0.15568 222468 6716
ASIP 30339 0.14122 176268 5070

The RTL was synthesized using Cadence Encounter [25] and the results are

tabulated as shown in Table 4.1. The library used for the synthesis was TSMC

(65nm). Thus we can see a drastic reduction in the area and power requirement.

The HDL code generated was synthesized using Xilinx ISE 10.1.03 [26]and the

RTL Schematics are shown in the figures 4.8, 4.9. Thechnology schematics has

been shown in figure 4.10.

In top level schematic which has been shown in figure 4.8 we can see that it

has 10 terminals those are:

• Program memory (input)

• Program memory (output)

• Data memory (input)

• Data memory (output)

• Program memory address

• Data memory address

• Clock main

38

4.6 Optimized implementation result

• Reset main

• Data memory

• Program memory

In design objects schematic we can see the internal parts of each and every

blocks of the entire architecture. Further we can observe all the interconnects as

shown in figure 4.9. Here except 3 blocks all other blocks have not been shown.

Lastly in the technology schematic all the blocks have been combined and shown

in one window as shown in figure 4.10.

Figure 4.8: Toplevel Schematic

4.6.3 Synthesis Report collected from Cadence DC

Coware supports the universally used synthesis tool like Cadence. So using Ca-

dence DC we have observed the following parameters.

39

4.7 Layout using MAGMA

Figure 4.9: Design Objects

Table 4.2: Synthesis Report

Parameters Used Total Percentage

Number of slices 2611 4656 56
Number of slice FFs 640 9312 6

Number of 4 i/p LUTs 5096 9312 54

Here the number of I/Os used is 156 and the Clock period is 20.909ns (fre-

quency: 47.825MHz). Further more we can see that the total memory used here

is 576760 kilobytes.

4.7 Layout using MAGMA

The final layout was extracted using MAGMA Blastcreat and Blastfusion tool [23].

Blast Create is a gain-based RTL synthesis tool that provides fast, high-capacity

synthesis, integrated into an RTL-to-GDSII design flow. Blast Create performs

logic synthesis, data-path synthesis, physical synthesis, power optimization, scan-

40

4.7 Layout using MAGMA

Figure 4.10: Technology Schematic

based DFT, and static-timing analysis. Blast Create provides fast and early pre-

dictability of results before handing off to a back-end tool. Blast Create stream-

lines chip planning and design by eliminating the numerous, cumbersome, and

error-prone data transfers between point tools in traditional flows. Blast Cre-

ate outputs a design that is a placed, timing-correct physical design, with DFT

structures inserted and that is ready for routing. Figure 4.2 shows the flow and

commands for the Blast Create tool. Figure 4.11 shows the complete flow of layout

and figure 4.13 shows the complete layout of our optimized processor model.

Floorplanning, analyzing and refining the floorplan, power routing, physical

implementation and synthesis are possible in the Blast Fusion Environment shown

in figure 4.12. Floorplanning is the process of:

• Positioning blocks on the die or within another block, thereby defining rout-

ing areas between them.

• Creating and developing a physical model of the design in the form of an

41

4.7 Layout using MAGMA

initial optimized layout.

Figure 4.11: Blast Create Layout Flow

42

4.7 Layout using MAGMA

Figure 4.12: Blast Fusion Flow

43

4.7 Layout using MAGMA

Figure 4.13: Layout

44

Summary and Conclusion

Main Contributions

Conclusion

Future Work

Chapter 5

Conclusion

Especially in the mobile and automotive application domain robustness, perfor-

mance, power eficiency, flexibility, development time, and price per device are

opposing design goals that can only be reached with specialized (i.e. application

specific) and highly integrated circuits [13]. These goals are the drivers for system

on chips (SOCs) that mainly contain fast and power eficient hard wired parts with

little flexibility (ASICs) in combination with highly flexible but slow and power

hungry programmable parts (Microcontrollers, DSPs).

On the other hand it is quite hard to face the recent trend of applications be-

coming more versatile and multimedia oriented with this kind of architectures. A

more economic compromise between flexibility and power eficiency can be achieved

by incorporating application specific instruction-set processors (ASIPs) in the

SOC. In this thesis, we have developed a processor with 19 possible instructions.

Afterwards we have taken the initiative to design an ASIP(FIR filter). Then we

have compared both the processors.

Applications that are becoming more and more complex make an assembly

programmers model for the ASIP very tedious and error prone. Thus the utiliza-

tion of compiler technology - as it is already common in the domain of general

purpose processors - is becoming an important productivity factor in ASIP de-

sign [13]. A state of the art approach is to implement a C compiler relatively late

in the ASIP design process. This chapter concludes the thesis by summarizing the

contributions and describing future directions.

The chapter is organized as follows: Section 5.1 highlights the main con-

46

5.1 Main Contributions

tributions of the thesis. Finally, Section 5.3 summarizes the results and their

implications.

5.1 Main Contributions

In this thesis, using LISA and the CoWare Processor Designer Platform a processor

model was implemented. The processor includes arithmetic, branch, logical and

data transfer instructions. The functionality of all the instructions was checked

and found to be correct using Processor Debugger. The same model was then

optimized to an ASIP, an FIR filter in our case.

According to the profiling results, the optimization was with respect to re-

sources like data memory, program memory, instruction set and number of general

purpose registers. The RTL for both the processors was generated and synthe-

sized. The synthesis results were compared and ASIP was found to be much better

than the general purpose processor in terms of power, area, memory used and lines

of HDL code generated. Thus the CoWare design flow was explored. By consider-

ing the profiling any ASIP can be implemented and optimized taking our general

purpose processor as a reference.

5.2 Conclusion

This thesis has presented an optimized design of an Application Specific Instruc-

tion set Processor. The experimental results reported in the thesis have shown

that the proposed ASIP design is better than the general purpose processor with

respect to area, power and memory size. Further more we can see that the lines

of HDL code of ASIP, generated from CoWare processor designer tool are very

much less than the General purpose processor.

5.3 Future Work

In future we can go for designing a complex five stage pipelined FIR filter and we

can compare that with a hand written HDL coded design of the same. Further we

47

5.3 Future Work

can explore our design process by modeling more and more real world processor

architectures. How ever the optimized generation of data path, considering the

resource sharing issue, is another area of research.

48

Bibliography

[1] Dandian Zhang Rainer Leupers Gerd Ascheid A Chattopadhaya, A Sinha and

Henrich Meyr. Integrated verification approach during adl driven processor

design. Microelectronics journal 40, 2009.

[2] Manuel Hohenauer Welhua Sheng, Jianjiang Ceng and Hanno Scharwachter.

A novel approach for fexible and consistent adl driven asip design. DAC’04,

June 2004.

[3] Michael Gschwind. Instruction set selection for asip design. In Yorktown

Heights, NY 10598. Technische University at Wien,Vienna, Austria.

[4] Achim Nohl Gunnar Braun Oliver Schliebush Oliver Wahlen Andreas Hoff-

man, Tim Kogel and Andreas Wieferink. A novel methodology for the design

of application specific instruction set processors (asips) using a machine de-

scription language. IEEE transaction on Computer Aided Design of integrated

circuits and systems, 20(11), November 2001.

[5] A Hoffmann T Glo Kler and H Meyr. Methodical low-power asip design

space exploration. pages 229–246. Journal of VLSI Signal Processing, Kluwer

Academic Publishers, 2003.

[6] et al. M. Itoh. Peas-iii: An asip design environment. pages 430–436. IEEE

Int. Conf. on Computer Design: VLSI in Computers and Processors, 2000.

[7] J.-H. Yang et al. Metacore: An application-specific programmable dsp devel-

opment system. pages vol.8 no.2,173–183. IEEE Transactions on Very Large

Scale Integration Systems, April 2000.

49

Bibliography

[8] P. Russo G. Hadjiyiannis and S. Devadas. A methodology for accurate per-

formance evaluation in architecture exploration. New Orleans, 36th Design

Automation Conference, June 1999.

[9] A. Nicolau F. Onion and N. Dutt. Incorporating compiler feedback into the

design of asips. pages 508–513. Proc. of European Design and Test Confer-

ence, 1995.

[10] R. Leupers. Retargetable Code Generation for Digital Signal Processors.

Kluwer Academic Publishers, 1997.

[11] http://www.eetimes.com/story/OEG20001120S-0028 M. Santarini. 2000.

[12] www.mot.com/SPS/MCORE/pdf container/lowpower.pdf. 2001.

[13] Oliver Wahlen. C Compiler Aided Design of Application-Specific Instruction-

Set Processors Using the Machine Description Language LISA. PhD thesis,

Shaker Verlag, 2004.

[14] Y. Bajot and H. Mehrez. Customizable. Dsp architecture for asip core design.

Proc. of the IEEE Int. Symposium on Circuits and Systems (ISCAS), May

2001.

[15] Wayne Wolf. Computers as Components. Morgan Kaufmann, first edition,

2005.

[16] D Kammler O. Schliebusch, E M Witte and G. Ascheid. Optimization tech-

niques for adl driven rtl processor synthesis. IEEE workshop on rapid system

prototyping(RSP), Montreal, Canada, June 2005.

[17] A Hoffmann Oliver Schliebusch and Achim Nohl. Architecture implementa-

tion using machine description language lisa. In Proceedings of 15th Inter-

national Conference on VLSI Design (VLSID02). Computer Society IEEE,

2002.

[18] CoWare. CoWare, The ESL design Leader reference manuals, v2007.1.2 edi-

tion, June 2008.

50

Bibliography

[19] Anantha Chandrakasan Jan Rabaey and Borivoje Nikolic. Digital Integrated

Circuits, A Design Perspective. Pearson, Prentice Hall, second edition.

[20] J G Mazidi M A Mazidi. Microcontroller and Embedded Systems. Pearson

Education, fourth edition, 2002.

[21] Coware,inc,http://www.coware.com.

[22] Synopsis. http://www.synopsis.com.

[23] MAGMA Blast Create and Blast Fusion Manuals.

[24] T Givargis F Vahid. Embedded System Design. Wiley India, 2008.

[25] Cadence. http://www.cadence.com.

[26] Xilinx. http://www.xilinx.com.

51

Dissemination of Work

1. U K Nanda, K K Mahapatra Design of an Application Specific Instruc-

tion set Processor using LISA˝, First International Conference on Advanced

Computing and Communication, pages 206-209, 3-4 May 2010, AJCE, Kan-

jirapally, Kerala, India.

2. U K Nanda, K K Mahapatra Design of a FIR filter using Application

Description Language ˝, National Conference on Wireless Communication

and VLSI Design, 27-28 March 2010, Gwalior, India.

PAPER ACCEPTED:

3. V Dodani Nikhil Kumar, Umakanta Nanda and K K Mahapatra Optimization

of an Application Specific Instruction Set Processor using Application De-

scription Language, IEEE International Conference on Industrial and In-

formation Systems - 2010 (ICIIS 2010), July 29th-Aug 1st 2010, NIT, Suratkal,

Karnataka.

52

