

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Electrical Engineering

By

SHATADAL MISHRA

ROLL NO -10602041

&
MRUTYUNJAY DAS

ROLL NO -10602063

Department of Electrical Engineering

National Institute of Technology

Rourkela

2010

FPGA BASED RANDOM NUMBER GENERATION FOR

CRYPTOGRAPHIC APPLICATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Electrical Engineering

By

SHATADAL MISHRA
ROLL NO -10602041

&

MRUTYUNJAY DAS

ROLL NO -10602063

Under the Guidance of
Prof. D. Patra

Department of Electrical Engineering

National Institute of Technology

Rourkela

2010

FPGA BASED RANDOM NUMBER GENERATION FOR

CRYPTOGRAPHIC APPLICATIONS

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled “FPGA based random number generation

for cryptographic applications’’ Submitted by Shatadal Mishra, Roll No:10602041,

and Mrutyunjay Das, Roll No. 10602063, in the partial fulfillment of the requirement

for the degree of Bachelor of Technology in Electrical Engineering, National

Institute of Technology, Rourkela , is being carried out under my supervision.

To the best of my knowledge the matter embodied in the thesis has not been submitted to

any other university/institute for the award of any degree or diploma.

Date:

Prof. D. Patra

Dept. of Electrical Engg.

National Institute of Technology

Rourkela - 769008

Acknowledgment

We avail this opportunity to extend our hearty indebtedness to our guide Prof.

D. Patra, Electrical Engineering Department, for her valuable guidance, constant

encouragement and kind help at different stages for the execution of this dissertation

work.

Submitted by:

Shatadal Mishra

Roll No: 10602041
Electrical Engineering

National Institute of Technology

Rourkela

Mrutyunjay Das
Roll No: 10602063

Electrical Engineering

National Institute of Technology

Rourkela

CONTENTS

 Page No

 Abstract i

List of Figures ii

Chapter 1 INTRODUCTION 1

1.1

Early Work

2

1.2

Motivation

3

 Chapter 2

Field Programmable Gate Array (FPGA)

4

 2.1

Introduction

4

 2.2 History 5

 2.3 Modern Progress 6

 2.4 Comparisons 6

 2.5 Applications 7

 2.6 Architecture 7

 2.7 FPGA Design and Programming 8

 2.8 Major Manufacturers 8

 Chapter 3 VHDL- The language of hardware 9

 3.1 Introduction 10

 3.2 History 10

 3.3 Capabilities 11

 3.4 Hardware Abstraction 12

 3.5 Language Concepts 13

 3.6 Entity Declaration 14

 3.7 Architecture Body 15

 3.8 Structural Style of Modeling 15

 3.9 Dataflow Style of Modeling 16

 3.10 Behavioral Style of Modeling 16

 3.11 Mixed Style Of Modeling 17

 3.12 Process Statement 18

 Chapter 4 Random Number Generation 19

 4.1 Random Number Generation 20

 4.2 True Random Number Generators (TRNGs) 20

 4.3 Pseudo Random Number Generators (PRNGs) 21

 4.4 Types of Pseudo Random Number Generators (PRNGs) 23

 Chapter 5 Programming in VHDL for Random Number Generators 27

 5.1 Implementation of PRNSG 28

 5.2 Code 28

 5.3 Test Bench 29

 5.4 Simulation Diagram 30

 5.5 RTL Schematic 30

 5.6 Technology Schematic 31

 5.7 8-bit random generator using LFSR 31

 5.7.1 Code 31

 5.8 RTL Schematic 30.a

 5.9 16 bit random number generator with XOR 31.a

 5.9.1 Code 31.a

 5.10 RTL Schematic 33

 5.11 Technology Schematic 34

 5.12 Blum Blum Shub Generator 34

 5.13 RTL Schematic 38

 5.14 Technology Schematic 38

 Conclusion 39

 References 40

ABSTRACT

Random numbers are useful for a variety of purposes, such as generating data encryption keys,

simulating and modeling complex phenomena and for selecting random samples from larger data

sets. They have also been used aesthetically, for example in literature and music, and are of

course ever popular for games and gambling. When discussing single numbers, a random

number is one that is drawn from a set of possible values, each of which is equally probable, i.e.,

a uniform distribution. When discussing a sequence of random numbers, each number drawn

must be statistically independent of the others.

Random numbers are generated by various methods. The two types of generators used for

random number generation are pseudo random number generator (PRNG) and true random

number generator (TRNG). The numbers generated are random because no polynomial – time

algorithm can describe the relation amongst the different numbers of the sequence.

Numbers generated by true random number generator (TRNG) or cryptographically secure

pseudo random number generator (CSPRNG). The sources of randomness in TRNG are physical

phenomena like lightning, radioactive decay, thermal noise etc. The source of randomness in

CSPRNG is the algorithm on which it is based.

In this project, the random numbers generated for cryptographic applications were generated by

using the Blum Blum Shub generator, the CSPRBG. It was implemented on a FPGA platform

using VHDL programming language and the simulation was done and tested on the Xilinx ISE

10.1i.

i

LIST OF FIGURES

HEADING PAGE NUMBER

FPGA Architecture 7

VHDL

Hardware

Abstraction

12

Entity and model
13

Half Adder Circuit
14

1-bit Full Adder 18

PRNSG Circuit 28

ii

Page | 1

CHAPTER 1

INTRODUCTION

Page | 2

1. INTRODUCTION

1.1 Early Work:

A random number generator is a computational device devised to generate a

sequence of numbers or that lack any pattern. Hardware-based systems for random

number generation are widely used, but often fall short of this target, though they

may meet some of the statistical tests for randomness to confirm that they do not

have any easily decipherable patterns. Methods for generating random results have

existed since ancient times, including dice, coin flipping, the shuffling of playing

cards, the use of yarrow stalks, and many other techniques. [1]

The earliest methods for generating random numbers — dice, coin, flipping,

roulette wheels — are still used today, mainly in games and gambling as they are too

slow for most applications in cryptography. [1], [2]

Various imaginative ways of collecting the entropic information for true random

number generator have been devised. One technique is to run a hash function against

a frame of a video stream from an unknown source.Lavarand used this technique

with images of many lava lamps. HotBits tracks radioactive decay with GM

tubes, while Random.org uses variations in the amplitude of atmospheric noise taped

with a normal radio.[1]

One archaic way of producing random numbers was by a variation of the same

machines used to select lottery numbers. Basically, these mixed numbered ping-pong

balls with blown air, combined with mechanical agitation, use some method to

withdraw balls from the mixing chamber (U.S. Patent 4,786,056). This method gives

plausible results, but the random numbers generated by this means proved to be a

costly affair. The method is slow, and is not fit to be used in most situations. [2]

RAND Corporation generated random digits with an "electronic roulette wheel",

which consisted of a random frequency pulse source of about 100,000 pulses per

second gated once per second with a constant frequency pulse and fed into a 5-bit

binary counter. Douglas Aircraft manufactured the equipment, incorporating Cecil

Hasting's suggestion for a noise source (behavior of the 6D4 miniature gas thyratron

tube, when placed in a magnetic field). [2]

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Dice
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Playing_card
http://en.wikipedia.org/wiki/Playing_card
http://en.wikipedia.org/wiki/Yarrow
http://en.wikipedia.org/wiki/Dice
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Game
http://en.wikipedia.org/wiki/Lavarand
http://en.wikipedia.org/wiki/Lava_lamp
http://www.fourmilab.ch/hotbits/
http://en.wikipedia.org/wiki/GM_tube
http://en.wikipedia.org/wiki/GM_tube
http://www.random.org/
http://en.wikipedia.org/wiki/Lottery
http://www.google.com/patents?q=4786056
http://en.wikipedia.org/wiki/RAND_Corporation

Page | 3

The Intel 80802 Firmware Hub chip included hardware RNG using two free running

oscillators, one fast and one slow. A thermal noise source (noise from two diodes) is

used to modulate the frequency of the slow oscillator, which then triggers a

measurement of the fast oscillator. That output is then de-biased using a von

Neumann type de-correlation step. The output rate of this device is less than 100,000

bit/s. This chip was an optional component of the 840 chipset family. [2]

The work on devising generators to generate random numbers for various purposes

continues based on the requirements.

1.2 Motivation:

In today‘s world security is of prime importance and hence cryptography plays an

important role in computer and networking security. Cryptographically secure

random number generators are essential for this purpose. The versatility of this

project in many fields urged and motivated us to select the same.

.

http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/John_von_Neumann

Page | 4

CHAPTER 2

FIELD

PROGRAMMABLE

GATE ARRAY

Page | 5

2.1 Introduction:

A field-programmable gate array (FPGA) is an integrated circuit created to be configured

by the customer after manufacturing—hence "field-programmable". The FPGA

configuration is generally defined using a hardware description language (HDL), similar to

that used for an application-specific integrated circuit (ASIC) (circuit diagrams were

previously used to specify the configuration, as they were for ASICs, but this is increasingly

rare). FPGAs can be used to implement any logical function that an ASIC can perform. The

ability to update the functionality after shipping, partial re-configuration of the portion of

the design

and the low non-recurring engineering costs relative to an ASIC design, offer

advantages for many applications. [16]

FPGAs contain programmable logic components called "logic blocks", and a hierarchy of

reconfigurable interconnects that allow the blocks to be "connected together"—somewhat

like a one-chip programmable breadboard. Logic blocks can be configured to perform

complex combinational functions, or merely simple logic like AND and NAND. In most

FPGAs, the logic blocks also include memory elements, which may be simple flip-flops or

more complete blocks of memory. [16]

2.2 History:

The FPGA industry burgeoned from programmable read-only memory (PROM)

and programmable logic devices (PLDs). PROMs and PLDs both had the option of being

programmed in batches in a factory or in the field (field programmable), however

programmable logic was hard-wired between logic gates. In the late 1980s the Naval

Surface Warfare Department sponsored an experiment proposed by Steve Casselman to

develop a computer that would implement 600,000 reprogrammable gates. Casselman was

successful and a patent related to the system was issued in 1992. Xilinx Co-Founders, Ross

Freeman and Bernard Vonderschmitt, invented the first commercially viable field

programmable gate array in 1985 – the XC2064. The XC2064 had programmable gates and

programmable interconnections between gates, the beginnings of a new technology and

market.

The XC2064 boasted of mere 64 configurable logic blocks (CLBs), with two 3-

input lookup tables (LUTs).

[16]

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Circuit_diagram
http://en.wikipedia.org/wiki/Partial_re-configuration
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Breadboard
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/Programmable_logic_devices
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Ross_Freeman
http://en.wikipedia.org/wiki/Ross_Freeman
http://en.wikipedia.org/wiki/Bernard_Vonderschmitt

Page | 6

2.3 Modern Progress:

A recent trend has been to take the architectural approach a step further by combining the

logic blocks and interconnections of traditional FPGAs with embedded microprocessors and

related peripherals to form a complete "system on a programmable chip". This work reflects

the architecture by Ron Perlof and Hana Potash of Burroughs Advanced Systems Group

which combined a reconfigurable CPU architecture on a single chip called the SB24. That

work was done in 1982. Examples of such hybrid technologies can be found in the Xilinx

Virtex-II PRO and Virtex-4 devices, which include one or more PowerPC processors

embedded within the FPGA's logic fabric. The Atmel FPSLIC is another such device, which

uses an AVR processor in combination with Atmel's programmable logic architecture. The

Actel SmartFusion devices incorporate an ARM_architecture Cortex-M3 hard processor

core (with up to 512kB of flash and 64kB of RAM) and analog peripherals such as a multi-

channel ADC and DACs to their flash-based FPGA fabric. [16]

As previously mentioned, many modern FPGAs have the ability to be reprogrammed at

"run time," and this is leading to the idea of reconfigurable computing or reconfigurable

systems — CPUs that reconfigure themselves to suit the task at hand. The Mitrion Virtual

Processor from Mitrionics is an example of a reconfigurable soft processor, implemented on

FPGAs. However, it does not support dynamic reconfiguration at runtime, but instead

adapts itself to a specific program. [16]

2.4 Comparisons:

Historically, FPGAs have been slower, less energy efficient and generally achieved less

functionality than their fixed ASIC counterparts. A combination of volume, fabrication

improvements, research and development, and the I/O capabilities of new supercomputers

have largely reduced the performance gap between ASICs and FPGAs. The primary

differences between CPLDs and FPGAs are of the architecture level. A CPLD has a

restrictive structure consisting of one or more programmable sum-of-products logic arrays

feeding a relatively small number of clocked registers. With respect to security, FPGAs

have both advantages and disadvantages as compared to ASICs or secure microprocessors.

FPGAs' flexibility makes malicious changes during fabrication a lower risk. For many

FPGAs, the loaded design is exposed while it is loaded (typically on every power-on). To

address this issue, some FPGAs support bit stream encryption. [16]

http://en.wikipedia.org/wiki/Microprocessors
http://en.wikipedia.org/wiki/PowerPC
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/Reconfigurable_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Mitrionics
http://en.wikipedia.org/wiki/ASIC
http://en.wikipedia.org/wiki/CPLD

Page | 7

2.5 Applications:

Applications of FPGAs include digital signal processing, software-defined

radio, aerospace and defense systems,ASIC prototyping, medical imaging, cryptography,

bioinformatics computer hardware emulation, radio astronomy, metal detection etc. The

inherent parallelism of the logic resources on an FPGA allows for considerable

computational throughput even at a low MHz clock rates. The flexibility of the FPGA

allows for even higher performance by trading off precision and range in the number format

for an increased number of parallel arithmetic units. This has driven a new type of

processing called reconfigurable computing, where time intensive tasks are offloaded from

software to FPGAs. FPGAs have been reserved for specific vertical applications where the

volume of production is small. For these low-volume applications, the premium that

companies pay in hardware costs per unit for a programmable chip is more affordable than

the development resources spent on creating an ASIC for a low-volume application. Today,

new cost and performance dynamics have broadened the range of viable applications. [16]

2.6 Architecture:
The most common FPGA architecture

consists of an array of logic blocks (called

Configurable Logic Block, CLB, or Logic Array Block, LAB, depending on vendor), I/O

pads, and routing channels. Generally, all the routing channels have the same width

(number of wires). Multiple I/O pads may fit into the height of one row or the width of one

column in the array.

http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Software-defined_radio
http://en.wikipedia.org/wiki/Software-defined_radio
http://en.wikipedia.org/wiki/Aerospace
http://en.wikipedia.org/wiki/Defense_(military)
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/Radio_astronomy
http://en.wikipedia.org/wiki/Reconfigurable_computing

Page | 8

In general, a logic block (CLB or LAB) consists of a few logical cells. A typical cell

consists of a 4-input Lookup table (LUT), a Full adder (FA) and a D-type flip-flop, as

shown. The LUT are in this figure split into two 3-input LUTs. In normal mode those are

combined into a 4-input LUT through the left mux. In arithmetic mode, their outputs are fed

to the FA. The selection of mode is programmed into the middle mux. The output can be

either synchronous or asynchronous, depending on the programming of the mux to the right,

in the figure above. In practice, entire or parts of the FA are put as functions into the LUTs

in order to save space. [16]

2.7 FPGA Design and Programming:

To specify the behavior of the FPGA, the user provides a hardware description

language (HDL) or a schematic design. The HDL form is more suited to work with large

structures because it's possible to just specify them numerically rather than having to draw

every piece. However, schematic entry can allow for easier imagination of a design. Then,

using an electronic design automation tool, a technology-mapped netlist is generated. The

netlist can then be fitted to the actual FPGA architecture using a process called place-and-

route, usually performed by the FPGA company's proprietary place-and-route software. The

user will validate the map, place and route results via timing analysis, simulation, and

other verification methods. Once the design and validation process is complete, the binary

file generated is used to reconfigure the FPGA. The most common HDLs

are VHDL and Verilog. Though these two languages are similar but we prefer VHDL for

programming because of its widely in use. [16]

2.8 Major Manufacturers:

Xilinx and Altera are the current FPGA market leaders and long-time industry rivals.

Together, they control over 80 percent of the market, with Xilinx alone representing over 50

percent. Other competitors include Lattice Semiconductor (SRAM based with integrated

configuration Flash, instant-on, low power, live reconfiguration), Actel (antifuse, flash-

based, mixed-signal), SiliconBlue Technologies(low power), Achronix (RAM based,

1.5 GHz fabric speed), and QuickLogic (handheld focused CSSP, no general purpose

FPGAs). [16]

http://en.wikipedia.org/wiki/Lookup_table
http://en.wikipedia.org/wiki/Full_adder
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Multiplexer
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Schematic
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Netlist
http://en.wikipedia.org/wiki/Place_and_route
http://en.wikipedia.org/wiki/Place_and_route
http://en.wikipedia.org/wiki/Timing_analysis
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Verification
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/Lattice_Semiconductor
http://en.wikipedia.org/wiki/Actel
http://en.wikipedia.org/wiki/SiliconBlue_Technologies
http://www.achronix.com/
http://en.wikipedia.org/wiki/QuickLogic
http://en.wikipedia.org/w/index.php?title=CSSP&action=edit&redlink=1

Page | 9

CHAPTER 3

VHDL- The Language of

Hardware

Page | 10

3.1 Introduction:

VHDL is an acronym for VHSlC Hardware Description Language (VHSIC is an acronym

for Very High Speed Integrated Circuits). It is a hardware description language that can be

used to model a digital system at many levels of abstraction ranging from the algorithmic

level to the gate level. The complexity of the digital system being modeled could vary from

that of a simple gate to a complete digital electronic system, or anything in between. The

digital system can also be described hierarchically. Timing can also be explicitly modeled in

the same description. The language not only defines the syntax but also defines very clear

simulation semantics for each language construct. Therefore, models written in this

language can be verified using a VHDL simulator. It is a strongly typed language and is

often verbose to write. It inherits many of its features, especially the sequential language

part, from the ADA programming language. Because VHDL provides an extensive range of

modeling capabilities, it is often difficult to understand. [17]

3.2 History:

The requirements for the language were first generated in 1981 under the VHSIC

program. In this program, a number of U.S. companies were involved in designing

VHSIC chips for the Department of Defense (DoD). At that time, most of the

companies were using different hardware description languages to describe and

develop their integrated circuits. The initial version of VHDL, designed

to IEEE standard 1076-1987, included a wide range of data types, including

numerical (integer and real), logical (bit and boolean), character and time,

plus arrays of bit called bit_vector and of character called string. A problem not

solved by this edition, however, was "multi-valued logic", where a signal's drive

strength (none, weak or strong) and unknown values are also considered. This

required IEEE standard 1164, which defined the 9-value logic types:

scalar std_ulogic and its vector version std_ulogic_vector. In June 2006, VHDL

Technical Committee of Accellera (delegated by IEEE to work on next update of the

standard) approved so called Draft 3.0 of VHDL-2006.

http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/IEEE_1076
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Real_data_type
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Boolean_datatype
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/IEEE_1164
http://en.wikipedia.org/wiki/Accellera

Page | 11

While maintaining full compatibility with older versions, this proposed standard

provides numerous extensions that make writing and managing VHDL code easier.

Key changes include incorporation of child standards (1164, 1076.2, 1076.3) into the

main 1076 standard, an extended set of operators, more flexible syntax of 'case' and

'generate' statements, incorporation of VHPI (interface to C/C++ languages) and a

subset of PSL (Property Specification Language). These changes should improve

quality of synthesizable VHDL code, make testbenches more flexible, and allow

wider use of VHDL for system-level descriptions. [17]

In February 2008, Accellera approved VHDL 4.0 also informally known as VHDL

2008, which addressed more than 90 issues discovered during the trial period for

version 3.0 and includes enhanced generic types. In 2008, Accellera released VHDL

4.0 to the IEEE for balloting for inclusion in IEEE 1076-2008. The VHDL standard

IEEE 1076-2008 was approved by REVCOM in September 2008. [17]

3.3 Capabilities:

• The language can be used as an exchange medium between chip vendors and CAD

tool users. Different chip vendors can provide VHDL descriptions of their

components to system designers. CAD tool users can use it to capture the behavior

of the design at a high level of abstraction for functional simulation.

• The language supports hierarchy, that is, a digital system can be modeled as a set of

interconnected components; each component, in turn, can be modeled as a set of

interconnected subcomponents.

• The language supports flexible design methodologies: top-down, bottom-up, or

mixed.

• It supports both synchronous and asynchronous timing models.

• It is an IEEE and ANSI standard, and therefore, models described using this

language is portable. The government also has a strong interest in maintaining this as

a standard so that re-procurement and second-sourcing may become easier.

• The capability of defining new data types provides the power to describe and

simulate a new design technique at a very high level of abstraction without any

concern about the implementation details.

http://en.wikipedia.org/wiki/Property_Specification_Language

Page | 12

• Behavioral models that conform to a certain synthesis description style are capable

of being synthesized to gate-level descriptions.

• A common language can be used to describe library components from different

vendors. Tools that understand VHDL models will have no difficulty in reading

models from a variety of vendors since the language is a standard. [17]

3.4 Hardware Abstraction:

VHDL is used to describe a model for a digital hardware device. This model

specifies the external view of the device and one or more internal views. The internal

view of the device specifies the functionality or structure, while the external view

specifies the interface of the device through which it communicates with the other

models in its environment. Figure shows the hardware device and the corresponding

software model. [17]

Page | 13

3.5 Language Concepts:

VHDL is a hardware description language that can be used to model a digital system.

The digital system can be as simple as a logic gate or as complex as a complete

electronic system. A hardware abstraction of this digital system is called an entity in

this text. An entity X, when used in another entity Y, becomes a component for the

entity Y. [17]

VHDL provides five different types of primary constructs, called" design units:

 Entity declaration.

 Architecture body.

 Configuration declaration.

 Package declaration.

 Package body. [17]

Page | 14

An entity is modeled using an entity declaration and at least one architecture body.

The entity declaration describes the external view of the entity, for example, the

input and output signal names. The architecture body contains the internal

description of the entity, for example, as a set of interconnected components that

represents the structure of the entity, or as a set of concurrent or sequential

statements that represents the behavior of the entity. Each style of representation can

be specified in a different architecture body or mixed within a single architecture

body Figure 2.1 shows an entity and its model. [17]

A configuration declaration is used to create a configuration for an entity. It specifies

the binding of one architecture body from the many architecture bodies that may be

associated with the entity. It may also specify the bindings of components used in the

selected architecture body to other entities. An entity may have any number of

different configurations. [17]

A package declaration encapsulates a set of related declarations such as type

declarations, subtype declarations, and subprogram declarations that can be shared

across two or more design units. A package body contains the definitions of

subprograms declared in a package declaration. [17]

3.6 Entity Declaration:

The entity' declaration specifies the name of the entity being modeled and lists the

set of interface ports. Ports are signals through which the entity communicates with

the other models in its external environment. [17]

Page | 15

3.7 Architecture Body:

The internal details of an entity are specified by an architecture body using any of

the following modeling styles:

 As a set of interconnected components (to represent structure),

 As a set of concurrent assignment statements (to represent dataflow),

 As a set of sequential assignment statements (to represent be-hav.ior),

 Any combination of the above three. [17]

3.8 Structural style of Modeling:

The architecture body is composed of two parts: the declarative part (before the

keyword begin) and the statement part (after the keyword begin). Two component

declarations are present in the declarative part of the architecture body. The

components XOR2 and AND2 may either be predefined components in a library, or

if they do not exist, they may later be bound to other components in a library. The

declared components are instantiated in the statement part of the architecture body

using component instantiation statements. XI and A1 are the component labels for

these component instantiations. [17]

architecture HA_STRUCTURE of HALF_ADDER is

component XOR2

port (X, Y: in BIT; Z: out BIT);

end component;

component AND2

port (L, M: in BIT; N: out BIT);

end component;

begin

X1: XOR2 port map (A, B, SUM);

A1: AND2 port map (A, B, CARRY);

end HA_STRUCTURE;

Page | 16

3.9 Dataflow Style of Modeling:

In this modeling style, the flow of data through the entity is expressed primarily

using concurrent signal assignment statements. The structure of the entity is not

explicitly specified in this modeling style, but it can be implicitly deduced. Consider

the following alternate architecture body for the HALF_ADDER entity that uses this

style. [17]

architecture HA_CONCURRENTof HALF_ADDER is

begin

SUM <= A xor B after 8 ns;

CARRY <= A and B after 4 ns;

 end HA_CONCURRENT;

3.10 Behavorial Style of Modeling:

In contrast to the styles of modeling described earlier, the behavioral style of

modeling specifies the behavior of an entity as a set of statements that are executed

sequentially in the specified order. This set of sequential statements, that are

specified inside a process statement, do not explicitly specify the structure of the

entity but merely specifies its functionality. A process statement is a concurrent

statement that can appear within an architecture body. For example, consider the
following behavioral model for the DECODER2x4 entity. [17]

Architecture DEC_SEQUENTIAL of DECODER2x4 is

begin

process (A, B, ENABLE)

variable ABAR, BBAR: BIT;

begin

ABAR := not A;

BBAR := not B;

if (ENABLE = '1')

then

Z(3) <= not (A and B):

Page | 17

Z(0) <= not (ABAR and BBAR);

Z(2) <= not (A and BBAR);

Z(1) <= not (ABAR and B);

Else

Z<= "1111";

The variable declaration (starts with the keyword variable) declares two variables

called ABAR and BBAR. A variable is different from a signal in that it is always

assigned a value instantaneously and the assignment operator used is the: =

compound symbol; contrast this with a signal that is assigned a value always. [17]

Signal assignment statements appearing within a process are called sequential signal

assignment statements. Sequential signal assignment statements, including variable

assignment statements, are executed sequentially independent of whether an event

occurs on any signals in its right-hand-side expression or not; contrast this with the

execution of concurrent signal assignment statements in the dataflow modeling style.

[17]

3.11 Mixed Style of Modeling:

It is possible to mix the three modeling styles that we have seen so far in a single

architecture body. That is, within an architecture body, we could use component

instantiation statements (that represent structure), concurrent signal assignment

statements (that represent dataflow), and process statements (that represent

behavior). [17]

entity FULL_ADDER is

 port (A, B, CIN: in BIT; SUM, COUT: out BIT);

end FULL_ADDER;

architecture FA_MIXED of FULL_ADDER is

component XOR2

port (A, B: in BIT; Z: out BIT);

end component;

signal S1: BIT;

begin

X1: XOR2 port map (A, B, S1); - structure.

process (A, B, CIN) - behavior.

variable T1, T2, T3: BIT;

begin

T1 :=A and B;

Page | 18

T2 := B and CIN;

T3:=A and CIN;

COUT <= T1 or T2 or T3;

end process;

SUM <= S1 xor CIN; - dataflow.

end FA_M!XED

3.12 Process Statement:

A process statement contains sequential statements that describe the functionality of

a portion of an entity in sequential terms. The syntax of a process statement is [17]

[process-label:] process [(sensitivity-list)]
[process-item-declarations]

begin
sequential-statements; these are ->
variable-assignment-statement
signal-assignment-statement
wait-statement
loop-statement
null-statement

 exit-statement

Page | 19

CHAPTER 4

RANDOM NUMBER

GENERATION

Page | 20

4.1 Random Number Generation:

A random number generator (RNG) is a device designed to generate a sequence

of numbers or symbols that don‘t have any pattern. Hardware-based systems for

random number generation are widely used, but often fall short of this goal, albeit

they may meet some of the statistical tests for randomness for ensuring that they do

not have any ―de-cod able‖ patterns. Methods for generating random results have

existed since ancient times, including dice, coin flipping, the shuffling of playing

cards, the use of yarrow stalks and many other techniques. [1], [2]

The many applications of randomness have led to many different methods for

generating random data. These methods may vary as to how unpredictable or

random they are, and how quickly they can generate random numbers. [1], [2]

4.2 True Random Number Generators (TRNGs):

There are two principal methods used to generate random numbers. One measures

some physical phenomenon that is expected to be random and then compensates for

possible biases in the measurement process. The other uses mathematical

algorithms that produce long sequences of apparently random numbers, which are in

fact completely determined by an initial value, known as a seed. The former one is

known as True Random Number Generator (TRNG). [1]

In comparison with PRNGs, TRNGs extract randomness from physical phenomena

and introduce it into a computer. One can imagine this as a die connected to a

computer. The physical phenomenon can be very simple, like the little variations in

mouse movements or in the amount of time between keystrokes. In practice,

however, one has to be careful about which source one chooses. For example, it can

be tricky to use keystrokes in this fashion, because keystrokes are often buffered by

the computer's operating system, meaning that several keystrokes are collected

before they are sent to the program. To a program waiting for the keystrokes, it will

seem as though the keys were pressed almost simultaneously, and there may not be a

lot of randomness there after all. [3]

http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Dice
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Playing_card
http://en.wikipedia.org/wiki/Playing_card
http://en.wikipedia.org/wiki/Yarrow
http://en.wikipedia.org/wiki/Applications_of_randomness
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Statistical_randomness
http://en.wikipedia.org/wiki/Statistical_randomness
http://en.wikipedia.org/wiki/Algorithm

Page | 21

However, there are many other methods to get true randomness into your computer.

A really good physical phenomenon to use is a radioactive source. The points in time

at which a radioactive source decays are completely unpredictable, and they can

easily be detected and fed into a computer, avoiding any buffering mechanisms in

the operating system. The HotBits service at Fourmilab in Switzerland is an

excellent example of a random number generator that uses this technique. Another

suitable physical phenomenon is atmospheric noise, which is quite easy to pick up

with a normal radio. This is the approach used by RANDOM.ORG. You could also

use background noise from an office or disco, but you'll have to watch out for

patterns. The fan from the computer can contribute to the noise, and since the fan is a

rotating device, chances are the noise it produces won't be as random as atmospheric

noise. [3]

Undoubtedly one of the effective approaches was the lavarand generator, which was

built by Silicon Graphics and used snapshots of lava lamps to generate true random

numbers. [3]

4.3 Pseudo Random Number Generators (PRNGs):

A pseudorandom number generator (PRNG),is an algorithm for generating a

sequence of numbers that approximates the properties of random numbers. The

sequence is not truly random. Although sequences that are closer to truly random can

be generated using hardware random number generators, pseudorandom numbers are

important in practice for simulations (e.g., of physical systems with the Monte Carlo

method), and are important in the practice of cryptography . [4]

A PRNG can be started from an arbitrary starting state using a seed s. It will always

produce the same sequence thereafter when initialized with that state. The maximum

length of the sequence before it begins to repeat is determined by the size of the

state. However, since the length of the maximum period doubles with each bit of

'state' added, it is easy to build PRNGs with periods long enough for many practical

applications. [4]

http://www.fourmilab.ch/hotbits/
http://en.wikipedia.org/wiki/Lavarand
http://www.lavaworld.com/
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Hardware_random_number_generator
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Random_seed

Page | 22

Most pseudorandom generator algorithms produce sequences which are uniformly

distributed by any of several tests. The security of most cryptographic algorithms

and protocols using PRNGs is based on the assumption that it is infeasible to

demarcate use of a suitable PRNG from the usage of a truly random sequence. The

simplest examples of this dependency are stream ciphers, which work by exclusive

or-ing the plaintext of a message with the output of a PRNG, producing cipher text.

The design of cryptographically secure PRNGs is extremely difficult; because they

must meet additional criteria .The size of its period is an important factor in the

cryptographic suitability of a PRNG, but not the only one. [4]

The following algorithms are pseudorandom number generators: [5]

 Blum Blum Shub

 Inversive congruential generator

 ISAAC (cipher)

 Lagged Fibonacci generator

 Linear congruential generator

 Linear feedback shift register

 Mersenne twister

 Multiply-with-carry

 Well Equidistributed Long-period Linear

 Xorshift

Cipher algorithms and cryptographic hashes can also be used as pseudorandom

number generators. These include: [5]

 Block ciphers in counter mode

 Cryptographic hash function in counter mode

 Stream Ciphers

http://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
http://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
http://en.wikipedia.org/wiki/Stream_cipher
http://en.wikipedia.org/wiki/Exclusive_or
http://en.wikipedia.org/wiki/Exclusive_or
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Ciphertext
http://en.wikipedia.org/wiki/Blum_Blum_Shub
http://en.wikipedia.org/wiki/Inversive_congruential_generator
http://en.wikipedia.org/wiki/ISAAC_(cipher)
http://en.wikipedia.org/wiki/Lagged_Fibonacci_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Linear_feedback_shift_register
http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Multiply-with-carry
http://en.wikipedia.org/wiki/Well_Equidistributed_Long-period_Linear
http://en.wikipedia.org/wiki/Xorshift
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Cryptographic_hash
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Counter_.28CTR.29
http://en.wikipedia.org/wiki/Cryptographic_hash_function

Page | 23

4.4 Types of Pseudo Random Number Generators

Blum Blum Shub:

Blum Blum Shub (B.B.S.) is a pseudorandom number generator proposed in 1986

by Lenore Blum, Manuel Blum and Michael Shub (Blum et al., 1986).

Blum Blum Shub takes the form:

Xn+1 = Xn
2
 mod n

Where n=p x q is the product of two large primes p and q. At each step of the

algorithm, some output is derived from xn+1; the output is commonly the bit parity of

Xn+1 or one or more of the least significant bits of Xn+1.

The two primes, p and q, should both be congruent to 3 (mod 4) (this guarantees that

each quadratic residue has one square root which is also a quadratic residue)

and gcd(φ(p-1), φ(q-1)) should be small (this makes the cycle length large).[6]

Inversive Congruential Generator:

Inversive congruential generators are a type of nonlinear congruential pseudorandom

number generator, which use the modular multiplicative inverse (if it exists) to

generate the next number in a sequence. The standard formula for an inversive

congruential generator is

Xi+1 = (aXi
-1

 + c) (mod m)

Where 0 < xi < m. [7]

ISAAC (cipher):

ISAAC is a pseudorandom number generator and a stream cipher designed

by Robert Jenkins (1996) to be cryptographically secure. The name is

an acronym for Indirection, Shift, Accumulate, Add, and Count.

The ISAAC algorithm has similarities with RC4. It uses an array of 256 4-

byte integers (called mm) as the internal state, writing the results to another 256-

integer array, from which they are read one at a time until empty, at which point they

are recomputed. The computation consists of altering mm[i] with mm[i^128], two

elements of mm found by indirection, an accumulator, and a counter, for all values

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Lenore_Blum
http://en.wikipedia.org/wiki/Manuel_Blum
http://en.wikipedia.org/w/index.php?title=Michael_Shub&action=edit&redlink=1
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Parity_bit
http://en.wikipedia.org/wiki/Congruence_relation
http://en.wikipedia.org/wiki/Quadratic_residue
http://en.wikipedia.org/wiki/Square_root
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Stream_cipher
http://en.wikipedia.org/wiki/Robert_John_Jenkins_Junior
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudo-random_number_generator
http://en.wikipedia.org/wiki/Acronym
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/RC4
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Integer_(computer_science)

Page | 24

of i from 0 to 255. Since it only takes about 19 32-bit operations for each 32-bit

output word, it is extremely fast on 32-bit computers. [8]

Lagged Fibonacci Generator:

A Lagged Fibonacci generator (LFG) is an example of a pseudorandom number

generator. This class of random number generator is aimed at being an improvement

on the 'standard‘ linear. These are based on a generalization of the Fibonacci

sequence.

The Fibonacci sequence may be described by the recurrence relation:

Sn = Sn-1 + Sn-2

This can be generalized to the sequence:

Sn = Sn-j Sn-k (mod m)

In which case, the new term is some combination of any two previous terms. m is

usually a power of 2 (m = 2
M

), often 2
32

 or 2
64

. The operator denotes a

general binary operation. This may be either addition, subtraction, multiplication etc.

The theory of this type of generator is rather complex, and it may not be sufficient

simply to choose random values for j and k. These generators also tend to be very

sensitive to initialization.

Generators of this type employ k words of state (they 'remember' the last k values).

If the operation used is addition, then the generator is described as an Additive

Lagged Fibonacci Generator or ALFG, if multiplication is used, it is a Multiplicative

Lagged Fibonacci Generator or MLFG. [9]

Linear Congruential Generator:

A Linear Congruential Generator (LCG) represents one of the oldest and best-

known pseudorandom number generator algorithms. The theory behind them is easy

to understand, and they are easily implemented and fast. [10], [18]

The generator is defined by the recurrence relation:

Xn+1 = (aXn + c) mod m

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Random_number_generator
http://en.wikipedia.org/wiki/Fibonacci_sequence
http://en.wikipedia.org/wiki/Fibonacci_sequence
http://en.wikipedia.org/wiki/Recurrence_relation
http://en.wikipedia.org/wiki/Binary_operation
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Recurrence_relation

Page | 25

Linear Feedback Shift Register:

A linear feedback shift register (LFSR) is a shift register whose input bit is

a linear function of its previous state. The only linear function of single bits is xor,

thus it is a shift register whose input bit is driven by the exclusive-or (xor) of some

bits of the overall shift register value. The initial value of the LFSR is called the

seed, and because the operation of the register is deterministic, the stream of values

produced by the register is completely determined by its current (or previous) state.

Likewise, because the register has a finite number of possible states, it must

eventually enter a repeating cycle. However, an LFSR with a well-chosen feedback

function can produce a sequence of bits which appears random and which has a very

long cycle. [11]

Mersenne Twister:

The Mersenne twister is a pseudorandom number generator developed in 1997

by Makoto Matsumoto and Takuji Nishimura that is based on a matrix linear

recurrence over a finite binary field F2. It provides for fast generation of very high-

quality pseudorandom numbers, having been designed specifically to rectify many of

the flaws found in older algorithms.

Its name derives from the fact that period length is chosen to be a Mersenne prime.

There are at least two common variants of the algorithm, differing only in the size of

the Mersenne primes used. The newer and more commonly used one is the Mersenne

Twister MT19937, with 32-bit word length. There is also a variant with 64-bit word

length, MT19937-64, which generates a different sequence.

For a k-bit word length, the Mersenne Twister generates numbers with a uniform

distribution in the range [0,2
k
 − 1]. [12], [19]

Multiply-with-carry:

Multiply-with-carry (MWC) is a method invented by George Marsaglia for

generating sequences of random integers based on an initial set of from two to many

thousands of randomly chosen seed values. The main advantages of the MWC

method are that it invokes simple computer integer arithmetic and leads to very fast

generation of sequences of random numbers with immense periods, ranging from

around 2
60

 to 2
2000000

. [13]

http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Exclusive-or
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/w/index.php?title=Makoto_Matsumoto&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Takuji_Nishimura&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Matrix_linear_recurrence&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Matrix_linear_recurrence&action=edit&redlink=1
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Mersenne_prime
http://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
http://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
http://en.wikipedia.org/wiki/Multiply-with-carry
http://en.wikipedia.org/wiki/George_Marsaglia

Page | 26

Xorshift:

Xorshift is a category of pseudorandom number generators designed by George

Marsaglia. It repeatedly uses the transform of exclusive or on a number with a bit

shifted version of it. [14]

Well Equidistributed Long-period Linear:

The Well Equidistributed Long-period Linear (WELL) is a pseudorandom number

generator developed in 2006 by F. Panneton, P. L'Ecuyer, and M. Matsumoto that is

based on linear recurrences modulo 2 over a finite binary field F2. [15]

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/George_Marsaglia
http://en.wikipedia.org/wiki/George_Marsaglia
http://en.wikipedia.org/wiki/Bitwise_operation#XOR
http://en.wikipedia.org/wiki/Logical_shift
http://en.wikipedia.org/wiki/Logical_shift
http://en.wikipedia.org/wiki/Well_Equidistributed_Long-period_Linear
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Recurrence_relation
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Field_(mathematics)

Page | 27

CHAPTER 5

PROGRAMMING IN

VHDL FOR

RANDOM

GENERATORS

Page | 28

5.1 Implementation of PRNSG:

Pseudo random number sequence generator is generated in VHDL according to the

following circuit based on the concept of shift register.

The sequence of numbers generated by this method is random. Because the period of

the sequence is (2^n - 1).Where n is the number of shift registers used in the design.

For 32 bit design the period is 4294967295.This is large enough for most of the

practical applications.

5.2 Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity rng is

 generic (wd : integer := 32);

port (

 clk : in std_logic;

 random_num : out std_logic_vector (wd-1 downto 0) --output vector

);

end rng;

architecture Behavioral of rng is

begin

process(clk)

variable rand_temp : std_logic_vector(wd-1 downto 0):=(wd-

1 => '1',others => '0');

variable temp : std_logic := '0';

begin

if(rising_edge(clk)) then

temp := rand_temp(wd-1) xor rand_temp(wd-2);

rand_temp(wd-1 downto 1) := rand_temp(wd-2 downto 0);

rand_temp(0) := temp;

end if;

Page | 29

random_num <= rand_temp;

end process;

end rng;

5.3 Test bench:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY testb IS

END testb;

ARCHITECTURE behavior OF testb IS

 --Input and Output definitions.

 signal clk : std_logic := '0';

 signal random_num : std_logic_vector(3 downto 0);

 -- Clock period definitions

 constant clk_period : time := 1 ns;

BEGIN

 -- Instantiate the Unit Under Test (UUT)

 uut: entity work.random generic map (wd => 4) PORT MAP (

 clk => clk,

 random_num => random_num

);

 -- Clock process definitions

 clk_process :process

 begin

 clk <= '0';

 wait for clk_period/2;

 clk <= '1';

 wait for clk_period/2;

 end process;

Page | 30

5.4 Simulation Diagram:

The simulation diagram is the following

5.5 RTL Schematic:

Page | 31

5.6 Technology Schematic:

5.7 8-bit random generator using LFSR

5.7.1 Code:

library ieee;

 use ieee.std_logic_1164.all;

entity linear is

 port (c_out :out std_logic_vector (7 downto 0);--

 Eble :in std_logic; --

 clk :in std_logic; --

Rset:in std_logic);

end linear;

architecture behavioral of linear is

 signal count :std_logic_vector (7 downto 0);

 signal linear_feedback :std_logic;

Page | 30

begin

 linear_feedback <= not(count(7) xor count(3));

 process (clk, Rset) begin

 if (Rset = '1') then

 count <= (others=>'0');

 elsif (rising_edge(clk)) then

 if (Eble = '1') then

 count <= (count(6) & count(5) & count(4) & count(3)

 & count(2) & count(1) & count(0) &

 linear_feedback);

 end if;

 end if;

 end process;

 c_out <= count;

end behavioral;

5.8 RTL Schematic:

Page | 31

5.9 16 BIT RANDOM NUMBER GENERATION WITH THE HELP OF XOR:

Here 16 bit random number is being generated with the help of XOR gate. The most

significant digit and least significant digit both are passed through XOR gate and

give the 1
st
 bit of the random number and then this equation runs inside in the loop

of 16 times to give and 16 bit random number.

5.9.1 Code:

Library IEEE;

use IEEE.std_logic_1164.all;

Entity rng1 is

 port (clk : in std_logic;

 rset : in std_logic;

Page | 32

 q_out : out std_logic_vector(15 downto 0);

 w_data : out std_logic;

 w_data1 : out std_logic

);

end rng1;

Architecture behavioral of rng1 is

 signal qout_s : std_logic_vector(15 downto 0);

 signal tem_data : std_logic:='1';

begin

 q_out <= qout_s;

 random_gen : process(clk)

 variable temp : std_logic;

 begin

 if (rset = '1') then

 qout_s <= "1111111111111111";

 elsif (clk'event and clk = '1') then

 temp := tem_data;

 w_data <= temp;

 w_data1 <= tem_data;

 temp := tem_data;

 qout_s(0) <= qout_s(0) xor qout_s(15);

 for i in 15 downto 1 loop

 qout_s(i) <= qout_s(i - 1);

 end loop;

 end if;

 end process;

end behavioral;

Page | 33

5.10 RTL Schematic:

5.11 Technology Schematic:

Page | 34

5.12 Blum Blum Shub Generator:

The Blum Blum Shub Generator is known to be the cryptographically secure pseudo

random number generator (CSPRNG).

The algorithm for BBS generator is as follows:

 Select two big prime numbers p and q, such that both the numbers leave a

remainder of 3 when divided by 4.

 Choose n = p * q

 Choose seed s, such that s is relatively prime to n which means that neither p

nor q is a factor of s.

 Xo = s
2
 mod n

 The consequent values are generated according to the formula Xi = (Xi1)
2

mod n

 A sequence of binary digits is produced according to the formula Bi= Xi mod2

The output sequence is B1, B2, B3, B4………..

Now the BBS generator is first implemented in Turbo C++ as it is user friendly and

easy to comprehend. The code in C++ is as follows:

Page | 35

#include<iostream.h>

#include<conio.h>

#include<math.h>

void main()

{

 int B;

 long unsigned int X,p,q,s,n;

 cout<<endl<<"Enter the values of p and q: ";

 cin>>p>>q;

 n=p*q;

 cout<<endl<<n;

 cout<<endl<<"Enter the value of s: ";

 cin>>s;

 X=(s*s);

 cout<<X;

 X=X%n;

 for(int i=1;i<=50;i++)

 {

 X=(X*X)%n;

 cout<<endl<<"Value of X: "<<X;

 B=X%2;

 cout<<endl<<"Value of B: "<<B;

 }

 getch();

}

Page | 36

The output generated is as follows:

2895

1

7037

1

8929

1

6064

0

6010

0

11097

1

9111

1

3929

1

The first column refers to the values of X generated and second column refers to Bi.

The VHDL code for the same is as follows:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity bbs is

Port (p : in integer;

 q : in integer;

 s : in integer;

 b : out STD_LOGIC_VECTOR(7 downto 0));

end bbs;

architecture Behavioral of bbs is

Page | 37

begin

process(p,q,s)

variable x0,x1,s1,x_0:integer;

constant p:integer:=11;

constant q:integer:=19;

constant n:integer:=551;

variable b1:integer ;

variable b2:std_logic;

variable r:std_logic_vector(7 downto 0);

 begin

 s1:=s*s;

 x0:=s1 mod 1024;

 for i in 0 to 7 loop

 x_0:=x0*x0;

 x1:=x_0 mod 1024;

 b1:=x1 mod 2;

 if b1=1 then

 b2:='1';

 else b2:='0';

 end if;

 r(6):=r(7);

 r(5):=r(6);

 r(4):=r(5);

 r(3):=r(4);

 r(2):=r(3);

 r(1):=r(2);

 r(0):=r(1);

 r(7):=b2;--so it will be serially transmitted but parallelly observed

 x0:=x1;

 b<=r;

 end loop;

 end process;

end Behavioral;

5.13 RTL Schematic:

Page | 38

5.14 Technology Schematic:

Page | 39

CONCLUSION

Various codes were written for generators like Pseudo Random Number Sequence

Generator, 8 bit random generator using LFSR, 16 bit random generator and Blum

Blum Shub generator. But Blum Blum Shub generator was found to be the most

cryptographically secure generator. BBS generator was implemented in Turbo C++

and VHDL. Initially seed‗s‘ and inputs p, q were taken. The inputs had to be two

large prime numbers and relatively prime to s. Then mod function was used to

calculate the remainder and the square of the same was used as the dividend in the

next recursion. The syntax was found to be correct in case of VHDL but due to some

hardware constraints it could not be implemented in FPGA.

Page | 40

REFERENCES

[1] http://en.wikipedia.org/wiki/Random_number_generation#cite_ref-0

[2] http://en.wikipedia.org/wiki/Hardware_random_number_generator

[3] http://www.random.org/randomness/

[4] http://en.wikipedia.org/wiki/Pseudorandom_number_generator#cite_note-0

[5] http://en.wikipedia.org/wiki/List_of_random_number_generators

[6] http://en.wikipedia.org/wiki/Blum_Blum_Shub

[7] http://en.wikipedia.org/wiki/Inversive_congruential_generator

[8] http://en.wikipedia.org/wiki/ISAAC_(cipher)

[9] http://en.wikipedia.org/wiki/Lagged_Fibonacci_generator

[10] http://en.wikipedia.org/wiki/Linear_congruential_generator

[11] http://en.wikipedia.org/wiki/Linear_feedback_shift_register

[12] http://en.wikipedia.org/wiki/Mersenne_twister

[13] http://en.wikipedia.org/wiki/Multiply-with-carry

[14] http://en.wikipedia.org/wiki/Xorshift

[15] http://en.wikipedia.org/wiki/Well_Equidistributed_Long-period_Linear

[16] http://en.wikipedia.org/wiki/Field-programmable_gate_array

[17] Bhasker J, A VHDL Primer, P T R Prentice Hall, Pages 1-2, 4-13, 28-30

 [18] L'ECUYER PIERRE, TABLES OF LINEAR CONGRUENTIAL GENERATORS
 OF DIFFERENT SIZES AND GOOD LATTICE STRUCTURE, MATHEMATICS OF COMPUTATION
 Volume 68, Number 225, 1999, Pages 249-260

[19] Matsumoto, Makoto; Nishimura, Takuji; Hagita, Mariko; Saito, Mutsuo (2005), Cryptographic
Mersenne Twister and Fubuki Stream/Block Cipher

http://en.wikipedia.org/wiki/Random_number_generation#cite_ref-0
http://en.wikipedia.org/wiki/Hardware_random_number_generator
http://www.random.org/randomness/
http://en.wikipedia.org/wiki/Pseudorandom_number_generator#cite_note-0
http://en.wikipedia.org/wiki/List_of_random_number_generators
http://en.wikipedia.org/wiki/Blum_Blum_Shub
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://eprint.iacr.org/2005/165.pdf
http://eprint.iacr.org/2005/165.pdf

Page | 41

