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ABSTRACT 

 

             Early detection of damage is of special concern for engineering structures. The 

traditional methods of damage detection include visual inspection or instrumental evaluation. A 

comparatively recent development for the diagnosis of structural crack location and size by using 

the finite element method and Fuzzy logics techniques. A method based on measurement of 

natural frequencies is presented for detection of the location and size of a crack in a cantilever 

beam. Numerical and programming in MATLAB is done for solving the eular equation for un-

crack beam to obtain first three natural frequencies of different modes of vibration considering 

various boundary conditions for the beam. Here ALGOR software package is used for finite 

element analysis of both crack and un-crack cantilever beam taking input file as a CAD design 

developed in AUTOCAD 2006. Experiments is done for total 21 models of crack beam having 

different crack location and crack depth and it generates natural frequency for 5 modes of 

vibration. Fuzzy controller here used comprises of three input variables (fnf, snf, tnf) with 

Gaussian MF and two output variables (rcl, rcd) are generated with Triangular MF. Fuzzy 

analysis is done based on some set of fuzzy rules obtained from the information supplemented by 

finite element analysis and numerical analysis. The proposed approach has been verified by 

comparing results obtained from fuzzy logic technique and finite element analysis. 

           The results show the successful detection of the undamaged and damaged states of 

structural part with very good accuracy and repeatability.   
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                                                                                                           CHAPTER 1 

 GENERAL INTRODUCTION 

1.1   Introduction: 

           All things vibrate. Think of musical instruments, think of riding in a car, think of the 

tires being out of balance, think of the rattles in an airplane when the pilot is revving up the 

engines or the vibration under your feet when a train goes by. Usually, however, vibration is bad 

and frequently unavoidable. It may cause gradual weakening of structures and the deterioration 

of metals (fatigue) in cars and airplanes.  

            Vibration is about frequencies. By its very nature, vibration involves repetitive motion. 

Each occurrence of a complete motion sequence is called a cycle.  Frequency is defined as so 

many cycles in a given time period. One cycle per second is equivalent to one Hertz.  

             Cracks present in machine parts affect their vibrational behaviour like the fundamental 

frequency and resonance. The amplitude of vibration increases and the occurrence of resonance 

shifted as crack length increases. Structural failure refers to loss of the load carrying capacity of 

a component or member within a structure or of the structure itself. Structural failure is initiated 

when the material is stressed to its strength limit, thus causing fracture or excessive 

deformations. When this limit is reached, damage to the material has been done, and its load-

bearing capacity is reduced permanently, significantly and quickly. In a well-designed system, a 

localized failure should not cause immediate or even progressive collapse of the entire structure. 

Ultimate failure strength is one of the limit states that must be accounted for in structural 

engineering and structural design. Therefore intensive research has been going on amongst the 

scientists and engineers to find an effective methodology to predict the location and intensity of 

damage beforehand. 

               So in this report I am presenting two different approaches. First approach refers to:   

                                  1) Fuzzy Logic 

                                  2) FEA 
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1.2   Fuzzy Logic: 

 
             Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical 

system, which is an extension of multi-valued logic . But in a wider sense, which is in 

predominant use today, fuzzy logic (FL) is almost synonymous with the theory of fuzzy sets, a 

theory which relates to classes of objects with unsharp boundaries in which membership is a 

matter of degree. Fuzzy logic is a convenient way to map an input space to an output space. 

Fuzzy logic is all about the relative importance of precision: How important is it to be exactly 

right when a rough answer will do? In contrast with binary sets having binary logic, also known 

as crisp logic, the fuzzy logic variables may have a membership value of only 0 or 1. Just as in 

fuzzy set theory with fuzzy logic the set membership values can range (inclusively) between 0 

and 1, in fuzzy logic the degree of truth of a statement can range between 0 and 1 and is not 

constrained to the two truth values {true (1), false (0)} as in classic predicate logic. And when 

linguistic variables are used, these degrees may be managed by specific functions, as discussed 

below. Fuzzy logic has been applied to diverse fields, from control theory to artificial 

intelligence, yet still remains controversial among most statisticians, who prefer Bayesian logic, 

and some control engineers, who prefer traditional two-valued logic. 

  
1.3   Importance of Fuzzy Logic: 
 
Here is a list of general observations about fuzzy logic: 

 Fuzzy logic is conceptually easy to understand: The mathematical concepts behind 

fuzzy reasoning are very simple. What makes fuzzy nice is the "naturalness" of its 

approach and not its far-reaching complexity. 

 Fuzzy logic is flexible: With any given system, it's easy to massage it or layer more 

functionality on top of it without starting again from scratch. 

 Fuzzy logic is tolerant of imprecise data:.Everything is imprecise if you look closely 

enough, but more than that, most things are imprecise even on careful inspection. Fuzzy 

reasoning builds this understanding into the process rather than tacking it onto the end. 
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 Fuzzy logic can model nonlinear functions of arbitrary complexity: You can create a 

fuzzy system to match any set of input-output data. This process is made particularly easy 

by adaptive techniques like Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which 

are available in the Fuzzy Logic Toolbox. 

 Fuzzy logic can be built on top of the experience of experts: In direct contrast to 

neural networks, which take training data and generate opaque, impenetrable models, 

fuzzy logic lets you rely on the experience of people who already understand your 

system. 

 Fuzzy logic can be blended with conventional control techniques: Fuzzy systems 

don't necessarily replace conventional control methods. In many cases fuzzy systems 

augment them and simplify their implementation. 

 Fuzzy logic is based on natural language: The basis for fuzzy logic is the basis for 

human communication. This observation underpins many of the other statements about 

fuzzy logic. 

 

1.4   Foundation Of Fuzzy Logic: 

1) Fuzzy Set 
2) Membership Function 
3) Logical Operations 
4) If-Then Rules 

 
Fuzzy Set: 
             Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a crisp, 

clearly defined boundary. It can contain elements with only a partial degree of membership. 

             To understand what a fuzzy set is, first consider what is meant by what we might call a 

classical set. A classical set is a container that wholly includes or wholly excludes any given 

element. For example, consider the set of days comprising a weekend. The diagram below is one 

attempt at classifying the weekend days. 
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               Most would agree that Saturday and Sunday belong, but what about Friday? It feels like 

a part of the weekend, but somehow it seems like it should be technically excluded. So in the 

diagram above Friday tries its best to sit on the fence. Classical or normal sets wouldn't tolerate 

this kind of thing. Either you're in or you're out. Human experience suggests something different, 

though: fence sitting is a part of life. 

“In fuzzy logic, the truth of any statement becomes a matter of degree.” 

             Below on the left is a plot that shows the truth values for weekend-ness if we are forced 

to respond with an absolute yes or no response. On the right is a plot that shows the truth value 

for weekend-ness if we are allowed to respond with fuzzy in-between values. 

 
 

now consider a continuous scale time plot of weekend-ness shown below. 

 
 

Membership Function: 
 
                A membership function (MF) is a curve that defines how each point in the input space 

is mapped to a membership value (or degree of membership) between 0 and 1. The input space is 

sometimes referred to as the universe of discourse, a fancy name for a simple concept. 

                A classical set might be expressed as 

A = {x | x > 6} 
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               A fuzzy set is an extension of a classical set. If X is the universe of discourse and its 

elements are denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs. 

A = {x, µA(x) | x ∈ X} 

µA(x) is called the membership function (or MF) of x in A. The membership function maps each 

element of X to a membership value between 0 and 1. 

              The Fuzzy Logic Toolbox includes 11 built-in membership function types. These 11 

functions are, in turn, built from several basic functions: piecewise linear functions, the Gaussian 

distribution function, the sigmoid curve, and quadratic and cubic polynomial curves. For detailed 

information on any of the membership functions mentioned below, turn to Functions — 

Alphabetical List. By convention, all membership functions have the letters mf at the end of their 

names. 
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Logical Operations: 
           The most important thing to realize about fuzzy logical reasoning is the fact that it is a 

superset of standard Boolean logic. In other words, if we keep the fuzzy values at their extremes 

of 1 (completely true), and 0 (completely false), standard logical operations will hold. As an 

example, consider the standard truth tables below: 

 

 
      Fuzzy Intersection                Fuzzy Union                  Fuzzy Complement 

              (AND)                                  (OR)                                (NOT) 

 
 

 

 

 



                                                                                                                             

12 
 

If-Then Rules: 
             Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These if-then 

rule statements are used to formulate the conditional statements that comprise fuzzy logic. A 

single fuzzy if-then rule assumes the form if x is A then y is B where A and B are linguistic 

values defined by fuzzy sets on the ranges (universes of discourse) X and Y, respectively. The if-

part of the rule "x is A" is called the antecedent or premise, while the then-part of the rule "y is 

B" is called the consequent or conclusion. 

      Interpreting if-then rules is a three-part process. This process is explained in detail in the next 

section: 

 

1) Fuzzy inputs: Resolve all fuzzy statements in the antecedent to a degree of membership 

between 0 and 1. If there is only one part to the antecedent, this is the degree of support 

for the rule. 

 

2) Apply fuzzy operator to multiple part antecedents: If there are multiple parts to the 

antecedent, apply fuzzy logic operators and resolve the antecedent to a single number 

between 0 and 1. This is the degree of support for the rule. 

 

3) Apply implication method: Use the degree of support for the entire rule to shape the 

output fuzzy set. The consequent of a fuzzy rule assigns an entire fuzzy set to the output. 

This fuzzy set is represented by a membership function that is chosen to indicate the 

qualities of the consequent.  

 

1.5 Fuzzy Inference System: 
             Fuzzy inference is the process of formulating the mapping from a given input to an 

output using fuzzy logic. The mapping then provides a basis from which decisions can be made, 

or patterns discerned. The process of fuzzy inference involves all of the pieces that are described 

in the previous sections: membership functions, fuzzy logic operators, and if-then rules. There 

are two types of fuzzy inference systems that can be implemented in the Fuzzy Logic Toolbox: 

Mamdani-type and Sugeno-type. 
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                  Fuzzy inference systems have been successfully applied in fields such as automatic 

control, data classification, decision analysis, expert systems, and computer vision. Because of 

its multidisciplinary nature, fuzzy inference systems are associated with a number of names, such 

as fuzzy-rule-based systems, fuzzy expert systems, fuzzy modeling, fuzzy associative memory, 

fuzzy logic controllers, and simply (and ambiguously) fuzzy systems. 

                   In the Fuzzy Logic Toolbox, there are five parts of the fuzzy inference process: 

fuzzification of the input variables, application of the fuzzy operator (AND or OR) in the 

antecedent, implication from the antecedent to the consequent, aggregation of the consequents 

across the rules, and defuzzification. 

 

Step 1. Fuzzify Inputs: The first step is to take the inputs and determine the degree to which 

they belong to each of the appropriate fuzzy sets via membership functions. In the Fuzzy Logic 

Toolbox, the input is always a crisp numerical value limited to the universe of discourse of the 

input variable (in this case the interval between 0 and 10) and the output is a fuzzy degree of 

membership in the qualifying linguistic set (always the interval between 0 and 1). Fuzzification 

of the input amounts to either a table lookup or a function evaluation. 

Step 2. Apply Fuzzy Operator: Once the inputs have been fuzzified, we know the degree to 

which each part of the antecedent has been satisfied for each rule. If the antecedent of a given 

rule has more than one part, the fuzzy operator is applied to obtain one number that represents 

the result of the antecedent for that rule. This number will then be applied to the output function. 

         n the Fuzzy Logic Toolbox, two built-in AND methods are supported: min (minimum) and 

prod (product). Two built-in OR methods are also supported: max (maximum), and the 

probabilistic OR method probor. 

Step 3. Apply Implication Method: Before applying the implication method, we must take care 

of the rule's weight. Every rule has a weight (a number between 0 and 1), Once proper weighting 

has been assigned to each rule, the implication method is implemented. The input for the 

implication process is a single number given by the antecedent, and the output is a fuzzy set. 

Implication is implemented for each rule. 

Step 4. Aggregate All Outputs: Since decisions are based on the testing of all of the rules in an 

FIS, the rules must be combined in some manner in order to make a decision. Aggregation is the 
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process by which the fuzzy sets that represent the outputs of each rule are combined into a single 

fuzzy set. The output of the aggregation process is one fuzzy set for each output variable. 

Step 5. Defuzzify: The input for the defuzzification process is a fuzzy set (the aggregate output 

fuzzy set) and the output is a single number. As much as fuzziness helps the rule evaluation 

during the intermediate steps, the final desired output for each variable is generally a single 

number. Perhaps the most popular defuzzification method is the centroid calculation, which 

returns the center of area under the curve. 

 

1.6 Building System with the Fuzzy Logic Toolbox: 
               For building a system we will use the graphical user interface (GUI) tools provided by 

the Fuzzy Logic Toolbox. Although it is possible to use the Fuzzy Logic Toolbox by working 

strictly from the command line, in general it is much easier to build a system graphically. There 

are five primary GUI tools for building, editing, and observing fuzzy inference systems in the 

Fuzzy Logic Toolbox:  

 
1) The Fuzzy Inference System or FIS Editor: The FIS Editor handles the high-level 

issues for the system: How many input and output variables? What are their names? The 

Fuzzy Logic Toolbox doesn't limit the number of inputs. 

2) The Membership Function Editor: The Membership Function Editor is used to define 

the shapes of all the membership functions associated with each variable. 

3) The Rule Editor: The Rule Editor is for editing the list of rules that defines the behavior 

of the system.  
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4) The Rule Viewer: They are strictly read-only tools. The Rule Viewer is a MATLAB 

based display of the fuzzy inference diagram shown at the end of the last section. Used as 

a diagnostic, it can show (for example) which rules are active, or how individual 

membership function shapes are influencing the results. 

5) The Surface Viewer: The Surface Viewer is used to display the dependency of one of 

the outputs on any one or two of the inputs — that is, it generates and plots an output 

surface map for the system. 

 

 
1.7 What Is Finite Element Analysis? 

         The finite element method works by breaking a real object down into a large number 

(1,000s to 100,000s) of elements, such as little cubes. The behavior of each little element, which 

is regular in shape, is readily predicted by set mathematical equations. The computer then adds 

up all of the individual behaviors to predict the behavior of the actual object. 

          The finite in finite element analysis comes from the idea that there are a finite number of 

elements in a finite element model. Previously, engineers employed integral and differential 

calculus, which breaks objects down into an infinite number of elements. 

The finite element method is employed to predict the behavior of things with respect to virtually 

all physical phenomena: 

 Mechanical stress (stress analysis) 

 Mechanical vibration 

 Heat transfer (conduction, convection and radiation) 

 Fluid flow (Both liquids and gaseous fluids) 

 Various electrical and magnetic phenomena 

 Acoustics 

 What Is Node? 

      A node is a coordinate location in space where the degrees of freedom (DOFs) are defined. 

The DOFs for this point represent the possible movement of this point due to the loading of the 
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structure. The DOFs also represent which forces and moments are transferred from one element 

to the next. The results of a finite element analysis, (deflections and stresses), are usually given 

at the nodes. 

 What Is An Element? 

              An element is the basic building block of finite element analysis. An element is a 

mathematical relation that defines how the degrees of freedom of a node relate to the next. These 

elements can be lines (trusses or beams), areas (2-D or 3-D plates and membranes) or solids 

(bricks or tetrahedrals). 

1.8 Applications OF FEA: 

                FEA has become a solution to the task of predicting failure due to unknown stresses by 

showing problem areas in a material and allowing designers to see all of the theoretical stresses 

within. This method of product design and testing is far superior to the manufacturing costs 

which would accrue if each sample was actually built and tested. Here cracked beam has been 

analyzed through finite element method using software known as ALGOR. This software 

package has several applications in mechanical event simulation and computational fluid 

dynamics. Here it is used for finite element analysis of natural frequency modal of cracked beam 

where the input is been given from CATIA designing software. The mesh is generated in the 

input modal and then after specifying boundary conditions it is analyzed in FEA editor which 

finally gives output in three modes natural frequencies. 
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1.9 Typical Steps in FEA Using ALGOR: 

         In a typical stress analysis, there is a basic set of steps that the analysis usually follows: 

1. Create a mesh (a grid of nodes and elements) that represents the model 

2. Define a unit system 

3. Define the model's analysis parameters 

4. Define the element type and parameters 

5. Apply the loads and the constraints 

6. Assemble the element stiffness matrices 

7. Solve the system of linear algebraic equations 

8. Calculate the results 

9. Review the results 

10. Generate a report of the analysis results 

These steps are usually broken up into three stages: 

 Setting up the model: Steps 1-5 

 Analyzing the model: Steps 6-8 (These steps are automatically performed by ALGOR) 

 Results evaluation: Steps 9 and 10 
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                                                                                              CHAPTER 2 

LITERATURE SURVEY 

          Different researchers have discussed damage detection of vibrating structures in various 

ways. They are summarized below. 

 

           Free and forced vibration analysis of a cracked beam were performed by S Orhan et al. [1] 

in order to identify the crack in a cantilever beam. Single- and two-edge cracks were evaluated. 

The study results suggest that free vibration analysis provides suitable information for the 

detection of single and two cracks, whereas forced vibration can detect only the single crack 

condition. However, dynamic response of the forced vibration better describes changes in crack 

depth and location than the free vibration in which the difference between natural frequencies 

corresponding to a change in crack depth and location only is a minor effect. The Euler–

Bernoulli beam model was assumed. The crack is assumed to be an open crack and the damping 

has not been considered in this study. A fault diagnosis method based on genetic algorithms 

(GAs) and a model of damaged (cracked) structure is proposed by M Taghi V Baghmisheh, M 

Peimani, M. H. Sadeghi and M M Ettefagh et al. [2]. For modeling the cracked-beam structure an 

analytical model of a cracked cantilever beam is utilized and natural frequencies are obtained 

through numerical methods,. The identification of the crack location and depth in the cantilever 

beam is formulated as an optimization problem, and binary and continuous genetic algorithms 

(BGA, CGA) are used to find the optimal location and depth by minimizing the cost function. 

             F  Léonard, J Lanteigne, S Lalonde and Y Turcotte et al. [3] proposed a study based on 

cracks that occurred in metal beams obtained under controlled fatigue-crack propagation. 

Spectrograms of the free-decay responses showed a time drift of the frequency and damping: the 

usual hypothesis of constant modal parameters is no longer appropriate, since the latter are 

revealed to be a function of the amplitude. An experimental investigation has been carried out by 

M. Karthikeyan and R. Tiwari et al. [4] to establish an identification procedure for the detection, 

localization, and sizing of a flaw in a beam based on forced response measurements. The 

experimental setup consisted of a circular beam, which was supported by rolling bearings at both 

ends. The actual force applied to the beam was measured by a piezoelectric force transducer 

Resonant frequencies, amplitude, and phase information of responses were utilized in the 
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identification algorithm for subsequent estimation of flaw parameters. The method of detection 

of location of crack in beams based on frequency measurements is proposed by S. P. Lele and S. 

K. Maiti et al. [5] is extended here to short beams, taking into account the effects of shear 

deformation and rotational inertia through the Timoshenko beam theory and representing the 

crack by a rotational spring. Methods for solving both forward (determination of frequencies of 

beams knowing the crack parameters) and inverse (determination of crack location knowing the 

natural frequencies) problems are included. 

           Sensibility analysis of the inverse problem of the crack parameters (location and depth) 

determined by M B Rosales, C P Filipich and F S Buezas et al. [6]. An efficient numerical 

technique is necessary to obtain significant results. Two approaches are herein presented: The 

solution of the inverse problem with a power series technique (PST) and the use of artificial 

neural networks (ANNs). An alternative technique for crack detection in a Timoshenko beam is 

proposed by W Dansheng, Z Hongping, C Chuanyao and X Yong et al. [7] based on the first 

anti-resonant frequency. Unlike the natural frequency, the anti-resonant frequency is a local 

parameter rather than a global parameter of structures. An impedance analysis of a cracked beam 

stimulated by a harmonic force based on the Timoshenko beam formulation is investigated the 

proposed method is verified by a numerical example of a simply-supported beam with a crack. 

Identification of crack location and depth in a cantilever beam using a modular neural network 

approach is proposed by S Suresh, S N Omkar, R Ganguli and V Mani et al. [8]. The flexural 

vibration in a cantilever beam having a transverse surface crack is considered and the modal 

frequency parameters are analytically computed for various crack locations and depths using a 

fracture mechanics based crack model. These computed modal frequencies are used to train a 

neural network to identify both the crack location and depth. 

            A model-based approach is developed by Zhigang Yu  and  Fulei Chu et al. [9] to 

determine the location and size of an open edge crack in an FGM beam. The p-version of finite 

element method is employed to estimate the transverse vibration characteristics of a cracked 

FGM beam. A rational approximation function of the stress intensity factor (SIF) with crack 

depth and material gradient as independent variables is presented in order to overcome the 

cumbersomeness and inaccurateness caused by the complicated expression of the analytical SIF 

solution in crack modeling. An analytical, as well as experimental approach  by H. Nahvi and M. 
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Jabbari et al. [10] to the crack detection in cantilever beams by vibration analysis is established. 

An experimental setup is designed in which a cracked cantilever beam is excited by a hammer 

and the response is obtained using an accelerometer attached to the beam. The proposed method 

is based on measured frequencies and mode shapes of the beam. An analytical approach for 

crack identification procedure in uniform beams with an open edge crack, based on bending 

vibration measurements, is developed by N. Khaji, M. Shafiei and M. Jalalpour et al. [11]. The 

method is based on the assumption that the equivalent spring stiffness does not depend on the 

frequency of vibration, and may be obtained from fracture mechanics. The results provide simple 

expressions for the characteristic equations, which are functions of circular natural frequencies, 

crack location, and crack depth. a new method for crack detection in beams based on 

instantaneous frequency and empirical mode decomposition is proposed by S. Loutridis, E. 

Douka and L.J. Hadjileontiadis et al.[12]. The dynamic behaviour of a cantilever beam with a 

breathing crack under harmonic excitation is investigated both theoretically and experimentally 

The time-varying stiffness is modelled using a simple periodic functionIt follows that the 

harmonic distortion increases with crack depth following definite trends and can be also used as 

an effective indicator for crack size. 

             The research work  by W Zhang, Z Wang and H  Ma et al. [13] illustrates the crack 

identification method combining wavelet analysis with transform matrix. Firstly, the 

fundamental vibration mode was applied to wavelet analysis. Secondly, based on the identified 

crack locations, a simple transform matrix method requiring only the first two tested natural 

frequencies was used to further identify the crack depth. Nonlinear vibration of beams made of 

functionally graded materials (FGMs) containing an open edge crack is studied by S. 

Kitipornchai, L.L. Ke, J. Yang and Y. Xiang et al. [14] based on Timoshenko beam theory and 

von Kármán geometric nonlinearity. The Ritz method is employed to derive the governing 

eigenvalue equation which is then solved by a direct iterative method to obtain the nonlinear 

vibration frequencies of cracked FGM beams with different end supports. An analysis of cracked 

beam structure using impact echo method proposed by E Çam, S Orhan and M Lüy et al. [15]. 

Here the vibrations as a result of impact shocks were analyzed. The signals obtained in defect-

free and cracked beams were compared in the frequency domain Experimental results and 

simulations obtained by the software ANSYS. 
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             A theoretical and experimental dynamic behavior of different multi-beams systems 

containing a transverse crack is presented by P. N. Saavedra and L. A. Cuitiño et al. [16]. The 

additional flexibility that the crack generates in its vicinity is evaluated using the strain energy 

density function given by the linear fracture mechanic theory. Based on this flexibility, a new 

cracked finite element stiffness matrix is deduced, which can be used subsequently in the FEM 

analysis of crack systems. Experimental characterization of multiple cracks in a cantilever beam 

utilizing transient vibration data following a probabilistic approach by H.F. Lam, C.T. Ng and M. 

Veidt at al. [17]  puts forward a practical method for detecting multiple cracks on beams by 

utilizing transient vibration data. the Bayesian statistical framework is followed in the proposed 

crack detection method, which consists of two stages. In the first stage the number of cracks is 

identified by a computationally efficient algorithm that utilizes the Bayesian model class 

selection method. In the second stage, the posterior probability density function (PDF) of crack 

characteristics (i.e., the crack locations and crack depths) are determined by the Bayesian model 

updating method. 

            Y M Kim, C K Kim and G H Hong et al. [18] presents Fuzzy set based crack diagnosis 

system in which the system adapts fuzzy set theory to reflect fuzzy conditions, both for crack 

symptoms and characteristics which are difficult to treat using crisp sets. The inputs to the 

system are mostly linguistic variables concerning the crack symptoms and some numeric data 

about concrete and environmental conditions Using these input data and based on built-in rules, 

the proposed system executes fuzzy inference to evaluate the crack causes under consideration. 

The built-in rules were constructed by extracting expert knowledge, primarily from technical 

books about concrete and concrete cracks. A practical approach for analyzing the response of 

structures with fuzzy parameters is developed by U. O. Akpan, T S Koko, I R Orisamolu and B 

K Gallant et al. [19]. The methodology involves integrated finite element modelling, response 

surface analysis and fuzzy analysis.The merit of the proposed methodology is computational 

efficiency without compromise on accuracy and this is demonstrated through some example 

problems. The mobile robot navigation control system has been designed by S K Pradhan, D R 

Parhi and A K Panda et al. [20] using fuzzy logic. Fuzzy rules embedded in the controller of a 

mobile robot enable it to avoid obstacles in a cluttered environment that includes other mobile 

robots. 
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                                                                                                                       CHAPTER 3 

 THEORITICAL ANALYSIS 

3.1   Vibrational Analysis of Eular Equation For Beam 

            To determine the differential equation for the lateral vibration of beams, consider the 

forces and moments acting an element of the beam showing in fig. 

 

 

 

 

  

 
 
 
V and M are shear and bending moments, respectively and p(x) represents the loading per unit 

length of the beam. 

By summing forces in the Y-direction – 

             dV – p(x)dx = 0    …………..(i) 

By summing moments about any points on the right face of the element, 

             dM – Vdx -  ଵ
ଶ
 p(x) (݀ݔ)ଶ  = 0  ………………(ii) 

In the limiting process these equations results in the following important relationship – 

      ௗ௏
ௗ௫

  =  p(x) ………(iii)a     and          ௗெ
ௗ௫

= ܸ   …………(iii)b 

 

The first part of eqn(iii) states that the rate of change of shear along the length of the beam is 

equal to the loading per unit length and the second states that the change of the moment along the 

beam is equal to the shear. 

From eqn(iii) we obtain the following – 

( V+dV ) V 

dx 

Y 

X 

P(x)dx 

M ( M+dM ) 



                                                                                                                             

23 
 

      ௗଶಾ
ௗ௫మ

=  ௗ௏
ௗ௫

=  (iv).……………   (ݔ)݌

 

The bending moment is related with the curvature by the flexure equation which for the 

coordinates indicates in fig is, 

ܯ        = ܫܧ ௗଶ೤
ௗ௫మ

   ………………(v) 

 

Substituting this relation into Eqn (iv), we obtain – 

     ௗଶ
ௗ௫మ

ቀ ܫܧ ௗଶ೤
ௗ௫మ  ቁ =  (vi).……………  (ݔ)݌ 

 

For a beam vibrating about its static equilibrium position under its own weight the load per unit 

length is equal to the inertia load due to its mass and acceleration. Since the inertia force in the 

same direction as p(x) as shown in fig. we have by assuming harmonic motion. 

(ݔ)݌       =  ρw ଶݕ   ………….(vii) 

 

Where ρ is the mass per unit length of the beam. Using this relation the equation for the lateral 

vibration of the beam reduced to – 

      ௗଶ
ௗ௫మ

ቀ ܫܧ ௗଶ೤
ௗ௫మ  ቁ −  ρwଶy = 0  ……………(viii) 

 

In the special case where tha flexure rigidity EI is a constant, the above equation may be written 

as – 

ܫܧ        ௗସ೤
ௗ௫ర

 −  ρwଶy =  0  ………………(ix) 

 

On substituting,  

       βସ =  ρ୵మ

ாூ
    …………….(x) 

 

We obtain the fourth-order differential equation – 

 

       ௗସ೤
ௗ௫ర

 −   βସݕ = 0  ………….(xi) 
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For the vibration of a uniform beam,  the general solution of eqn (xi) can be shown to be: 
 
ݕ        = ܣ cosh βx  + ܤ   sinh βx  + ܥ   cos βx  + ܦ   sin βx    …………..(xii) 
 
To arrive at this result we assume a solution of the form – 
 
ݕ       =  ݁௔௫  …………….(xiii) 
 
Which will satisfy the differential eqn when – 
  
    a = ± β      and      a = ± i β 
 
Since,             ݁±  β =   cosh βx  ±   sinh βx           
                       
                      ݁± ୧ β =   cos βx   ±    i sin βx 
 
Hence solution will be in the form of eqn (xii) is readily established. 
 
The Natural Frequency of vibration are found from eqn (x) to be – 
 

௡ݓ           =   β௡
ଶ  ටாூ

ρ
 =   (β௡݈)

ଶ ටாூ
ρ୪ర

  

 
Where the no. β௡ depends on the boundary conditions of all problem. The following table lists 

numerical values of  (β௡݈)
ଶ for typical end conditions. 

 

Beam 

Configuration 

(઺૚࢒)૛ 

Fundamental 

(઺૛࢒)૛ 

Second Mode 

(઺૜࢒)૛ 

Third Mode 

Simply supported 9.87 39.5 88.9 

Cantilever 3.52 22.0 61.7 

Free-Free 22.4 61.7 121.0 

Clamped-Clamped 22.4 61.7 121.0 

Clamped-Hinged 15.4 50.0 104.0 

Hinged-Free 0 15.4 50.0 
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3.2    Local Flexibility Of a Cracked Beam Under Bending And Axial Loading 
(Parhi et al. [21]) 
                
              The presence of a transverse surface crack of depth ‘a1’ on beam of width ‘B’ and 

height ‘W’ introduces a local flexibility, which can be defined in matrix form, the dimension of 

which depends on the degrees of freedom. Here a 2x2 matrix is considered. A cantilever beam is 

subjected to axial force (P1) and bending moment (P2), shown in figure 1a, which gives coupling 

with the longitudinal and transverse motion. 

 
Fig 1. Parhi et al.[21] 

The strain energy release rate at the fractured section can be written as (Tada et al.1973); 

J  =  ( KI1 + KI2)2/ E’ , where 1/ E’ = (1- v2)/E , for plain strain condition 

                                                           =  1/E , for plane stress condition 

KI1 and KI2 are the stress intensity factors of mode I (opening of the crack) for load P1 and P2 

respectively the value of stress intensity factors from previous studies (Tada et al.1973) are; 

௟ଵܭ = ଵܲ

ܽߨ√ܹܤ ቆܨଵ ቀ
ܽ
ܹቁቇ 

௟ଶܭ = ଶܲ

ଶܹܤ ܽߨ√ ቆܨଶ ቀ
ܽ
ܹቁቇ 

Where expressions for F1 and F2 are as follows 

ଵܨ ቀ
ܽ
ܹቁ = ቆ

2ܹ
ܽߨ ݊ܽݐ ቀ

ܽߨ
2ܹቁቇ

଴.ହ

ቐ
0.752 + 2.02൫ܽ ܹൗ ൯ + 0.37 ቀ1 − ܽߨ൫݊݅ݏ 2ܹൗ ൯ቁ

ଷ

ݏ݋ܿ ቀ 2ܹቁܽߨ
ቑ 
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ଶܨ ቀ
ܽ
ܹቁ = ቆ

2ܹ
ܽߨ ݊ܽݐ ቀ

ܽߨ
2ܹቁቇ

଴.ହ

ቐ
0.923 + 0.199 ቀ1 − ܽߨ൫݊݅ݏ 2ܹൗ ൯ቁ

ସ

ݏ݋ܿ ቀ 2ܹቁܽߨ
ቑ 

Let Ut be the strain energy due to crack, then from Castigliano’s theorem, the additional 

displacement along the force Pi is: 

ui = ∂Ut/∂Pi                                      (1) 
 
The strain energy will have the form 
 

௧ܷ = ∫ డ௎೟
డ௔
݀ܽ = ∫ ௔భܽ݀ܬ

଴
௔భ
଴                  (2) 

 
Where J=డ௎೟

డ௔
 the strain enery density function. 

From equation (1) and (2), thus we have, 

݅ݑ = డ
డ௔
ൣ∫ ௔భܽ݀ܬ
଴ ൧                                 (3) 

The flexibility influence coefficients Cij will be, by definition, 
 
௜௝ܥ = డ௨೔

డ௉ೕ
= డమ

డ௉೔డ௉ೕ
∫ ௔భܽ݀(ܽ)ܬ
଴              (4) 

 
To find out the final flexibility matrix we have to integrate over the breadth B, 
 

௜௝ܥ   = డ௨೔
డ௉ೕ

= డమ

డ௉೔డ௉ೕ
∫ ∫ ௔భܽ݀(ܽ)ܬ

଴ ݖ݀
ା஻

ଶൗ
ି஻

ଶൗ
              (5) 

 
Put the value of strain energy rate from above, equation (5) modifies as, 
 
௜௝ܥ = ஻

ா′
డమ

డ௉೔డ௉ೕ
∫ ଵଵܭ) + ଵଶ)ଶ݀ܽ௔భܭ
଴                         (6) 

 
Putting, 

ξ= (a/W) and dξ = (da/W) 

We get, 

da= W dξ and when a=0; ξ=0; a= a1, ξ = a/W = ξ1 

From the above condition equation (6) converts to 

௜௝ܥ = ஻ௐ
ா′

డమ

డ௉೔డ௉ೕ
∫ ଵଵܭ) + కభߦଵଶ)ଶ݀ܭ
଴                         (7) 

 



                                                                                                                             

27 
 

From the equation (7) calculating C11, C12 (=C21) and C22 we get, 

ଵଵܥ = ஻ௐ
ா′ ∫

గ௔
஻మௐమ 2൫ܨଵ(ߦ)൯

ଶ
కభߦ݀

଴   = ଶగ
஻ா′ ∫ కభߦ൯ଶ݀(ߦ)ଵܨ൫ߦ

଴             (8) 

ଵଶܥ = ଶଵܥ = ଵଶగ
ா′஻ௐ ∫ కభߦ݀(ߦ)ଶܨ(ߦ)ଵܨߦ

଴                                           (9) 

ଶଶܥ = ଻ଶగ
ா′஻ௐమ ∫ కభߦ݀(ߦ)ଶܨ(ߦ)ଵܨߦ

଴                                                   (10) 

 

Converting the influence co-efficient into dimensionless form 

ଵଵതതതതܥ = ଵଵܥ
஻ா′

ଶగ
ଵଶതതതതܥ   ;   = ଵଶܥ

ௐ஻ா′

ଵଶగ
= ଶଶതതതതܥ    ;    ଶଵതതതതܥ = ଶଶܥ

஻ா′ௐమ

଻ଶగ
 

 

The local stiffness matrix can be obtained by taking the conversion of compliance matrix i.e. 
 

ܭ = ൤ܭଵଵ ଵଶܭ
ଶଵܭ ଶଶܭ

൨ = ൤ܥଵଵ ଵଶܥ
ଶଵܥ ଶଶܥ

൨
ିଵ

 

 
 

 
 
Figure 2. Variation of dimensionless compliances to that of relative crack depth. Parhi et 
al.[21]  
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3.3    Analysis of vibration characteristics of the cracked beam  
(Parhi et al. [21]) 
 
3.2.1 Free Vibration: 
              
             A cantilever beam of length ‘L’ width ‘B’ and depth ‘W’, with a crack of depth ‘a1’ at 

adistance ‘L’ from the fixed end is considered shown in figure 1. Taking u1(x, t) and u2(x, t) as 

the amplitudes of longitudinal vibration for the sections before and after the crack andy1(x, t), 

y2(x, t) are the amplitudes of bending vibration for the same sections shown in figure 3. 

 

The normal function for the system can be defined as,        

(ݔ̅)ଵതതതݑ = (ݔ̅ ௨തതതതܭ)ݏ݋ଵܿܣ +  (11a)                   (ݔ̅ ௨തതതതܭ)݊݅ݏଶܣ

(ݔ̅)ଶതതതݑ = (ݔ̅ ௨തതതതܭ)ݏ݋ଷܿܣ +  (11b)                   (ݔ̅ ௨തതതതܭ)݊݅ݏସܣ

(ݔ̅)ଵതതതݕ = ൯ݔ̅ ௬തതതതܭℎ൫ݏ݋ହܿܣ + ൯ݔ̅ ௬തതതതܭℎ൫݊݅ݏ଺ܣ + ൯ݔ̅ ௬തതതതܭ൫ݏ݋଻ܿܣ +  ൯                       (11c)ݔ̅ ௬തതതതܭ൫݊݅ݏ଼ܣ

(ݔ̅)ଶതതതݕ = ൯ݔ̅ ௬തതതതܭℎ൫ݏ݋ଽܿܣ + ൯ݔ̅ ௬തതതതܭℎ൫݊݅ݏଵ଴ܣ + ൯ݔ̅ ௬തതതതܭ൫ݏ݋ଵଵܿܣ +  ൯                  (11d)ݔ̅ ௬തതതതܭ൫݊݅ݏଵଶܣ

Where, 

ݔ̅ =
ݔ
ܮ തݑ,  =

ݑ
ܮ തݕ,  =

ݕ
ܮ ߚ,  =

ଵܮ
ܮ  

௨തതതതܭ =
ܮ߱
௨ܥ

௨ܥ,  = ൬
ܧ
൰ߩ

ଵ
ଶൗ

௬തതതതܭ,  = ቆ
ଶܮ߱

௬ܥ
ቇ
ଵ
ଶ ൗ

௬ܥ, = ൬
ܫܧ
ߤ ൰

ଵ
ଶ ൗ

, ߤ =  ߩܣ

 
Ai ,( i= 1,12) constants are to be determined, constants are to be determined from boundary 

conditions. The boundary conditions of the cantilever beam in consideration are: 

ଵതതത(0)ݑ = ଵതതത(0)ݕ ; 0 = തଵᇱ(0)ݕ ; 0 = തଶᇱ(1)ݑ ; 0 = ଶᇱᇱ(1)ݕ  ; 0 = 0 ; ଶᇱᇱᇱ(1)ݕ  = 0 

At the cracked section, 
 
(ߚ)ଵതതതݑ = ; (ߚ)ଶതതതݑ (ߚ)ଵതതതݕ  = ; (ߚ)ଶതതതݕ (ߚ)ଵതതതᇱᇱݕ   = ; (ߚ)ଶതതതᇱᇱݕ (ߚ)ଵതതതᇱᇱᇱݕ  =  (ߚ)ଶതതതᇱᇱᇱݕ
Also at the cracked section, we have: 
 

ܧܣ =
(ଵܮ)ଵݑ݀
ݔ݀ = (ଵܮ)ଶݑଵଵ൫ܭ − ൯(ଵܮ)ଵݑ + ଵଶܭ ቆ

(ଵܮ)ଶݕ݀
ݔ݀ −

(ଵܮ)ଵݕ݀
ݔ݀ ቇ 

 
Multiplying both sides of the above equation by  AE/LKl1Kl2 , we get, 
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(ߚ)തᇱݑଶܯଵܯ = (ߚ)തଶݑଶ൫ܯ − ൯(ߚ)തଵݑ + −(ߚ)തଶᇱݕଵ൫ܯ  ൯(ߚ)തଵᇱݕ
 
Similarly, 
 

ܫܧ
݀ଶݕଵ(ܮଵ)
ଶݔ݀ = (ଵܮ)ଶݑଶଵ൫ܭ − ൯(ଵܮ)ଵݑ + ଶଶܭ ቆ

(ଵܮ)ଶݕ݀
ݔ݀ −

(ଵܮ)ଵݕ݀
ݔ݀ ቇ 

 
Multiplying both sides of the above equation by EI/L2K21K22, we get 
 
(ߚ)ଵതതതᇱᇱݕସܯଷܯ = −(ߚ)തଶݑଷ൫ܯ ൯(ߚ)തଵݑ + −(ߚ)തଶᇱݕସ൫ܯ  ൯(ߚ)തଵᇱݕ
 
Where,   

ଵܯ =
ܧܣ
ଵଵܭܮ

ଶܯ,  =
ܧܣ
ଵଶܭ

ଷܯ,  =
ܫܧ
ଶଶܭܮ

ସܯ,  =
ܫܧ

ଶଵܭଶܮ
     

 
The normal functions equation 11, along with the boundary conditions as mentioned above yield 

the characteristic equation of the system as 

 

 
 

This determinant is a function of natural circular frequency (ω), the relative location of crack (β) 

and local stiffness matrix (K) which in turn is a function of relative crack depth(a1/W). 

 
 
3.2.2 Forced Vibration: 
 
If the cantilever beam with transverse crack is excited at its free end by a harmonic excitation 

(Y=Y0 sin (ω t)), the non-dimensional amplitude at the free end may be expressed as 

 ଴തതത . Therefore the boundary conditions for the beam remain same as before asݕ=ത2(1)=y0./Lݕ

except the boundary condition which is modified as ݕത2(1)=ݕ଴തതത 

 
The constants Ai, i=1, to 12 are then computed from the algebraic condition 

Q1 D=B1                                                                                       (13) 

Q1 is the (12 x 12) matrix obtained from boundary conditions as mentioned above, 

D is a column matrix obtained from the constants, 

B1 is a column matrix, transpose of which is given by, 

B1
T = [0 0 0 y 0 0 0 0 0 0 0 0] 
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                                                                                                                        CHAPTER 4 

STUDY OF VIBRATIONAL BEHAVIOUR OF UNCRACKED               
BEAM            

4.1    MATLAB Program For Solving Eular Equation For Beam: 

 
E=input('enter the young’s modulus of the beam material'); 

d=input('enter the mass per unit length of the beam'); 

I=input('enter the moment of inertia of the cross section'); 

L=input('enter the length of the beam'); 

C=zeros(4,4); 

n1=input('For 1st node:Enter 1 for free;Enter 2 for hinged;Enter 3 for fixed'); 

n2=input('For 2nd node:Enter 1for free;Enter 2 for hinged;Enter 3 for fixed'); 

if(n1==1) 

    C(1,:)=[1 0 -1 0]; 

    C(2,:)=[0 1 0 -1]; 

end 

if(n1==2) 

    C(1,:)=[1 0 1 0]; 

    C(2,:)=[1 0 -1 0]; 

end 

if(n1==3) 

    C(1,:)=[1 0 1 0]; 

    C(2,:)=[0 1 0 1]; 

end 

i=0; 

c=1; 

while (c<4) 
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    if(n2==1) 

        C(3,:)=[cosh(i+0.01) sinh(i+0.01) -cos(i+0.01) -sin(i+0.01)]; 

        C(4,:)=[sinh(i+0.01) cosh(i+0.01) sin(i+0.01) -cos(i+0.01)]; 

    end 

    if(n2==2) 

        C(3,:)=[cosh(i+0.01) sinh(i+0.01) cos(i+0.01) sin(i+0.01)]; 

        C(4,:)=[cosh(i+0.01) sinh(i+0.01) -cos(i+0.01) -sin(i+0.01)]; 

    end 

    if(n2==3) 

        C(3,:)=[cosh(i+0.01) sinh(i+0.01) cos(i+0.01) sin(i+0.01)]; 

        C(4,:)=[sinh(i+0.01) cosh(i+0.01) -sin(i+0.01) cos(i+0.01)]; 

    end 

    s1=det(C); 

    if(n2==1) 

        C(3,:)=[cosh(i-0.01) sinh(i-0.01) -cos(i-0.01) -sin(i-0.01)]; 

        C(4,:)=[sinh(i-0.01) cosh(i-0.01) sin(i-0.01) -cos(i-0.01)]; 

    end 

    if(n2==2) 

        C(3,:)=[cosh(i-0.01) sinh(i-0.01) cos(i-0.01) sin(i-0.01)]; 

        C(4,:)=[cosh(i-0.01) sinh(i-0.01) -cos(i-0.01) -sin(i-0.01)]; 

    end 

    if(n2==3) 

        C(3,:)=[cosh(i-0.01) sinh(i-0.01) cos(i-0.01) sin(i-0.01)]; 

        C(4,:)=[sinh(i-0.01) cosh(i-0.01) -sin(i-0.01) cos(i-0.01)]; 

    end 

    s2=det(C); 

    if(s1>0)&&(s2<0) 
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        beta=i/L 

        w=(i^2)*sqrt(E*I/(d*L^4)) 

        c=c+1; 

        i=i+0.02; 

    else 

        i=i+0.01; 

    end 

    if(s1<0)&&(s2>0) 

        beta=i/L 

        w=(i^2)*sqrt(E*I/(d*L^4)) 

        c=c+1; 

        i=i+0.02; 

    else 

        i=i+0.01; 

    end 

end 

Output: 

enter the young’s modulus of the beam material : 69000000000 

enter the mass per unit length of the beam : 126 

enter the moment of inertia of the cross section : 0.00000001 

enter the length of the beam : 1 

For 1st node: Enter 1 for free; Enter 2 for hinged; Enter 3 for fixed : 3 

For 2nd node: Enter 1 for free; Enter 2 for hinged; Enter 3 for fixed : 3 

 

beta  =  4.7500            beta  =  7.8500           beta  = 11.0100 
 
w  =  52.7991              w  =  144.2044           w  =  283.6703 
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4.2     FEA analysis using ALGOR 
 
          ALGOR is a general-purpose multiphysics finite element analysis software package 

developed by ALGOR Incorporated for use on the Microsoft Windows and Linux computer 

operating systems. It is distributed in a number of different core packages to cater to specifics 

applications, such as mechanical event simulation and computational fluid dynamics. ALGOR's 

complete product line includes InCAD technology for direct CAD/CAE data exchange and full 

associativity with each design change in Solid Edge for use with any analysis type within 

FEMPRO, ALGOR's easy-to-use, single user interface. ALGOR's wide range of simulation 

capabilities includes static stress and Mechanical Event Simulation (MES) with linear and 

nonlinear material models, linear dynamics, fatigue, steady-state and transient heat transfer, 

steady and unsteady fluid flow, electrostatics, full multiphysics and piping. So for analysis in 

ALGOR we need to first generate CAD model and then this model is analyzed in the software by 

generating mesh and giving boundary conditions. 

 
          Natural frequency has been found out for different modes of Fixed-Fixed un-cracked  

beam by using MATLAB programming and FEA analysis in ALGOR which are tabulated as 

shown:  

 

MODE TYPE NATURAL FREQUENCY ( /sec ) 

Using MATLAB Using FEA Analysis 

1st 52.7991 52.7955 

2nd 144.2044 145.392 

3rd 283.6703 267.866 

 

          Now further need to do both Fuzzy and FEA Analysis in ALGOR for cracked beam by 

giving some crack on the span of beam of a certain depth.   
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                                                                                                                            CHAPTER 5 

CRACK DETECTION USING FEA            

 
5.2   STEPs For FEA of Cracked Beam Modal Using ALGOR: 
 
STEP 1:     Generation of model in a designing software: 

             The cracked beam model having single crack are generated in CAD software 

(AUTOCAD 2006) having different crack depths and crack location. For single crack 21 models 

are generated, crack depth varying from 1 mm to 3 mm and crack location from 100mm to 

700mm. 

           The uncracked beam model having following specification- 

 Length (L) = 800mm 
 Width (B) = 38mm 
 Height (W) = 6mm 

Crack Depth (a1) = 1mm, 2mm, 3mm 

Crack Location (l) = 100, 200, 300, 400, 500, 600, 700mm from the fix end of the cantilever 

Figure shows a model generated in CAD with , l=100mm, a1=1mm 

                    

                                                                                        Zoomed view of crack : 
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STEP 2:     The file is saved in .stp format  and opened in FEMPRO as an Input File which is a  

                  part of ALGOR for finite element analysis  as shown : 

 
 

STEP 3:     Natural frequency modal is chosen for design scenario and mesh settings are shown 

In subsequent figure: 

Single Analysis : Linear/Natural Frequency(modal) 

Modal Mess Setting : Mesh type/Solid 

 

 
 

STEP 4:     Now mesh is generated as shown: 
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STEP 5:      Now the model will be look like this : 

 
 

STEP 6:     After meshing is done FEA editor is opened: 

 
 

STEP 7:     Element type is set as brick type: 
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STEP 8:     Material is chosen as per requirement. Here Aluminium 1050-H14 is selected : 

 
 

STEP 9:     Units are defined as: 

 
 

STEP 10:     Surfaces of modal is selected and surface boundary conditions are set: 
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     The modal would become like: 

 

 
 

STEP 11:     Now we’ll click perform analysis button in the toolbar and the modes would be 

shown as below: 
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First mode of vibration: 

 

 

Second mode of vibration: 

 

 

Third mode of vibration: 
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5.3    Computation table for Natural Frequency using ALGOR: 

 
Sl  No. 

Relative Crack 
Depth(rcd) 

Relative Crack 
Location(rcl) 

 
Fnf ( /s) 

 
Snf ( /s) 

 
Tnf ( /s) 

1 0.5 0.125 7.69345 48.0475 48.287 
2 0.333 0.125 7.66641 48.0782 48.2795 
3 0.167 0.125 7.68657 48.111 48.3914 
4 0.5 0.25 7.72106 48.1593 48.3777 
5 0.333 0.25 7.66319 48.0908 48.3221 
6 0.167 0.25 7.6831 48.0954 48.4007 
7 0.5 0.375 7.64557 47.8803 48.2719 
8 0.333 0.375 7.66627 48.0194 48.3637 
9 0.167 0.375 7.67963 48.1156 48.4076 
10 0.5 0.5 7.66479 47.7739 48.346 
11 0.333 0.5 7.67646 48.0897 48.3975 
12 0.167 0.5 7.68094 48.2138 48.4126 
13 0.5 0.625 7.67362 47.8839 48.3938 
14 0.333 0.625 7.67487 47.9791 48.4078 
15 0.167 0.625 7.67725 48.1324 48.4153 
16 0.5 0.75 7.67854 48.0744 48.4123 
17 0.333 0.75 7.67645 48.0599 48.4154 
18 0.167 0.75 7.67681 48.1095 48.4166 
19 0.5 0.875 7.68616 48.419 48.5865 
20 0.333 0.875 7.67679 48.0916 48.4177 
21 0.167 0.875 7.67673 48.0957 48.4173 
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                                                                                             CHAPTER 6 

CRACK DETECTION USING FIS 

 

6.1    Analysis of the Fuzzy Controller (FIS Editor) : 

The fuzzy controller developed has got three input parameters and two output parameters. 

The linguistic term used for the inputs are as follows; 

 First natural frequency = “fnf”;  

 Second natural frequency = “snf”; 

 Third natural frequency = “tnf”; 

The linguistic term used for the outputs are as follows; 

 Relative crack location = “rcl”  

 Relative crack depth = “rcd” 
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6.2    Description of fuzzy Linguistic term : 

Membership function name Description and range of MF 

L1F1,L1F2,L1F3,L1F4 Low ranges of natural frequency for 1st mode of vibration in 

descending order respectively 

M1F1 Medium ranges of natural frequency for 1st mode of vibration  

H1F1,H1F2,H1F3,H1F4 Higher ranges of natural frequency for 1st mode of vibration in 

ascending order respectively 

L2F1,L2F2,L2F3,L2F4 Low ranges of natural frequency for 2nd mode of vibration in 

descending order respectively 

M2F1 Medium ranges of natural frequency for 2nd mode of vibration  

H2F1,H2F2,H2F3,H2F4 Higher ranges of natural frequency for 2nd mode of vibration in 

ascending order respectively 

L3F1,L3F2,L3F3,L3F4 Low ranges of natural frequency for 3rd mode of vibration in 

descending order respectively 

M3F1 Medium ranges of natural frequency for 3rd mode of vibration  

H3F1,H3F2,H3F3,H3F4 Higher ranges of natural frequency for 3rd mode of vibration in 

ascending order respectively 

SD1,SD2,………..SD9 Small ranges of relative crack depth in descending order 

Respectively 

MD Medium range of relative crack depth 

HD1,HD2,………HD9 High ranges of relative crack depth in ascending order 
respectively 

SL1,SL2,………..SL18 Small ranges of relative crack location in descending order 
respectively 

ML1,ML2,ML3 Medium range of relative crack location in ascending order 

BL1,BL2,……….BL18 High ranges of relative crack location in ascending order 
respectively 
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6.3    Membership Function Editor : 

            Here in fuzzy controller GAUSSIAN MF is used for inputs( fnf, snf, tnf ) and 

TRIANGULAR MF is used for outputs( rcd, rcl ). 

The process of specifying the membership functions is as follows, 

1. Select the variable (input/output) by double-clicking on it. Set both the Range and the 

Display. 

2. Select Add MFs... from the Edit menu. The window below opens 

 

 

MF for natural frequency for 1st mode of vibration(fnf) 

 

MF for natural frequency for 2nd mode of vibration(snf) 
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MF for natural frequency for 3rd mode of vibration(tnf) 

 

MF for relative crack depth (rcd) 

 

MF for relative crack location (rcl) 
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6.4     Rules Editor : 

To insert the first rule in the Rule Editor, select the following: 

 H1F4 under the variable fnf 

 L2F1 under the variable snf 

 L3F4 under the variable tnf 

 The AND radio button, in the Connection block 

 MD under the output variable, rcd 

 SL14.under the output variable rcl 

The resulting rule is:  

if (fnf is H1F4) and (snf is L2F1) and (tnf is L3F4) then (rcd is MD)(rcl is SL14) 

            The numbers in the parentheses represent weights. Follow a similar procedure to insert 

the rest of the rules. To change a rule, first click on the rule to be changed. Next make the desired 

changes to that rule, and then click Change rule. 
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6.5    Rules Viewer : 

                     

                  The Rule Viewer allows you to interpret the entire fuzzy inference process at once. 

The Rule Viewer also shows how the shape of certain membership functions influences the 

overall result. The defuzzified output value is shown by the thick line passing through the 

aggregate fuzzy set. Since it plots every part of every rule, it can become unwieldy for 

particularly large systems, but, for a relatively small number of inputs and outputs, it performs 

well (depending on how much screen space you devote to it) with up to 30 rules and as many as 

6 or 7 variables. 
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6.6    Comparison between FEA and FL : 

 
Sl  No. 

 
Fnf ( /s) 

 
Snf ( /s) 

 
Tnf ( /s) 

FEA analysis Fuzzy Controller 

(rcd) (rcl) (rcd) (rcl) 

1 7.69345 48.0475 48.287 0.5 0.125 0.5 0.195 

2 7.66641 48.0782 48.2795 0.333 0.125 0.3 0.129 

3 7.68657 48.111 48.3914 0.167 0.125 0.164 0.218 

4 7.72106 48.1593 48.3777 0.5 0.25 0.5 0.25 

5 7.66319 48.0908 48.3221 0.333 0.25 0.3 0.195 

6 7.6831 48.0954 48.4007 0.167 0.25 0.256 0.459 

7 7.64557 47.8803 48.2719 0.5 0.375 0.5 0.375 

8 7.66627 48.0194 48.3637 0.333 0.375 0.304 0.39 

9 7.67963 48.1156 48.4076 0.167 0.375 0.307 0.549 

10 7.66479 47.7739 48.346 0.5 0.5 0.5 0.5 

11 7.67646 48.0897 48.3975 0.333 0.5 0.317 0.546 

12 7.68094 48.2138 48.4126 0.167 0.5 0.152 0.541 

13 7.67362 47.8839 48.3938 0.5 0.625 0.5 0.625 

14 7.67487 47.9791 48.4078 0.333 0.625 0.335 0.664 

15 7.67725 48.1324 48.4153 0.167 0.625 0.303 0.584 

16 7.67854 48.0744 48.4123 0.5 0.75 0.317 0.56 

17 7.67645 48.0599 48.4154 0.333 0.75 0.316 0.594 

18 7.67681 48.1095 48.4166 0.167 0.75 0.312 0.598 

19 7.68616 48.419 48.5865 0.5 0.875 0.5 0.875 

20 7.67679 48.0916 48.4177 0.333 0.875 0.308 0.602 

21 7.67673 48.0957 48.4173 0.167 0.875 0.31 0.601 
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                                                                                                          CHAPTER 6 

DISCUSSION AND CONCLUSION 

 

Discussion:  

             Discussion based on the output generated by Fuzzy Controller used and the information 

supplemented by FEA analysis in ALGOR is as follows: 

               It is already known that the natural frequency decreases as the crack depth increases in 

a structural part. Firstly determination of natural frequency of different modes of vibration is 

done for un-cracked beam numerically (solving Eular Equation For Beam in vibration analysis), 

using MATLAB programming analysis and then FEA analysis in ALGOR. Afterwards FEA 

analysis is considered for Cracked Beam in ALGOR. Here total 21 models have been used taking 

different combinations of relative crack location and relative crack depth. Several steps have 

been shown to develop a natural frequency modal based on FEA which is explained through an 

example and all the frequencies values are tabulated in article 5.3. It is clear from analysis that 

the  natural frequency of different modes of vibration can be precisely obtained from this 

method. 

              Now considering the second approach in which fuzzy inference system is used. The 

present fuzzy controller used Gaussian MF for input variables and Triangular MF for output 

variables shown in article 6.3. Linguistic terms used in this fuzzy controller for variables are 

given in article 6.2. Some of examples of the rules for present controller is tabulated in article 6.4 

Now this controller is used to obtained the defuzzified values of output variables (rcl, rcd) based 

on the natural frequencies developed in FEA analysis in ALGOR. 

             A comparison is made between these two approaches in article 6.6 which shows the 

relative crack depth and relative crack location as output. But in actual FEA obtains natural 

frequency for different modes of vibration from the input as crack location and crack depth, 

whereas fuzzy takes 1st three frequencies as input and obtained relative crack depth and relative 

crack location as output.   
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CONCLUSION : 

                 

The present investigation based on the Fuzzy Controller, Numerical Analysis and the FEA 

Analysis draws the following conclusions. 

 

 Inputs for FEA are crack location and crack depth and outputs are natural frequency for 

different modes of vibration whereas inputs for fuzzy controller are natural frequency and 

outputs are crack depth and crack location. 

 The fuzzy controller is developed with Gaussian membership function for inputs and 

Triangular membership function for output and results shows that Gaussian MF predicts  

more accurate results than Triangular. 

 Crack depth and crack location of a beam can be predicted by fuzzy controller is within 

nanoseconds. Hence it saves considerable amount of computation time. 

 Significant changes in natural frequency observed at the vicinity of crack location. 

 When the crack location is constant but the crack depth increases, the natural frequency 

of the beam decreases.  

 When the crack depth is constant and crack location from the cantilever end varied, 

Natural frequencies of first, second and third modes are also increased.  

 By Comparing the Fuzzy results with the FEA results it is observed that the developed 

Fuzzy Controller can predict the relative crack depth and relative crack location in a very 

accurate manner. 

 Results based on fuzzy techniques are not much accurate as it depends on some training 

pattern of fuzzy controller, whereas in ALGOR, it is much accurate as it is based on finite 

elements. But it is not practically suitable as natural frequency can be obtained practically 

but crack  location and crack depth are not possible as they are very small values. 

 

Here a new approach can be suggested which is based on the combination of both ALGOR 

and Fuzzy, in which natural frequency obtained in algor can be used as input for fuzzy 

controller for determination of accurate value of crack depth and crack location. 
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