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ABSTRACT 

 
In this thesis, we study the modeling and simulation of a reactive distillation column for the 

production of ethyl acetate from acetic acid and ethyl alcohol using ASPENPLUS. Starting from 

a conventional configuration, which involves feeding in a single tray, different configuration is 

proposed and various specifications are studied for the attainment of higher conversion and 

purity at the steady state. In ASPEN DYNAMICS an analysis of the column dynamics is then 

performed. Cascade control structure is studied for the base design. 
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  Chapter-1 

     Introduction and literature   

Reactive distillation involves simultaneous chemical reaction and distillation. The chemical 

reaction usually takes place in the liquid phase or at the surface of a solid catalyst in contact with 

the liquid phase [1]. General application of reactive distillation is the separation of a close-boiling 

or azeotropic mixture described by Terril et al. [2]. A second application of reactive distillation 

involves taking into account undesirable reaction that may occur during distillation but the most 

interesting application involves combining chemical reactions and separation by distillation in a 

single distillation apparatus [1] 

The technique offers a key opportunity for improving the structure of a process. It is a so-called 

hybrid process, i.e. it merges two different unit operations in a single apparatus, namely reaction 

and distillation. But the combination of distillation and reactions is possible only if the conditions 

of both unit operations can be combined. 

Reactive distillation can be used with a wide variety of chemistries, including the following:  

Acetylation, Aldol condensation, Alkylation, Amination, Dehydration, Esterification, 

Etherification, Hydrolysis, Isomerization, Oligomerization, Transesterification. 

1.1 Background of Reactive Distillation: 

Reactive distillation, combination of chemical reaction and multicomponent distillation in a single 

unit, has proven to be advantageous over conventional process systems consisting of separate 

reactor and distillation unit. Prior to the advent of digital computers, the literature dealt mainly 

with proposed applications and simplified calculational procedures. This concept appears to have 

been first pronounced by Backhaus, who, starting in 1921, obtained a series of patents for 

esterification reaction in a distillation column. This concept of continuous and simultaneous 

chemical reaction and distillation in a single vessel was verified experimentally by Leyes and 

Othmer, for the esterification acetic acid with an excess of n-butanol in the presence of sulfuric 

acid catalyst to produce butyl acetate and water. [1] 

Further research, both of an experimental and theoretical nature, was conducted during later years. 

Examples are hydrolysis of acetic anhydride-parasitic reaction during distillation(Marek[8]), 
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esterification of acetic acid with ethanol (Suzuki et al.,
[9] Komatsu,[10] Alejski et al.,

[11] Simandl 

and Svrcek,[12]) and methanol (Corrigan and Ferris,[13] Agreda et al.,
[14]),trans-esterification of 

butyl acetate and ethyl alcohol (Davies and Jeffreys,[15]), synthesis of propylene oxide from 

propylene chlorohydrins (Carra et al.,
[16]), synthesis of epichlorohydrin from chlorohydrins (Carra 

et al.,
[17]) and Nylon 6,6 production (Grosser et al.,

[18]). The combination of reaction and 

distillation over a catalyst bed has been extensively investigated (Westerterp, [19]). The most 

typical examples are MTBE and cumene production (Smith and Huddleston, [20] DeGarmo et al.,
 

[22] Shoemaker, [21]). 

Modeling of reactive distillation has received considerable attention over the last 15 years and 

several key contributions have appeared in the literature (Doherty and Malone[24] and the excellent 

overview of Noeres et al.,). Pilavachi et al. presented an extensive discussion of several important 

aspects that affect the accurate modeling of reactive distillation processes. Schenk et al. described 

in considerable details a hybrid-modeling environment in which a reactive distillation process can 

be simulated using a combination of equilibrium and mass transfer models, both in steady state 

and dynamic modes. Recently, Almeida-Rivera et al. presented a critical review of current 

available methodologies for designing reactive distillation processes. 

The control of reactive distillation has received some attention in recent years. Al-Arfaj and 

Luyben[23], Sneesby et al., [25] Kumar and Daoutidis,[26] discussed the decentralized PI control 

structures for reactive distillation column. Al-Arfaj and Luyben [23] discussed the possibility of 

multiple steady states in many reactive distillation systems. The presence of multiplicities and the 

highly nonlinear nature of reactive distillation may impose limitations on use of linear controllers. 

Kumar and Daoutidis[26]have discussed the superior performance of nonlinear controller 

compared to linear controller for reactive distillation systems. 

1.2 Commercial applications of Reactive Distillation include following
 [1] 

1. The esterification of acetic acid with ethanol to produce Ethyl acetate and water. 

2. The reaction of formaldehyde and methanol to produce methylal and water, using a solid 

acid catalyst, as described by Masamoto and Matasuzaki. 

3. The esterification of acetic acid with methanol to produce methyl acetate and water,using 

sulfuric acid as catalyst,as patented by Agreda and Partin ,and described by Agreda , 

Partin and Heise. 
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4. The reaction of isobutene with methanol to produce methyl-tert-butyl ether(MTBE),using 

a solid, strong–acid ion-exchange resin catalyst, as patented by Smith and further 

developed by DeGarmo, Parulekar, and Pinjala.  

There are many documented success stories involving the industrial implementation of reactive 

distillation. The applications of reactive distillation in the chemical and petroleum industries have 

increased rapidly in the past decade .One such example is the manufacturing of methyl acetate by 

the Eastman Chemical Company. In this case a single reactive distillation column replaced the 

traditional flow sheet consisting of eleven major unit operations along with an assortment of heat 

exchangers, pumps and controllers. The result was a five- fold reduction in capital investment and 

energy consumption over the conventional design for methyl acetate production. 

 

1.3 Advantages of Reactive Distillation: 

1. Increased speed and improved efficiency. 

2. Lower costs – reduced equipment use, energy use and handling.  

3. Less waste and fewer byproducts  

4. Improved product quality–reducing opportunity for degradation because of less heat;   

heat duty can be reduced by utilizing the heat of reaction (if present) in situ. 

5. Recycle costs for excess reactant, which is necessary for a conventional reactor to prevent 

side reactions and chemical equilibrium limitation, can be reduced. 

6. Reaction conversions can be increased by overcoming chemical equilibrium limitation 

through the removal of reaction products. 

7. Limitation of azeotropic mixture can be overcome by reaction, described by Terril et al.[1]  

 

1.4 Constraints and disadvantages of Reactive Distillation: 

In spite of above stated benefits of reactive distillation, cannot be used for every process that 

requires reaction and separation in a single unit. It has some constraints. In general, reactive 

distillation is not attractive for supercritical condition, for gas-phase reaction, and for reaction that 

must take place at high temperature and pressures, and/or that involves solid reactants or 

products[1]. 
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This type of reactive distillation is considered as an alternative to the use of separate reactor and 

distillation vessel whenever the following holds: 

1. Feasible temperature and pressure for the reaction and distillation are the same. That is, 

reaction rates and distillation rates are of same magnitude. the reactions have to show 

reasonable data for conversions at pressure and temperature levels that are compatible 

with distillation  conditions. 

2. The chemical reaction occurs in the liquid phase, in the presence or absence of a 

homogeneous catalyst, or at the interface of a liquid and a solid catalyst. 

3. The reaction is equilibrium-limited such that if one or more of the products formed can be 

removed, the reaction can be driven to completion; thus, a large excess of a reactant is not 

necessary to achieve a high conversion. This is particularly advantageous when recovery 

of the excess reagent is difficult because of azeotrope formation. 

4. Higher requirements on the quality of the design and control systems including more 

sophisticated controller designs and more complicated control structures. 

5. Residence time requirements but limited hold-up in distillation column. 

6. Volatility constraints for reagents and products in the reaction zone of distillation column. 

1.5 Ethyl acetate: 

Ethyl acetate is the organic compound with the formula CH3COOC2H5. This colorless liquid has a 

characteristic, pungent smell like certain glues or nail polish removers, in which it is used. Ethyl 

acetate is the ester from ethanol and acetic acid; it is manufactured on a large scale for use as a 

solvent. Ethyl acetate is a moderately polar solvent that has the advantages of being volatile, 

relatively non-toxic, and non-hygroscopic. It is a weak hydrogen bond acceptor, and is not a 

donor due to the lack of an acidic proton. Ethyl acetate can dissolve up to 3% water and has a 

solubility of 8% in water at room temperature. It is unstable in the presence of strong aqueous 

bases and acids. It is Soluble in most organic solvents, such as alcohol, acetone, ether and 

chloroform. 

Properties and uses: 

Molecular formula         CH3COOC2H5 

Molar mass                     88.105 g/mol 
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Density                           0.897 g/cm³ 

Melting point                  -83.6 °C 

Boiling point                    77 °C 

Viscosity                        0.426 cp at 25°C 

Ethyl acetate has a wide range of applications, across many industries, including: 

Surface coating and thinners: Ethyl acetate is one of the most popular solvents and finds wide 

use in the manufacture of nitrocellulose lacquers, varnishes and thinners, to dissolve the pigments 

for nail varnishes. It exhibits high dilution ratios with both aromatic and aliphatic diluents and is 

the least toxic of industrial organic solvents. 

Pharmaceuticals: Ethyl acetate is an important component in extractants for the concentration 

and purification of antibiotics. It is also used as an intermediate in the manufacture of various 

drugs. 

Flavors and essences: Ethyl acetate finds extensive use in the preparation of synthetic fruit 

essences, flavors and perfumes. 

Flexible packaging: Substantial quantities of ethyl acetate are used in the manufacture of flexible 

packaging and in the manufacture of polyester films and BOPP films. It is also used in the 

treatment of aluminum foils. 

Occurrence in wines: Ethyl acetate is the most common ester found in wine, being the 

production of the most common volatile organic acid-acetic acid and the ethanol alcohol created 

during the fermentation of wine. The aroma of ethyl acetate is most vivid in younger wines and 

contributes towards the general perception of "fruitiness" in the wine. Sensitivity varies with most 

people having a perception threshold around 120 mg/lit. An excessive amount of ethyl acetate is 

considered a wine fault. Exposure to oxygen can exacerbate the fault due to the oxidation of 

ethanol creating acetaldehyde. This can leave the wine with sharp vinegar like taste. 

Miscellaneous: Ethyl acetate is used in the manufacture of adhesives, cleaning fluids, inks, nail 

polish removers and silk, coated papers, explosives, artificial leather, photographic films & plates. 

In the field of entomology, ethyl acetate is an effective poison for use in insect collecting and 

study. In a killing jar charged with ethyl acetate, the vapors will kill the collected (usually adult) 

insect quickly without destroying it. Because it is not hygroscopic, ethyl acetate also keeps the 

insect soft enough to allow proper mounting suitable for a collection. 
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1.6 Production of ethyl acetate: 

Ethyl acetate is produced by the esterification reaction of ethyl alcohol and acetic acid using 

catalysts such as sulphuric acid, Para toluene sulphonic acid or ion exchange resins. The reaction 

of ethanol (EtOH) with acetic acid (AcOH) towards ethyl acetate (EtAc) and water (H2O) is an 

equilibrium reaction. 

 

                            CH3COOH+ C2H5OH ↔  H2O+ CH3COOC2H5            (1) 

The system is strongly non-ideal due to the presence of ethanol, acetic acid, and water. The 

separation of pure components is very difficult due to the existence of five normal azeotropes, 

namely, ethanol–water; water–acetic acid, ethyl acetate–ethanol, ethyl acetate–water, and 

ethanol–ethyl acetate–water. Sujuki et al.
 [9] also determined the phase equilibrium for the system 

taking the reaction into account (they fitted 16 coefficients in Modified Margules equations, for 

calculating the VLE-model of this mixture). 

The normal boiling point of ethyl acetate, ethanol, water and acetic acid is 77.1, 78.4, 100 and 

118.1 in °C respectively. 

 The order of volatility is ethyl acetate, ethanol, water and acetic acid. Ethanol and water do not 

differ greatly in volatility, making it difficult to move ethanol up the column. 

The minimum-boiling binary homogeneous azeotropes are formed by ethanol–water at 78.2°C 

With 10.57mol% water and by ethyl acetate–ethanol at 71.8°C with 46 mol% ethanol. A 

minimum-boiling binary heterogeneous azeotrope is formed by ethyl acetate–water at 70.4°C 

with 24mol% water, and a ternary, minimum-boiling azeotrope is formed by ethanol–ethyl 

acetate–water at 70.3°C with 12.4mol% ethanol and 60.1 mol% ethyl acetate. [1] 

The main problems encountered in achieving high purity products in the ethyl acetate reactive 

distillation system are summarized subsequently (Bock et al. 1997, Chang and Seader [29]): 

• Unfavorable reactant conversion; 

• Similar K-values of ethanol, water, and ethyl acetate; 

• Temperature profile in the column; 
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• The system is strongly non-ideal  

 

1.7 ASPEN PLUS software: 

In 1970s the researchers at MIT’s Energy Laboratory developed a prototype for process 

simulation. They called it Advanced System for Process Engineering (ASPEN). This software has 

been commercialized in 1980’s by the foundation of a company named AspenTech. ASPEN 

PLUS offers a complete integrated solution to chemical process industries. This sophisticated 

software package can be used in almost every aspect of process engineering from design stage to 

cost and profitability analysis. It has a built- in model library for distillation columns, separators, 

heat exchangers, reactors, etc. Custom or propriety models can extend its model library. These 

user models are created with FORTRAN subroutines or Excel worksheets and added to its model 

library. Using Visual Basic to add input forms for the user models makes them indistinguishable 

from the built- in ones. It has a built- in property databank for thermodynamic and physical 

parameters. During the calculation of the flow sheet any missing parameter can be estimated 

automatically by various group contribution methods. 

Aspen Plus can interactively change specifications such as, flow sheet configuration, operating 

conditions, and feed compositions, to run new cases and analyze process alternatives Aspen Plus 

allows us to perform a wide range of tasks such as estimating and regressing physical properties, 

generating custom graphical and tabular output results, fitting plant data to simulation models, 

optimizing process, and interfacing results to spreadsheets. 

 

 

1.8 Aspen Dynamics: 

Aspen Dynamics complements the steady-state simulation capabilities of Aspen Plus and delivers 

the benefits of dynamic modeling to the Petrochemicals, Chemicals, and Specialty Chemicals 

industries throughout plant operation and engineering organizations. 

In Aspen Dynamics we can easily: 

• Add, change and remove control elements 

• Select measured and manipulated variables from selection lists 

• Configure cascade control loops 

• Import control structures from other Aspen Dynamics generated input files 



9 

 

Aspen Dynamics is a state-of-the-art solution designed specifically for dynamic process 

simulation. Aspen Dynamics is tightly integrated with Aspen Plus, Aspen Tech’s steady-state 

simulator for the chemical process industries. This integration enables users to use an existing 

Aspen Plus steady-state simulation and quickly create a dynamic simulation. This enables users to 

fully leverage their existing investments in steady-state Aspen Plus models and ensures 

consistency with their steady-state simulation results. 
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                                         Figure-2.1 Configuration for reactive-distillation column 
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Consider a general, continuous, column consisting N-stage arranged in countercurrent cascade 

Separating C components. A schematic representation of Reactive Distillation is shown in figure 

1, where stage 1 is a total condenser that produces a saturated liquid and stage N is a reboiler. 

Moreover, let chemical reactions occur at each stage in the liquid phase. 

Assumptions used in model development: 

1. Each stage is a perfectly mixed i.e. liquid composition at each stage is homogeneous and 

equal to the composition of liquid leaving the stage. 

2. The vapor and liquid leaving any stage are in physical equilibrium.  

3. Entrainment of liquid drops in vapor and occlusion of vapor bubbles in liquid are 

negligible. 

4. Vapor molar holdup and vapor-phase chemical reactions were neglected. 

The extent of liquid-phase reaction at each stage is governed by reversible kinetic rate 

expressions. 

Fig-2.2 shows a schematic representation of a general reactive-distillation stage. 

 
                         
                      Siυ i,j                      υ i,j                                                 Ɩ i-1,j                   
 
  
 
 
 
                                                              Pi     Ti        Ui                                                     f i,j      
                 g i,j                                         
                                                                                                                           Qi 
 
 
                                                                                         
                                                υ i+1,j                                                Ɩ i,j                               si Ɩ i,j 
                                                             

                                                   Figure-2.2 General reactive-distillation stage 
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The three types of functions which describe the physical and chemical processes on stage i are: 

1. Component material balances:  

 

        M i, j= (1+Si) υ i,j + (1+si) Ɩ i,j   ̶  υ i+1,j  ̶  Ɩ i-1,j  ̶  f i,j ̶  g i,j ̶  Ui ∑  ʋ�,�r�,� NRX���                (2) 

           j=1,……..,C 

            i=1,……..,,N 

    Where the last term accounts for chemical reactions. 

2. Energy balances: 

 

        Ei=(1+Si)Hi+(1+si)hi  ̶  Hi+1 ̶  hi-1 ̶  hF i+ HG i  ̶  Qi                        (3)  

  

Unlike the component material balances, it is not necessary to take the heat of reaction into 

account because enthalpies are referred to the elements rather than to the components.  

 

3. Equilibrium relationships:  

         Qi, j= K i,j Ɩ i,j  V i/ Li  ̶  υ i,j                             (4) 

             Where Qi, j  is derived from the definition of K i,j 

    

         K i,j =yi,j/xi,j  or  K i,j xi,j  ̶  yi,j =0                (5) 

 

Specifications for equations (2-4) include the total number of stages, stage locations of all feeds, 

side streams, and heat exchangers; all stage pressures and liquid-phase holdup volumes; and 

complete specification of each fresh feed. This leaves N specifications that must be made before 

solving the N(2C + 1) equations for the corresponding N(2C + 1) iteration variables. If the N 

specifications are N stage heat transfer rates, then the equations are solved for 2CNcomponent 

molar flows and N stage temperatures. However, because condenser and reboiler duties are 

strongly dependent and can generally be specified independently over only narrow unknown 

ranges, other specifications are more desirable.  

The total condenser stage is a special case which is not represented by equation (3). Let the 

component molar flows of the liquid distillate be called υ 1,1 , υ 1,2 , υ1,3, ………………..  υ1,c . If the 
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reflux ratio is specified, the top-stage energy balance equation is changed to a reflux-ratio 

equation: 

                                                     E1=L1-RV1                                                                                              (6) 

where R is the reflux ratio. The distillate composition, υ 1,1 , υ 1,2 , υ1,3, ………………..  υ1,c is the 

same composition as in the liquid leaving the condenser and, therefore, the equilibrium relations 

are not independent. the equilibrium equation for component 1 is replaced by the bubble point 

equation: 

 

                                    Q1, 1 =∑ K�,�Ɩ�,������ (V�/L�) − ʋ�,�                       (7)  

where component 1 must be present in the distillate in nontrivial amounts. Like the energy 

balance equation, the other equilibrium equations, Q1,1-Q1,c, are substituted for by the component 

reflux equations; viz.  

                                     Q1, 1 =Ɩ�,�(V�/L�) ̶  ʋ�,�   j=2......, C             (8) 

 

r�,� Chemical reaction rates in the liquid phase are modeled by reversible power-law kinetic rate 

equations. Vapor molar holdup and vapor-phase chemical reactions  neglected. Because the 

material balance equations (1) are in the form out -minus- in, the term represents the moles of 

component j produced in the liquid phase. Therefore, ʋ i,j the stoichiometric coefficient for 

component j in the n th chemical reaction, is positive if component j is created by the nth reaction( 

where the n subscript is omitted in following equation) 

 

                      r�,� = ∑ k� ∏ C',()*+,(��-.��   = ∑ A� exp 2− E4
RT6

7 ∏ C�,8)*+,.��-.��             (9) 

Where  

Ci,q= Concentration of component q on stage i 

kp= Reaction rate constant for the pth term, where p=1 indicates the forward reaction                                          

and p=2 indicates the reverse reaction;k1 is positive and k2 is negative. 

m= Exponent of concentration 

A� = Pre exponential factor 

E� = Activation energy 
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Many attempts are taken to simulate model equations rigorously using different methods by 

putting different criteria for convergence. Since 1970, calculation procedures suitable for 

implementation on digital computers, for rigorously solving the mass, equilibrium, and energy 

balances in multicomponent, multistage reactive-distillation columns have been reported. The 

procedures, which involve the solution of large sets of combined nonlinear and linear equations, 

as well as applications, are summarized by seader et al.,[29] .From a numerical calculation 

procedure, these previously reported studies can be divided into three categories: (1) methods 

using tear variables (bubble-point method); (2) relaxation techniques (dynamic approach); and (3) 

methods incorporating the Newton-Raphson method. [29] 

 

The presence of a control system in a process introduces additional dynamics which, when 

coupled with dynamics of the unit, give rise to more complicacy.  

 

 ASPEN technology uses inside-out simulator model in ASPEN PLUS, in computer program 

called RAD FRAC and MULTIFRAC, these applications include [1]: 

1. Absorption, stripping, reboiled absorption, reboiled stripping, extractive distillation, and 

azeotropic distillation  

2. Three phase(vapor-liquid-liquid) systems 

3. reactive systems 

4. highly nonideal system requiring activity-coefficient models 

5. interlinked systems of separation units, including pumparounds, bypass, and external heat 

exchangers 

6. narrow-boiling, wide-boiling, and dumbbell(mostly heavy and light components with little 

in between ) feeds 

7. presence of free water 

8. wide variety of specification 

9. use of murphree-stage efficiencies 

10. RADFRAC is able to handle both equilibrium reactions as well as kinetically limited 

reactions 
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   Chapter-3 

 Steady state simulation 

3.1 CONFIGURATION-1(SINGLE COLUMN WITH SINGLE FEED): 

The simulation of the ethyl acetate column is carried out using the rigorous distillation model 

RADFRAC from the flow sheet simulator Aspen Plus. In the simulations a property method 

WILSON is used from ASPEN global properties. The WILSON property method uses [4] 

• The Wilson activity coefficient model for the liquid phase  

• The ideal gas equation of state for the vapor phase 

• The Rackett model for liquid molar volume 

• Henry's law for supercritical components 

The WILSON model can describe strongly nonideal liquid solutions. The model cannot handle 

two liquid phases. In that case use other activity model like NRTL or UNIQUAC. The property 

methods with a vapor phase model that can be used up to moderate pressures, have the Poynting 

correction included in the liquid fugacity coefficient calculation. It can also handle any 

combination of polar and non-polar compounds, up to very strong non-ideality [4].  

The kinetic rate for the production of ethyl acetate in the liquid phase is adopted from the data of 

Holland [27] for unanalyzed reaction [5]. However we used different magnitude of rate constants to 

simulate the realistic catalyzed reaction which is about 100 times faster than unanalyzed one. 

Since the system is highly nonideal, highly non-ideal convergence is used in ASPEN PLUS. 

When RADFRAC encounters slow or difficult convergence for highly nonideal systems using the 

standard algorithm, highly non-ideal convergence is recommended [4]. For any computer based 

simulation specification of problem is required and other variables are determined from specified 

variables. So the first simulation, Case 1, is made using the same specifications as Jin-Ho Lee, et 

al., [5].The total number of stages is 13, including a total condenser and a partial reboiler; the 

numbering of the stages is top downward, column pressure is 1 atm. All the stages are reactive 

stages. The feed rate is 1.076 mol/s with a liquid distillate of 0.2080 mol/s, giving bottoms of 

0.868mol/s. The feed is preheated to its bubble point at feed tray pressure and the reflux ratio is 

10. The feed is fed to the sixth stage from the top and has the following mol-fraction composition: 
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acetic acid x1 = 0.4962, ethanol x2 = 0.4808, water x3= 0.0229 and ethyl acetate x4= 0.0. Holdup 

volumes are 1 liter and 10 liters, respectively, for the reboiler and each of the stages l-l2. 

Although these specifications are the same as those of Jin-Ho Lee, et al. the results of this study 

as discussed below are different. Comparisons with Ho Lee, et al. are not included here because 

they used considerably different vapor-liquid equilibrium ratios as compared to those used here. 

The simulation results obtained with ASPEN-PLUS are shown in Figures 3.2-3.3. 

 

 

Figure-3.1 Single feed flow diagram in aspen plus user interface for RD 

 

 

   
                                                         

                                                  Figure-3.2 Stage wise composition profile 
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                                                    Figure-3.3 Stage wise temperature profile  

Effect of reflux ratio on composition: 

In steady state simulation of ethyl acetate reactive distillation column, keeping the entire 

specification constant as in configuration-1, reflux ratio is changed from 0.5 to 15. The liquid 

composition of ethyl acetate in distillate and in bottom is noted down from every simulation and a 

graph (fig 3.4) is plotted between reflux ratio and mole fraction of ethyl acetate. It is observed that 

after reflux ratio equal to 12 compositions is not changing significantly. So for further simulations 

reflux ratio equal to 12 is chosen. 

 

 

                           Figure-3.4 Effect of reflux ratio on liquid composition of ethyl acetate in distillate and bottom 
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Effect of distillate flow rate on composition: 

Updating the value of reflux ratio from previous study result in steady state simulation of ethyl 

acetate reactive distillation column, remaining specification kept as it is and now distillate flow 

rate is varied and the liquid composition of ethyl acetate in distillate and in bottom is noted down 

from every simulation and a graph (fig 3.5) is plotted between distillate flow rate and mole 

fraction of ethyl acetate. The results of this study are listed in Table 1. 

It is also observed that effect of distillate flow rate on composition throughout the column is much 

larger than the effect of reflux ratio. 

 

Table 1(simulation result for changing distillate flow rate on composition): 

Distillate(mol/sec) EtAc in distillate EtAc in bottom 

0.1 0.5057 0.2928 

0.15 0.5114 0.2752 

0.2 0.5159 0.2546 

0.208 0.5166 0.2510 

0.25 0.5196 0.2307 

0.3 0.5222 0.2027 

0.35 0.5239 0.1697 

0.4 0.5244 0.1306 

0.45 0.5224 0.0835 

0.5 0.5096 0.0271 

 

From the graph it is observed that as distillate flow rate is changing liquid composition of ethyl 

acetate in distillate increases up to distillate flow rate equal to 0.4 mol/sec and then starts 

decreasing but concentration of ethyl acetate in bottom is decreasing continuously. Accordingly 

we choose distillate flow rate equal to 0.4 mol/sec future simulations. 
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                     Figure-3.5 Effect of distillate flow rate on liquid composition of EtAc in distillate and bottom  

Effect of total number stage in column on composition: 

Considering pervious study results in steady state simulation of ethyl acetate reactive distillation 

column, our initial specification of reflux ratio and distillate flow rate has been changed to 12 and 

0.4 respectively. Now changing the total number of stage in ASPEN PLUS data browser and the 

liquid composition of ethyl acetate in distillate and in bottom is noted down from every 

simulation. Fig. 3.6 shows the effect of number of equilibrium reactive stages in this column on 

liquid composition of ethyl acetate in distillate and bottom at a pressure of 1 atm. While total 

number of stage is varied it is assumed that feed plate is fixed ratio of total number of stage. The 

results of this study are listed in Table 2. 

Table 2(simulation result for changing total no of stages in column on composition) 

Total number of 

stages Feed stage EtAc in Distillate EtAc in bottom 

8 3 0.4511 0.1525 

10 4 0.4806 0.1408 

13 6 0.5196 0.1313 

16 7 0.5331 0.1291 

20 9 0.5456 0.1274 

22 9 0.5459 0.1421 

23 10 0.5489 0.1535 
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         Figure-3.6 Effect of total no of stages in column on liquid composition of EtAc in distillate and bottom 

 

From Table-2 and fig-3.6 it is observed that liquid concentration of ethyl acetate in distillate and 

in bottoms follow different trend. In distillate it increases but after total number stage equal to 20 

increase is not significantly .while composition of ethyl acetate in distillate decreases up to total 

number of stages equal to 20 then starts increasing. So for further simulation total number of stage 

is equal to 20 and corresponding feed stage number is 9th. 

Effect of different activity model on composition: 

ASPEN PLUS has many in-built property models for liquid phase activity coefficient with 

combination of vapor phase model. In all Pervious study WILSON activity model is used. Now 

for this study activity model is changed and their effect on ethyl acetate concentration in distillate 

and bottom is studied. All other specifications are same as previous study; only total number of 

stage and feed stage in column is updated. Fig-3.7 shows composition profile of ethyl acetate in 

liquid phase throughout the column for different activity model. The results of this study are listed 

in Table 3. 

Table 3(simulation results for different activity model on composition) 

Activity model EtAc in Distillate EtAc in bottom 

WILSON 0.5457 0.1274 

NRTL 0.4914 0.1715 

UNIFAC 0.5217 0.1560 

UNIQUAC 0.4903 0.1664 
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                    Figure-3.7 Composition profile of ethyl acetate in liquid phase for different activity model 

 

 Conclusion of configuration-1 study: 

For a single-column, single-feed studies have been done. From results it can be easily seen that 

maximum concentration of liquid ethyl acetate in distillate is 0.55 and minimum concentration in 

bottom is 0.13.  Our initial specification of reflux ratio, total number of stage, feed tray location 

and distillate flow rate has been changed but for all the sets of specifications studied, a nearly 

pure ethyl acetate distillate is not obtained and a high conversion is not possible. 

 

 

3.2 CONFIGURATION-2(SINGLE COLUMN WITH DOUBLE FEED): 

In this configuration of ethyl acetate reactive distillation simulation using ASPEN PLUS two 

separate saturated liquid feeds are used. Considering previous study results of configuration-1 

specification is modified. In this configuration specifications are total number of stages is 20, 

including a total condenser and a partial reboiler; the numbering of the stages is top downward the 

column pressure is 1 atm. All the stages are reactive stages. Since column has two feed streams: a 

ethanol feed and a acetic acid feed, feed rate of ethanol is 0.5173 mol/sec and of acetic acid is 

0.5339 mol/s with a liquid distillate of 0.40mol/s. The feed is preheated to its bubble point at feed 

tray pressure and the reflux ratio is 12.  Holdup volumes are 1 liter and 10 liters, respectively, for 

the reboiler and each of the stages l-l9. 
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In the case of esterification, the order of volatility is ethyl acetate, ethanol, water and acetic acid. 

Liquid rich in acetic acid is fed to a stage between the top and the middle portion of the column. 

Vapor rich ethanol is fed to a stage between the middle portion and the bottom of the column. 

Reactant ethanol is absorbed into the liquid phase where the reaction takes place and product 

ethyl acetate is stripped from the liquid phase and carried out the top of the column. Thus, it is 

expected that the middle portion of the distillation tower is the chief reaction zone. The rectifying 

section fractionates the ethyl acetate out of the acetic acid, and the stripping section removes 

alcohol from water. Ideally, the ethyl acetate is the distillate and water is the bottoms product. 

At first acetic acid is fed at stage 9th and ethanol at 10th. The ethanol feed stage location is varied 

in the simulations between stage 10 and stage 18 keeping acetic acid feed stage constant. A series 

of simulations are carried out with varying ethanol feed stage location. The ethanol feed is moved 

sequentially down the column from stage 10 to stage 18. A stage came where maximum purity of 

ethyl acetate in distillate and minimum in bottom is obtained; this stage number is chosen for 

ethanol feed location. Then acetic acid feed stage is varied keeping ethanol feed stage constant at 

new feed stage location. Acetic acid feed stage location varied between stage 9 and stage 2 and 

the liquid composition of ethyl acetate in distillate and in bottom is noted down. The results of 

this study are listed in Table 4. 

 

 

                     

                Figure-3.8 Double feed flow diagram in aspen plus user interface for Reactive Distillation 
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Table 4 (simulation result for double feed reactive distillation column) 

Acetic acid(stage no) Ethyl alcohol(stage no) Ethyl acetate (in dist.) Ethyl acetate(in 

bottom) 

9 10 0.5480 0.1215 

9 12 0.5505 0.1212 

9 16 0.5528 0.1210 

9 18 0.5533 0.1209 

13 18 0.5534 0.1209 

16 18 0.5536 0.1209 

6 18 0.5557 0.1214 

4 18 0.5641 0.1242 

2 18 0.5841 0.1431 

 

From results it is easily concluded that double feed in a single reactive distillation column gives 

more purity than single feed. However, the total amount of ethyl acetate in distillate just changes 

slightly. 

 

3.3 Configuration-3(Double Reactive Distillation Column): 

 

 

 

             
                  Figure -3.9 Double reactive distillation column diagram in aspen plus user interface  
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Our previous configuration study results show that in the distillate composition of ethanol is 

significant. So if a new reactive distillation column fed with acetic acid is added, ethanol might 

get converted to ethyl acetate. 

 For steady state simulation of ethyl acetate reactive distillation in ASPEN PLUS ,specification of 

both column is kept same as used in previous study i.e. the total number of stages is 20, including 

a total condenser and a partial reboiler; the numbering of the stages is top downward, column 

pressure is 1 atm. All the stages are reactive stages. The feed rate is 1.076 mol/s with a liquid 

distillate of 0.4 mol/s. The feed is preheated to its bubble point at feed tray pressure and the reflux 

ratio is 12. The feed is fed to the ninth stage from the top and has the following mol-fraction 

composition: acetic acid x1 = 0.4962, ethanol x2 = 0.4808, water x3= 0.0229 and ethyl acetate x4= 

0.0. Holdup volumes are 1 liter and 10 liters, respectively, for the reboiler and each of the stages 

l-l2. Initially distillate from column-1 and additional acetic acid fed to reactive column-2 at same 

stage 9th. Quantity of acetic acid fed to reactive distillation column-2 is slightly more than ethanol 

which is present in distillate from colum-1. Quantity of ethanol from reactive distillation column-

1 can be found out by checking column profile then composition of liquid from stage-1. Hence 

quantity of acetic acid added to second reactive distillation column is 0.2 mol/sec. The simulation 

results obtained with ASPEN-PLUS are shown in Figure 3.10. 

        

                  Figure-3.10 Stage-wise liquid composition profile of ethyl acetate in RD-1 and RD-2 
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

E
tA

c 
m

ol
e 

fr
ac

tio
n 

 →

Stage no ---->

ETHYL(RD1)

ETHYL(RD2)



27 

 

 

Effect of changing feed stage to reactive column-2 on composition profile: 

 Now acetic acid is fed to a stage between the top and the middle portion of the reactive column 

(RD2), let’s say on 4th stage and distillate from RD-1 is fed to a stage between the middle portion 

and the bottom of the column say 14th stage. Fig 11 shows stage-wise composition profile of ethyl 

acetate in liquid phase in both columns.  

 

     

 

      Figure- 3.11 Stage-wise liquid composition profile of ethyl acetate in RD-1 and RD-2 with different feed location 

 

A similar simulation is also done with feeding acetic acid to a stage between the middle portion 

and the bottom of the reactive column-2 and distillate to a stage between the top and the middle 

portion of the reactive column-2. 

Composition profile of reactive column-1 is not altered significantly on varying feed location to 

reactive column-1 and in reactive column-2 stage wise composition profile is altered but distillate 

and bottom composition of ethyl acetate remains almost constant. 
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3.4 CONFIGURATION-4(WITH RECYCLING OF HEATED SIDE STREAM/ 

PUMPAROUND): 

Since esterification is an endothermic reaction, equilibrium shifts at higher temperatures toward 

the products; equilibrium conversion can be increased.  

This fact leads to a new configuration with pumparounds to get more ethyl acetate in equilibrium 

limited esterification. 

                     

              
                     Figure-3.12 Reactive distillation column with heated side-stream in aspen plus user interface 
 
To make pumparounds configuration for simulation of ethyl acetate reactive distillation column 

using ASPEN PLUS, Tear stream convergence or pumparounds form can be used. Both 

procedures are discussed below. 

1. Tear stream: which stream is to be recycled initially break into its component stream and 

when specification of both stream is fairly close, the recycle loop is closed using Tear 

from data browser window of ASPEN PLUS e.g. in fig-3.12 initially stream-7 had two 

different stream; one is coming out from HE block (say ‘output’) and other is going to RD 

block (stream’7)’with initial guess specification like temperature, pressure, flow rate and 

composition. Several runs were made in which guessed composition of ‘7’ stream 

compared with simulation results of ‘outlet’ stream. When both are fairly closed, the loop 

‘output/7’ is closed. The procedure for doing this involves three steps: (a) Delete  either 

one of stream(say ’output’) and (b) Reconnect another stream(click on the stream’7’ and 

reconnect to block HE) (c) Go down near the bottom of list of items on the data browser 

window of ASPEN PLUS and click convergence and then Tear. Where the drop down 

menu is used to select stream’7’. 
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2. Pumparounds form: it is quite easier than Tear method and also takes comparatively less 

time in convergence. Pumparounds form is in-built with ASPEN PLUS.  RadFrac can 

handle pumparounds from any stage to the same or any other stage. Use the Pumparounds 

form to enter all pumparound specifications .A pumparound can be either a partial or total 

drawoff of the: Stage liquid, First liquid phase, Second liquid phase or Vapor phase.  

If the pumparound is a partial drawoff of the stage flow, we must enter two of the 

following specifications: 

• Flow rate 

• Temperature 

• Temperature change 

• Vapor fraction 

Pressure specification is optional. The default pumparound pressure is the same as the 

source stage pressure. We can associate a heater or cooler with a pumparound.  RadFrac 

assumes that the pumparound at the heater/cooler outlet has the same phase condition as 

the pumparound at the inlet. We can override the phase condition using the valid phases 

field on Pumparound Specifications sheet. RadFrac can return the pumparound to a stage 

using either the: 

• On-stage option: RadFrac returns the pumparound to the specified stage. The  

pumparound is not flashed at the return stage pressure. 

• Above-stage option: returns the pumparound to the column between two stages. The 

pumparound is flashed at the specified return stage pressure. RadFrac returns the 

liquid portion to the specified return stage, and the vapor portion to the stage above. 
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Effect of temperature difference across Heat Exchanger on composition of ethyl acetate: 

In the first study of this configuration, temperature difference across heat exchanger is changed 

and effect on concentration of ethyl acetate in distillate and bottom is noted down for each 

simulation. pumaround is partial drawoff so two specification flow rate and temperature 

difference are specified. Draw stage is 9th and drawing phase is liquid and return is “on-stage” 

type to 8th stage. The results of this study are listed in Table 5.  

Table-5(study result of varying ∆T across Heat Exchanger on composition) 

∆T across Heat Exchanger Ethyl acetate(in Distillate) Ethylacetate(in bottom) 

5 0.5436 0.1277 

10 0.5434 0.1277 

15 0.5431 0.1277 

20 0.5430 0.1277 

25 0.5428 0.1278 

30 0.5425 0.1278 

From study results it is observed that ethyl acetate purity decreases slightly in distillate and in 

bottom remains almost constant. 

Effect of draw stage location and return stage location: 

Keeping draw stage at 9th as in previous study, pumparound return stage is varied and result is 

summarized in table below. At a particular combination of draw stage and retuen stage 

temperature difference across heat exchanger is also varied. 
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Table 6a (study result of pumparound return location on composition) 

Pumparound ∆T across Heat 
Exchanger 

Ethyl 
acetate(in 
Distillate 

Ethyl acetate(in 
bottom) 

Inlet stage-8 

Draw stage-9 

 

5 0.5436 0.1277 

15 0.5431 0.1277 

25 0.5428 0.1278 

Inlet stage-6 

Draw stage-9 

 

5 0.5333 0.1292 

15 0.5325 0.1293 

25 0.5315 0.1295 

 

Now pumparound inlet stage location is moved downward in lower section of column. 

     Table 6b (study result of pumparound return location on composition) 

pumparound ∆T across Heat 
Exchanger 

Ethyl 
acetate(in 
Distillate 

Ethyl acetate(in 
bottom) 

Inlet stage-10 

Draw stage-9 

 

5 0.5456 0.1275 

15 0.5454 0.1275 

25 0.5425 0.1275 

Inlet stage-12 

Draw stage-9 

 

5 0.5454 0.1275 

15 0.5453 0.1275 

25 0.5451 0.1275 

From table it is observed that ethyl acetate increases when inlet of pumparound is between middle 
and bottom section of column.  
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DYNAMIC SIMULATION  
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ASPEN PLUS steady state simulation files are indispensable for dynamic simulation. So first 

steady state simulation is done and these files are exported to ASPEN DYNAMICS. In 

preparation for exporting the steady-state flow sheet into Aspen Dynamics, all equipment is 

needed to be sized. Column diameters are calculated by Aspen tray sizing. Reflux drums and 

column bases are sized to provide 5 min of holdup when 50% full, based on the total liquid 

entering the surge capacity. Pumps and control valves are not necessary for steady-state 

simulation, but they are vital for a realistic dynamic simulation. Providing sufficient pressure drop 

over a control valve at design conditions with the valve at some fraction opening (typically 50%) 

is crucial for dynamic controllability. These are specified to give adequate dynamic rangeability. 

Typical valve pressure drops are 2 atm. [3] 

Steady state simulation of ethyl acetate reactive distillation column congifuration-1(single 

column, single feed) is exported to ASPEN DYNAMICS. The diameter of a distillation column is 

determined by the maximum vapor velocity. If this velocity is exceeded, the column liquid and 

vapor hydraulics will fail and the column will flood. Reliable correlations are available to 

determine this maximum vapor velocity. Since the vapor flow rates change from tray to tray in a 

nonequimolal overflow system, the tray with the highest vapor velocity will set the minimum 

column diameter. Aspen Plus has an easy-to-use tray sizing capability. Click the sub-item Tray 

Sizing under the COLUMN block, and then click New and OK for the identification number. 

where the column sections to be sized and the type of tray can be entered.  

Aspen Dynamics calculates tray pressure drops rigorously, and they change with vapor and liquid 

rates. In steady state simulation constant pressure is assumed throughout the column but before 

exporting files to aspen dynamic a pressure drop equal to 0.006 atm is chosen. [3] 

   
                      Figure-4.1 Initial screen in ASPEN DYNAMICS for single column with single feed  
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Plate hydraulics is taken from Jin-Ho Lee et al [5] and values are entered by clicking the dynamics 

button on the top toolbar. The window that opens has several page tabs. On the Reflux Drum page 

tab, the appropriate diameter and length are entered. The same is done on the Sump page tab. 

Finally, the Hydraulics page tab is clicked, and on which stage numbers (2 through 19) and the 

column diameter (0.6 m) are entered. The values of weir height and tray spacing are 0.05 and 

0.340 m, respectively.  

The initial flow sheet has some default controllers already installed (Fig-4.1). In this single-

column process there is only one default controller, the pressure controller. It is configured to 

measure condenser pressure and manipulate condenser heat removal. At a minimum, four 

additional controllers must be added to achieve effective operation of the column: 

1. Reflux drum-level controller 

2. Base-level controller 

3. Feed-flow controller 

4. Tray temperature controller 

 

For liquid level control our control objective is to keep each liquid level within a certain range 

around a desired set point. Consequently, proportional control alone is satisfactory. For flow 

control systems a PI controller is satisfactory because it eliminates offset and remains acceptable 

speed of response. For temperature control a PID controller would be the most appropriate, 

because it can allow high gains for faster response without undermining the stability of system[28] 

 

4.1 Installing level controller (LC1 & LC2) 

For level controller-1(LC1) process variable (PV) is liquid level on the last stage of the column 

(stage 20) and manipulated variable (OP) flow rate through valve V3. The action of the controller 

should be Direct because if the level increases, the signal to the valve should increase (PV↑, OP↑) 

to remove more bottoms. In some columns, base level is controlled by manipulating a valve in the 

feed to the column. In that control structure, the base level controller action should be Reverse. 

Since we want proportional-only control, the controller gain is set equal to 2 and the integral time 

is set at a very large number (9999 min). The second-level controller LC2 for the reflux drum is 

installed and connected in the same way. The PV signal comes from the level on stage 1. The OP 
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goes to valve V2. A direct-acting proportional-only controller is specified. The default value of 

the controller output range is 0–100% 

4.2 Installing flow controller 

The next basic controller that we need to set up is a flow controller on the feed. A PID controller 

is placed on the flow sheet. Its PV signal is the molar flow-rate of feed stream FEED. Its OP 

signal goes to valve V1. After opening the Tuning page tab and clicking the Initialize Values 

button, we set the controller to be Reverse-acting, and use conventional flow controller tuning 

(KC=0.5 and integral time= 0.3 min) [3]. The most common error in setting up the flow controller 

is to forget to specify Reverse action. Since flow control is very fast and essentially algebraic, it 

seems to help the numerical integrator to use some filtering in a flow controller. The Filtering 

page tab is selected, the Enable filtering box is checked, and a small filter time constant (0.1 min) 

is typed. 

4.3 Installing temperature controller  

A PIDIncr controller is installed on the flow sheet in the normal way. The important difference 

between PID and the PIDIncr controller is that PIDIncr has a built-in relay–feedback test 

capability, which make this dynamic test a breeze. A temperature controller is used to maintain a 

tray temperature in the column. Looking at the temperature profile in Aspen Plus, we see that 

stage 19 displays a fairly steep slope. Its temperature is 361.70K. The PV is selected to be the 

temperature on stage 19. The OP is selected to be the reboiler heat input QRebR The controller 

action should be set at Reverse because if the tray temperature is going up, the reboiler heat input 

should be decreased. The program is run to make sure that everything works okay without a lag or 

a dead time in the loop. Now we back up and insert a dead time element on the flow sheet 

between the column and the TC temperature controller. The reason for installing the controller 

initially without the dead time element is to avoid initialization problems that sometimes crop up 

if we attempt to install the dead time and the controller all in one shot. 

RELAY FEEDBACK TEST: 
Applications of relay feedback to distillation columns, reactor/separator recycle plants, fuel 

processors, and reactive distillation columns have been reported in the literature, and the method 

is shown to be effective for nonlinear processes. The relay feedback test proposed by Åstrom and 

Hagglund[31] has received much attention in the process control community. Luyben[32]was among 

the first to use the relay feedback test for system identification and it is shown to be effective for 



36 

 

highly nonlinear chemical processes, namely, high-purity distillation columns. Chang et al.
 [33] 

derived the transfer function from the relay feedback test with increased accuracy. The autotune 

variation (ATV) identification method has become a standard practice in chemical process 

control. 

In ASPEN DYNAMICS we specify a Closed loop ATV as the Test method. The default value of 

the Relay output amplitude is 5%, which is usually good. For a very nonlinear column, the 

amplitude may have to be reduced. After several (4–6) cycles have occurred, test is finished and 

the Tyreus–Luyben Tuning rule is selected. The resulting controller settings are gain KC =4.84 

and integral time is 8.43 min.  

4.4 Installing composition controller  

Composition measurement typically has larger dead time and lags than does temperature Control. 

We assume a 3-min dead time in the composition measurement. First, we add a PIDIncr controller 

to the flow sheet and make the appropriate connections and do not use a dead time, which will be 

added later. The controller should be set to Reverse. The PV is the mole fraction of ethyl acetate 

in the distillate stream. The OP is reboiler heat input. A composition transmitter range of 0–0.05 

mF ethyl acetate is used, after the simulation is run, a 3-min dead time is inserted. Initialization 

and Dynamic runs are made to converge to steady-state conditions. Then a relay-feedback test is 

run. Controller is updated with Tyreus–Luyben Tuning. 

 

4.6 Cascade Control Structure: 

Temperature control has the advantage of being fast, but it may not hold the product purity 

constant. Composition control is slow, but it will drive product purity to the desired value. The 

final control structure studied is a cascade combination of composition and temperature control 

that achieves both fast control and the maintenance of product purity. 

The tray temperature controller is the secondary controller. It is set up in exactly the same way as 

we did in the previous section. It looks at tray temperature and manipulates reboiler heat input. 

However, its set point is not fixed. The set point signal is the output signal of the composition 

controller, which is the primary controller. 

The tuning of the secondary temperature controller remains unchanged. The primary composition 

controller must be retuned since its output signal is now a temperature set point. 
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                        Figure-4.2 Configuration-1 with cascade control structure in ASPEN DYNAMICS 

4.7 Performance Evaluation of Control Structure:  

We want to see how well control structures developed above perform in the face of disturbances, 

specifically, how close to the desired values of temperature and composition these variables are 

maintained, both at steady state and dynamically. A disturbance in feed flow and in composition 

is made and the transient responses are plotted. 

At time equal 1 h, the set point of the feed flow controller is changed from 1.073 to 1.4mol/sec. 
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 Figure-4.3 Dynamic response of composition in bottom and distillate subjected to feed flow disturbance 
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Ethyl acetate in Bottom composition attains a new steady state while no change in distillate 

composition. 

Now mole fractions of ethanol and acetic acid are changed from 0.48/0.50 to 0.52/0.46. 
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   Figure-4.4 Dynamic response of composition in bottom and distillate subjected to feed composition disturbance 
 
  Set point change in composition controller( 0.45 to 0.55) 
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Figure-4.5 Dynamic response of composition in bottom and distillate subjected to distillate set-point disturbance             



39 

 

 Conclusion:                                        

In this work, all the results are obtained from steady-state and dynamic simulations using ASPEN 

PLUS 2006.2 and ASPEN DYNAMICS 2006.2 programs for ethyl acetate reactive distillation 

column. Double feed gives more purity of ethyl acetate than single feed. Double column 

configuration with additional acetic acid fed to second column drastically reduces ethyl acetate in 

bottom but in top changes slightly. Providing pumparound in middle and bottom section of 

column increases ethyl acetate in distillate. Dynamic study demonstrates the value of dynamic 

simulation in the analysis of alternative control schemes for reactive distillation process. 
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