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ABSTRACT 

 

Using changes in global dynamic characteristics for detection of cracks has been a hot research 

topic now a days and is a source of attraction for civil, aerospace, and mechanical engineering 

communities in recent years. Crack in vibrating components causes a change in physical 

properties of a structure which in turn affects dynamic response characteristics. Therefore we 

have to study the dynamic response characteristics in order to avoid any catastrophic failures and 

to follow structural integrity and performance for which the parameters considered are crack 

depth and its location. 

In the present study, vibration analysis is carried out on a cantilever beam with two open 

transverse cracks, to study the response characteristics. Its natural frequency and mode shapes 

are determined by applying suitable boundary conditions.  The results obtained numerically are 

compared with the results obtained from the simulation. The simulations have done with the help 

of ALGOR software. 

Then by using Feed-forward, back propagation neural network the relationship between the 

location and the depth of the crack as input and the structural eigenfrequencies as output are 

studied. 

At the end by performing both the simulation and computational analysis it is proved that the 

presence of cracks affects the natural frequency and the mode shapes of the structure. The results 

indicate that the current approach can identify both the location and the extent of damages in the 

beam. 
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1. INTRODUCTION 

 

Damage detection and location, and condition assessment of structures have always been 

important subjects. Damage in a structure generally causes a local increase in flexibility, which 

depends on the extent of the damage. This reduces the natural frequencies of vibration and 

affects the natural mode shapes -effects which have been used, with somewhat mixed success, to 

evaluate the deterioration [1]. 

Cracks present a serious threat to the performance of structures since most of the structural 

failures are due to material fatigue. For this reason, methods allowing early detection and 

localization of cracks have been the subject of intensive investigation the last two decades. As a 

result, a variety of analytical, numerical and experimental investigations now exist. A review of 

the state of the art of vibration based methods for testing cracked structures has been published 

by Dimarogonas (1996). 

The most important aspects of structural health monitoring is that the technique provides 

information on the life expectancy of structures, simultaneously detects and locates structural 

damage. This needs idea of the model of structures in great detail, which is always not possible. 

In addition to it, dynamic systems usually posses non-linear characteristics, which causes 

practical difficulties on the model-based damage detection techniques. 

In the present survey a number of papers published so far have been surveyed, reviewed and 

analyzed. Most of researchers studied the effect of single crack on the dynamics of structures. 

However in actual practice structural members are highly susceptible to transverse cross-

sectional cracks due to fatigue. Therefore attempt has been made to monitor the dynamic 

behavior of basic structures with crack systematically.  Here  vibration analysis on a cantilever 



beam with and without crack is carried out. First the results are obtained analytically and then 

they are compared with simulation results.  In first phase two transverse surface cracks are 

considered in developing the analytical expressions in dynamic characteristics of structures. 

These cracks introduce new boundary conditions for the structures at the location of the cracks. 

These boundary conditions are derived from strain energy equation using castiligiano’s theorem. 

Presence of crack also causes reduction of stiffness of the structures which has been derived 

from stiffness matrix. The detailed analyses of crack modeling and stiffness matrices are 

presented in subsequent sections.  Euler-Bernoulli beam theory is used for dynamic 

characteristics of beams with transverse cracks. Modified boundary conditions due to presence of 

crack have been used to find out the theoretical expressions for natural frequencies and mode 

shape for the beams. 

Artificial Neural Networks (ANN) has emerged as a promising tool for monitoring and 

classification of fault in machine and equipment. This technique is well prepared for solving 

inverse variational problems in the context of monitoring and fault detection because of their 

pattern recognition and interpolation capabilities (Lopes, Jr. et al., 1997). ANN also successfully 

approach and classify the problems associated with non-linearities, provided they are well 

represented by input patterns, and also can avoid the complexity introduced by conventional 

computational methods. Furthermore, the learning capabilities of neural networks are well suited 

to process a large number of distributed sensors, which is ideal for smart structures. 

In this study a feed-forward back-propagation neural network is used to learn the input (the 

location and depth of a crack)-output (the structural eigen frequencies) relation of the structural 

system. A neural network for the cracked structure is trained to approximate the response of the 

structure by the data set prepared for various crack sizes and locations. 
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2. LITERATURE REVIEW 

Local flexibility are induced due to the presence of cracks in the structure which affects the 

dynamic behavior of the whole structure to a considerable degree. It causes reduction in natural 

frequencies and changes in mode shapes of vibrations. Any analysis of these changes makes it 

possible to identify cracks.  

The  effect  of  cracks  upon  the  dynamic  behaviour  of  cracked  beams  has  been  studied by  

many  authors.  Dimarogonas  [ 11, Chondros  [2]  and  Chondros  and  Dimarogonas  [3,4] 

modeled  the  crack  as  a  local  flexibility  computed  with  fracture  mechanics  methods  and 

measured  experimentally,  and  they  developed  a  spectral  method  to  identify  cracks  in 

various  structures  relating  the  crack  depth  to  the  change  in  natural  frequencies  of  the first  

three  harmonics  of  the  structure  for  known  crack  position.  

Cawley  and  Adams  [5] have  developed  a technique based on experiment to  estimate  the  

location  and  depth  of  the  crack from  changes  in  the  natural  frequencies. Anifantis  et al. [6] 

developed  the  spectral method  for  identification  of  earthquake-induced  defects  in  

reinforced  concrete  frames  by analyzing   the  changes  in  the  vibration  frequency  spectrum.  

They  also  showed  that  any localized  damage,  such  as  a  crack,  would  affect  each  

vibration  mode  differently,  for different structures,  depending  on  the  particular  location,  

orientation  and  magnitude  of the  crack. 

 Kirshmer  [7],  Thomson  [8]  and  Petroski  [9,  lo]  explained  the  effects  of  cracks on  

structural  response  through  simple  reduced  section  models  of  cracked  beams  using energy  

methods,  and  elaborated  the  effect  of  the  size  and  location  of  the  crack  to  the natural  

frequency  and  vibration  mode  of  the  damaged  beam.  



 Inagaki  ef al. [ 11], in the case of transverse vibrations of cracked rotors, estimated the crack 

size and position by natural vibration analysis and by static deflection analysis. Grabowski  [12] 

came to the conclusion that there is a strong dependence of vibrational behavior  of cracked 

rotors on the crack position and magnitude using modal analysis.  Mayes  and Davies [13] 

proposed a method for the prediction of the magnitude of a rotating  cracked and rotor crack 

location, from analytically obtained mode shapes and frequency measurements.  

Christides and Barr  [ 141 assumed an exponential stress distribution in the vicinity of the crack 

and applied a variational principle to study the dynamic behavior of the system. If the stress 

distribution be known,  it would have made this method very rational. The exponential 

approximation is valid only for notches and the exponent is estimated experimentally. In fact, it 

was pointed out by Warburton  [ 151that,  for example, for torsional vibration of rods, the local 

flexibility approach could be used for the estimation of  the  Christides  and  Barr  exponent. 

Yuen  [16]  presented a systematic  study  of  the  relationship  between size and damage location 

and the changes in the eigenvectors and eigenvalues of a cantilever beam. 

Stubbs and Kim,1996[17] proposed that to detect damage using modal based methods,  the 

vibration response of a structure before and after damage occurs is usually desired although a 

baseline is not always required. If damage location is known in advance, such as at critical bolt 

joints, an electro-mechanical impedance method advanced by Rogers et al. (e.g. Liang, Sun and 

Rogers, 1996; Rogers and Giurgiatiu , 1997) has been shown to be very effective. 

Wu, Ghaboussi and Garrett(1992)[18] adopted an NN model to portray the structural behavior 

before and after damage in terms of the frequency response function , and then used this trained 

model to detect location and extent of damages by feeding in measured dynamic response. 



Masri , Ghassiakos and Caughey (1996)[19] used a multilayer perceptron NN model to monitor 

the change in the dynamic characteristics of a structure - unknown system. Zhao , Ivan and 

DeWolf (1998)[19] used a counter-propagation NN model to identify the damages in beams and 

frames. 

Klenke and Paez (1994)[20] used two probabilistic techniques , one of which involved a 

probabilistic neural network model ,to detect the damages in the aerospace housing components. 

The application of neural networks in the area of damage detection has also been studied by 

numerous researchers (Elkordy, ChangandLee, 1993; Leathand Zimmerman ,1993; Kirkegaard 

and Rytter,1994;Manning, 1994;Stephens and VanLuchene,1994; Chaudhry and Ganino, 1994; 

Pandey and Barai,1995). Comprehensive reviews on the damage detection using NN models 

have been documented by Bishop (1994) and Doebling et al. (1996). 

Adams et al.[21] used the decrease in natural frequencies and increase in damping to detect  

cracks in fiber-reinforced plastics. Loland et al. [22] and Vandiver [23] used the same principle 

to detect damage in offshore structures. From relative changes in the natural frequencies of 

different modes, Loland et al. could predict the location of the damage. They demonstrated the 

use of their technique on some platforms in the North Sea. The essence of the methods 

developed by the other researchers is similar, but different methods of data analysis were used. 

Dharmaraju et al.[24] considered Euler-Bernoulli beam element in the finite element analysis. In 

this the transverse surface crack is considered to remain open. A local compliance matrix of four 

degrees of freedom is considered for the modeling of a crack. This compliance matrix contains 

diagonal and off-diagonal terms. A harmonic force of given amplitude and frequency is used to 

excite dynamically the beam. The present identification algorithms have been illustrated through 

numerical examples. 



 Patil and Maiti [25,26] used a method for prediction of  location and size of multiple cracks 

based on measurement of  natural frequencies which has been  verified experimentally for 

slender cantilever beams with two and three normal edge cracks. In this the crack is represented 

by a rotational spring and the analysis is based on energy method. In this the beam is divided into 

a number of segments and each segment is considered to be associated with a damage index. The 

damage index indicates the extent of strain energy stored in the rotational spring. The crack size 

is computed by the help of a standard relation between stiffness and crack size. Number of 

measured frequencies is equal to twice the number of cracks is used for the prediction of size and 

location of all the cracks. 

Loutridis et al. [27] present a new method which is based on empirical mode decomposition and 

instantaneous frequency. A cantilever beam with a breathing crack is observed under harmonic 

excitation by both theoretically and experimentally to observe its dynamic behavior. 

Suh et al. [28] has proved that a crack has a significant effect on the dynamic behavior of a 

structure. The location and depth of the crack plays an important role. To find out the location 

and depth of a crack on a structure, a method is cited in this paper which uses hybrid neuro-

genetic technique.  Feed-forward back propagation neural networks are used to learn the input  

and output relation of the structural system. With this trained neural network, genetic algorithm 

is used to find out the crack location and depth thus minimizing the difference from the measured 

frequencies. 

Yoona Han-Ik et al.[29] examined the effect of two open cracks on the dynamic behavior of a 

double cracked simply supported beam both experimentally and analytically.By using 

Hamilton’s principle the equation of motion is derived and then it is analyzed by numerical 

method. 



Behera [30] in his research  work has developed the theoretical expressions to find out the  

natural frequencies and mode shapes for the  cantilever beam with two transverse cracks.  

Experiments have been conducted to prove the authenticity of the theory developed  
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3 .CRACK THEORY  

     
3.1 Physical parameters affecting Dynamic characteristics of cracked 

structures:  

The dynamic response of a structure is normally determined by the physical properties, boundary 

conditions and the material properties. The changes in dynamic characteristics of structures are 

caused by their variations. The presence of a crack in structures also modifies its dynamic 

behavior. The following properties of the crack influence the dynamic response of the structure.   

• The depth of crack 

• The location of crack 

• The orientation of crack 

• The number of cracks 

3.2 Classification of cracks   

On the basis of geometry, cracks can be broadly classified into: 

• Transverse cracks- These cracks are perpendicular to the beam axis. Due to 

transverse cracks the cross-section of the structure got reduced and thus weaken the 

beam. Due to the reduction in the cross-section it introduces a local flexibility in the 

stiffness of the beam due to strain energy concentration in the vicinity of the crack tip. 

• Longitudinal cracks- These cracks are parallel to the beam axis. It is dangerous 

when tensile load is applied at right angles to the crack direction i.e. perpendicular to 

beam axis or perpendicular to crack. 



• Slant cracks- These cracks are at an angle to the beam axis. It influences the torsional 

behavior of the beam. Their effect on lateral vibrations is less than that of transverse cracks of 

comparable severity. 

• Breathing cracks-These are the cracks that open when the affected part of the material is 

subjected to tensile stresses and close when the stress is reversed. When under tension the 

stiffness of the component is most influenced. A crack breathes when crack sizes are small, 

running speeds are low and radial forces are large. 

• Gaping cracks- These cracks always remain open. They are more accurately known as 

notches.  

• Surface cracks- These are the cracks that open on the surface. These can be easily 

detected by dye-penetrations or visual inspection.  Surface cracks  have a greater effect than 

subsurface cracks on the vibration behavior of shafts. 

• Subsurface cracks- These are the cracks that are not on the surface. Special techniques 

such as ultrasonic, magnetic particle, radiography or shaft voltage drop are needed to detect 

them. 

 

3.3 Modes of Fracture:-The crack experiences three specific types of loading which are- 

• Mode 1:-Represents the opening mode. In this opening mode the crack faces separates in 

a direction perpendicular to the plane of the crack and the respective displacements of crack 

walls are symmetric with respect to the crack front. Loading is perpendicular to the crack plane, 

and I has the tendency to open the crack. Generally Mode I is considered the most dangerous 

loading condition.   



• Mode 2:- Represents the in-plane shear loading. In this one crack face tends to slide with 

respect to another (shearing mode). Here the  stress is parallel to the crack growth direction. 

• Mode 3:-Represents the out-of-plane shear loading. Here the crack faces are sheared 

parallel to the crack front. 

 

 

 
Fig.3.1. Three basic mode of fracture. 
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                                           4. Finite Element Analysis: 

 

R. Courant[1] in 1943 was the first person who developed finite element analysis. In 1956 M. J. 

Turner et.al.[2] published a paper on the "stiffness and deflection of complex structures". FEA 

helps us to obtain new designs to meet the changing conditions inorder to avoid material failure. 

FEA uses a lot of  algorithms for its functioning. 2-D and 3-D model analysis are done by FEA 

in industry. 

 

4.1 Types of analysis done by FEA: 

Structural Analysis:   

Both linear and non-linear model comes under it. In case of linear models simple parameters are 

used and it is assumed that the material cannot plastically deformed. In case of non-linear models 

the material is stressed beyond its elastic properties for which the stress in the material vary with 

the amount of deformation. 

Vibrational Analysis:  

In this the material is tested for shock, impact and continuous and sudden vibrations. These 

situations affects the natural frequency of the structures and which may cause resonance and 

subsequent failure. 

Fatigue Analysis:  

It helps to predict the life cycle of a material by having cyclic loading on the material. It helps to 

know the areas more prone to propagation of cracks.  



Heat Transfer Analysis:  

It helps to predict the thermal conductivity or fluid dynamics of the material. 

4.2 Role of FEA:  

FEA helps the designer know all the theoretical stresses within the structure by showing all the 

problem areas in detail and thus helping the designer to predict the failure of the structure. It is 

an economic method of determining the causes of failure and the way the failures can be 

avoided. 

In our study we are analyzing the cracked beam in the FEA method by using a software known 

as ALGOR. It has several application in mechanical event simulation and computational fluid 

dynamics.Here the model is first designed in CATIA and then imported to the ALGOR 

software where after giving proper boundary conditions gives output in three modes of natural 

frequencies. 

4.3 STEPS for FINITE ELEMENT ANALYSIS of cracked beam 

model using ALGOR: 

1. Generating the model in designing software: 

The designing software used here is CATIA. The model of the beam having crack is generated 

in CAD software i.e. CATIA with different crack location and crack depth. The figures given 

below are the example of how models are generated in CATIA. 



                

                                              4.1   Model having no crack in CATIA 

              

                                              4.2   Model having single crack in CATIA 



             

                                             4.3   Model having double crack in CATIA 

2: The obtained file is saved in .stp format and is given as input file for ALGOR software. 

3: The file is opened in FEMPRO which is part of ALGOR for finite element analysis.  

 4: For design purpose natural frequency modal is selected and mesh settings are shown in the 

given figure, 

 



   

5: Now mesh is obtained . 

6: After meshing is over FEA editor is selected. 

7: Element type is selected as brick type. 

8: Material is chosen as per requirement. Here Aluminium 1050-H14 is taken, 

9: Then units are defined in SI.  

10: In this required surface of modal is selected and required boundary conditions are given:  

                             

The modal would become like: 

 



Step 10: Now we’ll click perform analysis button in the toolbar and the three modes would be 

shown as below: First mode of vibration in cantilever beam. 

 

                                    4.4  First mode of vibration in the cantilever beam. 

 

                                     4.5  Second mode of vibration in the cantilever beam. 



 

4.6 Third mode of vibration in the cantilever beam  

 

4.7 Fourth mode of vibration in the cantilever beam 



 

4.8 Fifth mode of vibration in the cantilever beam 
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                       5. NEURAL NETWORK 

Artificial Neural Networks (ANN) has emerged as a promising tool for monitoring and 

classification of fault in machine and equipment. This technique is well prepared for solving 

inverse variational problems in the context of monitoring and fault detection because of their 

pattern recognition and interpolation capabilities (Lopes, Jr. et al., 1997). ANN also successfully 

approach and classify the problems associated with non-linearities, provided they are well 

represented by input patterns, and also can avoid the complexity introduced by conventional 

computational methods.  It consists of a given set of inputs for which desired outputs are 

determined by establishing proper and desired relationship between the inputs and there outputs. 

The mapping between the input and the output is not given but has to be learned and once the 

mapping is learned or trained the desired outputs can be obtained. It helps to increase the 

efficiency of design process. 

 

                

                    

                   5.1 Figure of a simple neural network 



5.1 WORKING OF NEURAL NETWORK: 

               

   5.2. Figure showing working of a neural network 

Actually the function of the entire neural network is simply the calculation of the outputs of all 

the neurons considered. The output of a neuron is considered as a function of the weighted sum 

of the inputs plus a bias. In the given figure only one neuron is considered 

The output of a large number of neurons may be represented as, 

                                       (6.1) 

where,  

b(n) = threshold to the neuron is called as bias,  

wj(n) = weight associated with the jth input, and  

N = no. of inputs to the neuron. 

5.2 ACTIVATION FUNCTIONS: 

These are applied to the weighted sum of the inputs of a neuron to produce the output. The 

activation function is given by:  F(x) = 1 / (1 + e -k ∑ (wixi)). In this by using a nonlinear function 



which approximates a linear threshold allows a network to approximate nonlinear functions. An 

extra variable was given by the bias and the networks having bias are more powerful than those 

of having no bias. The neuron having no bias always gives a net input of zero to the activation 

function when the network inputs are taken as zero. This may not be acceptable and can be 

avoided by the use of a bias. 

Different Types Of Activation Functions: 

 

5.3 Learning Method: 

 Unsupervised 

 Reinforcement learning 

 Back propagation  



Unsupervised Learning: It takes no help from the outside. It has no training data, no 

information available on the desired output. It always learns by doing and facing different 

problems. It is used to pick out structure in the input i.e. clustering and reduction of 

dimensionality  compression. Kohonen’s Learning Law  is one of its example. 

Reinforced Learning: In this the teacher scores the performance of the training example. Then 

by using performance score to weights are shuffled randomly. It is  relatively a slow learning 

process due to ‘randomness’. 

Back Propagation Learning: In this we are able to get desired output of the training examples. 

Here the difference between actual & desired output gives the error. According to error size it 

changes the weight. Propagate back to previous layer after calculating output layer error. It 

improves the performance.  

 

5.4 MULTILAYER PERCEPTRON 

In multilayer perceptron (MLP), the input signal on a layer-by-layer basis propagates in a 

forward direction through the network. The network is trained in supervised  learning method 

with error back propagation algorithm [33] to solve various types of problems .In the given 

scheme of multilayer perceptron using four layers, xi(n)  shows the input, fj and fk shows the 

output of the two hidden layers and yi(n) shows the output of the final layer of the neural 

network.   



 

                                      5. 3  Structure of Multilayer Perceptron 

Let in the first hidden layer, the number of neurons be P1. So for the first hidden layer each 

element of the output vector can be obtained as, 

      (6.2) 

bj= threshold to the neurons of the first hidden layer, 

N = the no. of inputs 

 φ= the nonlinear activation function in the first hidden layer chosen  



Let in the second hidden layer the number of neurons be P2. 
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Where, 

 bk = threshold to the second hidden layer. 

The output of the final output layer can be obtained by 

     (6.4) 

 bl = threshold to the final hidden layer 

P3 = Number of neurons in the output layer. 

So the final expression for the output of MLP = 

        (6.5) 

5.5. Algorithm of Back Propagation: 

 

 5.4. Neural Network having Back Propagation Algorithm 



An MLP network having 2-3-2-1 neurons i.e. 2 number of neurons in the input layer, 3 number 

of neurons in the first hidden layer, 2 number of neurons in the second hidden layer and 1 

number of neurons in the output layer. Initially  the weights and the thresholds are taken as small 

random values. The intermediate and the final outputs of the MLP are calculated by using (6.2), 

(6.3), and (6.4) respectively. 

The final output  yl(n) at the output of neuron  l, is compared with the desired output d(n) and the 

resulting error signal e(n)  is obtained as   

                                              el(n)= d(n)- yl(n)      (6.6) 

The instantaneous value of the total error energy is calculated by, 

      (6.7) 

Inorder to update the weights and thresholds of the hidden layers and the output layers the error 

signal are used. The thresholds are updated in a similar way as that of the connecting weights. 

Unless the error signal become minimum, the weights and the thresholds are updated in an 

iterative method 

For calculating the weights the following formulas are used, 

wkl(n+1) = wkl(n) + ∆wkl(n)     (6.8)    

wjk(n+1) = wjk(n) + ∆wjk(n)                                      (6.9) 

wij(n+1)= wij(n)  +  ∆wij(n)                                     (6.10)      



  (6.11) 

µ= convergence factor (0< µ<1) 

Similarly ∆wjk(n) and ∆wij(n) can be obtained. 

Here we are using the back-propagation network, which is a multi-layer feed-forward neural 

network topology with one hidden-layer. The feed forward back propagation network consists of 

three layers i.e. the input layer, the hidden layer and the output layer. In this computations are 

passed forward from the input to output layer, following which calculated errors are propagated 

back in the other direction to change the weights to get better performance. 

  

    5.5.Three-layer neural network utilized in this study  



5.6 TRAINING OF NEURAL NETWORK: 

Because of the nature of  the sigmoid activation function, i.e., saturation function, the output 

variables should be scaled by the user, to be within the most active range of the sigmoid 

function. Scaling rule that minimum and maximum values are set to 0.1 and 0.9 is usually 

suggested. Through some trials, a network with neuron arrangement (input-hidden-output) of 4-

13-3 trained with 8 iteration for the 170 patterns are concluded to be the best for our application. 

Mean-square error (MSE) is employed as a measurement of modelling performance. The 

mathematical expression can be described as follows: 

  .                           

               Where ei denotes an error at pattern i and N is the total number of patterns. 

 

5. 6. Three-layer neural network with neuron arrangement of 4-13-3. 



TABLE 5.1 

Depth(D)              
in m 

l1 
in m 

l2 
 in m 

ω1 
in rad/s 

ω2 
in rad/s 

ω3 
in rad/sec 

 
 
 
 
 
 
 
0.002 

0.1  0.2  11.4224  71.239  89.85 

0.15  0.25  11.4234  71.025  89.87 

0.2  0.3  11.4241  71.256  89.87 

0.25  0.35  11.4240  71.255  89.86 

0.3  0.4  11.4239  71.236  89.84 

0.35  0.45  11.4254  71.256  89.82 

0.4  0.5  11.4246  71.237  89.84 

0.45  0.55  11.4257  71.248  89.83 

 

TABLE 5.2 

Depth(D)            
in m 

l1 
in m 

l2 
 in m 

ω1 
in rad/s 

ω2 
in rad/s 

ω3 
in rad/sec 

 
 
 
 
 
 
 
 
0.0021 

0.1  0.2  11.4167  71.177  89.72 

0.15  0.25  11.4177  71.192  89.74 

0.2  0.3  11.4182  71.196  89.74 

0.25  0.35  11.4181  71.195  89.73 

0.3  0.4  11.4170  71.180  89.70 

0.35  0.45  11.4193  71.196  89.73 

0.4  0.5  11.4185  71.181  89.71 

0.45  0.55  11.4196  71.190  89.74 

 

 



 

 

TABLE5.3 

Depth(D)            
in m 

l1 
in m 

l2 
 in m 

ω1 
in rad/s 

ω2 
in rad/s 

ω3 
in rad/sec 

 
 
 
 
 
 
 
.0022 

0.1  0.2  11.3117  71.1649  89.6657 

0.15  0.25  11.3127  71.173  89.68 

0.2  0.3  11.3132  71.177  89.68 

0.25  0.35  11.3131  71.176  89.67 

0.3  0.4  11.3120  71.167  89.64 

0.35  0.45  11.3143  71.177  89.67 

0.4  0.5  11.3131  71.168  89.65 

0.45  0.55  11.3142  71.171  89.68 

 

TABLE 5.4 

Depth(D)            
in m 

l1 
in m 

l2 
 in m 

ω1 
in rad/s 

ω2 
in rad/s 

ω3 
in rad/sec 

 
 
 
 
 
 
 
 
 
0.0023 

0.1  0.2  11.2537  71.058  89.404 

0.15  0.25  11.2547  71.072  89.42 

0.2  0.3  11.255  71.076  89.42 

0.25  0.35  11.2551  71.075  89.41 

0.3  0.4  11.2540  71.066  89.38 

0.35  0.45  11.2563  71.076  89.41 

0.4  0.5  11.2555  71.077  89.37 

0.45  0.55  11.2566  71.070  89.42 

 



 

TABLE 5.5 

 

Depth(D)            
in m 

l1 
in m 

l2 
 in m 

ω1 
in rad/s 

ω2 
in rad/s 

ω3 
in rad/sec 

 
 
 
 
 
 
 
 
.0024 

0.1  0.2  11.2701  71.055  89.3756 

0.15  0.25  11.2713  71.065 
 

89.382 

0.2  0.3  11.2728  71.072  89.393 

0.25  0.35  11.2736  71.076  89.408 

0.3  0.4  11.2744  71.079  89.417 

0.35  0.45  11.2759  71.080  89.423 

0.4  0.5  11.2738  71.065  89.407 

0.45  0.55  11.2740  71.070  89.415 

 

TABLE 5.6 

Depth(D)            
in m 

l1 
in m 

l2 
 in m 

ω1 
in rad/s 

ω2 
in rad/s 

ω3 
in rad/sec 

 
 
 
 
 
0.0025 

0.1  0.2  11.2127  71.0774  89.25 

0.15  0.25  11.2137  71.086  89.27 

0.2  0.3  11.2142  71.090  89.27 

0.25  0.35  11.2141  71.089  89.26 

0.3  0.4  11.2130  71.080  89.23 

0.35  0.45  11.2153  71.090  89.26 

0.4  0.5  11.2145  71.081  89.24 

0.45  0.55  11.2156  71.084  89.27 

 



 

 

 

 

                            

 

 

 

 

 

 

 

                                               5.7 Neural network output. 
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5.8  Comparison of the First estimated eigenfrequencies from the neural network to target values: 

 

5.9 Comparison of the Second estimated eigenfrequencies from the neural network to target values: 

 

5.10 Comparison of the third estimated  eigenfrequencies from the neural network to target values: 
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DISCUSSION: 

At first a cantilever beams having two cracks of different crack depths, starting from .002 to 

.0025m, and having different crack location, starting  from .1 and .2m to .45 and .55m, are 

designed in CATIA software and exported to an analysis software ALGOR where FEA analysis 

are done. However remarkable changes are observed in transverse mode shapes at the crack 

positions.  The transverse mode shapes for two cracks as shown in fig 4.4-4.8. In the FEA 

analysis using ALGOR software we get different frequencies for different crack depth and crack 

location. 

The  three-layer  neural  network having an input layer (I) with four input nodes, a hidden layer 

(H) with thirteen neurons and  an output layer (O) with four output node employed for this work 

is shown in fig 5.6. Then by taking the different frequencies as input in the neural network we 

are able to get the same crack depth and crack location that we have considered during the FEM 

and the results are shown in the tables 5.1 to 5.6. 

Mean-square error (MSE) is employed as a measurement of modeling performance which is 

shown in fig 5.7. In Fig.5.8 shows the first eigenfrequency f1 is monotonously decreasing as the 

crack location moves from the clamped end to the free end when the crack depth a1=a2 is kept 

constant, where as, the second and the third eigenfrequencies oscillate under the same situation 

as shown in Fig.5.9and 5.10 
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             6. CONCLUSION AND SCOPE FOR FUTURE USE 

The presence of crack affects the natural frequency of the structure distinctly. The changes in the 

natural frequency is directly influenced by the crack depth and crack location. The presence and 

position of the crack can be detected from the comparison of the fundamental modes between the 

cracked and uncracked beam. The frequency of the cracked cantilever beam decreases with 

increase in the crack depth for the all modes of vibration. 

In the Feed forward back propagation neural network, crack depth and crack location are taken 

as the input and the structural eigen frequencies are taken as output. From the neural network 

training, it is observed that the first eigen frequency f1 is monotonously decreasing as the crack 

location moves from the clamped end to the free end when the crack depth a1=a2 is kept constant. 

Whereas, the second and the third eigen frequencies oscillate under the same situation. 

A neural network for the cracked structure is trained to approximate the response of the structure 

by the data set prepared for various crack sizes and locations. Training data to train the neural 

network are properly prepared. 

FUTURE USE: 

• This process can be easily used for periodic inspection for an automated inspection of 

systems of remote structures, or for ones operating in a hostile environment. 

• It can be used to monitor the growth of crack, taking initially undamaged structure as the 

baseline for future measurements. 

 



  CHAPTER 7 

           

 

 

 

 

 

 

 
 
 
    
 
 
 
 
 

 

 

 

 

 

                REFERENCES 



7. REFERENCES   

1. Behera R.K., Vibration Analysis of multi cracked structure, PhD Thesis. 

2. Orhan Sadettin, Analysis of free and forced vibration of a cracked cantilever beam, NDT and E 

International 40, (2007), pp.43-450.   

3. Chasalevris Athanasios C. and Papadopoulos Chris A., Identification of multiple cracks in beams 

under bending,  Mechanical Systems and Signal Processing 20,  (2006), pp.1631-1673.  

4. Nahvi H. and Jabbari M., Crack detection in beams using experimental modal data and finite 

element model, International Journal of Mechanical Sciences 47, (2005), pp.1477–1497.  

5. Yang X. F., Swamidas A. S. J. and Seshadri R., Crack Identification in vibrating beams using the 

Energy Method, Journal of Sound and vibration 244(2), (2001), pp.339-357.  

6. Dharmaraju N., Tiwari R.  and Talukdar S., Identification of an open crack model in a beam based 

on force–response measurements, Computers and Structures 82, (2004), pp.167–179. 

7. Ruotolo R, et al. Harmonic analysis of the vibrations of a cantilevered beam with a closing crack, 

Compute Struct, 61(6), (1996), pp.1057–1074.  

8. Patil D.P., Maiti S.K., Experimental verification of a method of detection of multiple cracks in beams 

based on frequency measurements, Journal of Sound and Vibration 281,(2005), pp.439–451.  

9. Patil D.P., Maiti S.K, Detection of multiple cracks using frequency measurements, Engineering 

Fracture Mechanics 70, (2003), pp.1553–1572.  

10. Kisa Murat and Gurel M. Arif, Free vibration analysis of uniform and stepped cracked beams with 

circular cross sections, International Journal of Engineering Science 45, (2007), pp.364–380.  

11. Kisa M.  and Brandon J., The Effects of closure of cracks on the dynamics of a cracked cantilever 

beam, Journal of Sound and Vibration, 238(1), (2000) pp.1-18  

12. Loutridis S., Douka E. and Hadjileontiadis L.J., Forced vibration behaviour and crack    detection of 

cracked beams using instantaneous frequency, NDT&E International, 38(5), (2005), pp. 411-419. 

13. Darpe A.K.,Gupta K., Chawla A., Dynamics of a two-crack rotor, Journal of Sound and  Vibration, 

259 (3), (2003), pp.649–675.                                                                              

14. Ertuğrul Çam, Orhan Sadettin and Lüy Murat , An analysis of cracked beam structure    using 

impact echo method, NDT and E International 38, (2005), pp.368–373.  



15. Fang X., Luo H. and Tang J., Structural damage detection using  neural network with learning rate 

improvement, Computers and Structures 83 (2005), pp. 2150–2161.  

16. Suh M.W., Shim M. B. and Kim M. Y. Crack Identification using hybrid neuro – genetic technique, 

Journal of Sound and vibration 238(4), (2000), pp.617-635.  

17. Chondros T.G, Dimarogonas A.D and Yao, J. A. continuos cracked beam vibration theory, Journal 

of Sound and Vibration, 215, (1998), pp.17-34. 

18. Rizos P.F., Aspragathos N., and Dimarogonas A.D., Identification of cracked location and magnitude 

in a cantilever beam from the vibrational modes, Journal of Sound and Vibration, 138 (3), (1989), pp.381 – 

388.  

19. Baris Binici, Vibration of beams with multiple open cracks subjected to axial force, Journal of Sound 

and Vibration 287, (2005), pp.277–295.  

20. Sekhar A.S., Mohanty A.R.  and Prabhakar S., Vibrations of cracked rotor system: transverse crack 

versus slant crack, Journal of Sound and Vibration 279, (2005), pp. 1203–1217.  

21. Sekhar A.S., Model based identification of two cracks in a rotor system, Mechanical Systems and 

Signal Processing, 18, (2004), pp.977–983.  

22. Suresh S, Omkar S. N., Ganguli Ranjan and   Mani V, Identification of crack location and depth in a 

cantilever beam using  a modular neural network approach, Smart Materials and Structures, 13, (2004) 

pp.907-915.    

23. Tsai T. C. and Wang Y. Z., Vibration Analysis and diagnosis of a cracked beam, Journal of Sound  

and Vibration,192(3), (1996)pp.607-620. 

24. Zheng D.Y., Kessissoglou N.J., Free vibration analysis of a cracked beam by finite element method, 

Journal of Sound and Vibration 273, (2004) pp.457–475.  

25. Hwang H.Y.Kim C., Damage detection  in structures using a few frequency  response,  Journal of 

Sound and Vibration 270, (2004), pp. 1–14. 

26. Fernandez-saez J., Rubio L. and Navarro C., Approximate calculation of the fundamental frequency 

for bending vibrations of cracked beams. Journal of Sound and Vibration 225 (2), (2002), pp. 345-352.  

27. Chandra Kishen, J.M., and Kumar, A., Finite element analysis for fracture  behavior of cracked 

beam-columns, Finite Elements in Analysis and Design, 40,(2004), pp.1773 –1789.  



28. Sahin M , Shenoi R.A., Quantification and localisation of damage in beam-like structures by using 

artificial neural networks with experimental validation, Engineering Structures, 25, (2003), pp.1785–1802. 

29. Douka E., Bamnios G., Trochidis A., A method for determining the location and depth of cracks in 

double-cracked beams, Applied Acoustics, 65, (2004), pp. 997–1008.  

30. Han-Ik Yoona, In-Soo Sona, Sung-Jin Ahn, Free Vibration Analysis of Euler-Bernoulli beam with 

double Cracks, Journal of Mechanical Science and Technology, 21, (2007), pp. 476-485.  

31. Gounaris George, Papadopoulos Chris A. Crack identification in rotating shafts by of coupled 

response measurements Engineering Fracture Mechanics, 69, (2002), pp.339-352.  

32. Tada H, Paris P.C. and Irwin G.R, The stress  analysis  of  cracks  Handbook,  Third edition- ASME 

PRESS, 2000.  

33. Stephan H.C., Norman C.D. and Thoms J.L. An Introduction of mechanics of solids, McGraw Hill 

book company, Second edition, 1978. 

34. Rajsekaran S, Vijayalakshmi Pai G. A., Neural network, fuzzy logic & genetic algorithm synthesis 

and application, Pentice Hall. 

35. Haykin S. “Neural Networks: A comprehensive Foundation”, Pearson Edition Asia, 2002. 

36. Singiresu S. Rao, Mechanical vibrations, Pearson education (2007). 

37. Bavikatti S., Finite Element Analysis, New Age International (p) Ltd. 

38. Parhi D.R and H.C. Das, Structural damage detection using fuzzy Gaussian technique, journal of 

sound and vibration. 

39. Mogal Shyam Prabhakar, Vibration Analysis of Cracked beam, PhD thesis (2009). 

 

 

 

 

 

 

 



 

 

 

 

 

  

 

 

 

        

 

 

 

 

 

 

   

 

 

 

 
 

 

 
 


