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ABSTRACT 

 
This paper uses NEURO FUZZY TECHNIQUE  in estimating speed 

and controlling it for a separately excited DC motor. The rotor speed of 

the dc motor can be made to follow an arbitrarily selected trajectory. 

The purpose is to achieve accurate trajectory control of the speed of 

saperately excited DC Motor, especially when the motor and load 

parameters are unknown. 

Such a neuro fuzzy control scheme consists of two parts. One is the 

neural identifier which is used to estimate the motor speed error (state 

error or state error derivative). The second is the fuzzy logic controller 

which is used to generate a control signal for a chopper & speed control 

of separately excited DC Motor. 

The purpose of this technique is to achieve accurate trajectory control 

of the speed. 

Such a control scheme consists of two parts. One is the neural identifier 

which is used to estimate the motor speed. The other is the neural fuzzy 

logic controller which is used to generate the control signal (fuzzy 

output). 
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The development of high performance motor drives is very important in industrial as well as 
other purpose applications. Generally, a high performance motor drive system must have 
good dynamic speed command tracking and load regulating response.  
The dc motors are used in various applications such as defence, industries, Robotics etc. DC 
drives, because of their simplicity, ease of application, reliability and favourable cost have 
long been a backbone of industrial applications. DC drives are less complex with a single 
power conversion from AC to DC. DC drives are normally less expensive for most horsepower 
ratings. DC motors have a long tradition of use as adjustable speed machines and a wide 
range of options have evolved for this purpose. In these applications, the motor should be 
precisely controlled to give the desired performance. Many varieties of control schemes such 
as P, proportional integral (PI), proportional derivation integral (PID), adaptive, and fuzzy logic 
controller (FLCs), have been developed for speed control of dc motors. The proposed 
controller systems consist of multi-input fuzzy logic controller (FLC) and multi-input integrated 
fuzzy logic controller (IFLC) for the speed control. 
 

Many practical control issues (motor control problems): 
 Variable and unpredictable inputs 

 Noise propagation along a series of unit processes 

 Unknown parameters 
 Changes in load dynamics 

Major problems in applying a conventional control algorithm in a speed controller are the 

effects of non-linearity in a DC motor. The non-linear characteristics of a DC motor such as 

saturation and friction could degrade the performance of conventional controllers. Many 

advance model-based control methods such as variable-structure control and model 

reference adoptive control have been developed to reduce these effects. However, the 

performance of these methods depends on the accuracy of system models and parameters. 

Generally, an accurate non-linear model of an actual DC motor is difficult to find, and 

parameter values obtained from system identification may be only approximate values. 

1.1 Advantages of using neuro fuzzy technique:- 

 Fast adaptation 

 High degree of tolerance 

 Smoot operation 

 Reduce the effect of Non-linearity  

 Learning ability 

 Inherent approximation capability 

Emerging intelligent techniques have been developed and extensively used to improve or to 

replace conventional control technique because these techniques do not require a precise 

model. One of intelligent technique, fuzzy logic by Zadeh is applied for controller design in 

many applications. A fuzzy logic controller (FLC) was proved analytically to be equivalent to a 

non-linear PI controller when a non-linear defuzzification method is used. Also, the result 
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from the comparisons of conventional and fuzzy logic control techniques in the form of a FLC 

and fuzzy compensator showed fuzzy logic can reduce the effects of non-linearity in a DC 

motor and improve the performance of a controller. 

 

1.2 Speed control techniques in separately excited dc motor: 
 Varying the armature voltage in the constant torque region. 

 In the constant power region, field flux should be reduced to achieve speed above the 
          rated speed. 

 

1.3 Methods of speed control: 
 Traditionally rheostat armature control method was used for low power dc motors. 

 Use of conventional PID controllers. 
 Neural network controllers (NNC). 

 Constant power field weakening controller based on load-adaptive multi-input multioutput 
linearization technique (in high speed regimes). 

 A single phase uniform PWM ac-dc buck-boost converter with only one switching device used 
for armature voltage control. 

 Use of NARMA-L2 (Non-linear Auto-regressive Moving Average) controller in the 
            constant torque region. 

 Neuro fuzzy logic controller. 
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Chapter 2 

 

 

 

 

 

 

 

 

 

 

SEPARATELY EXCITED DC MOTOR 

 

 

 

 

 

 

 

 

 

 

 
 



 

13 

 

 

Separately Excited DC Motor 

 

 The field windings are used to excite the field flux. 

 Armature current is supplied to the rotor via brush and commutator for the 
mechanical work. 

 Interaction of field flux and armature current in the rotor produces torque. 

 

2.1 OPERATION: 

• When a separately excited motor is excited by a field current of if and an armature current 

of ia flows in the circuit, the motor develops a back emf and a torque to balance the load 

torque at a particular speed. 

• The if is independent of the ia .Each windings are supplied separately. Any change in the 

armature current has no effect on the field current. 

• The if is normally much less than the ia. 

 

2.2 FIELD AND ARMATURE EQUATIONS: 

Instantaneous field current: 

vf= Rfif+Lf*dif/dt  

Where Rf and Lf are the field resistance and inductor, respectively. 
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Instantaneous armature current : 

Va= Raia+La*dia/dt+eg  

 

Where Ra and La are the armature resistance and inductor, respectively. 

The motor back emf, which is also known as speed voltage, is expressed as: 

eb= Kv ω if 

Kv is the motor voltage constant (in V/A-rad/s) and ω is the motor speed (in rad/sec) 

 

2.3 BASIC TORQUE EQUATION: 

For normal operation, the developed torque must be equal to the load torque plus the friction 

and inertia,i.e.: 

Td = J*dω/dt+Bω+TL 

The torque developed by the motor is: 

Td=Ktifia 

Where (Kt=Kv) is torque constant in V/A-rad/sec. 

Sometimes it is written as: 

Td=Ktφia 

For normal operation, the developed torque must be equal to the load torque plus the friction 

and inertia, i.e.: 

where 

B : viscous friction constant,(N.m/rad/s) 

TL :load torque (N.m) 

J : inertia of the motor (Kg.m2) 
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2.4 STEADY STATE OPERATION: 

 

 

Separately Excited DC Motor In Steady State 

 

under study state operation, time derivatives is zero. Assuming the motor is not saturated. 

For field circuit, 

Vf=IfRf 

The back emf is given by: 

Eg=KvωIf 

The armature circuit, 

Va = IaRa+Eg = IaRa+KvωIf 

 

STEADY-STATE TORQUE AND SPEED: 

the motor speed can be easily derived: 

if Ra is a small value (which is usual), or when the motor is lightly loaded, i.e. Ia is small, 

that is if the field current is kept constant, the motor speed depends only on the 

supplyvoltage. 

The developed torque is: 

Td=KtIfIa=Bω+TL 
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The required power is: 

Pd = Tdω 

TORQUE AND SPEED CONTROL: 

From the derivation, several important facts can be deduced for steady-state operation of 
DC motor. 
• For a fixed field current, or flux (If), the torque demand can be satisfied by varying the 
   armature current (Ia). 
• The motor speed can be varied by: 
 controlling Va (voltage control) 
 controlling Vf (field control) 

• These observations lead to the application of variable DC voltage for controlling the speed 
    and torque of DC motor. 

 

2.5 VARIABLE SPEED OPERATION: 

 

 

Torque Vs Speed Characteristic For Different Armature Voltages 

Family of steady-state torque speed curves for a range of armature voltage can be drawn as 
above. 
• The speed of DC motor can simply be set by applying the correct voltage. 
• Note that speed variation from no-load to full load (rated) can be quite small. It depends on 
   the armature resistance. 

 

 

2.6 BASE SPEED AND FIELD-WEAKENING: 
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Torque Vs Speed And Power Vs Speed Characteristic Of Separately Excited DC Motor 

 

Base speed: (ωbase) 
– the speed which correspond to the rated Va, rated Ia and rated If. 
20 

• Constant Torque region (ω > wbase) 
– Ia and If are maintained constant to met torque demand. Va is varied to control the speed. 
Power increases with speed. 
• Constant Power region (ω > wbase) 
– Va is maintained at the rated value and If is reduced to increase speed. However, the power 
developed by the motor (= torque x speed) remains constant. This phenomenon is known as 
field weakening. 
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 Chapter 3 

 

 

 

 

 

 

 

FUZZY SETS 
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Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets were introduced 

by Lotfi A. Zadeh  (1965) as an extension of the classical notion of set.  In classical set theory, 

the membership of elements in a set is assessed in binary terms according to a bivalent 

condition — an element either belongs or does not belong to the set. By contrast, fuzzy set 

theory permits the gradual assessment of the membership of elements in a set; this is 

described with the aid of a membership function valued in the real unit interval [0, 1]. Fuzzy 

sets generalize classical sets, since the indicator functions of classical sets are special cases of 

the membership functions of fuzzy sets, if the latter only take values 0 or 1. A classical set is a 

set with a crisp boundary, a classical set “A” of real numbers greater than 6 can be expressed 

as 

A={x / x>6} 

Where there is a clear umabiguous boundary 6 such that if x is greater than this number, the x 

belongs to the set A, otherwise x descent belongs to the set. 

 

 

3.1 BASIC DEFINITIONS AND TERMINOLOGY:- 

A fuzzy set is a pair (A,m) where A is a set and . 
For each , m(x) is the grade of membership of x. If A = {x1,...,xn} the fuzzy set (A,m) can 
be denoted {m(x1) / x1,...,m(xn) / xn}. 
An element mapping to the value 0 means that the member is not included in the fuzzy set, 1 
describes a fully included member. Values strictly between 0 and 1 characterize the fuzzy 

members. The set  is called the support of the fuzzy set (A,m) and 

the set  is called the kernel of the fuzzy set (A,m). 
Sometimes, a more general definition is used, where membership functions take values in an 
arbitrary fixed algebra or structure L; usually it is required that L be at least a poset or lattice. 
The usual membership functions with values in [0, 1] are then called [0, 1]-valued 
membership functions. This generalization was first considered in 1967 by Joseph Goguen, 
who was a student of Zadeh. 
If x is a collection of objects denoted generally by x then a fuzzy set A in x is defined as a set of 
ordered pairs. 
A={x, µA(x)/ x є x} 
Where, µA(x) =MF’s for the fuzzy set A. 
The MF’s maps each elements of x to a membership grade (or membership value) between 0 
and 1. 
Usually x is refer to as the universe of discourse, or simply the universe and it may consist of 
discrete (ordered or unordered) objects or continuous space. 
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Fuzzy sets with a continuous universe-: 

 

Let x=R+ be the set of possible ages for human being. The fuzzy set B=” about 50 years old” 

may be expressed as 

B={x, µA(x)/ x є x} 

Where, µB(x) =1/ (1+ ((x-50/100)4)) 

So, the constructions of a fuzzy set depend on two things-: 

 (1)The identification of a suitable universe of discourse. 

(2)The specification of an approximate MF’s. As MF’s are subjective, which means 

MF’s are specified for the some concept.  

The subjectivity and no-randomness of fuzzy set is the primary difference between the 

study of fuzzy sets and probability theory. 

 

      LINGUISTIC VARIABLE AND LINGUISTIC VALUES-: 

X=”AGE” THEN WE CAN DEFINE FUZZY SETS “YOUNG” , “MIDDLE AGE” , AND “OLD” THAT 

ARE CHARACTERIZED BY MF’S  µyoung(x), µmiddle age(x) and µold(x), respectively. 

A linguistic variable “age” can assume different linguistic values such as young, middle age 

and old.  
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    3.2 SET THEORETIC OPERATIONS-: 

Union, intersection and compliment are the most basic operation on classical sets on the 

basic of these three operations, a number of identities can be established. 

Corresponding to the ordinary set operations of union, intersection and compliment, fuzzy 

sets have similar operation. 

 

 

CONTAINMENT OR SUBSET-: 

 

Fuzzy set A is contained in fuzzy set B (or equivalently A is subset of B, or A is similar than 

or equal to B) if and only if µA(x)≤ µB(x) for all x. 

A ≤ B  ↔  µA(x)  ≤  µB(x).                                         

 

      UNION (DISJUNCTION)-: 

The union of two fuzzy sets A and B is a fuzzy set C, written as C=AUB or C=A or B, where 

MF’s is defined to those A and b by 

µC(x) =Max (µA(x), µB(x)) = µA(x) V µB(x) 

 

INTERSECTION (CONJUCTION)-: 

Then intersection of two fuzzy sets A and B are the fuzzy set C, written as C=AB or C=A 

AND B, where MF’s related to those of A and B by 

µC(x) =Max (µA(x), µB(x)) = µA(x) V µB(x) 

        

       COMPLIMENT (negation)-: 

The compliment of fuzzy set a, denoted by A (7 A, NOT A), is defined as 

µA(x)=1-, µA(x), 
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Standard fuzzy set operations  

Standard complement 

cA(x) = 1 − A(x) 

Standard intersection 

(A ∩ B)(x) = min [A(x), B(x)] 

Standard union 

(A ∪ B)(x) = max [A(x), B(x)] 

Fuzzy complements 

A(x) is defined as the degree to which x belongs to A. Let cA denote a fuzzy complement 

of A of type c. Then cA(x) is the degree to which x belongs to cA, and the degree to 

which x does not belong to A. (A(x) is therefore the degree to which x does not belong to cA.) 

Let a complement cA be defined by a function 

c : *0,1+ → *0,1+ 

c(A(x)) = cA(x) 

 

Fuzzy intersections 

The intersection of two fuzzy sets A and B is specified in general by a binary operation on the 

unit interval, a function of the form 

i:*0,1+×*0,1+ → *0,1+. 

(A ∩ B)(x) = i[A(x), B(x)] for all x. 

 

Fuzzy unions 

The union of two fuzzy sets A and B is specified in general by a binary operation on the unit 

interval function of the form 

u:*0,1+×*0,1+ → *0,1+. 

(A ∪ B)(x) = u[A(x), B(x)] for all x 
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EXTENTION PRINCIPLE AND FUZZY RELATIONS-: 

 

EXTENTION PRINCIPLE-: 

The extention principle is a basic concept of fuzzy set theory that provides a general 

procedure for extending crisp domains of mathematical expression to fuzzy domains. 

This procedure generalize a common point to point mappings of a function f(.) to a 

mapping between fuzzy sets. More specifically suppose that f is a function from x to y and 

A is a fuzzy set on x defined as 

A= µA(x1)/x1+ µA(x2)/x2+...+µA (xn)/xn 

Then the extension principle states that the image of fuzzy set A under the mapping f(.) 

can be expressed as fuzzy set B, 

B= µA(x1)/y1+  µA(x2)/y2+...+ µA(xn)/yn 

Where,   yi = f(xi) ,  i-1,2,3....n 

 

FUZZY RELATION-: 

Binary fuzzy relation are fuzzy sets in x*y which map each element in x*y to a membership 

sets with two dimensional MF’s . 

BINARY FUZZY RELATION-: 

Let x and y be two universe of discourse, then 

R={(x,y), µR(x,y)/(x,y)єx*y} µA(x), 

Is a binary fuzzy relation in x*y 
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FUZZY IF-THEN RULES 

 

A fuzzy if-then rule (also known as fuzzy rule, fuzzy implication or fuzzy conditional 

statements) assume the form. 

If x is A then y is B. 

Where, A and B are linguistic values defined by fuzzy sets on universe of discourse X and y, 

respectively aften “x is A” is called the antecedent or precise will “y is B” is called the 

consequence or conclusion. 

 If pressure is high, then volume is small 

 If the road is slippery, then driving is dangerous 

 If  tomato is red, then it is ripe. 

 If the speed is high, then apply the brake a little. 

 

A relation between two variables x & y; this suggest that a fuzzy if then rule be 

defined as a binary fuzzy relation R on the product space X*Y. 

Generally speaking, there are two ways to interpret the fuzzy  

A→B=A*B=∫x*y1 µA(x) *µB()/(x,y). 
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    Chapter 4 

 

 

 

 

 

 

FUZZY LOGIC 
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Fuzzy logic has two different meanings, in a narrow sense, fuzzy logic is a logical system, 

which is an extension of multivolume’s logic, and however, in a wider sense fuzzy logic is 

almost synonymous with the theory of fuzzy sets, a theory which relates to classes of objects 

with un-sharp boundaries in which membership is a matter of degree. In this perspective 

fuzzy logic in its more narrow definition, fuzzy logic differs both in concept and substance 

from traditional multi-valued logical system. 

Fuzzy logic is a convenient way to map input space to an output space. Mapping input to 

output is the starting point for everything. 

 

The main objectives of this study are:-  

 To understand the fuzzy logic and how fuzzy rule base system can be applied in 

derivation of rules for power system planning, operation and control.  

 To study the MATLAB fuzzy toolbox and understand the concept of member function 

& rule base.  

 To derive optimal power system operation rules at the macro level for better 

performance and control of the power system.  

 To develop a fuzzy logic tool for deriving optimal operational rules at the macro level 

for better performance and control of power system.  
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4.1 WHY USE FUZZY LOGIC? 

Fuzzy logic offers several unique features that make it a particularly good 
choice for many control problems.  

 Fuzzy logic is conceptually easy to understand. The mathematical concepts behind 

fuzzy reasoning are very simple. Fuzzy logic is a more intuitive approach without the 

for-reachicomplexity. Fuzzy logic is flexible. Fuzzy logic is tolerant of imprecise data. 

Fuzzy logic can model non-linear function of arbitrary complexity. Fuzzy logic is based 

on natural language. 

 

 It is inherently robust since it does not require precise, noise-free inputs and can be 

programmed to fail safely if a feedback sensor quits or is destroyed. The output 

control is a smooth control function despite a wide range of input variations.  

 

 Since the Fuzzy logic controller processes user-defined rules governing the target 

control system, it can be modified and tweaked easily to improve or drastically alter 

system performance. New sensors can easily be incorporated into the system simply 

by generating appropriate governing rules.  

 

 Fuzzy logic is not limited to a few feedback inputs and one or two control outputs, nor 

is it necessary to measure or compute rate-of-change parameters in order for it to be 

implemented. Any sensor data that provides some indication of a system's actions and 

reactions is sufficient. This allows the sensors to be inexpensive and imprecise thus 

keeping the overall system cost and complexity low.  

 

 Because of the rule-based operation, any reasonable number of inputs can be 
processed (1-8 or more) and numerous outputs (1-4 or more) generated, although 
defining the rule base quickly becomes complex if too many inputs and outputs are 
chosen for a single implementation since rules defining their interrelations must also 
be defined.  

 

 It would be better to break the control system into smaller chunks and use several 

smaller Fuzzy logic controllers distributed on the system, each with more limited 

responsibilities.   

 

 Fuzzy logic can control nonlinear systems that would be difficult or impossible to 

model mathematically. This opens doors for control systems that would normally be 

deemed unfeasible for automation. 
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4.2 HOW FUZZY LOGIC IS USED?  
 
1) Define the control objectives and criteria: What am I trying to control? What do I have to            

do to control the system? What kind of response do I need? What are the possible (probable) 

system failure modes? 

 

2) Determine the input and output relationships and choose a minimum number of variables 

for input to the Fuzzy logic engine (typically error and rate-of-change-of-error).  

 

3) Using the rule-based structure of Fuzzy logic, break the control problem down into a series 

of IF X AND Y THEN Z rules that define the desired system output response for given system 

input conditions.  

 

4) Create Fuzzy logic membership functions that define the meaning (values) of Input /Output 

terms used in the rules.  

 

5) Create the necessary pre- and post-processing Fuzzy logic routines if implementing in 

software, otherwise program the rules into the Fuzzy logic hardware engine.  

 

6) Test the system, evaluate the results, tune the rules and membership functions, and retest 

until satisfactory results are obtained. 
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                                 Chapter 5 

 

 

 

 

 

FUZZY CONTROLLER 
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Fuzzy logic control is a control algorithm based on a linguistic control strategy, which is 

derived from expert knowledge into an automatic control strategy. Fuzzy logic control doesn't 

need any difficult mathematical calculation like the others control system. While the others 

control system use difficult mathematical calculation to provide a model of the controlled 

plant, it only uses simple mathematical calculation to simulate the expert knowledge. 

Although it doesn't need any difficult mathematical calculation, but it can give good 

performance in a control system. Thus, it can be one of the best available answers today for a 

broad class of challenging controls problems. 

 

 

 

 
 

Block diagram of Fuzzy Logic Controller 
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5.1 BASIC CONFIGURATION OF FUZZY LOGIC CONTROLLER (FLC):- 

BLOCK DIAGRAM:- 

 

 

Fuzzy logic control is derived from fuzzy set theory. In fuzzy set theory, the transition between 

membership and non-membership can be graded. Therefore, boundaries of fuzzy sets can be 

vague and ambiguous, making it useful for approximate systems. Fuzzy Logic Controller (FLC) 

is an attractive choice when precise mathematical formulations are not possible. Other 

advantages are  

 It can work with less precise inputs.  

 It doesn’t need fast processors.  

 It needs less data storage in the form of membership functions and rules than 

conventional look up table for nonlinear controllers.  

 It is more robust than other non-linear controllers.  

 

There are three principal elements to a fuzzy logic controller.  

a. Fuzzification module (Fuzzifier)  

b. Rule base and Inference engine  

c. Defuzzification module (Defuzzifier) 
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5.2a Fuzzification: -  
 
The first step in designing a fuzzy controller is to decide which state variables represent the 

system dynamic performance must be taken as the input signal to the controller. Fuzzy logic 

uses linguistic variables instead of numerical variables. The process of converting a numerical 

variable (real number or crisp variables) into a linguistic variable (fuzzy number) is called 

Fuzzification. System variables, which are usually used as the fuzzy controller inputs includes 

states error, state error derivative, state error integral or etc. In power system, based on 

previous experience, Area Control Error and its derivative (d(ACE)/dt) are chosen to be the 

input signals of fuzzy AGC.  

The membership function is a graphical representation of the magnitude of participation of 

each input. There are different memberships functions associated with each input and output 

response. In this study, we use the trapezoidal membership function for input and output 

variables. The number of membership function determines the quality of control which can be 

achieved using fuzzy controller. As the number of membership function increases, the quality 

of control improves. As the number of linguistic variables increases, the computational time 

and required memory increases. Therefore, a compromise between the quality of control and 

computational time is needed to choose the number of linguistic variables. 

For the speed control of DC motor study, five linguistic variables for each of the input and 

output variables are used to describe them, as in the following Table. 

 
5.2b DEFUZZIFICATION:- 

The reverse of Fuzzification is called Defuzzification. The use of Fuzzy Logic Controller (FLC) 

produces required output in a linguistic variable (fuzzy number). According to real world 

requirements, the linguistic variables have to be transformed to crisp output. Centre of 

gravity method is the best well-known defuzzification method and used in this research work. 

Sugeno type of defuzzification method is adopted in this work. It obtains the center of area 

occupied by the fuzzy set. It is given by the expression. 

                                      

Defuzzification is the process of producing a quantifiable result in fuzzy logic. Typically, a 

fuzzy system will have a number of rules that transform a number of variables into a "fuzzy" 

result, that is, the result is described in terms of membership in fuzzy sets. For example, rules 
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designed to decide how much pressure to apply might result in "Decrease Pressure (15%), 

Maintain Pressure (34%), Increase Pressure (72%)". Defuzzification would transform this 

result into a single number indicating the change in pressure. The simplest but least useful 

defuzzification method is to choose the set with the highest membership, in this case, 

"Increase Pressure" since it has a 72% membership, and ignore the others, and convert this 

72% to some number. The problem with this approach is that it loses information. The rules 

that called for decreasing or maintaining pressure might as well have not been there in this 

case. 

A useful defuzzification technique must first add the results of the rules together in some way. 

The most typical fuzzy set membership function has the graph of triangle. Now, if this triangle 

were to be cut in a straight horizontal line somewhere between the top and the bottom, and 

the top portion were to be removed, the remaining portion forms a trapezoidal. The first step 

of defuzzification typically "chops off" parts of the graphs to form trapezoids (or other shapes 

if the initial shapes were not triangles). For example, if the output has "Decrease Pressure 

(15%)", then this triangle will be cut 15% the way up from the bottom. In the most common 

technique, all of these trapezoids are then superimposed one upon another, forming a single 

geometric. Then, the centroid of this shape, called the fuzzy centroid, is calculated. 

The x coordinate of the centroid is the defuzzified value. 

 

5.3 Fuzzy control in detail:- 

 

Fuzzy controllers are very simple conceptually. They consist of an input stage, a processing 

stage, and an output stage. The input stage maps sensor or other inputs, such as switches, 

thumbwheels, and so on, to the appropriate membership functions and truth values. The 

processing stage invokes each appropriate rule and generates a result for each, then 

combines the results of the rules. Finally, the output stage converts the combined result back 

into a specific control output value. 

The most common shape of membership functions is triangular, although trapezoidal and bell 

curves are also used, but the shape is generally less important than the number of curves and 

their placement. From three to seven curves are generally appropriate to cover the required 

range of an input value, or the "universe of discourse" in fuzzy jargon. 

As discussed earlier, the processing stage is based on a collection of logic rules in the form of 

IF-THEN statements, where the IF part is called the "antecedent" and the THEN part is called 

the "consequent". Typical fuzzy control systems have dozens of rules. 

Consider a rule for a thermostat: 

“IF temperature is COLD then heater is HIGH” 
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This rule uses the truth value of the "temperature" input, which is some truth value of "cold", 

to generate a result in the fuzzy set for the "heater" output, which is some value of "high".  
 

This result is used with the results of other rules to finally generate the crisp composite 

output. Obviously, the greater the truth value of "cold", the higher the truth value of "high", 

though this does not necessarily mean that the output itself will be set to "high", since this is 

only one rule among many. In some cases, the membership functions can be modified by 

"hedges" that are equivalent to adjectives. Common hedges include "about", "near", "close 

to", "approximately", "very", "slightly", "too", "extremely", and "somewhat". These 

operations may have precise definitions, though the definitions can vary considerably 

between different implementations.  

In practice, the fuzzy rule sets usually have several antecedents that are combined using fuzzy 

operators, such as AND, OR, and NOT, though again the definitions tend to vary: AND, in one 

popular definition, simply uses the minimum weight of all the antecedents, while OR uses the 

maximum value. There is also a NOT operator that subtracts a membership function from 1 to 

give the "complementary" function. 

 
There are several different ways to define the result of a rule, but one of the most common 

and simplest is the "max-min" inference method, in which the output membership function is 

given the truth value generated by the premise. 

Rules can be solved in parallel in hardware, or sequentially in software. The results of all the 

rules that have fired are "defuzzified" to a crisp value by one of several methods. There are 

dozens in theory, each with various advantages and drawbacks. 

 
The "centroid" method is very popular, in which the "centre of mass" of the result provides 

the crisp value. Another approach is the "height" method, which takes the value of the biggest 

contributor. The centroid method favors the rule with the output of greatest area, while the 

height method obviously favors the rule with the greatest output value. 

The diagram below demonstrates max-min inferencing and centroid defuzzification for a 

system with input variables "x", "y", and "z" and an output variable "n". Note that "mu" is 

standard fuzzy-logic nomenclature for "truth value": 
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5.4 Principles of neuro-fuzzy modeling: 

The general algorithm for a fuzzy system designer can be synthesized as follows. 

 

FUZZIFICATION 

1) Normalize of the universes of discourses for the fuzzy input and output vectors. 

2) Choose heuristically the number and shape of the membership functions for the fuzzy 

input and output vectors. 

3) Calculate of the membership grades for every crisp value of the fuzzy inputs. 

 

FUZZY INFERENCE 

4) Complete the rule base by heuristics from the view point of practical system 

operation. 

5) Identify the valid (active) rules stored in the rule base. 

6) Calculate the membership grades contributed by each rule and the final membership 

grade of the inference, according to the chosen fuzzification method. 

 

DEFUZZIFICATION  

7) Calculate the fuzzy output vector, using an adequate defuzzification method. 

8) Simulation tests until desired parameters are obtained. 

9) Hardware implementation. 

From the beginning, a fuzzy-style inference must be accepted and the most popular are: 

MAMDANI-style inference, based on otfi Zadeh’s 1973 paper on fuzzy algorithms for complex 

systems and decision processes that expects all output membership functions to be fuzzy sets. 

It is intuitive,has widespread acceptance, is better suited to human input, but it’s main 

limitation is that the computation for the defuzzification process lasts longer. 

SUGENO-style inference, based on Takagi-Sugeno-Kangmethod of fuzzy inference, in their 

common effort to formalize a systematic approach in generating fuzzy rules from an input-

output data set, that expects all membership functions to be a singleton. It has computational 

efficiency, works well with linear techniques(e.g. PID control, etc.) works well with 

optimization and a adaptive techniques guaranties continuity of the output surface, is better 
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suited to mathematical analysis. The results are very much similar to Mamdani-style 

inference. 

 

5.5 MAIN IDEAS OF FUZZY LOGIC CONTROLLER:- 

FLC comprises four principle components:- 

A fuzzification interface  

A knowledge base 

Decision making logic 

 

A defuzzification interface  

 

(1)The fuzzification interface involve the following function:- 

(a) Measure the value of input variables. 

(b) Performs a scale mapping that transfers the range of value of input variables in 

to corresponding universe of discourse. 

(c) Performs the function of fuzzification that converts input data in to suitable 

linguistic values which may be viewed as labels of fuzzy sets. 

 

(2)The knowledge base comprises knowledge of the application domain and the 

attendant control goals. It consists of a data “base” and a linguistic (fuzzy) control rule 

base. 

(a)The data base provides necessary definitions, which are used to define linguistic 

control rules and fuzzy data manipulation in an FLC. 

(b)The rule base characteristics the control goals and control policy of the domains 

experts by means of a set of linguistic control rules. 

 

(3)Decision making logic is the kernel of an FLC. It has the capability of simulating 

human decision making based on fuzzy concepts and of interring fuzzy control actions 

employing fuzzy implication and the rules of inference in fuzzy logic. 

 

(4)The defuzzification interface performs the following functions. 

(a)A scale mapping, this converts the range of values of output variables in to 

corresponding universe of discourse. 

(b) Defuzzification , which yields a non fuzzy control action from an inferred fuzzy 

control action.  
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5.6 Fuzzy Logic Based Controller: 
 
There is a currently a significant and growing interest in the application of artificial 
intelligence (AI) type models to the problem of modelling the dynamics of complex, nonlinear 
processes. By far the most popular type of AI model for these purposes has been the neural 
network, which attempts to produce ‘intelligent’ behaviour by recreating the hardware 
involved in the thinking process. Another type of AI model is the fuzzy model, which defines 
its inputs and outputs as qualitative values (actually fuzzy reference sets) and then defines the 
strength of the relationships between these input and output reference sets. First of all 
mathematical model is necessary while making experimentation for control systems but it 
may not be always possible in practice. Sometimes in spite of creating true model, using of 
this model makes some complicated problems at the implementation. When confronted with 
like these problems, knowledge and experience of expert people is utilized. These people 
develop flexible control mechanism by using the words frequently in our life ,like “suitable”, 
”not very suitable”, ”high”, ”a little high”, ”more”, “very more” which are defined special 
variable. Fuzz logic control which has experimentation of fuzzy cluster theories and fuzzy 
logic, has been set up like logical relatives. A fuzzy logic system is based on 4 main parts which 
are illustrated in figure. 
1- ) Input units which has been known fuzzifier 
2- ) Rule base 
3- ) Inference mechanism 
4- ) Output units which has been known Defuzzifier 
 
 
 

 
 

Figure 2: Block diagram of the fuzzy logic controller 
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5.7 SUGENO: 

What is Sugeno-Type Fuzzy Inference? 

The fuzzy inference process discussed so far is Mamdani's fuzzy inference method, the most 
common methodology. This section discusses the so-called Sugeno, or Takagi-Sugeno-Kang, 
method of fuzzy inference. Introduced in 1985, it is similar to the Mamdani method in many 
respects. The first two parts of the fuzzy inference process, fuzzifying the inputs and applying 
the fuzzy operator, are exactly the same. The main difference between Mamdani and Sugeno 
is that the Sugeno output membership functions are either linear or constant. 

A typical rule in a Sugeno fuzzy model has the form 

    If  Input 1 = x and Input 2 = y, then Output is z = ax + by + c 
For a zero-order Sugeno model, the output level z is a constant (a=b =0). 
The output level zi of each rule is weighted by the firing strength wi of the rule. For example, 
for an AND rule with Input 1 = x and Input 2 = y, the firing strength is 

 

where F1,2 (.) are the membership functions for Inputs 1 and 2. 

The final output of the system is the weighted average of all rule outputs, computed as 

 

where N is the number of rules. 

 

 Comparison of Sugeno and Mamdani Methods: 

Because it is a more compact and computationally efficient representation than a Mamdani 
system, the Sugeno system lends itself to the use of adaptive techniques for constructing 
fuzzy models. These adaptive techniques can be used to customize the membership functions 
so that the fuzzy system best models the data. 

The following are some final considerations about the two different methods. 
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Advantages of the Sugeno Method 

 

 It is computationally efficient. 

 It works well with linear techniques (e.g., PID control). 

 It works well with optimization and adaptive techniques. 

 It has guaranteed continuity of the output surface. 

 It is well suited to mathematical analysis. 

 

Advantages of the Mamdani Method 

 

 It is intuitive. 

 It has widespread acceptance. 

 It is well suited to human input. 
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Chapter 6 

 

 

 

 

 

 

 

Introduction to neural networks 
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6.1 NEURAL NETWORK: 

Neural networks are wonderful tools, which permit the development of quantitative 
expressions without compromising the known complexity of the problem. This makes them 
ideal in circumstances where simplification of the problem, in order to make it 
mathematically tractable, would lead to an unacceptable loss of information. As pointed out 
by Ziman, there is a fine balance between over-idealizing the initial hypothesis in order to 
make it amenable to mathematical analysis, and abandoning reality. 
 

6.2 What is a Neural Network? 

A neural network is a powerful data modeling tool that is able to capture and represent 
complex input/output relationships. The motivation for the development of neural network 
technology stemmed from the desire to develop an artificial system that could perform 
"intelligent" tasks similar to those performed by the human brain. Neural networks resemble 
the human brain in the following two ways: 

1. A neural network acquires knowledge through learning. 
2. A neural network's knowledge is stored within inter-neuron connection strengths 

known as synaptic weights. 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by 
the way biological nervous systems, such as the brain, process information. The key element 
of this paradigm is the novel structure of the information processing system. It is composed of 
a large number of highly interconnected processing elements (neurones) working in unison to 
solve specific problems. ANNs, like people, learn by example. An ANN is configured for a 
specific application, such as pattern recognition or data classification, through a learning 
process. Learning in biological systems involves adjustments to the synaptic connections that 
exist between the neurones. This is true of ANNs as well. 

The true power and advantage of neural networks lies in their ability to represent both linear 
and non-linear relationships and in their ability to learn these relationships directly from the 
data being modeled. Traditional linear models are simply inadequate when it comes to 
modeling data that contains non-linear characteristics. 
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6.3 Historical background: 

Neural network simulations appear to be a recent development. However, this field was 
established before the advent of computers, and has survived at least one major setback and 
several eras. 

Many importand advances have been boosted by the use of inexpensive computer 
emulations. Following an initial period of enthusiasm, the field survived a period of frustration 
and disrepute. During this period when funding and professional support was minimal, 
important advances were made by relatively few reserchers. These pioneers were able to 
develop convincing technology which surpassed the limitations identified by Minsky and 
Papert. Minsky and Papert, published a book (in 1969) in which they summed up a general 
feeling of frustration (against neural networks) among researchers, and was thus accepted by 
most without further analysis. Currently, the neural network field enjoys a resurgence of 
interest and a corresponding increase in funding. 

6.4 Why use neural networks? 

Neural networks, with their remarkable ability to derive meaning from complicated or 
imprecise data, can be used to extract patterns and detect trends that are too complex to be 
noticed by either humans or other computer techniques. A trained neural network can be 
thought of as an "expert" in the category of information it has been given to analyse. This 
expert can then be used to provide projections given new situations of interest and answer 
"what if"questions. 
Other advantages include: 

1. Adaptive learning: An ability to learn how to do tasks based on the data 
given for training or initial experience. 

2. Self-Organisation: An ANN can create its own organisation or 
representation of the information it receives during learning time. 

3. Real Time Operation: ANN computations may be carried out in parallel, 
and special hardware devices are being designed and manufactured which 
take advantage of this capability. 

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a 
network leads to the corresponding degradation of performance. 
However, some network capabilities may be retained even with major 
network damage. 

 

6.5 Neural networks versus conventional computers: 
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Neural networks take a different approach to problem solving than that of conventional 
computers. Conventional computers use an algorithmic approach i.e. the computer follows a 
set of instructions in order to solve a problem. Unless the specific steps that the computer 
needs to follow are known the computer cannot solve the problem. That restricts the problem 
solving capability of conventional computers to problems that we already understand and 
know how to solve. But computers would be so much more useful if they could do things that 
we don't exactly know how to do. 

 

Neural networks process information in a similar way the human brain does. The network is 
composed of a large number of highly interconnected processing elements (neurones) 
working in parallel to solve a specific problem. Neural networks learn by example. They 
cannot be programmed to perform a specific task. The examples must be selected carefully 
otherwise useful time is wasted or even worse the network might be functioning incorrectly. 
The disadvantage is that because the network finds out how to solve the problem by itself, its 
operation can be unpredictable. 

On the other hand, conventional computers use a cognitive approach to problem solving; the 
way the problem is to solved must be known and stated in small unambiguous instructions. 
These instructions are then converted to a high level language program and then into 
machine code that the computer can understand. These machines are totally predictable; if 
anything goes wrong is due to a software or hardware fault. 

Neural networks and conventional algorithmic computers are not in competition but 
complement each other. There are tasks are more suited to an algorithmic approach like 
arithmetic operations and tasks that are more suited to neural networks. Even more, a large 
number of tasks, require systems that use a combination of the two approaches (normally a 
conventional computer is used to supervise the neural network) in order to perform at 
maximum efficiency. 

 
 
6.6 Estimating the speed using neural network: 
 
The rotor speed can be obtained by measuring the armature voltage, armature current and 
the derivative of the armature current. Because the armature voltage is varying between { d d 
} −U ,+U , the armature current also has fluctuation. Thus, before calculating the change of 
armature current it should be filtered (we are not interested in the derivative of the 
fluctuation, only in the trend of the change of the armature current). Experience shows that 
much better results can be achieved if the derivative of the armature voltage is also supplied 
to the neural network (in the same way as the armature current). The time-constant of the 
RiCi circuit for the derivative of armature voltage and current is calculated on the bases of 
equation. Thus, the neural network has four inputs: 
U,du/dt,i,di/dt while the output is the estimated rotor speed ω. 
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SIMPLE NEURAL NETWORK: 

 
Input layer                          hidden layer                         output layer 

The structure of the neural network  

The most common neural network model is the multilayer perceptron (MLP). This type of 
neural network is known as a supervised network because it requires a desired output in 
order to learn. The goal of this type of network is to create a model that correctly maps the 
input to the output using historical data so that the model can then be used to produce the 
output when the desired output is unknown. A graphical representation of an MLP is shown 
below. 
 

 

Block diagram of a two hidden layer multiplayer perceptron (MLP). 
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Chapter 7                                                                  

 

                        

 

 

 

 

 

 

 

MAIN OBJECTIVE 
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The neuro fuzzy is a combination between neural network and fuzzy logic,  

 

7.1 FUZZY RULE BASE FOR SPEED CONTROL OF DC MOTOR: 

 The algorithm for fuzzy speed control in details can be summarized as 

follows. A numerical example is included in each step for clarity of 

understanding the principle.  

 

 The triangular membership functions for input variable speed error (e), 

change in speed error (ce) and control output (du) i.e. change in firing 

angle are shown in normalized units.  

 

The general considerations in the design of the controller are:  

 If both e and ce are zero, then maintain the present control setting i.e. 

du=0 

 If e is not zero but is approaching this value at a satisfactory rate, then 

maintain the present control setting.  

 If e is growing then change the control signal du depending on the 

magnitude and sign of e and ce to force e towards zero. 

 e and ce are speed error and change of speed error respectively 

(normalized).  

 du is the change in firing angle (normalized).  

 Linguistic fuzzy sets are defined as below.  

 Z = zero 

 PS = Positive medium 

 PM = Positive Big 

 NS = Negative small  

 NM = Negative medium 

 NB = Negative Big 

The table below shows the corresponding rule table for the speed controller.  

The top row and left column of the matrix indicate the fuzzy sets of the variable e 

and ce respectively and the membership function of the body of the matrix.  

There may be 7x7=49 possible rules in the matrix, where a typical rule reads as  

IF e = PS and ce = NM then du = NS  
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du 

        e 
ce 

NB NM NS Z PS PM PB 

NB NB NB NB NB NM NS Z 

NM NB NB NB NM NS Z PS 

NS NB NB NM NS Z PS PM 

Z NB NM NS Z PS PM PB 

PS NM NS Z PS PM PB PB 

PM NS Z PS PM PB PB PB 

PB Z PS PM PB PB PB PB 

 

7.2 Rule Matrix for Fuzzy Speed Control 

 

 
Identify the four valid rules from the rule matrix table for Z and PS values of e and ce. 

These are: 

R1: IF e=Z  AND ce= Z  THEN du = Z 

R2: IF e=Z AND ce= PS THEN du = PS 

R3: IF e=PS AND ce= Z THEN du= PS 

R4: IF e=PS AND ce= PS THEN du= PM 
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7.3 Membership functions:  

Membership function for  e : 

 

 

Membership function for  ce: 
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Calculate the DOB (degree of belongingness) of each rule using the AND or min operator 

 

DOB1=min { µz(e), µz(ce)} = min {0.6,0.3}=0.3 

DOB2=min { µz(e), µPS(ce)} = min {0.6,0.7}=0.6 

DOB3=min { µPS(e), µz(ce)} = min {0.4,0.3}=0.3 

DOB4=min { µPS(e), µPS(ce)} = min {0.4,0.7}=0.4 

 

Sample speed ωr
* and ωr 

 

Compute error e and change in error ce 

e(k) = ωr
* – ωr 

ce(k) = e(k) – e(k-1) 

From the figure e=0.008 and ce=0.13 
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Calculate the degree of membership of e and ce for the relevant fuzzy sets 

µz(e)=0.6  and   µPS(e) =0.4 

µz(ce)=0.3  and   µPS(ce) =0.7 

 

Retrieve the amount of correction dui (i=1,2,3,4) corresponding to each rule in the table 

Du1=0  for Z corresponding to DOB1=0.3 

Du2=0.25  for PS corresponding to DOB2=0.6 

Du3=0.3  for PS corresponding to DOB3=0.3 

Du4=0.4  for PM corresponding to DOB4=0.4 

 

Calculate the crisp du by weighted average defuzzification method 

𝑑𝑢 =
0.3x0.6 + 0.6x0.25 + 0.3x0.25 + 0.4x. 5

0.21
 

 

                                   du= 0.21 
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7.4 Specification of the separately excited DC Motor: 

Armature resistance(Ra) = 0.6Ω 

Armature inductance (La)= 0.012 H 

Armature voltage (Va)= 400 V 

Mechanical inertia(jm) = 0.15 Kg.m2 

Friction coefficient (bf) = 0.008 N.m/rad/sec  

Back emf constant (k) = 1.8 V/rad/sec 

Rated speed = 2100 r.p.m 

 

 

 

7.5 Calculation: 

Speed at full load when “ω=222 rad/sec” 

Eb=1.8x222=399.6 V 

Va = Eb+IaRa 

400 = 399.6+IaRa 

Ia=0.667 Amps 

At time t=10 sec we have taken a external load torque 3Nm 
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7.6 SIMULINK MODEL 

 

 

We are using the fuzzy logic controller for boh the speed. 
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7.7 SIMULATION RESULT: 

SPEED V/S TIME RESPONSE WITHOUT LOAD USING FUZZY LOGIC 

 

SPEED V/S TIME RESPONSE WITH LOAD AT TIME 10 SEC USING FUZZY LOGIC 
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DISCUSSION:- 

The background of DC Motors is studied. The study of Characteristics of 

separately excited DC motor is done. The steady state operation and its various 

torque-speeds, torque-current characteristics of DC motor are studied. 

We have studied basic definition and terminology of fuzzy logic and neural 

network with the help of matlab and Wikipedia and some other websites. 

Due to simple formulas and computational efficiency, both triangular MFs has 

been used to design fuzzy industrial controllers especially in real-time 

implementation. 

The speed of a separately excited DC Motor has been successfully controlled by 

using fuzzy logic controller technique. A multilayer perceptron is used to identify 

the motor dynamics. 

Graph for the speed response of separately excited DC Motor using fuzzy logic 

controller is compare with graph for the speed response of separately excited 

DC Motor without fuzzy logic controller. 
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