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ABSTRACT: 

This thesis contains a summary of all the work that has been done by us for the B-Tech project 

in the academic session of 2009-2010. The area chosen for the project was SQL Injection attacks 

and methods to prevent them, and this thesis goes on to describe four proposed models to 

block SQL Injection, all of them obtained from published research papers. It then gives the 

details of the implementation of the model “SQL Injection prevention in database stored 

procedures” as proposed by K. Muthuprasanna et al, which describes a technique to prevent 

injections attacks occurring due to dynamic SQL statements in database stored procedures, 

which are often used in e-commerce applications. The thesis also contains the algorithms used, 

data flow diagrams for the system, user interface samples and the performance reports. The 

particulars of some of the modifications made to the proposed model during implementation 

have also been documented, and there has also been included a section which discusses the 

possible updations that could be made to the tool, and future work. 

 

 

 

 

 

 

 

       

 

 

  



 

Contents 
1.0 Introduction .......................................................................................................................................... 10 

1.1 Motivations ....................................................................................................................................... 10 

1.2 Research focus and original contributions ........................................................................................ 10 

1.3 Structure of the work ........................................................................................................................ 11 

2.0 SQL Injection ......................................................................................................................................... 12 

2.1 SQL Injection Attacks ........................................................................................................................ 12 

2.2 Types Of Attacks................................................................................................................................ 12 

3.0 Avoiding SQL Injection .......................................................................................................................... 15 

3.1 Parameterized Queries with Bound Parameters .............................................................................. 15 

3.2 Parameterized Stored Procedures .................................................................................................... 15 

4.0 Existing Prevention/Detection Models ................................................................................................. 17 

4.1 Secure SQL Processing ...................................................................................................................... 17 

4.1.1 Proposed architecture ............................................................................................................... 19 

4.1.2 Performance............................................................................................................................... 20 

4.1.3 Shortcomings of the technique ........................................................................................... 20 

4.2 Weight-based Symptom Correlation Approach ................................................................................ 21 

4.2.1 Detection Approach ................................................................................................................... 23 

4.2.2 Performance............................................................................................................................... 24 

4.3 Preventing SQL Injection in Stored Procedures ................................................................................ 25 

4.3.1 Basics .......................................................................................................................................... 25 

4.3.2 SQL Injection in stored procedures ............................................................................................ 25 

4.3.3 Proposed Solution ...................................................................................................................... 27 

4.4 MUSIC: Mutation Based SQL Injection Checking .............................................................................. 30 

4.4.1 Mutation operators .................................................................................................................... 31 

4.4.2 Mutant Killing Criteria ................................................................................................................ 32 

4.4.3 Details of Mutation Operator .................................................................................................... 33 

5.0 Key Observations .................................................................................................................................. 35 

6.0 Implementation Details ........................................................................................................................ 37 

6.1 DFD’s for Static Analyzer ................................................................................................................... 37 



6.1.1 Level 0 ........................................................................................................................................ 37 

6.1.2 Level 1 ................................................................................................................................. 37 

6.1.3 Level 2 ........................................................................................................................................ 38 

6.2 DFD’s for Runtime Analyzer .............................................................................................................. 39 

6.2.1 Level 0 ........................................................................................................................................ 39 

6.2.2 Level 1 ........................................................................................................................................ 40 

6.3 Graphical user interface .................................................................................................................... 41 

6.4 Structure Description and Technical Specifications .......................................................................... 43 

6.5 Pseudo code ...................................................................................................................................... 44 

6.5.1 Static Analyzer ............................................................................................................................ 44 

6.5.2 Runtime Analyzer ....................................................................................................................... 45 

7.0 Results and Performance ...................................................................................................................... 46 

7.1 Results ............................................................................................................................................... 46 

7.2 Performance analysis ........................................................................................................................ 47 

7.2.1 Static Analysis............................................................................................................................. 47 

7.2.2 Runtime Analysis ........................................................................................................................ 50 

8.0 Conclusions and Future Work ............................................................................................................... 55 

9.0 References ............................................................................................................................................ 56 

 

 

 

 

 

 

 

 

 



List of figures 

 

Figure number Title of figure Page number 

1 Node structure of the main doubly linked list 13 

2 Node structure of singly linked list 14 

3 Correlation Process for weight-based approach 17 

4 Code sample for stored procedure vulnerable to SQLIA 22 

5 SQL-Graph representation 24 

6 SQLIA Detection : SQL-FSM Violation 25 

7 The proposed Operators in MUSIC 27 

8 Mutant killing criteria 28 

9 Table ‘tlogin’ 29 

10 Example Applications of RMWH 29 

11 Example Applications of NEGC 30 

12 Level 0 DFD for Static Analyzer 33 

13 Level 1 DFD for Static Analyzer 33 

14 Level 2 DFD for Static Analyzer 34 

15 Level 0 DFD for Runtime Analyzer 35 

16 Level 1 DFD for Runtime Analyzer 36 

17 Main working window 37 

18 View stored procedure text 38 

19 Graph: No. of queries vs execution time for SA 44 

20 Graph: No. of dependencies vs execution time for SA 45 

21 Graph: No. of dependencies vs execution time for RA 47 

22 Graph: No. of queries with one depedency vs execution 

time for RA 

48 

23 Graph: no. of queries with 2 dependencies vs Execution 

time for RA 

49 

24 Graph no. of queries with three dependencies vs Execution 

time for RA 

50 

 

 



List of Tables 

 

Table Number Title of table Page number 

1 Summary of testing results 43 

2 Execution time for different no. of queries for SA 44 

3 Execution time for different no. of dependencies for SA 45 

4 Execution time for different no. of dependencies for RA 46 

5 Execution time for queries with 1 dependency each 48 

6 Execution time for queries with 2 dependencies each 49 

7 Execution time for queries with 3 dependencies each 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.0 Introduction 

1.1 Motivations 
Information can be said to be the single most important business asset today and achieving 

a high level of information security can be viewed as imperative in order to maintain a 

competitive edge. SQL Injection Attacks (SQLIA’s) are one of the most severe threats to 

web application security. They are frequently employed by malicious users for a variety of 

reasons like financial fraud, theft of confidential data, website defacement, sabotage, etc. 

The number of SQLIA’s reported in the past few years has been showing a steadily 

increasing trend and so is the scale of the attacks. It is, therefore, of paramount importance 

to prevent such types of attacks, and SQLIA prevention has become one of the most active 

topics of research in the industry and academia. There has been significant progress in the 

field and a number of models have been proposed and developed to counter SQLIA’s, but 

none have been able to guarantee an absolute level of security in web applications, mainly 

due to the diversity and scope of SQLIA’s. One common programming practice in today’s 

times to avoid SQLIA’s is to use database stored procedures instead of direct SQL 

statements to interact with underlying databases in a web application, since these are 

known to use parameterised queries and hence are not prone to the basic types of SLQIA’s. 

However, there are vulnerabilities in this scheme too, most notably when dynamic SQL 

statements are used in the stored procedures, to fetch the database objects during 

runtime. Our work is centred on this particular type of vulnerability in stored procedures 

and we develop a scheme for detection of SQLIA in scenarios where dynamic SQL 

statements are used. 

 

1.2 Research focus and original contributions 
Our project work is focused on detection of SQLIA’s in database stored procedures which 

contain dynamic SQL statements. After carefully analyzing the mode of the attack in such a 

scenario, and examining previously proposed models, we decided to implement the model 

proposed by Wei, Muthuprasanna, et al, which was merely a statement of the model to be 

used. We are wholly responsible for development of the algorithm for the implementation 

of the idea and all the programming concepts and specifications involved. Our algorithm 

essentially consists of two components, one being the static analyser which is an 

application to be used by either the DBA or the developer, and the other being the runtime 

analyser which is a library for use by the developer. The model works by comparing the 

structures of a query before and after including the parameters contained in it. If there is a 



conflict in the structures (which would be the case in the event of an SQLIA) then the query 

is flagged as an SQLIA and reported back to the application for further action. 

 

 

1.3 Structure of the work 
The rest of this work is organized as follows. In Chapter 2, the basics of SQLIA are 

introduced and different types of attacks are discussed, with illustrations of their structure 

and mode of attack. Chapter 3 contains a description of the basic techniques used to 

prevent SQLIA’s in web applications. These include the usage of parameterised queries, 

parameterised stored procedures, and least privilege connections, which are discussed in 

some detail. In Chapter 4, the various SQLIA detection and prevention models studied by us 

have been documented with a detailed description of their working and specific 

advantages and disadvantages of each. Chapter 5 contains the key observations from the 

models presented in Chapter 4, and then goes on to identify which model would be most 

suitable for implementation for the purpose of this thesis work. Chapter 6 contains 

documentation of the programming details for the software to be made, including the Data 

Flow Diagrams for both the static and the runtime analyzers, a few samples of the graphical 

user interface of the software, the structure description and technical specifications of the 

software, and the pseudo-code for both the static and the runtime analyzers. Chapter 7 

reports the performance parameters of the software and the results, and Chapter 8 talks 

about the possible updation and future work that could be done to improve the 

functionality and efficiency of the developed software.  

 

 

 

 

 

 

 

 

 



2.0 SQL Injection 

2.1 SQL Injection Attacks 
SQL injection vulnerabilities have been described as one of the most serious threats   for Web 

applications. Web applications that are vulnerable to SQL injection may allow an attacker to 

gain complete access to their underlying databases. Because these databases often contain 

sensitive consumer or user information, the resulting security violations can include identity 

theft, loss of confidential information, and fraud. In some cases, attackers can even use an SQL 

injection vulnerability to take control of and corrupt the system that hosts the Web application. 

The major cause of SQL injection attacks is inefficient user input validation and poor 

programming practices. However, there are advanced injection techniques which exploit the 

inherent shortcomings of programming languages and the underlying databases. 

 The typical intentions of the attacker performing a SQL injection attacks may be to: 

• Identify inject-able parameters. 

• Perform database finger-printing. 

• Determine the database schema. 

• Extract and modify data. 

• Perform Denial of Service (DoS) 

• Bypass authentication and perform privilege escalation 

• Execute remote commands 

 

2.2 Types Of Attacks 
The basic types of attacks are as follows: 

• Tautology attacks: The basic objective of a tautology-based attack is to inject code into 

one or more conditional statements so that they always evaluate to true. The most 

common usages are found to be in bypassing authentication pages and in extracting 

data. In this type of injection, the attacker exploits an inject-able field contained in the 

WHERE clause of a query. He transforms this conditional into a tautology and hence 

causes all the rows in the database table targeted by the query to be returned. Typically, 

the injection attempt is said to be successful when the code either displays all the 

returned records or performs some action if at least one record has been returned. 

Eg :  SELECT accounts FROM users WHERE 

 login=’’ or 1=1 -- AND pass=’’ AND pin= 



   The code injected in the conditional (OR 1=1) transforms the 

entire WHERE  clause into a tautology. The returned set evaluates to a non null value, 

which causes  the application to conclude that the user authentication was successful. 

 

• UNION Attacks: Here, an attacker exploits a vulnerable parameter to alter the data set 

returned by a given query. Using this technique, an attacker can trick the application 

into returning data from a table different from the one that was intended by the 

developer. Attackers do this by injecting a statement of the form:  

UNION SELECT <rest of injected query>. Because the attacker is in complete control of 

the second/injected query, he can use that query to retrieve information from any 

desired table in the database. The result of this attack is that the database returns a 

dataset that is the union of the results of the original/first query and the results of the 

injected/second query. 

 

 Eg :  SELECT accounts FROM users WHERE login=’’ UNION 

  SELECT cardNo from CreditCards where 

 acctNo=10032 -- AND pass=’’ AND pin= 

   Assuming that there is no login equal to “”, the original/first query 

 returns the null set, whereas the second query returns data from the “CreditCards” 

 table. In this case, the database would return column “cardNo” for the account “10032.” 

 

• Logically incorrect query attacks: This type of attack lets an attacker gather important 

information about the type and structure of the back-end database in a Web 

application. The attack is considered to be a preliminary, information gathering step for 

subsequent attacks. The vulnerability leveraged by this type of attack is that the default 

error page returned by application servers is often overly descriptive, which can serve to 

expose sensitive information about the databases to the hacker. In fact, the simple fact 

that an error message is generated can often reveal vulnerable/inject-able parameters 

to an attacker. 

 

 Eg :  SELECT accounts FROM users WHERE login=’’ AND 

  pass=’’ AND pin= convert (int,(select top 1 name from 

 sysobjects where xtype=’u’)) 

In this attack string, the injected SELECT query attempts to extract the first user table 

(xtype=’u’).  The query then tries to convert this table name into an integer. Because this 

is not a legal type conversion, the database throws an error. For Microsoft SQL Server, 

the error would be:”Microsoft OLE DB Provider for SQL Server (0x80040E07) Error 

converting nvarchar value ’CreditCards’ to a column of data type int.” There are two 

useful pieces of information in this message that aid an attacker. First, the attacker can 

see that the database is an SQL Server database, as the error message explicitly states 

this fact. Second, the error message reveals the value of the string that caused the type 

conversion to occur. 

 



• Piggybacked Query : In this attack type, an attacker tries to inject additional queries 

along with the original query, which are said to “piggy-back” onto the original query. As 

a result, the database receives multiple SQL queries for execution. The first is the 

intended query which is executed as normal; the subsequent ones are the injected 

queries, which are executed in addition to the first. This type of attack can be extremely 

harmful. If successful, attackers can insert and execute virtually any type of SQL 

command, including stored procedures, into the additional queries and have them 

executed along with the original query. Vulnerability to this type of attack is often 

dependent on having a database configuration that allows multiple statements to be 

contained in a single string. 

 

 Eg :   SELECT accounts FROM users WHERE login=’doe’ AND 

 pass=’’; drop table users -- ’ AND pin=123 

After completing the first query, the database would recognize the query delimiter (“;”) 

(which is used to execute multiple queries in succession) and execute the injected 

second query. The result of executing the second query would be to drop the table 

‘users’, which would likely destroy valuable information. Many databases do not require 

a special character to separate distinct queries, so simply scanning for a query separator 

is not an effective way to prevent  this type of attack. 

 

Apart from these basic types, there are also other types of injection attacks like 

inference-based queries, timing attacks and alternate encodings, which are outside the 

scope of this thesis work. 

 

 

 

 

 

 

 

 

 

 



3.0 Avoiding SQL Injection 

There are two complementary yet greatly successful methods[5] of mitigating SQL Injection 

attacks:  

• Parameterized queries using bound, typed parameters  

• Careful use of parameterized stored procedures.  

Parameterized queries are the easiest to adopt, and work in fairly similar ways among most 

web technologies in use today, including:  

• Java EE  

• .NET  

• PHP  

 

3.1 Parameterized Queries with Bound Parameters 
Parameterized queries[5] keep the query and the data separate through the use of 

placeholders known as "bound" parameters. This helps in preventing SQLIA by not 

allowing the structure of the query to be altered; rather it merely “fills in” the input 

parameters into their positions and keeps the rest of the query structure intact. Since a 

majority of the SQLIA techniques rely on altering the query structure for injection 

attacks, this serves as a very effective combative technique. For example, in Java, this 

looks like: 

"select * from table where columna=? and columnb=?" 

The developer must then set values for the two ? placeholders. Note that using this 

syntax without actually using the placeholders and setting values provides no protection 

against SQL injection. 

3.2 Parameterized Stored Procedures 
The use of parameterized stored procedures[5] is an effective mechanism to avoid most 

forms of SQL Injection. If used in combination with parameterized bound queries, it 

makes it very unlikely for SQLIA’s to occur within an application. However, the use of 

dynamic code execution features can allow SQL Injection as shown below: 

create proc VulnerableDynamicSQL(@userName nvarchar(25)) as  



 declare @sql nvarchar(255) 

 set @sql = 'select * from users where UserName =  + @userName + ' 

 exec sp_executesql @sql 

In the example shown above, it can be seen that the comparison element is being 

appended to the query at runtime, and hence this type of dynamic code is vulnerable to 

SQLIA’s. Typically, dynamic code is used when database object names are to be passed 

at runtime. 

3.3 Least privilege connections 

Another effective way of avoiding SQLIA’s is by ensuring that any application that has 

access to the underlying databases should only use accounts which grant it the 

minimum permissions necessary to access the objects that it needs to use[5]. Under no 

circumstance should any such application be allowed to use accounts such as “dba” or 

“admin”, which grant it full privileges to alter the database and extract data in any which 

way it can. 

 

 

 

 

 

 

 

 

 

 

 

 



4.0 Existing Prevention/Detection 

Models 

4.1 Secure SQL Processing 
This model has been proposed by Dibyendu Aich, an M-tech research scholar at the 

National Institute of Rourkela in the research paper titled “Secure Query processing by 

blocking sql injection”[3]. The basic mechanism that this model uses is a two phase 

query analysis, consisting of the static analysis phase and the dynamic analysis phase. 

During runtime, the model checks the input query structure with the previously stored 

query structure to determine possible SQLIA’s. The database of the valid query 

structures is made statically, during compilation. The valid structures are stored as a 

singly linked list of the different tokens in a sequential ordering. All such valid query 

structures in the application are then stored as a doubly linked list where each node of 

the doubly linked list contains the staring address of an individual singly linked list of a 

valid query structure. So basically, when a new query is sent to the database server, the 

model starts searching for a match of the structure of the query in the linked 

representation. If a match is found, the search is stopped and the query is dubbed a 

valid query, else it is labelled as an SQL injection attack. 

In effect, the searching procedure is the operation of checking if the sequence of query 

language tokens generated by the arrived query is the same as the sequence of tokens 

generated by at least one singly linked list of valid query structures, upon finding which, 

the query is sent to the server for execution. This model makes use of the SQL parser of 

the backend database to parse the incoming query into a sequence of tokens, with an 

additional field to denote if the node is a user input or if it is a token of the static part of 

the query. When a node denoting a user input is found in the linked list, the checker 

skips right past it to the next static token, and the matching continues. 

  

       

 

 

Figure 1: Node structure of the main doubly linked list[3] 

       Link to                   Link to the singly linked                                                        Link to 

  previous node            list storing individual               Hit Count                         next node 

                                             query structure 



 

 

 

 

 

 

 

 

Figure 2: Node structure of singly linked list for storing a valid individual query 

structure[3] 

From the above description of the matching technique, it is clear that for a successful 

search, number of tokens in the input query must be equal to the length of the linked 

list storing its structure. 

Key advantages over other token matching algorithms :    

 

• Although this process is a relatively secure way of checking for SQL injection, it is 

computationally very intense because it involves searching of the linked list for a 

matching structure. For a database where the number of valid query structures 

is very huge, this could take an unacceptably long time. Hence, the technique 

proposed to deal with this shortcoming is to use a multithreaded search, where 

the input query is checked with each different query structure running as 

different threads. When a thread performs a successful search, it intimates all 

other running threads to immediately terminate. 

 

• However, due to hardware constraints, there is always a limit on the number of 

simultaneously executing threads in any application. Hence, to counter this, a 

technique is used where we check for the matching structure with stored 

structures based on a priority search, where the queries that are used more 

regularly are given a higher priority compared to those used rarely, which can be 

easily maintained by associating a hit counter with each query structure which is 

incremented each time the particular structure is matched with an incoming 

query. 

 

• For runtime matching, if a conventional literal matching is used to compare 

tokens, it will lead to a huge computational complexity. For example, if there are 

‘n’ literals in the incoming query and ‘q’ individual valid query structures of the 

Data related to the             

   tokens of a valid                Is it a user input?                  Link to next node 

           query 



same length as the input query, the worst case complexity will be O(n*q). To 

avoid this overhead, a technique is used where instead of using literal string 

matching algorithms; each token is simply mapped to an integer value. These 

integer values are also stored in the database instead of the literals as the query 

fingerprint. When an input query arrives for checking, each token of that query is 

replaced by its corresponding integer value, and then performing direct integer 

comparison checks instead of token matching, thus greatly reducing the 

computational overhead and also significantly reducing the memory space 

required.  

 The formula used to convert a token into its corresponding integer value 

is to multiply each ASCII decimal value of a literal by its position number in the 

token, and then sum it up. For example, let’s consider the keyword, ‘SELECT’, the 

corresponding ASCII decimal values are S=83, E=69, L=76, E=69, c=67, T=84; and 

the position of each literal is S=1, E=2, L=3, E=4, C=5, T=6. So, after multiplying 

the ASCII values of each literal with its position and summing them up, we get, 

83*1 + 69*2 + 76*3 + 69*4 + 67*5 + 84*6 =  1564. Hence, the corresponding 

integer value of ‘SELECT’ is 1564. The integer equivalents of all other keywords 

can be similarly evaluated.  

 

• It is known that for a valid incoming query, the number of tokens is the same as 

the number of tokens in its corresponding query structure in the database. 

Therefore, to reduce the search space, all the valid structures having the same 

length are grouped together. For an input query, first its length is calculated, 

and it is only compared with that group of valid structures which have the same 

length. To achieve this, an array is used each element of which contains the 

starting address of a doubly linked list which again contains the starting 

addresses of all the singly linked lists of the valid structures of a particular length. 

Hence, this array contains one element for each different possible query length 

in the application, with the cell number indicating the query length. This 

substantially reduces the search space and optimizes the searching process. 

 

 

4.1.1 Proposed architecture  

This scheme would be implemented as a different layer in between the application and 

the database. It would perform as a virtual database to the application, as it would take 

the queries from the application program, analyse them, and if found safe, then send 



them to the database and subsequently send the result set back to the application. As 

this scheme is totally dependent of the token generation, for which it uses the DBMS 

parser, it would be specific to different databases as different databases use different 

keyword sets and function names, as well as different syntax. Hence, we see that it is a 

wise choice to use the database parser to perform the parsing. 

4.1.2 Performance 

The main advantage of this model is that since it is multithreaded in nature, it can utilize 

the features of the modern multi-core processors very efficiently. The basic complexity 

of this algorithm is in three procedures: 

1. Token separation : This depends entirely on the database involved 

because it is wholly dependent on the database parser, since most 

databases have a different keyword set, syntax and function names. 

Thus, this factor can be taken to be the same for all implementations. 

2. Token to integer conversion : This is of the order O(n) where ‘n’ is the 

total number of unique literals in all the queries put together. 

3. Searching : Worst case is when it is an unsuccessful search, or when the 

match is found in the last linked list of any group. If the length of the 

singly linked list is ‘m’ and there are ‘q’ such linked lists, then the search 

complexity is O(m*q). The best case complexity will be if we found a 

match in the first structure, in which case the order will be O(m). If we 

had used a literal wise checking, then the complexity would have been 

O(n*q), where ‘n’ is the total number of literals in the query and n>>m. 

 

4.1.3 Shortcomings of the technique 

• It can only detect injection attacks where the structure of the query is changed. 

• This model can only process a standalone SQL query, but does not work for PL/SQL code 

block. 

 

 

 

 
 



 

4.2 Weight-based Symptom Correlation Approach 
 

This technique has been proposed by Massimo Ficco et al in the research paper titled “A 

Weight-Based Symptom Correlation Approach to SQL Injection Attacks”[4]. In this 

technique, a number of symptoms of an SQL injection attack are considered which 

appear in different times, involve different components and produce several alert 

events. Correlating these symptoms, which are diverse in nature and detected by 

distributed probes, allows us “to build a unified view of the web service security, as well 

as simplifies the recognition of intrusive behaviours”.[4]  

 

Correlation process : Correlation is a process that receives as input detected symptoms 

from many distributed probes. During this process, symptoms are analyzed and merged 

into compact reports, which describe the security status of the monitored web 

applications, which is followed by a confidence assessment of the produced reports. As 

shown in the figure below[4], the steps performed by the considered correlation 

process are the following: 

 

 
Figure 3: Correlation Process for weight-based approach 



 

•  Detection : Distributed probes and detection mechanisms are used to track different 

attack symptoms of an SQLIA. 

• Normalization : Every detected symptom is recorded and normalized into a 

standardized format, and is also augmented with additional information such as time-

stamps, source address of attacker, etc. 

• Classification : Here, the symptoms are aggregated into categories depending on a 

number of different parameters. 

• Data coalescing : Events generated by different probes detecting the same symptom are 

merged into a single event. 

• Correlation : It receives the classified symptoms and correlates them by using various 

collaboration rules. 

• Ranking : Once the correlation succeeds, a decision is taken whether the current 

observations correspond to malicious activities with respect to the system mission. 

In general, the ‘system mission’ represents the major objectives of the detection process 

pursued by the security administrator. In this context in particular, the system mission for a 

SQLIA attack typically consists in avoiding unauthorized access to the backend database and 

any sensitive information. 

 

Steps involved 
 

1) Detection : The use of multiple heterogeneous and distributed probes potentially 

improves the detection performance through the generation of different perspectives of 

the same security incident. For example, the length of the query attributes, the error 

code generated by the database server, or the size of the pages returned by the web 

server could all be used as probes to detect symptoms of an SQLIA. Each probe uses a 

detection model that allows it to assign a probability value, called an ‘anomaly score’ 

(AS), which reflects the probability of the occurrence of the given anomaly with regards 

to an established profile in keeping with the system mission. Based on this value the 

evaluated feature is either classified as a potential attack’s symptom or as normal. 

 

2) Normalization: Since each probe can provide varied security information with differing 

representations or formats, a process of symptom normalization into a common format 

is imperative. On the basis of a specific mapping scheme, several attributes are 

associated with each event to aid the normalization process, such as the identifier of the 

probe, the symptom identifier, the source and the target of the attack, the start/end 

times of the symptom, and the anomaly score. 

 

3) Classification: Classification aims to categorize symptoms. Categorization schemas must 

be defined to identify classes of symptoms in a prioritized, hierarchical manner with 

respect to the overall system mission. Symptoms may be categorized along several 

dimensions. For example, they could be divided into abuses, misuses, and suspicious 



acts. Abuses represent actions which change the state of a system’s asset, such as 

sensitive data or database schema, etc. These can further be divided into anomaly-

based and knowledge-based abuses. The former represent anomalous behaviors              

(unusual application load, anomalous input requests); the latter are based on the 

recognition of signatures of previously known attacks (e:g:, brute force attacks). Misuses 

represent out-of-policy behaviors in which the state of the components are not affected 

(e:g:, authentication failed, failure queries). Suspicious acts are not policy violations of 

any kind but are merely events of interest to the probes (e:g:, commands which provide 

information about the state of the system).  

 

4) Data coalescing: In order to avoid multiple messages referring to the same physical 

symptom from being generated, events that represent the independent detection (by 

different probes) of the same symptom occurrence are coalesced to a single event. 

When two symptoms are merged, the resulting event replaces the constituent events, 

and will be considered for matching with subsequent events. In particular, the resulting 

event presents an AS equal to the sum of the ASs of each of them. 

 

5) Correlation:  In this phase, the different symptom classes are correlated using one of a 

number of different correlation rules, and a meta-alert consisting of the correlated 

symptoms is generated. Researchers have proposed several alert correlation techniques 

and analysis processes. For example, a correlation rule that aggregates symptoms based 

not only on the impact they have on the system mission but also on their temporal 

proximity. Impact analysis requires a previous modelling of the relationships between 

symptoms and mission, which could either be determined through extensive experience 

and experimentation or through a heuristic-based technique.  

 

6) Ranking: In order to reduce the effort required to analyze the volume of generated 

alerts, an approach based on the confidence of the meta-alerts is adopted. Assuming 

that S (k) = {fs1; s2; :::; sn} is the set of correlated symptoms during the time window k, 

the confidence is the probability that the meta-alert represents malicious actions with 

respect to the system mission.  

 

4.2.1 Detection Approach 

 
In order to detect SQLIA symptoms, anomaly detection models are adopted. They allow 

to assign a probability value (anomaly score) to the generated events, which reflects the 

probability of the occurrence of the given anomaly with regards to an established 

profile. The typical features used to detect symptoms are : 

 

• Character Distribution (CD) : Typically, SQLIAs present a number of characters 

that are repeated many times and hence the character distribution can be highly 

anomalous. Therefore, an anomaly detection model is used to capture the 



concept of ‘normal’ query attributes and flag any attempt at SQL injection based 

on the character distribution. During the training phase, for each HTTP GET and 

POST request, the query section is extracted, and the relative frequency of each 

character in the attributes is computed. Then the characteristics of normal 

character distribution are approximated by the average of all character 

distributions (the sum of the distributions is divided by the number of requests). 

The estimated frequencies are sorted and grouped, and any input query differing 

in its distribution of characters is marked with a corresponding Anomaly Score 

(AS).  

• Query Length (QL) : The lengths of the inputs given in the different fields of a 

form that is part of a web request can be used to detect anomalous  behaviors. 

Generally, the lengths of the query attributes do not vary much among requests 

associated with the same web application. However, this behavior may show 

considerable deviations during SQLIA’s. For example, in UNION attacks, the 

attacker injects a statement of the form “UNION <injectedquery>”, which 

changes the length of the query attribute quite significantly. A model is adopted 

which statistically estimates an approximation of the query’s attribute length 

and detects suspicious inputs that significantly deviate from the observed 

normal behaviour. 

• Queries Failed (QF) : SQLIAs that execute many queries on a particular database 

table could show up as an anomalous high rate of queries failed with respect to 

the normal behaviour. An operational model is adopted to estimate abnormal 

rate of queries failed with respect to the normal profile. This is considered over a 

fixed slicing time window. 

• Web Response  (WR) : The size of the page generated by the web server when 

under SQLIA can vary significantly from the size of the corresponding page 

during normal execution. For example, the web server could generate a web 

page which contains an error message, whose size is quite different compared to 

the normal response. In particular, it can be safely assumed that the size of the 

page generated against the same request does not vary by much and any such 

anomaly can be flagged as a symptom of an SQLIA. During the training phase it is 

necessary to estimate the mean and the variance of generated page for each 

web page directly reachable by the user. 

 

4.2.2 Performance 

 
Weight-based correlation approach for SQLIAs detection allows the system to assign 

a higher level of confidence to the alerts collected by multiple security probes, 

located at different architectural levels, so as to achieve a higher probability of 

spotting an intrusion. In comparison, the other methods are based on a single data 

source or on multiple data sources, but located at a single architectural level, and 



are hence not as comprehensive. Weight-based approach is seen to give a very good 

performance in detecting a majority of both false positives and false negatives. 

  

The injection attacks of the UNION type are very efficiently detected by the Query 

Length detection while the Tautology attacks are very well detected by the 

Character Distribution detection. Thus, assigning appropriate weights to these two 

detection probes could lead to the minimization of false positives. Also, a feedback 

learning technique could be used whereby the false positives once recorded can be 

avoided the next time by modifying the weights to generate better anomaly scores. 

 

 

4.3 Preventing SQL Injection in Stored Procedures 

4.3.1 Basics 

This model has been proposed by Ke Wei, M. Muthuprasanna and Suraj Kothari of the 

Dept. of Electrical and Computer Engineering at Iowa State University in the research 

paper titled “Preventing SQL Injection Attacks in Stored Procedures”[2]. It essentially 

consists of two parts, a static analysis phase wherein an SQL graph is created to 

determine which inputs have to be checked for optimal execution time, and a run-time 

analysis wherein a FSA is used to determine whether a run-time query is clean from SQL 

injection attacks.  

 

  

4.3.2 SQL Injection in stored procedures 

Stored procedures, contrary to popular belief, are vulnerable to SQLIA’s. Shown below is 

an example that illustrates how an attacker can exploit vulnerabilities in a stored 

procedure, to gain illegitimate access to the system as well as the network resources. 

 

 A stored procedure is an operation set that is precompiled and saved. Typically, stored 

procedures are written in SQL. Since stored procedures are stored on the server side, 

they are available to all the client instances. Once a stored procedure is modified, all 

clients automatically get the new version. 

 

Shown below is a sample stored procedure that accepts ‘Name’ and ‘Passwd’ as user 

inputs in a variable length string format. 

 

1. CREATE PROCEDURE [EMP].[RetrieveProfile] @Name varchar(50), 

     @Passwd varchar(50) 

2. WITH EXECUTE AS CALLER 

3. AS 



4. BEGIN 

5. DECLARE @SQL varchar(200); 

6. ... 

7. SET @SQL=‘select PROFILE from EMPLOYEE where ‘; 

8. ... 

9. IF LEN(@Name) > 0 AND LEN(@Passwd) > 0 

10. BEGIN 

11. ... 

12. SELECT @SQL=@SQL+‘NAME=“‘+@Name+“‘ and ‘; 

13. SELECT @SQL=@SQL+‘PASSWD=“‘+@Passwd+““; 

14. ... 

15. END 

16. ELSE 

17. BEGIN 

18. ... 

19. SELECT @SQL=@SQL+‘NAME=“Guest“‘; 

20. ... 

21. END 

22. ... 

23. EXEC(@SQL) 

24. ... 

25. END 

 

Figure 4: Stored Procedure vulnerable to SQL-Injection 

 

An interesting observation to be made from the code sample shown above is that there 

is an EXEC system function which allows the user to dynamically build a SQL statement 

as a string and then execute it. This feature is supported in most business database 

products. Such dynamically constructed SQL statements provide great user flexibility 

(because database object names can be passed at runtime). However, they face a great 

threat from SQLIAs. The process of building an SQL statement could be used by the 

attacker to change the original intended semantics of the SQL statement.  

 

If the stored procedure in Code 1 is called with no values for @Name and @Passwd 

variables, the following query would get executed: select PROFILE from EMPLOYEE 

where NAME=‘Guest‘  

 

When user inputs are provided for @Name and @Passwd, the following query would 

get executed: select PROFILE from EMPLOYEE where NAME=‘name‘ and 

PASSWD=‘passwd‘. 

 

In this scenario, suppose a user gives input for variable @Name as ”‘ OR 1=1 −−” (SLQ 

injection attempt) and any string, say ”null”, for the variable @Passwd the query would 



take the form: select PROFILE from EMPLOYEE where NAME=“ or 1=1 −−‘ and 

PASS=‘null‘. 

 

The characters ”−−” mark the beginning of a comment in SQL, and everything after that 

is ignored. The query as interpreted by the database is a tautology and hence will always 

be satisfied, and the database would return information about all users. Thus an 

attacker can bypass all the authentication modules in place and gain unrestricted access 

to critical data on the web server.  

 

 

  

4.3.3 Proposed Solution 

 
The proposed model is an SQL-Injection Attack prevention technique that addresses a 

majority of the different types of SQLIAs as discussed in previous sections. The model 

works by combining a static analysis along with runtime validation. “The basis of such a 

technique is that the control flow graph of the stored procedures can be represented as 

an SQL-graph which indicates what user inputs the dynamically built SQL statements 

depend on”. By using an SQL-graph, the number of SQL queries that need to verified at 

runtime for SQLIA can be drastically reduced in most cases. This is done by selecting the 

smallest subset of queries that encompass all the string input parameters to the stored 

procedure. During runtime, a Finite State Automaton(FSA) is constructed from the 

EXEC(@SQL) procedure call and the is compared with the runtime query along with its 

associated inputs to determine if there is a change in the structure of the query, in 

which case it is flagged as an SQLIA. 

 

Static Analysis 
In the static analysis of a stored procedure, a stored procedure parser is used that 

retrieves the raw text of the procedure for analysis. Then, all the queries in the stored 

procedure that contain dynamic SQL constructs are identified and are saved as query 

nodes, with the inputs they depend on saved as specific input nodes. Once this is done, 

an SQL graph is constructed from the control flow of the stored procedure, which 

compares the input parameter dependencies of each query containing dynamic SQL, 

and finally selects the subset of all the queries which together contain as parameters 

the entire set of parameters used by the queries containing dynamic SQL statements. 

Only this subset of queries needs to be monitored at runtime, which avoids a lot of 

redundant computation that would otherwise have had to be done if this mechanism 

weren’t used. This lowers the overall runtime execution time complexity and ensures 

better efficiency of the algorithm.  

 

 



SQL-Graph Representation 

It is possible for a stored procedure to have more than one EXEC(@SQL) statement. Not 

all the EXEC(@SQL) statements would depend on the user inputs. Only those which 

need the user inputs to complete the SQL statements are potentially vulnerable to 

SQLIA. However, the number of such statements in practical applications might yet be 

very large, and hence a mechanism is required to optimize the number of comparisons 

required to ascertain the legality and validity of an input parameter at runtime. An SQL 

graph is used in this model to achieve precisely that, an enhanced time and execution 

complexity and better overall algorithm efficiency. A sample SQL-Graph[2] is shown in 

the figure below. 

 

 
Figure 5: SQL Graph representation 

The SQL-graph shown in the figure above represents 4 different SQL queries (EXEC 

statement hotspots) in the stored procedure as nodes and 3 different user inputs. If a 

particular user input (I) is used in a SQL query (Q), the relationship (R) between the two 

nodes is indicated by an undirected link between the 2 nodes. The SQL-graph also 

considers dependencies between queries. Dependencies (D) in the SQL-graph are shown 

as directed arrows that point from one SQL query to another SQL query such that the 

user inputs used by the former is a proper superset of the user inputs used by the latter. 

For SQL queries that use the same set of user inputs, one of them is arbitrarily chosen as 

a representative query and is made to point to the others.  

 

The concept of directed dependencies given by an SQL-graph is used to reduce the 

runtime scanning overhead by restricting the number of queries that need to be 

scanned along any execution path that is taken in the stored procedure. SQL queries 

that do not use user inputs are not included in the SQL-graph. Only the SQL queries that 

are exposed to the user inputs in some form or the other (string manipulations 

included) are included in the SQL-graph representation.  Once all the query nodes are 

added to the graph, the input dependencies are identified and corresponding query 

dependencies (based on input set closure) are determined. If a user input does not 



cause any SQLIA in one query, it means that it conforms well to the SQL query semantics 

as defined by the SQL language. Then it is implicitly acknowledged that the same input 

in any other query would also not cause an SQLIA. If this knowledge is not exploited, a 

number of redundant verifications of the same user input in multiple SQL queries in the 

SQL graph would ensue. The directed dependency in the SQL-graph tells us which SQL 

queries are supersets of which other SQL queries in the SQL-graph. It would suffice to 

check only those SQL queries during runtime validation for SQLIA. The last step of the 

static analysis phase is the determination of this minimal set of queries that encompass 

all the inputs required, and storing that set of queries on the hard drive, to be fetched 

and analyses during runtime to scan for SQLIA’s.  

 

The SQL-graphs are constructed statically, and hence might need to be constantly 

updated to reflect any changes in the code made by the programmer at any point of 

time. To facilitate easy modification of the code by the developer in a transparent 

manner, there is an option for SQL Graph modification where the developers simply 

need to use the turn-off option to remove all the instrumentation and the 

corresponding SQL-graphs, alter the code as desired and then rebuild these elements 

again. 

 

 

 

Runtime Analysis 
During runtime, before the EXEC() function in the stored procedure is called, the 

SQLIACHECKER() function will identify the user input by the current session ID and build 

a finite state automaton. Then, the SQL statement with user inputs filled in is compared 

against the corresponding FSA to check for validity. If the user inputs result in the 

dynamically generated SQL queries not conforming to the semantics of the intended 

SQL queries as in the FSA, then they are flagged as SQLIAs, else they are passed through. 

The figure shown[2] below illustrates two cases; one where an SQLIA is not caused and 

the query is passed through i.e. it matches the automaton construct, and another where 

an SQLIA has been caused and hence gets rejected as a potentially malicious query. 

 



 
Figure 6: SQLIA Detection: SQL-FSM Violation 

 

 

The literals (token encountered in the FSA) along both the original structure and the 

user inputs included structure, as one traverses from the Start node to the End node, 

should be exactly identical. The other check that can be enforced is that the length of 

the finite state automaton chain for a particular instance is exactly the same for the 

original one and the one with the inputs added. Thus SQLIAs employing tautology 

attacks and those injecting additional statements can be effectively captured by this 

technique. The case where alternate encoding like URL Encoding, UTF-8 etc. are used by 

the attackers can also be addressed using this technique by enforcing that the runtime 

validation occur only after all the user inputs have been converted to a single encoding 

format as interpreted by the SQL Engine in the database server.  

 

For each of the SQL queries listed in the CHECKLIST(), an FSA comparison is made and if 

all of these are found to conform to the statically constructed FSA’s, then we can 

ascertain the fact that all the input parameters required which might have been 

vulnerable to SQLIA’s are indeed legal and the stored procedure is now safe to be 

forwarded to the database for execution. 

 
   

 

 

4.4 MUSIC: Mutation Based SQL Injection Checking 
 

This model has been proposed by Hossain Shahriar and Mohammad Zulkernine of the 

School of Computing at Queen’s University, Ontario, Canada in the research paper titled 



“MUSIC:Mutation-based SQL Injection Vulnerability checking”[1]. In this work, they have 

applied the concepts of mutation based testing to SQLIA verification. Mutation is 

basically a fault-based testing technique, where a program is injected with faults 

according to rules known as mutation operators. The resultant state is called a mutant, 

and is either killed by the test cases, or remains alive. Depending on this state of the 

mutant, it can be determined whether the test is successful or not, which is dictated by 

the overall system objective. 

   

 4.4.1 Mutation operators 

This model proposes nine mutation operators divided into two categories. The first 

category consists of four operators that inject faults into the WHERE conditions (WC) of 

the SQL queries. The second category consists of five operators that inject faults into the 

database API method calls (AMC). A summary of the proposed mutation operators is 

provided in the table shown below. The mutant killing criteria shown in the table[1] are 

described in the following section. 

 
Figure 7: The Proposed Operators in MUSIC 

 

 



4.4.2 Mutant Killing Criteria 

 
The eight distinguishing or killing criteria proposed by the model are as shown in the 

following table. A test case that satisfies any of the eight criteria will be able to kill a 

generated mutant. Let I and M be the intended and its corresponding mutated query, 

respectively. Let us assume that the two queries use tables having N number of records 

in total (N > 1) and let n1 and n2 be the set of records selected on execution of I and M, 

respectively. The criterion C0 given in the table distinguishes I and M, if either (i) the 

cardinality of the intersection between n1 and n2 is zero or N; or (ii) the cardinality of 

the union of n1 and n2 is greater than N. Similarly, criterion C1 distinguishes between I 

and M, if the cardinality of the intersection between n1 and n2 is not zero. C2 

differentiates between I and M, if the cardinality of the intersection of n1 and n2 is 

greater than zero. For understanding the working of criterion C3, let us assume s1 

represents an application state, in which query I runs successfully and query M results in 

a syntax error and s2 represents the opposite state of s1 (i.e., M runs successfully and I 

generates syntax error message). The criterion C3 is used to distinguish between I and 

M based on the observation that s1 ≠ s2. The remaining criteria for killing mutants may 

be understood similarly using the table[1] shown below. 

 

Figure 8: Mutant Killing Criteria 



 

 4.4.3 Details of Mutation Operator 

 
A sample database table named ‘tlogin’ is shown below. The table has three columns 

named ‘id’, ‘uid’, and ‘pwd’, which represent the unique ID number of a user, his login 

ID, and his login password, respectively. Let us assume that an intended query written 

by a programmer is “select id from tlogin where uid=’” + userid +”’”. Here, userid is a 

string variable that receives the user supplied ‘userid’ and then becomes part of the 

query generation process without any filtering operation. The ‘tlogin’ table[1] is as 

shown:  

 

 
Figure 9: Table tlogin 

Remove SQL where conditions (RMWH). The RMWH operator removes the WHERE 

conditions of SQL queries, which results in the selection of all the rows from the 

particular table. The generated mutants are killed by test cases that satisfy the criterion 

C0. SQLIA’s of tautology or UNION type will be able to kill the generated mutants. The 

operator is applicable for SELECT, UPDATE, and DELETE type queries. 

 

 
Figure 10: Example Applications of RMWH 

 

The table[1] above shows four example applications of the RMWH operator. The first 

row shows the intended query (I) and the mutated query (M) with the test cases ’aaa’. 

Since ’aaa’ is a valid uid for the table shown above, it can be validated as not containing 

any SQLIA. Execution of I and M give the result sets n1 and n2, which are row numbers 

{1} and {1, 2, 3}, respectively. The intersection and union of the two sets is {1} and {1, 2, 

3}, respectively. The cardinalities of intersection and union are 1 and 3, respectively. 

Therefore, the test case does not satisfy the criterion C0, and the mutant remains live. 

However, the second and third test cases, which contain tautology type (“’ or 1=1 –“) 



and union type (“’ union select 20 --”) attacks, respectively, kill the corresponding 

mutants. 

 

Negation of expression in WHERE conditions (NEGC). The NEGC operator negates the 

unit expressions (e.g., uid=’aaa’ to uid!=’aaa’) present in the WHERE condition of an SQL 

queries. The operator is applicable for SELECT, UPDATE, and DELETE type queries. The 

intersection of the two record sets (one selected by an arbitrary condition and the other 

selected by its negation) should be null, provided the semantic of the query does not 

change. This fact is taken advantage of to force the generation of attack test cases that 

will violate the observation (i.e., satisfy the C1 criterion). The table[1] shown below 

shows three examples of the NEGC operator, where the equal (=) operator in I is 

mutated to not equal (!=) in M. The first row of the table shows that ’aaa’ (non SQLIA 

test case) cannot kill the mutant. The mutant is, however, killed by the tautology 

(second row) and union attack test cases (third row), where the criterion C1 is satisfied. 

 

 
Figure 11: Example Application of NEGC 

The remaining operators can be applied in a manner similar to the ones discussed 

above. The main objective of MUSIC is to detect SQL injection vulnerabilities rather than 

prevent them, the main concept being that if the mutant is alive then the code is safe, 

else if the mutant is killed then it indicates that there is an SQL vulnerability. 

 

 

 

 

 

 



5.0 Key Observations 

 

1. Stored procedures with dynamic SQL are prone to SQL injection attacks. 

2. Dynamic SQL is inevitable when the system objects aren’t know statically, for e.g. table 

names, column names, sort order.  

3. SQL injection in dynamic SQL can be mitigated by using parameterized queries or 

prepared statements. 

4. However there are situations when the concatenation of user inputs to generate the 

query is unavoidable. These situations are as listed below:- 

Large Number of insertion/deletion operations 

If there are large number of insertion and deletion operations between two 

executions of the same query, the query plan is bound to change for the two 

cases due to the large difference in the number of records. If a precompiled 

query or prepared statement is used then the query plan once made is cached 

and even if the number of records vary then the same old plan is used thereby 

affecting the performance of the system. 

 

Change in the structure of the table 

If there is a change in the structure of the table between two executions of the 

query, then the cached query plan will give sub-optimal solution. Hence 

compilation of the query between executions is necessary and hence 

concatenation needs to be used. 

 

Change in the type of index 

If the type of index changes between the executions of the query, it affects the 

cost of the query plan and it is necessary to compile the query between 

executions to obtain better performance. 

 

Number of parameters supported 

There exists a limit on the number of parameters that a parameterized query or 

a prepared statement can take. In practical situations and while using data 

mining or data warehousing there arise cases when the number of parameters 

exceeds that supported. Hence concatenation again is inevitable. 

 

Having made the above mentioned observations, and after a careful analysis of the 

different models described, we noted that since both the weight-based symptom 



correlation approach and the mutation based SQLI checking approach were focused on 

standalone query processing, and since a lot of research work has already been done in 

the area and lots of model for preventing SQLIA’s proposed, it wouldn’t be particularly 

rewarding for us to continue our research in that domain. However, we were very 

intrigued by the paper describing the model to prevent SQLIA’s in stored procedures, 

and seeing how widely stored procedures are being used in commercial applications 

today both for performance and for security reasons, we found it prudent to delve into 

the realm of SQLIA prevention in stored procedures. Moreover, we found the 

misconception that merely using stored procedures in an application makes it safe from 

SQLIA’s to be a very popular one, and this was something we sought to address through 

this project work.    

Hence, we chose the injection prevention model proposed by Wei, Muthuprasanna et 

al. as the pertinent one considering the above mentioned factors, choosing it over the 

model proposed in the paper ‘Secure Query Processing by Blocking SQL Injection’ by 

Dibyendu Aich because of the relative time and space complexity issues, operating 

efficiency and model elegance of the former. Moreover, after seeing that there haven’t 

been any published papers about the implementation of the model proposed, we 

decided that it would be a great topic to pursue our project work in. The rest of this 

thesis work contains the details of our implementation of the model presented in the 

paper ‘Preventing SQL Injection Attacks in Stored Procedures’ by Ke Wei, M. 

Muthuprasanna and Suraj Kothari, with a few divergences from the model during 

implementation. The programming specifics and the structures used therein were 

entirely designed by us. 

 

  



6.0 Implementation Details 

6.1 DFD’s for Static Analyzer 

 6.1.1 Level 0 
 

 

Figure 12: Level 0 DFD for Static Analyzer 

 6.1.2 Level 1 

 

Figure 13: Level 1 DFD for Static Analyzer 



 6.1.3 Level 2 
 

 

 

Figure 14: Level 2 DFD for Static Analyzer 

  



6.2 DFD’s for Runtime Analyzer 

6.2.1 Level 0 
 

 

 

 

Figure 15: Level 0 DFD for Runtime Analyzer 

 

 

 



 

 

 

6.2.2 Level 1 
 

 

 

Figure 16: Level 1 DFD for Runtime Analyzer 

 

 

 

 



6.3 Graphical user interface 
 

 

Figure 17: Main working window 



 

Figure 18: View stored procedure text window 

 

 

 

 

 

  



6.4 Structure Description and Technical Specifications 
 There are three basic data structures that are used in our implementation, namely: 

1. Query Node: 

• Query string – To store the query string. 

• Input list – List of inputs on which the query depends. 

 

2. Input Node: 

• Input variable name. 

• Query list – List of all queries that depend on this input 

• Position in parameter list – Position in the stored procedure parameter list 

 

3. Graph Node 

• Query node list – List of all query nodes in the graph 

• Input node list – List of all input nodes in the graph 

• Query list – List of all queries that need to be checked for SQLIA 

 

The software has been developed on the Microsoft .NET platform, using the C# 

language. During the static analysis, the list of queries to be checked is written onto the 

hard disk and is later fetched by the runtime analyzer to create parse trees and validate 

the queries. The parse trees are created using the SQL parser developed by Serge 

Gorbenko who is a senior software developer from Ukraine. This SQL parser is available 

at codeproject.com. At the preliminary stage, we have included support for the Oracle 

database. However, the implementation has been made generic enough to easily 

extend support to any database in the future.  

 

 

 

 

 

 



 

6.5 Pseudo code 

6.5.1 Static Analyzer 
 If string.contains(EXEC) 

 { 

  Search for EXEC 

  while(char!=” “) 

  { 

   check char after EXEC 

   if(“(“) 

   { 

    Push  “(“  into stack 

    Make query node 

    Till stack is empty 

    { 

     If nextchar() = “+” 

     { 

      Create input node 

      While nextchar()! = “+” 

      { 

       Input.setname = nextchar() 

       Query.text = nextchar() 

      } 

      Set input.value() 

      Query.inputlist = inputnode 

      Input.querylist = querynode 

     } 

     Else if nextchar() = “(“ 

     { 

      Push into stack 

      Query.text = nextchar() 

     } 

     Else if nextchar() = “)” 

     { 

      Pop from stack 

      Query.text = nextchar() 

     } 

     Else 

      Query.text = nextchar() 

    } 

   } 

   Else 

   { 

    Create new query node 



    While nextchar = “ “ or “;” 

    Temp=nextchar(); 

    Find last definition of temp by reverse string matching 

    Extract the query text as in the previous case 

   } 

  } 

 } 

 

 

6.5.2 Runtime Analyzer 

 
1. set  storedProcedureName, storedProcedureParameters 

2. set queriesToCheck:= graphNode.GetQueriesToCheck(); 

3. Foreach queryNode in queriesToCheck 

a. Set string q1=query without user inputs 

b. Set string q2=query with user inputs 

c. Set XMLTextReader rdr1=sqlParser.parse(q1) 

d. Set XMLTextReader rdr2=sqlParser.parse(q2) 

e. If(rdr1.LocalName==rdr2.LocalName) 

i. If(!(rdr1.LocalName==””) && !(rdr2.LocalName==””)) 

1. If(rdr1.LocalName==”Tag”) 

a. Set attributeName=”Type” 

2. Else if(rdr1.LocalName==”Text”) 

a. Set attributeName=”Value” 

3. If(rdr1.AttributeCount!=0 && rdr2.AttributeCount!=0) 

a. If(!(rdr1.GetAttributes(attributeName)==rdr2.GetAttributes(attr

ibuteName)) 

i. Flag as SQL injection 

ii. Break; 

f. Else 

i. Flag as SQL injection 

ii. Break; 

4. If(SQLInjection flag is set) 

a. Raise exception or return true 

5. Else 

a. Return false 

 

 

  



7.0 Results and Performance 

7.1 Results 
The static analyzer and the runtime analyzer were tested against various stored 

procedures. The stored procedures were built to work on the standard databases of the 

Oracle database. The standard database was the EMP database, with the tables 

‘emp’,’dept’ and ‘customer’ used for  testing the software. A sample stored procedures 

used for testing the software is as shown below. This procedure contains 12 query 

statements with dynamic SQL constructs, and depends on 5 user input parameters. 

create or replace procedure CustomerTableTwelve(custName in varchar,custAdd in 

varchar,custCity in varchar,custState in varchar,custPhone in varchar) is 

query varchar2(200); 

begin 

query:='select city from customer where name='||custName||''; 

execute immediate query; 

query:='select city from customer where name='||custName||' and 

address='||custAdd||''; 

execute immediate query; 

query:='select name from customer where city='||custCity||''; 

execute immediate query; 

query:='select creditlimit from customer where name='||custName||' and 

city='||custCity||''; 

execute immediate query; 

query:='select address from customer where name='||custName||' and 

phone='||custPhone||''; 

execute immediate query; 

query:='select name from customer where state='||custState||''; 

execute immediate query; 

query:='select custid from customer where state='||custState||' and 

city='||custCity||''; 

execute immediate query; 

query:='select repid from customer where phone='||custPhone||''; 

execute immediate query; 

query:='select name from customer where city='||custCity||' and 

state='||custState||''; 

execute immediate query; 

query:='select comments from customer where name='||custName||''; 

execute immediate query; 

query:='select custid,name from customer where address='||custAdd||''; 



execute immediate query; 

query:='select area from customer where name='||custName||''; 

execute immediate query; 

end CustomerTableTwelve; 

/ 

 

The following table gives the summary of the testing results. 

 

Type of injection Successfully blocked Number of false positives 

Tautology Yes Nil 

Union Yes Nil 

Piggy backed Yes Nil 

Logically incorrect query Yes Nil 

End of line comment Yes Nil 

Table 1: Summary of testing results 

 

The runtime analyzer uses a parse tree validation to validate the structure of the 

queries. Since this method is sure to detect any changes in the structure of the queries, 

any type of SQL injection which changes the query structure can be detected using the 

implementation given in this thesis work. 

 

 

7.2 Performance analysis 
 

7.2.1 Static Analysis 

Number of queries versus execution time 

The performance evaluation for this case was done by varying the number of queries in 

the stored procedure while keeping the user input dependencies of each query constant 

at one dependency each. The execution times for the static analyzer were measured by 

varying the number of queries for 50 iterations and the average times were calculated. 

The graph shown below gives the relation between the number of queries in the stored 

procedure versus the average time the static analyzer takes to analyze the stored 

procedure. The graph is seen to show an increasing trend, as predicted, where higher 

the number of queries, higher is the execution time. However there is minimal overhead 

of using the static analyzer as can be seen from the average times in the table below. 

The average execution time for analysis of a stored procedure having 12 queries is just 

3.7ms, which is a very reasonable compromise in most cases considering the enhanced 

level of security it provides. 



Sr No Number of queries Average time in ms 

1 1 1.61 

2 3 2.5 

3 6 2.97 

4 9 3.2 

5 12 3.7 

Table 2: Execution time for different no. of queries for SA 

 

 

Figure 19: Graph: Number of queries vs execution time for SA 

Number of dependencies versus execution time 

The performance evaluation for this case was done by fixing the number of queries in 

the stored procedure to one but varying the number of user input dependencies in the 

query. The execution times for the static analyzer were measured by varying the 

number of queries for 50 iterations and the average times were calculated. The graph 

below shows the relation between the number of user input dependencies and the 

execution time of the static analyzer for the given stored procedure. As predicted, this 

graph also shows an increasing trend; higher the number of dependencies, higher is the 

execution time of the analyzer. The overhead isn’t very significant, as can be seen from 

the table below. The execution time is 2.86 ms for a query with five user input 

dependencies. 
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Sr No Number of dependencies Average time  in ms 

1 1 1.71 

2 2 1.93 

3 3 2.2 

4 4 2.42 

5 5 2.86 

Table 3: Execution time for different no. of dependencies for SA 

 

 

 

Figure 20: Graph: Number of dependencies vs execution time 
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7.2.2 Runtime Analysis 

The performance of the runtime analyzer is an important consideration in this thesis, as 

the runtime analyzer incurs the overhead of checking the user inputs and the stored 

procedures for possibility of any SQL injection. Any application that uses this 

implementation would have some amount of overhead due to the runtime analysis. 

However the overhead is found to be quite reasonable within the scope of most 

application. 

Number of dependencies versus execution time 

The performance evaluation for this case was done by fixing the number of queries in 

the stored procedure to one and varying the number of user input dependencies in the 

query. The execution times for the runtime analyzer were measured by varying the 

number of queries for 50 iterations and the average times were calculated. Typical user 

inputs were given to the run time analyzer. The graph below shows the relation 

between the number of user input dependencies and the execution time of the runtime 

analyzer for the stored procedure. The nature of the graph is increasing i.e. higher the 

number of dependencies, higher is the execution time of the analyzer. The overhead is 

fairly reasonable, as can be seen from the table below. The execution time is 27 ms for a 

query with five dependencies. 

  

Sr No Number of dependencies Average time in ms 

1 1 14 

2 2 15 

3 3 20 

4 4 24 

5 5 27 

Table 4: Execution time for different no. of dependencies for RA 

 

 



 

Figure 21: Graph: Number of dependencies vs execution time for RA 

Number of queries versus execution time 

The performance evaluation for this case was done by varying both the number of 

queries in the stored procedures as well as the number of dependencies of each query. 

As such this evaluation was divided into three categories namely queries with one 

dependency each, queries with two dependencies each and queries with three 

dependencies. In each category the number of queries in the stored procedures was 

varied and the execution time of the runtime analyzer was measured for 50 iterations 

and the average time was calculated. The graph in each category is increasing in nature; 

higher the number of queries higher the execution time. 
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Queries with one dependency each 

Sr No Number of queries Average time in ms 

1 1 12 

2 2 24 

3 3 32 

4 4 50 

Table 5: Execution time for queries with one dependency for RA 

 

 

 

Figure 22: Graph: Number of queries vs execution time with one dependency 

for RA 
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Queries with two dependencies each: 

Sr No Number of queries  Average time in ms 

1 1 15 

2 2 31 

3 3 43 

4 4 62 

Table 6: Execution time for queries with two dependencies for RA 

 

 

Figure 23: Graph : Number of queries with two dependencies vs execution time 

for RA 
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Queries with three dependencies each 

Sr No Number of queries Average time in ms 

1 1 21 

2 2 38 

3 3 62 

4 4 118 

Table 7: Execution time of for queries with three dependencies for RA 

 

 

 

Figure 24: Graph : Number of queries with three dependencies vs execution time for 

RA 
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8.0 Conclusions and Future Work 

SQL Injection is a common technique that hackers employ to exploit underlying databases in 

several web and e-commerce applications in the present day. These attacks reshape the SQL 

query, thus altering the behavior of the program. Although several solutions exist to prevent 

SQLIA’s at the application level, very few solutions exists to prevent them from occurring at the 

database layer in stored procedures. In this paper, we have studied various SQLIA prevention 

models and presented a fully automated software implementation for the detection, 

prevention and reporting of SQLIA’s in stored procedures as proposed by Wei, Muthuprasanna 

et al. The software records the intended SQL query behaviour of all the stored procedures 

belonging to an application in the form of an SQL-graph, as a one-time offline procedure using 

static analysis of the stored procedure source code. This graph is then validated against all the 

different user inputs at runtime to detect all malicious SQL queries, before they are sent for 

execution. This model helps in catching all of the different types and modes of execution of 

SQLIAs. We have also provided preliminary evaluation results of the software prototype we 

developed against the various performance metrics affecting database accesses. 

 

As part of our future work, we plan to work on improving the overall algorithm efficiency, 

especially that of the runtime analyzer, since it is the one which accounts for the real-time 

delay in the application response. The static analyzer is run just once for an application (barring 

any changes in the database) and hence its computational overhead can be ignored for all 

practical purposes. The runtime analyzer needs to be tested by subjecting it to a variety of 

practical load situations in a typical client-server scenario to detect performance bottlenecks 

and remedy them. Further, we also intend to work on extending support of the software to 

more databases to make it more scalable and comprehensive. Finally, we are also exploring the 

possibility of implementing this functionality as a middleware to the database engine rather 

than as an application level library so as to avoid explicit instrumentation of the source code.   
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