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ABSTRACT 
 

 

Blind signature has been one of the most charming research fields of public key 

cryptography through which authenticity, data integrity and non-repudiation can be verified.  Our 

research is based on the blind signature schemes which are based on two hard problems – Integer 

factorization and discrete logarithm problems.  Here biological information like finger prints, 

iris, retina DNA, tissue and other features whatever its kind which are unique to an individual are 

embedded into private key and generate cryptographic  key which consists of private and public 

key in the public key cryptosystem. Since biological information is personal identification data, 

it should be positioned as a personal secret key for a system. In this schemes an attacker intends 

to reveal the private key knowing the public key, has to solve both the hard problems i.e. for the 

private key which is a part of the cryptographic key and the biological information incorporated 

in it. We have to generate a cryptographic key using biometric data which is called biometric 

cryptographic key and also using that key to put signature on a document. Then using the 

signature we have to verify the authenticity and integrity of the original message. The 

verification of the message ensures the security involved in the scheme due to use of complex 

mathematical equations like modular arithmetic and quadratic residue as well. 
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1.1 What is a Digital signature? 

 

In computing, the method of using encryption is to certify the source and integrity of a particular 

electronic document. Because all ASCII characters look the same no matter who types those, 

methods have to be found to certify the origins of particular messages if they are to be legally 

binding for electronic commerce or other transactions. One type of digital signature commonly 

seen on the internet is generated by the program Pretty Good Privacy (PGP), which adds a digest 

of the message to the signature. Digital signatures play an essential part in authenticating 

electronic commerce transactions. 

A digital signature or digital signature scheme is a complex mathematical scheme for 

demonstrating the authenticity of a digital message or document. A valid digital signature gives a 

recipient reason to believe that the message was created by a known sender, and that it was not 

altered in transit. Digital signatures are commonly used for software distribution, financial 

transactions and defence system and in other cases where it is important to detect forgery and 

tampering. 

Digital signatures are often used to implement electronic signatures, a broader term that refers to 

any electronic data that carries the intent of a signature, but not all electronic signatures use 

digital signatures. Digital signatures employ a type of asymmetric cryptography. For messages 

sent through an insecure channel, a properly implemented digital signature gives the receiver 

reason to believe the message was sent by the claimed sender. Digital signatures are equivalent 

to traditional handwritten signatures in many respects; properly implemented digital signatures 

are more difficult to forge than the handwritten type. Digital signature schemes in the sense used 

here are cryptographically based, and must be implemented properly to be effective. Digital 

signatures can also provide non-repudiation, meaning that the signer cannot successfully claim 

they did not sign a message, while also claiming their private key remains secret; further, some 

non-repudiation schemes offer a time stamp for the digital signature, so that even if the private 

key is exposed, the signature is valid nonetheless[11]. Digitally signed messages may be 

http://en.wikipedia.org/wiki/Electronic_signature
http://en.wikipedia.org/wiki/Asymmetric_key_algorithm
http://en.wikipedia.org/wiki/Signature
http://en.wikipedia.org/wiki/Non-Repudiation
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anything representable as a bit string: examples include electronic mail, contracts, or a message 

sent via some other cryptographic protocol. 

 A digital signature scheme typically consists of three algorithms: 

1. A key generation algorithm that selects a private key uniformly at random from a set of 

possible private keys. The algorithm outputs the private key and a corresponding public 

key. 

2. A signing algorithm which, given a message and a private key, produces a signature. 

3. A signature verifying algorithm which given a message, public key and a signature, either 

accepts or rejects the message's claim to authenticity.[7,11] 

But authentication is the utmost priority in the proposed project. In situations where there is not 

complete trust between sender and receiver, something more than authentication is needed. This 

opens the way the introduction of digital signature in the scheme. Digital signature must have the 

following properties. 

 It must verify the author and the date and time of the signature. 

 It must to authenticate the contents at the time of the signature. 

 It must be verifiable by third parties, to resolve disputes 

On the basis of these properties, we can formulate the following things which are required for a 

digital signature scheme: 

 The signature must be a bit pattern that depends on the message being signed by anyone. 

 The signature must use some information unique to the sender, to prevent both forgery 

and denial. 

 It must be relatively easier to produce the digital signature. 

 It must be relatively easy to recognize and verify the digital signature. 

It must be computationally infeasible to forge a digital signature, either by constructing a new 

message for an existing digital signature or by constructing a fraudulent digital signature for a 

given message. It must be practical to retain a copy of the digital signature in storage.[11] 

http://en.wikipedia.org/wiki/Bitstring
http://en.wikipedia.org/wiki/Electronic_mail
http://en.wikipedia.org/wiki/Contract
http://en.wikipedia.org/wiki/Cryptographic_protocol
http://en.wikipedia.org/wiki/Key_generation
http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29
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A variety of approaches has been proposed for the digital signature function. These approaches 

fall into two categories:  

1. Direct Digital Signature 

2. Arbitrated Digital Signature 

1.1.1 Direct Digital Signature 

The direct digital signature involves only the communicating parties (source, destination). It is 

assumed that the destination knows the public key of the source. A digital signature may be 

formed by encrypting the entire message with the sender's private key or by encrypting a hash 

code of the message with the sender's private key. 

1.1.2 Arbitrated Digital Signature 

The problems associated with direct digital signatures can be addressed by using an arbiter. As 

direct signature schemes, there are a number of arbitrated signature schemes. In general terms, 

they all operate as follows. Every signed message from a sender X to a receiver Y goes first to an 

arbiter A, who subjects the message and its signature to a number of tests to check its origin and 

content. The message is then dated and sent to Y with an indication that it has been verified to 

the satisfaction of the arbiter. The presence of A solves the problem faced by direct signature 

schemes: that X might disown the message. 

1.2 Blind Signature: 

Blind signature scheme, first introduced by David Chaum in 1983 [14, 15], allows a person to 

get a message signed by another party without revealing any information about the message to 

the other party. Using RSA signatures, Chaum demonstrated the implementation of this concept 

as follows: Suppose Alice has a message m that she wishes to have signed by Bob, and she does 

not want Bob to learn anything about m. Let (n, e) be Bob's public key and (n, d) be his private 

key. Alice generates a random value r such that gcd(r, n) = 1 and sends x = (r
e
 m) mod n to Bob. 

The value x is ``blinded'' by the random value r; hence Bob can derive no useful information 
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from it. Bob returns the signed value t = x
d
 mod n to Alice. Since x

d
0 (r

e
 m)

d
0 r m

d
 mod n. Alice 

can obtain the true signature s of m by computing s = r
-1

 t mod n. [14,15] 

Now Alice's message has a signature she could not have obtained on her own. This signature 

scheme is secure provided that factoring and root extraction remains difficult. However, 

regardless of the status of these problems the signature scheme is unconditionally “blind” since r 

is random. The random r does not allow the signer to learn about the message even if the signer 

can solve the underlying hard problems. 

1.3 What is Biometrics? 

Biometrics is the science of measuring physical properties of living beings. It is the automated 

recognition of individuals based on their behavioral and biological characteristics like face, 

blood, finger-prints whichever has some unique feature. Biometric features are information 

extracted from biometric samples given above which can be used for comparison with a 

biometric reference. Example: characteristic measures extracted from a face photograph such as 

eye distance or nose size etc.  

The aim of the extraction of biometric features from a biometric sample is to remove any 

redundant information which does not contribute to biometric recognition. This enables a fast 

comparison, an improved biometric performance, and may have privacy advantages. Our project 

uses the biometric feature matrix for the generation of the private key. [7, 13] First we can 

classify those schemes into key derivation (generation) and signature generation and verification 

framework of the matrix. The key derivation schemes imply that the signature key is derived 

directly from biometrics while the key authentication schemes mean that the signature key is 

accessed by biometric authentication. 

 Biometric data are directly mapped into a unique and repeatable binary string and then are 

transformed into a cryptographic key which is used as private key in our proposed project. No 

biometric template would be needed to store. But these methods are not flexible, for biometric 

characteristics are unique and permanent and expected to generate unique key, but in different 

application scenarios, a user possibly wants to use different keys [13, 11]. The hardest problem 

of this model is that the biometric data of a person vary dramatically depending on the 

acquisition method, acquisition environment, user‟s interaction with the acquisition device, and 
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(in some cases) variation in the traits due to various pathophysiological phenomena. It cannot be 

guaranteed to generate the same, unique key every time from different biometric samples. 

The private key is generated by hashing a user‟s personal secret and a biometric template. If we 

use only the biometric template for private key generation, we always get to generate the same 

key since the biometric data is unique. Moreover, if the private key is disclosed, the user‟s 

biometric data cannot be used any more. Therefore, in order to cancel and regenerate the private 

key, the user‟s personal secret is also required in generation of the private key. The private key is 

generated by hash function such as MD5 or SHA-1 on the biometric template with the personal 

secret [7, 11, 13]. We have implemented the biometric feature by using the MD5 hashing 

technique. If we use only the biometric template for private key generation, we always get to 

generate same key since the biometric data is unique. Therefore, in order to cancel and 

regenerate the private key, the user‟s personal secret is also required in generation of the private 

key [13]. 

1.4 Objective: 

The objective of the proposed project is to enhance the security of a system by the use of both 

biometric entity and cryptography and blinding. Our motive is to implement the project proposed 

taking the specimen of a figure print image as biometric data and generating large prime 

numbers under some conditions. This system not only gives security but also gives 

authentication to the requester party. 

1.5 Motivation: 

The biometric security and the blinding of the message have brought a significant change in the 

field of cryptography and computer security. In each and every area of the world due to 

importance of security there is a need of development of biometrics and blinding operation. The 

proposed scheme gives a mixture of both the ideas to give a better security to a system due to use 

of biometrics and complex mathematical techniques which are very difficult to decode.  
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2.1 What is Cryptography? 

Cryptography is the modern technique of converting ordinary text to unintelligible text. The 

ordinary text is otherwise known as plain text and unintelligible text is called cipher text. This is 

also known as encryption. In reverse decryption is converting the cipher text back to its original 

form. In the past the cryptography referred only encryption and decryption of messages by the 

use of a common secret key. But now-a-days due to advancement of the technology three 

different standard mechanisms are proposed. They are [11, 12] 

 Symmetric Key cryptography 

 Asymmetric Key cryptography 

 Hashing 

 

2.1.1. Symmetric Key Cryptography: 

In this technique the sender encrypts the message using some encryption algorithm and some 

secret key which is known only to both sender and receiver parties. Then the receiver receives 

the message and decrypts the message using a decryption algorithm and the same secret key. 

2.1.2 Asymmetric Key Cryptography: 

The technique is also known as public-key-cryptography. In this case we have the same situation 

as that of the symmetric key cryptography with few exceptions. Firstly there are two keys 

involved in this- public key and private key. The sender first uses the public key for encryption 

and the receiver uses his private key for decrypting the message as shown in figure 2.1[11, 12] 
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Figure 2.1-Asymmetric Key Cryptography [11, 12] 

2.1.3 Hashing: 

In this case a fixed length message digest created out of the variable length message. The digest 

is much smaller than that of the message. To be useful both the message and the digest must be 

sent to the receiver. Hashing is used to provide check values for the integrity of the message. 

Our proposed project is uses the benefits of public-key-cryptosystem and hashing for a secured 

communication between two parties. A set of cryptographic hash functions uses compression 

function. These hash functions include RSA, MD etc. Our proposed idea uses the MD5 

algorithm for message compression to convert a message to a 128 bit hexadecimal form. [11, 12] 

2.2 Cryptanalysis: 

Cryptanalysis is the study of methods for obtaining the meaning of encrypted information, 

without access to the secret information which is normally required to do so. Typically, this 

involves knowing how the system works and finding a secret key. In non-technical language, this 

is the practice of code breaking or cracking the code, although these phrases also have a 

specialized technical meaning. "Cryptanalysis" is also used to refer to any attempt to circumvent 

the security of other types of cryptographic algorithms and protocols in general, and not just 

encryption. However, cryptanalysis usually excludes methods of attack that do not primarily 
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target weaknesses in the actual cryptography, although these types of attack are an important 

concern and are often more effective than traditional cryptanalysis. [11, 12] 

The International Telecommunication union-Telecommunication standardization Sector 

(ITU-T) provides some security services and some mechanism to implement those services.  

2.3 Security Services: 

The security services include: 

 Data Confidentiality 

 Data Integrity 

 Authentication 

 Non repudiation 

 Access Control 

2.3.1 Data Confidentiality: 

Confidentiality has been defined by the International Organization for Standardization (ISO) in 

ISO-17799 as "ensuring that information is accessible only to those authorized to have access" 

and is one of the cornerstones of information security. Confidentiality is one of the design goals 

for many cryptosystems, made possible in practice by the techniques of modern cryptography. 

It is designed to protect data from disclosure attack. The service as defined by X.800 is very 

broad and encompasses confidentiality of whole message or part of a message and also 

protection against traffic analysis. That is it is designed to prevent snooping and traffic analysis 

[11, 12] 

2.3.2 Data Integrity: 

Data Integrity is designed for the protection of data from unauthorized modification, insertion, 

deletion and replaying by an advisory. It can protect the whole message or the part of message. 
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2.3.3 Authentication: 

This service provides the authentication of the party at the other end of the line. In the connection 

oriented communication, it provides the authentication of the sender or receiver during the 

connection establishment (peer entity authentication). In connectionless communication, it 

authenticates the source of data (also called data origin authentication). 

2.3.4 Non-repudiation: 

Non-repudiation service protects against repudiation by either the sender or the receiver of the 

data. In this with the proof of origin, the receiver of the data can later prove the identity of the 

sender. If denied.  In non-repudiation with the real proof of delivery the sender of the data can 

later prove the data were delivered to the intended recipient [11, 12]. 

Non-repudiation is the concept of ensuring that a party in a dispute cannot repudiate, or refute 

the validity of a statement or contract. Although this concept can be applied to any transmission, 

including television and radio, by far the most common application is in the verification and trust 

of signatures. 

2.3.5 Access Control: 

Access control is a system which enables an authority to control access to areas and resources in 

a given physical facility or computer-based information system. An access control system, within 

the field of physical security, is generally seen as the second layer in the security of a physical 

structure. It provides security against unauthorized access against data. The term access in this 

definition is very broad and can involve reading, writing, modifying, executing programs [11, 

12]. 

2.4 Security Mechanism: 

Security mechanisms include: 

 Encipherment 

 Data Integrity 

 Authentication exchange 
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 Traffic padding 

 Routing control 

 Notarization 

 Access Control 

 Digital Signature 

2.4.1 Encipherment: 

Encipherment, hiding or covering data can provide confidentiality. It can also be used to 

complement other mechanisms to provide other services. Today two technique-cryptography and 

steganography -are used for enciphering. [11, 12] 

2.4.2 Data Integrity: 

The data Integrity mechanism appends to the data a short check value that has been created by a 

specific process from the data itself. The receiver receives the data and the check value from the 

received data and compares the newly created check value with the one received. If the two 

check values are the same the integrity of the data has been preserved. All characteristics of the 

data including business rules, rules for how pieces of data relate dates, definitions and lineage 

must be correct for data to be complete. [11, 12] 

2.4.3 Authentication Exchange: 

In authentication exchange, two entities exchange some messages to prove their identity to each 

other. For example one entity can prove that he knows a secret that only he is supposed to know. 

2.4.4 Traffic Padding: 

Traffic padding means inserting some bogus and unneeded data into the data traffic to thwart the 

advisory‟s attempt to use the traffic analysis. [11, 12] 
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2.4.5 Routing Control: 

Routing control means selecting and continuously changing different available routes between 

the sender and the receiver to prevent the opponent from eavesdropping on a particular route. 

[11,12] 

2.4.6 Notarization: 

It means selecting a trusted third party to communicate between two entities. This can be done to 

prevent repudiation. The receiver can involve a third party to store the sender request in order to 

prevent the sender from  later denying that she has made the request. [11, 12] 

2.4.7 Access Control: 

Access control uses methods to prove that a user has access right to the data or resources used by 

the system. Access control is a system which enables an authority to control access to areas and 

resources in a given physical facility or computer-based information system. An access control 

system, within the field of physical security, is generally seen as the second layer in the security 

of a physical structure. Examples of proofs are PINs and passwords. [11, 12] 

2.4.8 Digital signature: 

A digital signature or digital signature scheme is a mathematical scheme for demonstrating the 

authenticity of a digital message or document. A valid digital signature gives a recipient reason 

to believe that the message was created by a known sender, and that it was not altered in transit. 

Digital signatures are commonly used for software distribution, financial transactions, and in 

other cases where it is important to detect forgery and tampering. 

Digital signatures are often used to implement electronic signatures, a broader term that refers to 

any electronic data that carries the intent of a signature, but not all electronic signatures use 

digital signatures. In some countries, including the United States, and members of the European 

Union, electronic signatures have legal significance. However, laws concerning electronic 

signatures do not always make clear whether they are digital cryptographic signatures in the 

sense used here, leaving the legal definition, and so their importance, somewhat confused. 
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Digital signatures employ a type of asymmetric cryptography. For messages sent through an 

insecure channel, a properly implemented digital signature gives the receiver reason to believe 

the message was sent by the claimed sender. Digital signatures are equivalent to traditional 

handwritten signatures in many respects; properly implemented digital signatures are more 

difficult to forge than the handwritten type of signatures. Digital signature schemes in the sense 

used here are cryptographically based, and must be implemented properly to be very effective. 

Digital signatures can also provide non-repudiation, meaning that the signer cannot successfully 

claim they did not sign a message, while also claiming their private key remains secret; further, 

some non-repudiation schemes offer a time stamp for the digital signature, so that even if the 

private key is exposed, the signature is valid nonetheless. Digitally signed messages may be 

anything representable as a bit string: examples include electronic mail, contracts, or a message 

sent via some other cryptographic protocol. [5, 11, 12] 
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3.1 Groups, Rings, and Fields: 

Groups, rings, and fields are the fundamental elements of a branch of mathematics known as 

abstract algebra, or modern algebra. In abstract algebra, we are concerned with sets on whose 

elements we can operate algebraically; that is, we can combine two elements of the set, perhaps 

in several ways, to obtain a third element of the set. These operations are subject to specific 

rules, which define the nature of the set. By convention, the notation for the two principal classes 

of operations on set elements is usually the same as the notation for addition and multiplication 

on ordinary numbers. However, it is important to note that, in abstract algebra, we are not limited 

to ordinary arithmetical operations. All this should become clear as we proceed. 

3.1.1 GROUPS: 

A group G sometimes denoted by {G, ·} is a set of elements with a binary operation, denoted by 

·, that associates to each ordered pair (a, b) of elements in G an element (a · b) in G, such that the 

following axioms are obeyed: The operator · is generic and can refer to addition, multiplication, 

or some other mathematical operation. 

(A1) Closure: If a and b belong to G, then a · b is also in G. 

(A2) Associative: a · (b · c) = (a · b) · c for all a, b, c in G. 

(A3) Identity element: There is an element e in G such that a · e = e · a = a for all a in G. 

(A4) Inverse element: For each a in G there is an element a' in G such that a · a' = a' · a = e. 

If a group has a finite number of elements, it is referred to as a finite group, and the order of the 

group is equal to the number of elements in the group. Otherwise, the group is an infinite group. 

A group is said to be abelian if it satisfies the following additional condition:  

(A5) Commutative:  a · b = b · a for all a, b in G. [11,12] 
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3.1.2 RING: 

A ring R, sometimes denoted by {R, +, x}, is a set of elements with two binary operations, called 

addition and multiplication, such that for all a, b, c in R the following axioms are obeyed: 

Generally, we do not use the multiplication symbol, x, but denote multiplication by the 

concatenation of two elements. 

(A1-A5) R is an abelian group with respect to addition; that is, R satisfies axioms A1 through A5. 

For the case of an additive group, we denote the identity element as 0 and the inverse of a as a. 

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R. 

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R. 

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R.  

(a + b)c = ac + bc for all a, b, c in R. 

 

In essence, a ring is a set in which we can do addition, subtraction [a b = a + (-b)], and         

multiplication without leaving the set. 

A ring is said to be commutative if it satisfies the following additional condition:[11,12] 

(M4) Commutativity of multiplication: ab = ba for all a, b in R. 

3.1.3 INTEGRAL DOMAIN: 

  Next, we define an integral domain, which is a commutative ring that obeys the following axioms: 

(M5) Multiplicative identity: There is an element 1 in R such that a1 = 1a = a for all a in R. 

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0 or b = 0. [11] 
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3.1.4 FIELD: 

A field F, sometimes denoted by {F, +, x}, is a set of elements with two binary operations, called 

addition and multiplication, such that for all a, b, c in F the following axioms are obeyed: 

(A1M6) F is an integral domain; that is, F satisfies axioms A1 through A5 and M1 through M6. 

(M7) Multiplicative 

inverse: 

For each a in F, except 0, there is an element a
-1

 in F such that aa
-1

 = 

(a
-1

) a = 1. [11,12] 

 

3.2 GALOIS FIELD: 

3.2.1 Properties Of Congruence: 

1. a ≡b (mod n) if n|(a b). 

2. a ≡b (mod n) implies b ≡a (mod n).. 

3. a ≡b (mod n) and b ≡c (mod n) imply a ≡c (mod n).[11] 

3.2.2 Modular Arithmetic Operations: 

Modular arithmetic exhibits the following properties: 

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n 

2. [(a mod n) (b mod n)] mod n = (a b) mod n 

3. [(a mod n) x (b mod n)] mod n = (a x b) mod n 

We defined a field as a set that obeys all of the axioms of given above and gave some examples 

of infinite fields. Infinite fields are not of particular interest in the context of cryptography. 

However, finite fields play a crucial role in many cryptographic algorithms. It can be shown that 

the order of a finite field (number of elements in the field) must be a power of a prime p
n
, where 

n is a positive integer.. Here, we need only say that a prime number is an integer whose only 

positive integer factors are itself and 1. That is, the only positive integers that are divisors of p 

are p and 1. [11] 
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The finite field of order p
n
 is generally written GF (p

n
); stands for Galois field, in honor of the 

mathematician who first studied finite fields. Two special cases are of interest for our purposes. 

For n = 1, we have the finite field GF (p); this finite field has a different structure than that for 

finite fields with n > 1, we look at finite fields of the form GF (2
n
). 

We mentioned that the order of a finite field must be of the form p
n
 where p is a prime and n is a 

positive integer; we looked at the special case of finite fields with order p. We found that, using 

modular arithmetic in Zp, all of the axioms for a field are satisfied. For polynomials over p
n
, with 

n > 1, operations modulo p
n
 do not produce a field. In this section, we show what structure 

satisfies the axioms for a field in a set with p
n
 elements, and concentrate on GF (2

n
). [11] 

Virtually all encryption algorithms, both symmetric and public key, involve arithmetic 

operations on integers. If one of the operations that is used in the algorithm is division, then we 

need to work in arithmetic defined over a field. For convenience and for implementation 

efficiency, we would also like to work with integers that fit exactly into a given number of bits, 

with no wasted bit patterns. That is, we wish to work with integers in the range 0 through 2
n
 1, 

which fit into an n-bit word. Intuitively, it would seem that an algorithm that maps the integers 

unevenly onto themselves might be cryptographically weaker than one that provides a uniform 

mapping. Thus, the finite fields of the form GF (2
n
) are attractive for cryptographic algorithms. 

To summarize, we are looking for a set consisting of 2
n
 elements, together with a definition of 

addition and multiplication over the set that define a field. We can assign a unique integer in the 

range 0 through 2
n
 -1 to each element of the set. Keep in mind that we will not use modular 

arithmetic, as we have seen that this does not result in a field.[11,12] 

3.3 PRIME NUMBER GENERATION AND TESTING: 

Asymmetric key cryptography uses primes extensively. The positive numbers can be classified 

into three groups: the number 1, primes, and composites. A positive integer is prime if and only 

if it is exactly divisible by two integers, 1 and itself. The use of public-key cryptography is 

pervasive in the information protection and privacy arenas. Public key crypto algorithms utilize 

prime numbers extensively; indeed, prime numbers are an essential part of the major public key 

systems. 
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3.3.1 Relatively Prime Numbers: 

 

Relatively Prime Numbers: two integers are called relatively prime to one another if they have 

no common factors other than 1. The numbers themselves need not be prime. In formal notation 

this is expressed as 

 

gcd(M, N) = 1 

 

i.e., the greatest common devisor (largest common factor) of the two numbers is 1. For example, 

8 and 15 are relatively prime because they have no common factors other than 1. 12 and 15 are 

not relatively prime because they share the common factor 3. Relatively prime numbers are 

important in asymmetric cryptography; it is important to understand the difference between 

prime numbers and relatively prime numbers and understand that two numbers that are not prime 

(e.g., 8 and 15) may still be relatively prime. All prime numbers are by definition relatively 

prime to one another. [10, 12] 

 

3.3.2 Mersenne Primes 

 

Any positive integer that is one less than an integral power of 2 can be expressed as 2
n
 – 1, 

Where n is a positive integer. Many such numbers are prime.  Put another way, it turns out that 

some integers that are exactly one less than an even power of 2 are prime. The concept of 

expressing prime numbers in the form 2
n
–1 dates to antiquity, but the first major work published 

about such primes was authored by a French monk named Marin Mersenne (1588-1648) in the 

17th century and prime numbers that can be expressed in this form are now called Mersenne 

Primes. For simplicity we will henceforth use Mn to represent the Mersenne prime 2
n
 –1. For 

example, M3 = 2
3
-1 = 7, the second Mersenne prime. The search for ever larger Mersenne 

primes is an icon of today‟s recreational mathematical pursuits. In late 2001 the largest Mersenne 

prime yet discovered was verified by a 20-year-old resident of Ontario, Canada; he was 

participating in a distributed search managed by software provided by Entropia, Inc. The number 

has 4,053,946 digits – yes, that‟s the number of digits in the Mersenne prime expressed in 



21 
 

decimal, not the number itself. The Mersenne prime is 213,466,917
– 1 an incomprehensibly huge 

number. Early writings about Mersenne primes conjectured that 2n
-1 is prime for all primes n; 

i.e., it was believed that one less than 2n is prime for every case where n is prime. In 1536, 

however, it was shown that M11 is composite. 

M11 = 211
-1 = 2047 = 23 * 89 

A number of later writings contained incorrect assertions about which Mn values are prime, 

including those of Mersenne himself. Mersenne asserted in 1644 that Mn is prime for 

n = 2, 3, 5, 7, 13, 17, 19, 67, 127, 257 

 

And that all other Mn is composite for n < 257. This is incorrect (the values above 19 are 

actually 31, 61, 89, 107 and 127; the next is 521), though the errors were not discovered until 

hundreds of years later (Euler added 31 to the list in 1750). There are many interesting theorems 

related to Mersenne numbers and primes. For example, if Mn is prime then n is also prime 

(though, as noted above, the converse is not necessarily true). These theorems are very useful in 

Modern number theory and factoring investigations. Such investigations might one day yield an 

efficient algorithm for factoring very large numbers into their prime factors, a breakthrough (or 

not, depending upon how one looks at it) that would render most contemporary public key 

cryptography systems useless.[10,12] 

3.3.3 Fermat Little Theorem 

The first probabilistic, method we discussed in the Fermat Primality test: 

If n is a prime, then a
n-1

 ≡1 (mod n) 

Note that this means if n is prime, the congruence holds. It does not mean that if the congruence 

holds, n is prime. The integer can be prime or composite. We can define the following as 

Fermat‟s test:[11,12] 

If n is a prime, then a
n-1

 ≡1mod n 

If n is composite, it is possible that a
n-1

 ≡1mod n 
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All primes pass the Fermat‟s test. Composite may also pass the Fermat‟s test as well. The bit 

operation complexity of Fermat‟s test is same as the complexity of an algorithm that calculates 

the exponentiation. 

3.3.4 Square Root Test: 

In modular arithmetic, if n is a prime the square root of 1 is either +1 or -1. If n is composite the 

square root is +1 or -1, but there may be other roots. This is known as square root Primality 

test[11,12]. 

If n is a prime, sqrt (1) mod n=+1 or-1 

If n is a composite, sqrt (1) mod n=+1 or-1 and possibly other values. 

 

3.3.5 Miller-Rabin Primality Test: 

The Miller-Rabin Primality test combines the Fermat’s test and square-root test in a very 

elegant and efficient way to find a strong pseudo prime (a prime with a very high probability of 

being a prime). In this test we write n-1 as the product of an odd number and a power of two. 

n-1 = m* 2
k 

In other words, instead of calculating a
n-1

 (mod n) in one step, we can do it in k+1 steps. The 

benefit is that in each step, the square root test can be performed. If the square root test fails we 

stop and declare that n is a composite number. In each step we assure ourselves that the Fermat‟s 

test is passed and the square root test is satisfied between all pairs of adjacent steps, if applicable. 

It is a probabilistic method. There exists a proof that each time the number passes the Miller-

Rabin Primality Test, the probability that it is not a prime is ¼. If the number passes m tests 

(with m different bases) the probability that it is not a prime is (1/4)
 m

.  [10, 12] 
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Algorithm of Miller-Rabin Primality Test: 

1. Miller-Rabin_Test(n, a) 

2.         {  

3.                 Find m and k such that     n-1=m * 2
k
 

4.                T  a
m

 mod  n  

5.                If ( T=1 || T-n=-1)  

6.    return “a prime”                

7.                for(i=1 to k-1)  

8.                { 

9.                       TT
2
 mod n 

10.                        if (T=1 )  return “a composite number” 

11.                        if (T-n=-1) return “a prime number” 

12.                 } 

13.                return  “a composite number”      

14.          } [11,12] 

3.3.6 Pollard p-1 Factorization    Method: 

In 1974, John M. Pollard developed a method that finds a factor p of a number based on the 

condition that p-1 has no factor larger than a predefined value B, called the bound. Pollard 

showed that in this case 

p=gcd (2
B!

-1, n) 

The algorithm shows the pseudo code for Pollard p-1 factorization method. He we should note 

that when we come out of the loop, 2
B!

 is stored in a.[11,12] 
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ALGORITHM 

1. Pollard_p-1_factorisation (n ,B) 

2. {  

3.         a2 

4.         e2 

5.     while (e <=B) 

6.          { 

7.               aa
e
 mod n  

8.       ee+1  

9.            } 

10.     p=gcd(a-1,n)  

11.     If (1<p<n)    

12.             return p 

13.  return failure 

14.  } [11,12] 

3.4 Chinese Remainder Theorem: 

The Chinese Remainder Theorem (CRT) is used to solve a set of congruence equations with one 

variable and different moduli, which are relatively prime. 

 x ≡ a1(mod m1) 

 x ≡ a2(mod m2) 

  …. 

 x ≡ ak(mod mk) 
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The Chinese Remainder Theorem states that the above equations have a unique solution if the 

moduli are relatively prime.[12] 

Example: 

x ≡ 2(mod 3) 

x ≡ 3(mod 5) 

x ≡ 5(mod 7) 

the solution to this set of equations is x=23 

Solution to the problem: 

The solution to the set of equation follows the following steps: 

1. Find M= m1* m2* m3*…* mk. This is the common modulus. 

2. Find M1=M/ m1, M2=M/ m2,…, Mk=M/ mk . 

3. Find the multiplicative inverse of  M1, M2,….., Mk using the corresponding moduli (m1, 

m2,…, mk) . Call the inverses M1
-1

, M2
-1

,….., Mk
-1

 . 

4. The solution to the simultaneous equation is 

x= (a1*M1*M1
-1

 + a2*M2*M2
-1

 +…+ ak*Mk*Mk
-1

) mod M 

Note that the set of equations can have a solution even if the moduli (m1, m2,…, mk) are not 

relatively prime but meet other conditions. The Chinese Remainder Theorem has several 

applications in cryptography. One is to solve quadratic congruence and the other is to represent a 

very large number in terms of a list of small integers.[12] 
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Chapter4 

 

 

 

 

Implementation and 

results 
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4.1  INITIALIZATION : 

     The Initialization phase starts with initialization of parameters and ends with generation of all 

Private and Public keys. 

The initialization phase involves following sub phases 

 Generation of Prime numbers 

 Galois Field Concept to find g 

 Biometric Feature Extraction 

 Normalization and use of  hash function  for calculation of Private key d1 

 Determination of Public key Y 

We go through the sub phases as follows 

4.1.1 Generation of Prime numbers 

Use of prime numbers is one of the most important issues for security purpose in cryptographic 

work. Prime numbers works like base for the generation of private keys and public keys in 

cryptographic system. This Prime number generation sub phase consists of Prime number 

generation and Primality test stages. 

 For generating prime numbers we first generate prime numbers using the common algorithm for 

generating first 100 prime numbers and store these prime numbers in an array to use them in 

generating large prime numbers using following generation method 

Mersenne Prime generation method:   

The above method involves the relation 

                         Mp = 2
p
-1    where Mp– Large prime number generated using the  

                                              Prime number p (stored prime number initially) 



28 
 

We iteratively use the above method of prime number generation to generate large prime 

numbers. As the Mersenne Prime number generation method is a probabilistic method, it is 

revealed that the prime numbers generated in this method are not all primes.[10,12] 

For example: 

 We found the prime number 2087 by using this method. But 2087 is not a prime number. Hence 

for checking the numbers generated by Mersenne Prime number generation method for being 

prime numbers or not we go for Miller-Rabin Primality test. 

Miller-Rabin Primality Test: 

As described in 3.3.5 it is also a probabilistic method which checks a prime number is actually 

prime or not. So we implement Miller-Rabin Primality test method and checks all the prime 

numbers generated before to check their Primality. 

The Prime number after going through Primality test is stored .The value of p and q are chosen 

from the prime numbers stored for the calculation of N. We iteratively use permutation and 

combination method to find the prime numbers p and q to calculate N satisfying the following 

condition [11] 

           N = 4pq + 1    where N= Large Prime number 

We got two Prime numbers p and q as 11 and 23. Then we got N=4×11×23+1=1013 (which is 

also a prime number) 

 We use BigInteger class which is present in Java.math.BigInteger package for storing large 

Prime numbers. After this we go for determining the value of g which is an element over the GF 

(N). 

4.1.2 Galois Field Concept to find g: 

As described in Chapter 3.2 the finite field of order pn is generally written GF (pn); stands for 

Galois field, in honor of the mathematician who first studied finite fields. Two special cases are 

of interest for our purposes. For n = 1, we have the finite field GF (p); this finite field has a 
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different structure than that for finite fields with n > 1, we look at finite fields of the form GF 

(2n) 

For our project purpose we define the finite Galois field GF (N) and we choose g such that g 

belongs to GF(N) and under the conditions that  

g
pq ≡ 1 (mod N)  

g
p  ≠ 1 (mod N)  

Going through the above conditions we found g=16 as [4, 6] 

               16
23×11 𝑚𝑜𝑑 1023 = 1 𝑎𝑛𝑑  

               16
11 𝑚𝑜𝑑 1023 ≠ 1 

 

4.1.3 Biometric Feature extraction: 

As  described in Chapter1 the biometric information‟s like finger prints, iris, retina DNA, tissue 

and other features whatever its kind which are unique to an individual are embedded into 

private key d1. 

We use the finger print as our biometric information and the finger print of signer is taken from 

which the biometric features are extracted. We take the finger print of signer and extract the 

RGB values by scanning through the image associated with each pixel. Each Pixel in the image 

of the finger print consists of 3 field values for RGB which is determined by the intensity of that 

pixel. 
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Figure 4.1 Finger print 

Here the intensity values associated for different pixel in finger print figure 4.1 is unique for 

different persons which make our system more and more secure. For generating the RGB values 

from the finger print image, for implementation purpose we use   javax.imageIO.* package. 

From the package we use following two classes  

                     ImageIO class 

                     ImageReader class 

We define getRGB ( ) method to calculate the RGB values associated for each pixel. 

 

4.1.4 Normalization and use hash function  for calculation of Private key d1: 

After getting the RGB values our primary need is to normalize those RGB values. By this 

method of normalization we take a mid level RGB value above which we consider as 1 and 

below as 0.Thus we get a unique binary value associated with the finger print of the signer. The 
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binary value we got is considered as the input to the hash function for determining the private 

key d1.We use the MD5 -128 hash function upon the binary value. [11, 12] 

 MD5-128 hash function is based on the algorithm that  

 The message to be hashed is divided into blocks of 512 bits. 

 If necessary go for padding in the message to form the total bits of message to the 

multiple of 512. 

 Choose a 128-bit initial key. 

 A message block (512 bits) is compressed along with the initial key to form the 128-bit 

next key which is used as the key for the next block. 

 The next key produced is called the message digest of the message block which is 

compressed.                                                                                                                                                                

 The message digest for the last block is considered as the hash value of the message. 

 In this way we get a 128-bit hexadecimal value. [11, 12] 

In MD5-128 hash function code we use MessageDigest class which is present in java.security 

package. 

In the above class there are 2 methods which are used to generate the hash values. The two 

methods are  

                        getInstance( ) 

                        digest ( ) 

After applying the MD5 hashing function upon our normalized binary biometric feature value we 

got the hexadecimal value: 

o/p : 9d7183f16acce70658f686ae7f1a4d20 

Then we go for converting the hexadecimal value into decimal value which is the value of d1 

(one of the private key).The value of d1 we found from the above finger print as 

d1= 209278201005944594766464979853618335008 
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After getting the value of d1 we go for determination of the other private key d2 as follows. 

We choose the value of d2 under the constraint 1 < d2 < pq/2 i.e 1< d2 <253/2  (where pq=253) 

We choose d2= 89 [6, 9] 

          After calculating Private keys d1,d2 and the values of g and N ,we go for calculating the 

Public key Y value. 

4.1.5 Determination of Public key Y: 

The public key is generated applying the following formula 

Y= g
(d1+d2)^2+(d1+d2)^-2 mod N 

   =16 

 After generating the Public Key Y, the signer sends public key(Y), Hash function H (.) and N to 

the requester as public data. Then the message blinding phase by the requester is done.[6, 9] 

4.2  BLINDING  PHASE: 

This phase consists of three sub phases which are carried out by both signer and requester 

 Generation of r and k by Signer 

 Message blinding by requester 

 Generation of hashed message 

The sub phases are described as follows 

 

 

4.2.1 Generation of r and k by Signer: 

This sub phase is completely done by signer. The signer choose a random value k such that 1< k 

< pq/2.We take the value of k here as 45.After computing k the signer goes for calculating r 

applying the following formula. 
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              r = g
(k²+(1/k)²) mod N 

The r value is found to be 16 [6, 7, 11, 13] 

After calculating the value of r the signer sends it to the requester for the blinding of the 

requester message.  

4.2.2 Message blinding by requester: 

The requester gets the public key(y), N, H (.), and r value from the signer. Using the values the 

requester goes for message blinding. In message blinding the requester choose a message m and 

blinds it using the following formula 

 

                         M = m
b 𝐦𝐨𝐝 𝐍   

Where M is the message blinded 

            b is the randomized factor belongs to Zq+ [11] 

The value of b is chosen as 45 

We get the blinded message M = 308 [14] 

 

4.2.3 Generation of hashed message: 

This sub phase is done by the requester completely. After blinding the message i.e after getting 

M the requester concatenates the M value and r. Then the same hash function sent by signer 

(MD5-128) is applied over the concatenated M and r value to get H(M, ,r). After applying the 

MD5-128 hash function we got a 128 bit hexadecimal value. We convert the hexadecimal value 

into decimal value which is our H(M, ,r) value. 

  

The H(M, ,r) value is calculated by the requester as 30816.After calculating the H(M, ,r) value 

the requester sends it to the signer for generation of digital signature S.[11,12] 

 

 



34 
 

4.3 SIGNING 

Signing phase refers to the generation of digital signature and sending this signature to the 

requester for signing purpose. This phase is completely done by the signer. The signer has the 

private keys d1, d2, the values N, k, r with her and gets the blinded message H(M, ,r) from the 

requester. Using the above values signer computes the Digital signature S applying the following 

modular quadratic equation. 

H (M, ,r) = ( (d1+d2)+ (d1+d2)
-1

)
 2
 r + (k+k

-1
)

 2
 S

2 
mod pq 

The above modular quadratic equation is solved by using quadratic residue and quadratic 

Congruence concept.[6,9] 

4.3.1 Quadratic Residue 

To solve the above equation we need the help of quadratic residue. There is a equation the type                

x
2
 ≡ a (mod p) 

Such that (a,p)=1 ,then a is called the quadratic residue of p if the above equation is solvable, 

otherwise a is a quadratic nonresidue. 

 Euler’s Criterion: 

 Let p be an odd prime. Then a positive integer a with p┼a, is a quadratic residue of p if and only 

if  

a
(p-1)/2

 ≡ 1(mod p) 

We check for the above criterion for our equation  

H(M, ,r) = ((d1 + d 2) + (d1 + d 2)ˉ
1 
)² r + (k + kˉ

1
)² S² mod pq 

We have  a=(H(M, ,r)- ((d1 + d 2) + (d1 + d 2)ˉ
1 

)² r)/ (k + kˉ
1
)²……………………...(eq 1) 

                p= pq. .. . . .. . . .. ..   .. . .. .  .. . .. . .  . . .. . . . .. . ..  .. . . . . . . . .. . . .. . . .. . .  (eq 2) 

So we check for the Euler‟s criterion for the above a and p. After it is satisfied we go for the next 

step which is called solvable test. 
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Solvability Check: 

Legendre Symbol 

 If p is an odd prime and a be any integer such that p┼a, then the Legendre symbol (a/p) is 

defined as  

    (a/p)={1   if a is a  quadratic residue of p  -1   if a is quadratic nonresidue of p} 

 For example: 

      13 has quadratic residues 1, 3, 4,9,10 and 12 and nonresidues 2,5,6,7,8,11 [16] 

Hence (1/13)= (3/13)= (4/13)= (9/13)= (10/13)= (12/13)=1 whereas  (2/13)= (5/13)= (6/13)= 

(7/13)= (8/13)= (11/13)=-1 

         So for Solvability check for the equation x² ≡ a (mod pq)  we have to check whether 

(a/p)=1=(a/q). 

In our project equation the value of pq is 253. 

253=11×23 

Hence p=11, q=23 

So we check (a/11)=1=(a/23)     (a is defined in eq1) 

We use another corollary for getting the solutions………………………………………(i) 

 If  p ≡ 3(mod 4)  and  x² ≡ a (mod p)  is solvable then we can explicitly use the formula 

                                         x≡ ±a
(p+1)/4

 (mod p)   

So we apply the above corollary to get the solutions for the equations 

 S² ≡ a (mod p)  and S² ≡ a (mod q)  [16] 

We got the solution as  
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                            S≡ ±a
(p+1)/4

 (mod p) and 

                            S≡ ±a
(p+1)/4

 (mod q)  

Then we go for Chinese remainder Theorem (CRT) to get the solution for „S‟ for mod pq. 

4.3.2 Application of Chinese Remainder Theorem (CRT): 

Chinese Remainder Theorem is used for solving linear system of Congruences i.e x ≡ ai (mod 

mi),where moduli are pair wise relatively prime and 1 ≤ i ≤ k, has a                                                              

unique solution modulo m1 m2….mk.[11, 12] 

From Chinese Remainder Theorem we can get the solution  

                                        x ≡ ∑ aiMiyi (mod M) 

                                                           where    ai=remainder of ith modular equation 

                                                                        M=m1 + m2+ …+ mi            

                                                                        Mi=M/mi       

                                                              and   Miyi ≡ 1 (mod mi)     

Here in our equation  

        S
2
 ≡  (H (M, ,r)- ((d1 + d 2) + (d1 + d 2)ˉ

1 
)² r)/ (k + kˉ

1
)

2 
(mod pq) 

We first check   ((H(M, ,r)- ((d1 + d 2) + (d1 + d 2)ˉ
1 

)² r)/ (k + kˉ
1
)
2
)/p)=1= ((H(M, ,r)- ((d1 + d 2) + 

(d1 + d 2)ˉ
1 

)² r)/ (k + kˉ
1
)
2
)/q) 

After checking this we found it to be satisfied. So the equation S
2
 ≡  (H(M, ,r)- ((d1 + d 2) + (d1 + 

d 2)ˉ
1 

)² r)/ (k + kˉ
1
)
2 

(mod pq) is solvable .Then we check that p ≡ 3(mod 4) and q ≡ 3(mod 4)         

(where p=11,q=23) .So we apply corollary (i) to get S ≡ ±7 (𝑚𝑜𝑑 11) and S ≡ ±4 (𝑚𝑜𝑑 23) 

After solving for S value under the mod 11 and mod 23 we go for CRT and get the solution for S 

under mod pq i.e 253.Then we solve for linear modular congruence for S and get the signature 

S.[4, 7, 12] 
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 Hence the signer determines the digital signature and sends it to the requester for verification 

and further use. 

 

4.4 UNBLINDING AND VERIFICATION 

 
This phase is opposite to the Blinding phase. This phase is completely done by the requester. 

The requester gets the digital Signature S from the signer. Then it goes for verification of the 

signature whether it is genuinely generated by the concerned signer or not. The requester verifies 

the Signature by applying the following equation 

                  g
H(M,r)

 ≡ Y
r  

r
s² 

g
2(r+s²) 

(mod N) 

If the above verification equation is satisfied then the Signature is considered to be a valid 

signature and the requester gets the signature along with the message, otherwise the signature is 

rejected.[4, 6, 7] 
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5.1  SECURITY ANALYSIS 

One of the major tasks in a Cryptographic work is to analyze the security issues involved in that 

work. In our scheme we use Private and public key cryptosystem where the security about the 

private keys is the main concern. Here the signer keeps the private keys with her and sends the 

public keys and values to the requester. The main concern about the security is that if a hacker 

hacks the public keys and values, she should not get the private keys from those. 

            Our scheme is secure due to the following three criteria 

1. Use of Biometric value 

2. Use of Integer Factorization 

3. Discrete Logarithms 

5.1.1 Use of Biometric Value 

Since this signature scheme is based on biometric feature values, the attacker cannot forge the 

biological information which is purely personal. Hence this scheme is secure and can be 

applicable to e-voting, e-cash and digital rights management. 

5.1.2 Integer Factorization 

In our scheme we take large prime number N where N=4×p×q+1.As the value N is public, to get 

values of p and q we need modular factorization of N. The complexity of factorization in 

modular arithmetic is large. It is also the fact that, no such perfect algorithm has been found yet. 

The complexity of most of the factorization algorithm is exponential or in best case it is sub 

exponential. Hence to go for a algorithm whose complexity is of exponential order is almost 

impossible. As to get the private values one need to use modular factorization, our scheme is 

secure. [11, 12] 
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5.1.3 Discrete Logarithm 

We get the public key Y as 

                      Y= 𝒈(𝐝𝟏+𝐝𝟐)𝟐+(𝐝𝟏+𝐝𝟐)−𝟐  𝐦𝐨𝐝 𝐍 

By getting the public value Y, hacker can go for calculating g value which is vital private value 

used for computation of different values. To get the value of g one should go for discrete 

logarithm i.e 𝑔 = 𝑙𝑜𝑔(d1+d2)2+(d1+d2)−2  𝑌. There is no efficient algorithm for modular discrete 

logarithm. The complexity of available algorithm is very high which is impossible to be worked 

out. Hence our Scheme is secure in terms of discrete logarithm. [4, 9, 11, 12] 
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5.2  Conclusion and Future Work 

 This proposed scheme can be implemented using various biometric entities like face, retina and 

iris, etc. The scheme is secure as the intruder has to solve both discrete logarithm and integer 

factorization problems simultaneously. The signature cannot be forged as biometrics information 

is associated with the signature, which is unique to a signer. For these security features, the 

proposed scheme can also be applied in practical applications such as smart cards, anonymous 

electronic cash and e-voting systems. The scheme can also be applicable to Elliptical Curve 

Cryptography (ECC). The proposed scheme can further be implemented for partial blind 

signature and fair blind signature schemes.  
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