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ABSTRACT 

Synchronous generators form the principal source of electrical energy in power system. 

Many large loads are driven by synchronous motors. For stability studies of large power 

systems, accurate representation of the synchronous machine is required. The 

synchronous machine equations have the inductances and resistances of the stator and 

rotor circuits as parameters. These are referred to as fundamental parameters or basic 

parameters. While the fundamental parameters completely specify the machine electrical 

characteristics, they cannot be directly determined from measured responses of the 

machine. Therefore, the traditional approach to assigning machine data has been to 

express them in terms of derived parameters that are related to observed behavior as 

viewed from the terminals under suitable test conditions. This project is aimed at 

modeling and analyzing different models of synchronous machine. Models with different 

number of damper windings are analyzed and fundamental parameters of the machine are 

obtained using manufacturer‟s data. Newton Raphson method is used to solve the rotor 

and stator equations for the equivalent circuits of models and simulated in MATLAB. An 

experimental data is used to simulate the models and results are studied. Frequency 

domain analysis is performed to obtain transient time constants and compared with those 

obtained from computer simulation.  
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Introduction 

Synchronous generators form the principal source of electrical energy in power systems. 

Many large loads are driven by synchronous motors. Synchronous condensers are 

sometimes used as a means of providing reactive power compensation and controlling 

voltage. These devices operate on the same principle and are collectively referred to as 

synchronous machines. The power system stability problem is largely one of keeping 

interconnected synchronous machines in synchronism. Therefore, an understanding of 

their characteristics and accurate modeling of their dynamic performance are of 

fundamental importance in the study of power system stability. 

 

   The synchronous machine equations have the inductances and resistances of the 

stator and rotor circuits as parameters. These are referred to as fundamental or basic 

parameters and are identified by the elements of the d- and q- axis equivalent circuits. 

While the fundamental parameters completely specify the machine electrical 

characteristics, they cannot be directly determined from measured responses of the 

machine. Therefore the traditional approach to assigning machine data has been to 

express them in terms of derived parameters that are related to observed behavior as 

viewed from the terminals under suitable test conditions. This project will define these 

derived parameters and develop their relationships to the fundamental parameters.  
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2.1 Physical Description 

 
 

 
 Figure 2.1 Schematic diagram of a three-phase synchronous machine 

 

 

  

Figure 2.1 shows the schematic of the cross section of a three-phase synchronous 

machine with one pair of field poles. The machine consists of two essential elements: the 

field and the armature. The field winding carries direct current and produces a magnetic 

field which induces alternating voltages in the armature windings. 

 

2.2 Armature and Field Structure  
 

 The armature windings usually operate at a voltage that is considerably higher 

than that of the field and thus they require most space for insulation. They are also 

subjected to high transient currents and must have adequate mechanical strength. 

Therefore normal practice is to have the armature on stator. The three-phase windings of 

the armature are distributed 120 degrees in time space so that, with uniform rotation of 

the magnetic field, voltages displaced by 120 degrees in time phase will be produced in 

the windings. Because the armature is subjected to a varying magnetic flux, the stator 

iron is built up of thin laminations to reduce eddy current losses. 
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 When carrying balanced three-phase currents, the armature will produce a 

magnetic field in the air gap rotating at synchronous speed. The field produced by the 

direct current in the rotor winding on the other hand, revolves with the rotor. For 

production of a steady torque, the fields of stator and rotor must rotate at the same speed. 

Therefore, the rotor must run at precisely the synchronous speed. 

 

 The number of field poles is determined by the mechanical speed of the rotor and 

electric frequency of stator currents. The synchronous speed is given by, 

 

    n = (120 f )/ pf                  - (1.1) 

 

where n is the speed in rev/min, f is the frequency in Hz, and pf is the number of field 

poles.  
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3.1 Assumptions for developing the equations for synchronous machine 

 
 In developing equations of a synchronous machine, the following assumptions are 

made: 

 

(a) The stator windings are sinusoidally distributes along the air-gap as far as the 

mutual effects with the rotor are concerned. 

 

(b) The stator slots cause no appreciable variation of the rotor inductances with 

rotor position. 

 

(c) Magnetic hysteresis is negligible. 

 

(d) Magnetic saturation effects are negligible. 

 

 

Assumptions (a), (b), and (c) are reasonable. The principal justification comes from 

the comparison of calculated performance. Assumption (d) is made for convenience 

in analysis. With magnetic saturation neglected, we are required to deal with only 

linear coupled circuits, making superposition applicable. However, saturation effects 

are important. 

 

Figure 3.1 shows the circuits involved in the analysis of a synchronous machine. The 

stator circuits involved in the analysis of a synchronous machine. The rotor circuits 

comprise field and amortisseur windings. The field winding is connected to a source 

of direct current. For purpose of analysis, the currents in the amortisseur (solid rotor 

and/or damper winding) may be assumed to flow in the two sets of closed circuits: 

one set whose flux is in line with that of the field along the d-axis and the other set 

whose flux is at right angles to the field axis or along the q-axis. The amortisseur 

circuits take different forms and distinct, electrically independent circuits may not 

exist. In Figure 3.1, only one amortisseur circuit is assumed in each axis. 
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      a, b,c :  Stator phase windings 

              fd:       Field winding 

  kd :      d-axis amortisseur circuit 

  kq :      q-axis amortisseur circuit 

        k :      1,2,… n; n= no. of amortisseur circuits 

θ :      Angle by which d-axis leads the magnetic axis of phase a winding 

wr:     Rotor angular velocity, electrical rad/s 

 
Figure 3.1 Stator and rotor circuits of a synchronous machine 

 

In figure 3.1, θ is defined as the angle by which the d-axis leads the centerline of 

phase a winding in the direction of rotation. Since the rotor is rotating with respect to the 

stator, angle θ is continuously increasing and is related to the rotor angular velocity wr and 

time t as follows: 

 

  θ = wr t        - (3.1) 

The electrical performance equations of a synchronous machine can be developed by 

writing equations of the coupled circuits identified in Figure 3.1 
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3.2 Basic equations of a synchronous machine 

 
 The equations for the synchronous machine is developed using the generator 

convention for polarities so that the positive direction of a stator winding current is 

assumed to be out of the machine. The positive direction of field and amortisseur currents 

is assumed to be into the machine. 

 

 In addition to the large number of circuits involved, the fact that the mutual and 

self inductances of the stator circuits vary with rotor positions complicates the 

synchronous machine equations. The variations in inductances are caused by the 

variations in the permeances of the magnetic flux path due to non-uniform air-gap. This 

is pronounced in a salient pole machine in which permances in the two axes are 

significantly different. Even in a round rotor machine there are differences in the two 

axes due mostly to the large number of slots associated with the field winding. 

 

 The flux produced by a stator by a stator winding follows a path through the stator 

iron, across the air-gap, through the rotor iron, and back across the air-gap. The variations 

in permeance of this path as a function of the rotor position can be approximated as, 

 

          - (3.2) 

 

In the above equation, alpha is the angular distance from the d-axis along the periphery as 

shown in figure 3.2. 

 

 
 
              Figure 3.2 Variation of permeance with rotor position 

 

A double frequency variation is used produced, since the permeances of the north and 

south poles are equal. Higher order even harmonics of permeance exist but are small 

enough to be neglected.  
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We will use the following notations in writing the equations for the stator and rotor 

circuits: 

 

 ea, eb ,ec                =    instantaneous stator phase to neutral voltages 

ia, ib ,ic                   =    instantaneous stator currents in phase a,b,c 

ifd, ikd ,ikq             =    field and amortisseur currents 

Rfd, Rkd ,Rkq      =    rotor circuit resistances 

laa, lbb ,lcc             =    self inductance of stator windings 

lab, lbc ,lca             =    mutual inductances between stator windings 

lafd, lakd ,lakq       =    mutual inductances between stator and rotor windings 

lffd, lkkd ,lkkq       =    self inductance of rotor windings 

Ra                  =    armature resistance per phase 

p                    =    differential operator d/dt 

efd                  =     field voltage 

 

3.3 Stator Circuit Equations: 
 

 The voltage equations of the three phases are- 

 

  ea = (dΨa / dt) – ia Ra = pΨa – ia Ra     …(3.3) 

  eb  = pΨb – ib Ra       …(3.4)   

ec  = pΨc – ic Ra       …(3.5) 

 

The flux linkage in the phase a winding at any instant is given by- 

 

     Ψa = -laa ia – lab ib –lac ifd + lakd ikd + lakq ikq   …(3.6) 
   

Similar expressions apply to flux linkages of windings b and c. The units used are 

webers, henrys and amperes. The negative sign associated with the stator wonding 

currents is due to their assumed direction. 

 

3.4 Stator Self-inductances: 
 

 The self-inductance laa is equal to the ratio of flux linking phase a winding to the 

current ia, with currents in all other circuits equal to zero. The inductance is directly 

proportional to the permeance, which as indicated earlier has a second harmonic 

variation. The inductance laa will be a maximum for θ = 0 degree, a minimum for θ = 90 

degrees, a maximum again for θ= 180 degrees and so on. 

 

 Neglecting space harmonics, the mmf of phase a has a sinusoidal distribution in 

space with its peak centred on the phase a axis. The peak amplitude of the mmf wave is 

equal to Naia, where Na is the effective turns per phase. As shown in figure 3.3, this can 

be resolved into two other sinusoidally distributed mmf‟s, one centred on the d-axis and 

other on the q-axis. 
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The peak values of the two component waves are- 

 

     peak  MMFad = Na ia cosθ      …(3.7) 

     peak  MMFaq = Na ia cos(θ+90) = -Na ia sinθ   …(3.8)  

 

The reason for resolving the mmf into the d-axis and q-axis components is that each acts 

on specific air-gap geometry of defined configurations. Air-gap per pole along the two 

axes are- 

 

    Фgad = (Na ia cosθ) Pd       …(3.9) 

    Фgaq = (-Na ia sinθ) Pq      …(3.10) 

   

 

 
 
  Figure 3.3 Phase a mmf wave and its components 

 

The self inductance lga of phase a due to air-gap flux is- 

 

   lgaa   =  (Na фgoa)/ia 

             =  Na
2
 { (Pd+Pq)/2 + (Pd-Pq)/2 cos2θ} 

    =   Lg0 + Laa2cos2θ       …(3.11) 

 

The total self-inductance laa is given by adding to the above the leakage inductance Lal 

which represents the leakage flux not crossing the air-gap: 

 

     laa   =  Lal + Lgaa 

           =  Lal + Lg0 + Laa2 cos2θ 

           =  Laa0 + Laa2 cos2θ       …(3.12) 

  

Since the windings of phases b and c are identical to that of phase a and are displaced 

from it by 120 degrees and 240 degrees respectively, we have 

 

    lbb   =   Laa0 + Laa2 cos2(θ-120)  

    lcc   =   Laa0 +  Laa2 cos2(θ+120)       ...(3.13) 
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3.5 Stator Mutual Inductance: 
 

 The mutual inductances between any two stator windings also exhibits a second 

harmonic variation because of the rotor shape. It is always negative, and has the greatest 

absolute value when the north and south poles are equidistant from the centres of the two 

windings concerned. For example, lab has maximium absolute value when θ = -30 

degrees or θ = 150 degrees. 

 

Thus the mutual inductances phase a and b, b and c, c and a are given as:  

 

    Lab   =  Lba =  -Lab0 + Lab2 cos(2θ-120)     …(3.14) 

           =  -Lab0 - Lab2 cos(2θ+120) 

 

   Lbc   =  Lcb =  -Lab0 - Lab2 cos(2θ+120)     …(3.15) 

 

   Lca   =  Lac =  -Lab0 - Lab2 cos(2θ+120)     …(3.16) 

  

 The variation of mutual inductance between phases a and b as a function of θ is 

illustrated in figure 3.4. 

 

  
  
 Figure 3.4 Variation of mutual inductance between stator windings 

 

3.6 Mutual inductance between stator and rotor windings: 
 

 With the variations in air-gap due to stator slots neglected, the rotor circuits see a 

constant permeance. Therefore, the situation in this case is not one of variation of 

permeance; instead, the variation in the mutual inductance is due to the relative motion  

between the windings themselves.When a stator winding is lined up with a rotor winding, 

the flux linking the two windings is maximum and the mutual inductance is maximum. 

When the two windings are displaced by 90 degrees, no flux links the two circuits and the 

mutual inductance is zero. 

  



 20 

With the sinusoidal distribution of mmf and flux waves, 

    lafd   =  Lafd cosθ             

    lakd   =  Lakd cosθ                 …(3.17) 

    lakq   =  Lakq cos(θ+90)                         

          =  -Lakq sinθ 

For considering the mutual inductance between phase b winding and the rotor circuits, θ 

is replaced by θ-120; for phase c winding θ is replaced by (θ+120). 

Using the expressions for all the inductances that appear in stator voltage equations, we 

have: 

 Ψa  =  - ia [ Laa0 + Laa2 cos2θ] + ib [ Lab0 + Laa2 cos(2θ+60) 

  + ic [ Lab0 + Laa2 cos(2θ-30)] + ifd Lafd Cosθ             …(3.18) 

  + ikd Lakd cosθ – ikq Lakq sinθ 

  

Similarly, 

 

 Ψb  =  - ia [ Lab0 + Laa2 cos(2θ+60)] - ib [ Laa0 + Laa2 cos2(θ-120) 

  + ic [ Lab0 + Laa2 cos(2θ-180)] + ifd Lafd Cos(θ-120)            …(3.19) 

  + ikd Lakd cos(θ-120) – ikq Lakq sin(θ-120)  

and 

 

 Ψc  =  - ia [ Lab0 + Laa2 cos(2θ-60)] + ib [ Lab0 + Laa2 cos2(θ-180)                 …(3.20) 

  - ic [ Laa0 + Laa2 cos2(θ+120)] + ifd Lafd Cos(θ+120) 

  + ikd Lakd cos(θ+120) – ikq Lakq sin(θ+120)  

 

3.7 Rotor circuit equations: 

 
 The rotor circuit voltage equations are: 

   

     efd  =  pΨfd  + Rfd ifd                       …(3.21) 

       

       0  =  pΨkd + Rkd ikd                      …(3.22) 

 

         0 =  pΨkq  + Rkq ikq                     …(3.23) 

 

The rotor circuit flux linkages may be expresses as follows: 

  

 Ψfd  =   Lffd ifd + Lfkd ikd – Lafd [ iacosθ + ibcos(θ-120) + iccos(θ+120)]      

 

 Ψkd  =  Lfkd ifd + Lkkd ikd – Lakd [ iacosθ + ibcos(θ-120) + iccos(θ+120)]         …(3.24) 

 

Ψfq  =  Lkkq ikq + Lakq[ iasinθ + ibsin(θ-120) + iccos(θ+120)]      

   

The rotor circuits see constant permeance because of the cylindrical structure of the 

stator. Therefore, the self-inductances of rotor circuits and mutual inductances between 

each other do not vary with rotor positions. Only the rotor to stator mutual inductances 

vary periodically with θ. 
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4.1 The dq0 Transformation: 

 
 The transformation from the abc phase variables to the dq0 variables can be 

written in the following matrix form: 

 

   
The inverse transformation is given by: 

 

   
4.2 Stator flux linkages in dq0 components: 
 

 Transforming the flux linkages and currents into dq0 components and with 

suitable reduction of terms involving trigonometric terms, we obtain the following 

expressions: 

 

              ..(4.1)         

                                               ..(4.2)                              
                                                                                     ..(4.3)                              

  

Defining the following new inductances: 

                             ..(4.4)                                                                         

                                                                          ..(4.5)                              
        ..(4.6)         
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The flux linkage equation become 

 

                                                               ..(4.7)                                 

                                            ..(4.8)                                                                 
                                                                                                  ..(4.9)                             

   

The dq0 components of stator flux linkages are seen to be related to the components of 

stator and rotor currents through constant inductances. 

 

4.3 Rotor flux linkages in dq0 components: 
 

                                                               ..(4.10)                                  

                                                            ..(4.11)                          

       ..(4.12)        
 

Again, all inductances are seen to be constant. 

 

4.4 Stator voltage equations in dq0 components: 
 

 By applying dq0 transformation, following stator voltage equations are obtained: 

 

          ..(4.13) 
                                                                                            

                                                                                          ..(4.14) 
                                                                                            

                                                                                 ..(4.15) 
 

The angle θ is the angle between axis of phase a and d-axis. The term (p θ) in the above 

equations represents angular velocity of the rotor. 

 

4.5 Advantages of dq0 transformation: 
 

 The dq0 transformation may be viewed as a means of referring the stator 

quantities to the rotor side. 

 The analysis of synchronous machine equations in terms of dq0 variables 

considerably simpler than in terms of phase quantities for the following reasons: 

 

 The dynamic performance equations have constant inductances. 

 For balanced conditions, zero sequence quantities disappear. 

 For balanced steady-state operation, the stator quantities have constant values. 

 The parameters associated with d- and q-axis may be directly measured from terminal 

tests. 
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4.6 Per unit representation: 

 

 In power system analysis, it is usually convenient to use a per unit system to 

normalize system variables.    

    
In the case of a synchronous machine, the per-unit system may be used to remove 

arbitrary constants and simplify mathematical equations so that they may be expressed in 

terms of equivalent circuits. 

Per unit stator voltage equations: 

 

                                                                                              
                                     ..(4.16)                                      

 
 

Per unit rotor voltage equations: 

 

                                                                             
    
                                      ..(4.17)                                                                             

   
 

For power system stability analysis, the machine equations are normally solved with all 

quantities expressed in per unit. 
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5.1 Synchronous Machine Parameters: 

 The synchronous machine equations developed in Chapter 3 have the inductances 

and resistances of the stator and rotor circuits as parameters. These are referred to as 

fundamental or basic parameters and are identified by the elements of the d- and q-axis 

equivalent circuits. While the fundamental parameters completely specify the machine 

electrical characteristics, they cannot be directly determined from the measured responses 

of the machine. Therefore, the traditional approach to assigning machine data has been to 

express them in terms of derived parameters that are related to observed behaviour as 

viewed from the terminals under suitable test conditions. 

 

5.2 Operational Parameters: 

 A convenient method of identifying the machine electrical characteristics is in 

terms of operational parameters relating the armature and field terminal quantities. 

Referring to Figure 4.1, the relationship between the incremental values of terminal 

quantities may be expressed in the operational form as follows: 

          …(5.1) 

                                                           

        …(5.2) 

 

Figure 5.1 The d- and q-axis networks identifying terminals quantities 

where, 

 G(s) is the stator to field transfer function 

 Ld(s) is the d-axis operational inductance 

 Lq(s) is the q-axis operational inductance  

Equations 5.1 and 5.2 are true for any number of rotor circuits. With the equations in 

operational form, the rotor can be considered as a distributed parameter system. The 

operational parameters can be determined either from design calculations or more readily 

from frequency response measurements. 
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When a finite number of rotor circuits are assumed, the operational parameters can be 

expressed as a ratio of polynomial in s. The orders of the numerator and denominator 

polynomials of Ld(s) and Lq(s) are equal to the number of rotor circuits assumed in the 

respective axes, and G(s) has the same denominator as Ld(s), but a different numerator of 

order one less than the denominator.. 

 

 We will develop here the expressions for the operational parameters of the model 

represented by the equivalent circuits shown in Figure 5.1. This model structure is 

generally considered adequate for stability studies and is widely used in large scale 

stability programs. The rotor characterstics are represented by the field winding and a 

damper winding in the d-axis and the two damper windings in the q-axis. The mutual 

inductances Lfd and Lad are assumed to be equal; this makes all mutual inductances in 

the d-axis equal. 

  
        Figure 5.1 Structure of commonly used model 

 

With equal mutual inductances, flux linkages for the d-axis in the operational 

form can be written as:  

  

  
The operational forms for rotor voltages are: 

 

  
 

            

… 5.3 

 

… 5.4 

 

 

… 5.5 

 

… 5.6 

 

… 5.7 
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Our objective is to express the d-axis equations in the form of equations 5.1 and this can 

be achieved by eliminating the rotor currents in terms of the terminal quantities efd and id. 

Accordingly the solution of above two equations gives: 

              

Where 

           

Given that  

       

 

 

… 5.8 

 

 

… 5.9 

 

… 5.10 

 

… 5.11 

 

 

 

 

… 5.12 
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substitution of equations 5.10 and 5.11 in the incremental form of equation 5.3 then gives 

the relationship between d-axis quantities in the desired form: 

     

The expressions for the d-axis operational parameters are given by: 

     

     

where,     

  

Equations 5.13 and 5.14 can be expressed in the factored form: 

        

 

… 5.13 

 

 

 

…5.14 

 

 

 

… 5.5 

 

 

 

… 5.15 

 

 

 

 

… 5.16 

 

 

… 5.17 
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The expression for the q-axis operational inductance may be written by inspection and 

recognizing the similarities between d- and q- axis equivalent circuits. In the factored 

form, it is given by: 

       

The time constants associated with the expressions for Ld(s), Lq(s) and G(s) in the 

factored form represent important machine parameters. 
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 6.1 Different Models of synchronous machines: 

  

Depending upon the number of rotor windings on d-axis and q-axis and degree of 

complexity following models are suggested: 

 

1. Classical model ( Model 0.0) 

2. Field circuit only (Model 1.0) 

3. Field circuit with one equivalent damper on q-axis (Model 1.1) 

4. Field circuit with one equivalent damper on d-axis – 

(a) Model 2.1 (one damper on q-axis) 

(b) Model 2.2 (two damper on q-axis) 

5. Field circuit with two equivalent damper circuits on d-axis – 

(a) Model 3.2 (with two damper on q-axis) 

(b) Model 3.3 (with three dampers on q-axis) 

 

It is to be noted that in the classification of the machine models, the first number 

indicates the number of winding on the d-axis while the second number indicates the 

number of windings on the q axis.(Alternatively the number represent the number of state 

variables considered in the d axis and q axis).Thus, the classical model which neglects 

damper winding circuits and field flux decay, ignores all sate variable for the rotor coil 

and is termed (0.0) 

 

6.2 Applications of different models: 

Model (2.2) is widely used in the literature. Model (3.3) is claimed to be the most 

detailed model applicable to turbogenerator, while models (2.1) and (1.1) are widely used 

for hydro generators. It is to be noted that while higher order models provide better 

result for such applications, they also require an exact determination of parameters. 

With constraints on data availability and for study of large systems, it may be adequate to 

use model (1.1) if the data is correctly determined. 

 



 33 

In the project, Model (0.0), Model(2.1) and Model(2.2) have been analysed 

mathematically and simulated to obtain machine‟s fundamental parameters. 
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7.1 Model (2.1) : 

 The standard representation of a Synchronous machine is done by using 

Model(2.1) which includes field circuit and an equivalent damper winding on d-axis and 

a damper winding on q-axis. 

 Following assumptions are being made during analysis of the model : 

 Main field flux decay is considered. 

 An equivalent damper winding included in both q – axis and d-axis each. 

 Speed is assumed to be constant. 

 Saturation is neglected. 

7.1.1 Equivalent circuits 

Equivalent circuits representing the complete characteristics of the synchronous 

machines for direct axis and qudrature axis is shown in Fig-1 and Fig-2 respectively 

below- 

  

  

     
   Fig-7.1 d-axis and q-axis equivalent circuits for model (2.1) 

  

In the d-axis equivalent circuit, there is a field winding and a damper winding along with 

a field source. In the case of q-axis, there is no field winding and the amortisseurs 

represent the overall effect of the damper windings and eddy current paths. 
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7.1.2 Detailed analysis of the model: 

 

 Following notations are used in writing the equations for the stator and rotor 

circuits: 

  Xd = d-axis synchronous reactance 

  Xd‟ = d-axis transient reactance 

  Xd‟‟ = d- axis subtransient reactance 

  Xq = q-axis synchronous reactance 

  Xq‟ = q-axis transient reactance 

  Xq‟‟ = q- axis subtransient reactance 

  Xl = leakage reactance 

  Tdo‟ = open circuit d-axis transient time constant 

  Tdo‟‟ = open circuit d-axis sub-transient time constant 

  Tqo‟ = open circuit q-axis transient time constant 

  Tqo‟‟ = open circuit q-axis sub-transient time constant 

  Td‟ =  short circuit d-axis transient time constant 

  Td‟‟ =  short circuit d-axis transient time constant 

  Tq‟ =  short circuit q-axis transient time constant 

  Tq‟‟ = short circuit q-axis transient time constant 

       Rfd,Rfq,Rkq = Rotor circuit resistances of field along d and q axis and   

damper along q-axis respectively 

 Total flux produced by stator winding has two components such as mutual 

component and leakage component. Hence, 

Along d axis: 

          …(7.1) 

Along q axis: 

          …(7.2) 

 

Now immediately following a fault, when a sudden disturbance occurs, flux can‟t 

change instantaneously in an inductive- resistive circuit. Hence for a small change : 

 
            Δψd=0          …(7.3) 

 

             Δψ1d=0        …(7.4) 
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Thus equivalent circuit is reduced to a open circuit consisting of three parallel branches 

and corresponding equation for d-axis is: 

         

         …(7.5) 
 

Similarly for q axis equivalent equation can be written as – 

 

        …(7.6) 

 

7.1.3 Derivation for obtaining open circuit time constants: 

 

The relationship of open circuit time constants can be found by open circuiting 

the AB branch of the circuit (from fig. shown below). During open circuit condition, 

current through this branch is zero. 

 

       Thus,    admittance = Δid(s)/Δed(s) = 0 

 

     
 Figure 7.2d-axis and q-axis equivalent circuits for model (2.1)  

   to obtain open circuit time constants 

 

Thus the equations for transient and sub-transient case along d-axis and q-axis are: 

  

       …(7.7) 

                                

      …(7.8) 
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     …(7.9)                                                  

 

                    ..(7.10)                                  

 

7.1.4 Derivation for Short circuit time constants : 

 

Equivalent circuit diagram is short circuited to obtain the relations .Here only 

additional term Xl will be introduced which is obvious from the figure shown below: 

  

    
              Figure 7.3 d-axis equivalent circuit for model (2.1)  

     to obtain short circuit time constants 

   

The equations for transient and sub-transient conditions for short circuit situation along d-

axis and q-axis are: 

 

     ..(7.11) 

                                                               

      ..(7.12) 

                                                                

                                     ..(7.13) 

                                                                  

    ..(7.14) 

 

Now from operational analysis of inductance ,we know that- 

 

     ..(7.15) 
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For sub-transient condition, when „s‟tends to zero, sub-transient reactance along d-axis is 

obtained as: 

   

       ..(7.16) 

 

Similarly, Transient reactance along d-axis is obtained as 

 

                                          ..(7.17)                                                                                              

 

Thus     ..(7.18) 

 

Similarly following relation can be obtained: 

 

     ..(7.19) 
 

To find the parameters involved in the equations Newton- raphson method has been 

applied where initial values are taken considering following equations- 

 

            ..(7.20)                                                                                                                                           

 

                   ..(7.21) 

                                                                                                                               

         ..(7.22) 

                                                                                                                                                                                    

          ..(7.23) 

                                                                                                                                                                                  

        ..(7.24) 

                                                                                                                                                                         

        ..(7.25) 

 

                                                                                                                    ..(7.26)             
 

          ..(7.27) 

                                                                                                                               

 ..(7.28) 

                                                                                                      

   ..(7.29)                                                                                                   

 

             ..(7.30) 
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           ..(7.31) 

                                                                                                                                  

                                                                                                 ..(7.32)                   

 

         ..(7.33)                       
 

These equations are being solved using NEWTON RAPHSON method and simulated in 

MATLAB using a set of manufacturer‟s data, taken from an IEEE  Transaction on Power 

Apparatus and Systems, Vol. PAS-96, no.5. “First benchmark model for computer 

simulation of sub synchronous resonance.” 

 

7.1.5 Simulation Result: 

 The equations were simulated using manufacturer‟s data given in Table 6.1 and 

fundamental parameters were obtained shown in Table 6.2 

         Table 7.1 Manufacturer provided data 

 

 

          Table 7.2 d-axis and q-axis parameters for model(2.1) 

Xa

d 

(pu

) 

Xa

q 

(pu

) 

Xfd 

(pu) 

Xfq 

(pu) 

Xkd 

(pu) 

X1q 

(pu) 

Rfd 

(pu) 

Rfq 

(pu

) 

Rkd 

(pu) 

R1

q 

(pu

) 

Td‟ 

(s) 

Td‟‟ 

(s) 

Tq‟ 

(s) 

Tq‟‟ 

(s) 

1.6

6 

1.5

8 

0.039

9 

0.104

5 

0.005

7 

0.245

0 

0.395

3 

1.9

8 

1.39

8 

6.8

6 

0.406

0 

0.025

6 

0.113

3 

0.043

9 

 

Xd 

(pu) 

Xq 

(pu) 

Xd‟ 

(pu) 

Xq‟ 

(pu) 

Xd‟‟ 

(pu) 

Xq‟‟ 

(pu) 

Tdo‟ 

(s) 

Tqo‟ 

(s) 

Tdo” 

(s) 

Tqo” 

(s) 

Xl 

(pu) 

1.79 1.71 0.169 0.228 0.135 0.2 4.3 0.85 0.032 0.05 0.13 
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7.2 Model(0.0): 

 This is the simplest model of the machine representation, also called as “Classical 

Model”. The model has only field circuit on d-axis with no damper windings on either 

axis. 

 Following are the assumptions used during mathematical analysis of the model: 

 Transformer voltages in the stator equations are neglected 

 Speed is assumed constant 

 Effect damper windings are neglected 

 Saturation is not simulated 

 Main flux linkages are assumed to be constant 

 Transient saliency is neglected, that is approximating 

7.2.1 Equivalent circuit: 

The circuit diagram for model (0.0) is obtained from the flux model analysis and the 

circuit is shown below for both d-axis and q-axis axis: 

  

      
    Fig-7.4 d-axis and q-axis equivalent circuits for model (0.0) 



 42 

7.2.2: Circuit Equations: 

 Following equations can be derived from equivalent circuits using flux model 

analysis as done for model (2.1) : 

 

              ..(7.34)                                                                                                                                                             

 

                ..(7.35)                                                                                                               

 

         ..(7.36)                                                                                                                                                                            

 

           ..(7.37)                                                                                                              

 

               ..(7.38)                                                                                                                 

 

                                                                                                                  ..(7.39) 

 

                 ..(7.40)                                                                                                                  

 

                    ..(7.41)                                                                                                               

 

           ..(7.42)                                                                                                                      

 

           ..(7.43) 

 

7.2.3 Simulation Result: 

 

 Above equations were simulated using the same machine data provided by 

manufacturer for model(2.1) and following results were obtained as shown in Table 6.3: 

 
   Table 7.3  d-axis and q-axis parameters for model(0.0)  

Xad 

(pu) 

Xaq 

(pu) 

Xfd 

(pu) 

Xfq 

(pu) 

Rfd 

(pu) 

Rfq 

(pu) 

Td‟ 

(s) 

Td‟‟ 

(s) 

Tq‟ 

(s) 

Tq‟‟ 

(s) 

1.66 1.58 0.0399 0.1045 0.3953 1.9817 0.4060 0.0256 0.1133 0.0439 
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7.3 Model (2.2): 

 This is a representation intended to maintain a balance by using two windings  

(one field, one equivalent damper)on d-axis and two equivalent dampers on q-axis. 

 Following assumptions have been used for analysis of the model: 

 

 Main field flux decay is considered. 

 Two equivalent damper winding included in q – axis. 

 One equivalent damper winding included in d– axis. 

 Speed is assumed constant. 

 Saturation is neglected. 

 

7.3.1 Equivalent circuit: 

 The circuit diagram for both d-axis and q- axis has been shown below : 

 

                     

  
                 Fig-7.5 d-axis and q-axis equivalent circuits for model (2.2) 
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7.3.2 Circuit Equations: 

  

 As developed in previous models the relationship between various time constants 

and transient parameter can be found out from equivalent circuits. The circuit equations 

are shown below: 

 

                 ..(7.44)                                                                                                                                                          

 

                   ..(7.45)                                                                                                            

 

             ..(7.46)                                                                                                                                                                        

 

            ..(7.47)                                                                                                            

 

                ..(7.48)                                                                                                                

 

          ..(7.49) 

 

      ..(7.50) 

      

           ..(7.51) 

 

        ..(7.52) 

 

            ..(7.53) 

 

         ..(7.54)                                                                              

 

             ..(7.55)                                                                           

 

                                                   ..(7.56)                                                                                
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               ..(7.57)                                                                                                                    

           ..(7.58)                                                                                                                      

 

          ..(7.59) 

 

7.3.1 Simulation Result: 

 The above equations were simulated using NEWTON RAPHSON method in 

MATLAB using the same machine data provided by manufacturer as done for previous 

models .Following fundamental parameters were obtained as shown in Table 6.4: 

                    Table 7.4 d-axis and q-axis parameters for model(2.2) 

Xad 

(pu) 

Xaq 

(pu) 

Xfd 

(pu) 

Xfq 

(pu) 

Xkd 

(pu) 

X1q 

(pu) 

X2q 

(pu) 

Rfd 

(pu) 

Rfq 

(pu) 

Rkd 

(pu) 

R1q 

(pu) 

R2q 

(pu) 

1.66 1.58 0.0399 0.1045 0.0057 0.1045 0.2450 0.3953 1.9817 1.3980 3.4896 5.9114 

     

Td‟ 

(s) 

Td‟‟ 

(s) 

Tq‟ 

(s) 

Tq‟‟ 

(s) 

0.4060 0.0256 0.1133 0.0439 
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8.1 MAIN FILE 

 

% MAIN FILE 
 
clear all; 
close all; 
clc  
B=zeros(10,1); 
J=zeros(10,10); 
I=zeros(10,10); 
resm=zeros(10,6); 
resm1=zeros(10,6); 
resd=zeros(10,6); 
resd1=zeros(10,6);  
disp('BTECH FINAL YEAR PROJECT') 
disp('========================') 
disp('Enter intial values :PARA METERS IN DATASHEET ') 
% y1=input('Xd : '); 
% y2=input('Xq : '); 
% y3=input('Xd1 : '); 
% y4=input('Xq1 : '); 
% y5=input('Xd2 : '); 
% y6=input('Xq2 : '); 
% y7=input('Tdo1 : '); 
% y8=input('Tqo1 : '); 
% y9=input('Tdo2 : '); 
% y10=input('Tqo2 : '); 
% y11=input('Xl :'); 
y1=1.79; 
y2=1.71; 
y3=0.169; 
y4=0.228; 
y5=0.135; 
y6=0.2; 
y7=4.3; 
y8=0.85; 
y9=0.032; 
y10=0.05; 
y11=0.13; 
disp('=====================================================================') 
disp('FOR MODEL1 ....NO DAMPER ATALL... ') 
disp('=====================================================================') 
disp('=====================================================================') 
disp('INITIALIZATION OF PARAMETERS TO B ESTIMATED..ENTER INITIAL VALUE... ') 
disp('=====================================================================') 
% x1=input('Xad : '); 
% x2=input('Xaq : '); 
% x3=input('Xfd : '); 
% x4=input('Xfq : '); 
% x5=input('Xkd : '); 
% x6=input('Xkq : '); 
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% x7=input('Rfd : ');  
% x8=input('Rfq : '); 
% x9=input('Rkd : '); 
% x10=input('Rkq : '); 
% x11=input('Td1 : '); 
% x12=input('Td2 : '); 
% x13=input('Tq1 : '); 
% x14=input('Tq2 : '); 
 
x1=1; 
x2=1; 
x3=0.01; 
x4=0.1; 
x5=0.001; 
x6=0.1; 
x7=0.001;  
x8=0.001; 
x9=0.001; 
x10=0.01; 
x11=0.01; 
x12=0.01; 
x13=0.1; 
x14=0.01; 
 
k=1; 
DX =ones(14,1); 
ecc=0.0001; 
disp('=====================WAIT ITERATION GOING ON================') 
for a=1:1:10 
          k=k+1;  
          for i=1:1:10 
              d=1;j=1; 
              B(i)=0- lfun1(x1,x2,x3,x4,x7,x8,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d); 
              j=2; 
              for d=1:1:10 
                  J(i,d)=lfun1(x1,x2,x3,x4,x7,x8,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d); 
              end 
          end  
det(J);     I=inv(J);     DX=I*B;  
disp(a) 
      
%Updation of variables  
 
x1= x1+DX(1);   x2= x2+DX(2);  x3= x3+DX(3);  x4= x4+DX(4);  
x7= x7+DX(5);   x8= x8+DX(6);  x11= x11+DX(7); 
x12= x12+DX(8); x13= x13+DX(9);x14= x14+DX(10);    
resd(a,1)=a;          resd1(a,1)=a;          resd(a,2)=DX(1);      resd(a,3)=DX(2);          resd(a,4)=DX(3);      
resd(a,5)=DX(4); 
 resd(a,6)=DX(5);     resd1(a,2)=DX(6);          resd1(a,3)=DX(7);     resd1(a,4)=DX(8);          resd1(a,5)=DX(9);     
resd1(a,6)=DX(10); 
          
m1=x1;m2=x2;m3=x3;m4=x4;m7=x7; m8=x8; m11=x11;m12=x12;m13=x13;m14=x14;  
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resm(a,1)=a; resm(a,2)=m1; 
resm(a,3)=m2;resm(a,4)=m3; 
resm(a,5)=m4; resm(a,6)=m7*377;  
resm1(a,1)=a; resm1(a,2)=m8*377;resm1(a,3)=m11; 
resm1(a,4)=m12;resm1(a,5)=m13;resm1(a,6)=m14;   
           
end    
disp('ESTIMATED PARAMETERS AND RESIDUAL VALUES ARE') 
disp('=============================================') 
disp('    ITERNO     Xad       Xaq       Xfd       Xfq       Rfd         '); 
disp('    ======     ===       ===       ===       ===       ===         '); 
disp(resm); 
disp('    ITERNO     Rfq       Td1       Td2       Tq1       Tq2          '); 
disp('    ======     ===       ===       ===       ===       ===          '); 
disp(resm1); 
disp('=====================================================================') 
  
disp('                         RESIDUE MATRIX'); 
disp('=====================================================================') 
disp('    ITERNO     Xad       Xaq       Xfd       Xfq       Rfd         '); 
disp('    ======     ===       ===       ===       ===       ===         '); 
disp(resd); 
disp('    ITERNO     Rfq       Td1       Td2       Tq1       Tq2          '); 
disp('    ======     ===       ===       ===       ===       ===          '); 
disp(resd1); 
disp('========================================================================') 
disp('=====================================================================') 
disp('FOR MODEL2 ....1 DAMPER IN D AXIS AND 1 IN Q AXIS... ') 
disp('=====================================================================') 
disp('=====================================================================') 
disp('INITIALIZATION OF PARAMETERS TO B ESTIMATED..ENTER INITIAL VALUE... ') 
disp('=====================================================================') 
B=zeros(14,1); 
J=zeros(14,14); 
I=zeros(14,14); 
resm=zeros(10,8); 
resm1=zeros(10,8); 
resd=zeros(10,8); 
resd1=zeros(10,8); 
 
 
k=1; 
DX =ones(14,1); 
ecc=0.0001; 
disp('=====================WAIT ITERATION GOING ON================') 
for a=1:1:10 
          k=k+1; 
  
          for i=1:1:14 
              d=1;j=1; 
              B(i)=0-
lfun2(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d); 
              j=2; 
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              for d=1:1:14 
                  
J(i,d)=lfun2(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d); 
              end 
          end  
          det(J);     I=inv(J);     DX=I*B;  
          disp(a)      
%Updation of variables  
x1= x1+DX(1);     x2= x2+DX(2);     x3= x3+DX(3);      
x4= x4+DX(4);     x5= x5+DX(5);     x6= x6+DX(6);      
x7= x7+DX(7);     x8= x8+DX(8);     x9= x9+DX(9);      
x10= x10+DX(10);  x11= x11+DX(11);    
x12= x12+DX(12);  x13= x13+DX(13);  x14= x14+DX(14); 
 
resd(a,1)=a; 
resd1(a,1)=a; 
resd(a,2)=DX(1); 
resd(a,3)=DX(2); 
resd(a,4)=DX(3); 
resd(a,5)=DX(4); 
resd(a,6)=DX(5); 
resd(a,7)=DX(6); 
resd(a,8)=DX(7); 
resd1(a,2)=DX(8); 
resd1(a,3)=DX(9); 
resd1(a,4)=DX(10); 
resd1(a,5)=DX(11); 
resd1(a,6)=DX(12); 
resd1(a,7)=DX(13); 
resd1(a,8)=DX(14); 
           
m1=x1;     m2=x2;       m3=x3;     m4=x4;       m5=x5;         m6=x6;     m7=x7;       m8=x8;     m9=x9;       
m10=x10;     m11=x11;   m12=x12;     m13=x13;   m14=x14; 
      
resm(a,1)=a; 
resm(a,2)=m1; 
resm(a,3)=m2; 
resm(a,4)=m3; 
resm(a,5)=m4; 
resm(a,6)=m5; 
resm(a,7)=m6; 
resm(a,8)=m7*377; 
resm1(a,1)=a; 
resm1(a,2)=m8*377; 
resm1(a,3)=m9*377; 
resm1(a,4)=m10*377; 
resm1(a,5)=m11; 
resm1(a,6)=m12; 
resm1(a,7)=m13; 
resm1(a,8)=m14;    
   
         
end    
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disp('ESTIMATED PARAMETERS AND RESIDUAL VALUES ARE') 
disp('=============================================') 
disp('    ITERNO     Xad       Xaq       Xfd       Xfq       Xkd       Xkq       Rfd         '); 
disp('    ======     ===       ===       ===       ===       ===       ===       ===         '); 
disp(resm); 
disp('    ITERNO     Rfq       Rkd       Rkq       Td1       Td2       Tq1       Tq2          '); 
disp('    ======     ===       ===       ===       ===       ===       ===       ===          '); 
disp(resm1); 
disp('==================================================================================
======') 
  
disp('                         RESIDUE MATRIX'); 
disp('==================================================================================
======') 
disp('    ITERNO     Xad       Xaq       DXfd       Xfq       Xkd       Xkq       Rfd         '); 
disp('    ======     ===       ===       ===       ===       ===       ===       ===         '); 
disp(resd); 
disp('    ITERNO     Rfq       Rkd       Rkq       Td1       Td2       Tq1       Tq2          '); 
disp('    ======     ===       ===       ===       ===       ===       ===       ===          '); 
disp(resd1); 
disp('=====================================================================') 
disp('FOR MODEL3 ....1 DAMPER IN D AXIS AND 2 IN Q AXIS... ') 
disp('=====================================================================') 
disp('=====================================================================') 
disp('INITIALIZATION OF PARAMETERS TO B ESTIMATED..ENTER INITIAL VALUE... ') 
disp('=====================================================================') 
 
B=zeros(16,1); 
J=zeros(16,14); 
I=zeros(16,14); 
resm=zeros(7,9); 
resm1=zeros(7,9); 
resd=zeros(7,9); 
resd1=zeros(7,9); 
y1=1.79;  
y2=1.71;  
y3=0.169;  
y4=0.228;  
y5=0.135;  
y6=0.2;  
y7=4.3;  
y8=0.85;  
y9=0.032;  
y10=0.05;  
y11=0.13; x1=1;  
x2=1;  
x3=0.01;  
x4=0.1;  
x5=0.001;  
x6=0.2;  
x7=0.001;   
x8=0.001;  
x9=0.001;  
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x10=0.02;  
x11=0.01;  
x12=0.01;  
x13=0.1;  
x14=0.01;  
x15=0.2;  
x16=0.02;  
 
%  x1=input('Xad : '); 
%  x2=input('Xaq : '); 
%  x3=input('Xfd : '); 
% x4=input('Xfq : '); 
% x5=input('Xkd : '); 
% x6=input('X1q : '); 
% x15=input('X2q : '); 
% x7=input('Rfd : ');  
% x8=input('Rfq : '); 
% x9=input('Rkd : '); 
%  x10=input('R1q : '); 
%  x16=input('R2q : '); 
%  x11=input('Td1 : '); 
% x12=input('Td2 : '); 
%  x13=input('Tq1 : '); 
% x14=input('Tq2 : '); 
 
k=1; 
DX =ones(16,1); 
ecc=0.0001; 
disp('=====================WAIT ITERATION GOING ON================') 
for a=1:1:7 
          k=k+1; 
  
          for i=1:1:16 
              d=1;j=1; 
              B(i)=0-
lfun4(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d); 
              j=2; 
              for d=1:1:16 
                  
J(i,d)=lfun4(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,
d); 
              end 
          end  
det(J);      
I=inv(J);      
DX=I*B;      
disp(a) 
   
%Updation of variables  
 
x1= x1+DX(1);     x2= x2+DX(2);     x3= x3+DX(3);      
x4= x4+DX(4);     x5= x5+DX(5);     x6= x6+DX(6);     
x7= x7+DX(7);     x8= x8+DX(8);     x9= x9+DX(9);      
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x10= x10+DX(10);  x11= x11+DX(11);  x12= x12+DX(12);   
x13= x13+DX(13);  x14= x14+DX(14);  x15= x15+DX(15);     x16= x16+DX(16); 
resd(a,1)=a; 
resd1(a,1)=a; 
resd(a,2)=DX(1); 
resd(a,3)=DX(2); 
resd(a,4)=DX(3); 
resd(a,5)=DX(4); 
resd(a,6)=DX(5); 
resd(a,7)=DX(6); 
resd(a,8)=DX(15); 
resd(a,9)=DX(7);            
resd1(a,2)=DX(8); 
resd1(a,3)=DX(9); 
resd1(a,4)=DX(10); 
resd1(a,5)=DX(16); 
resd1(a,6)=DX(11); 
resd1(a,7)=DX(12); 
resd1(a,8)=DX(13); 
resd1(a,9)=DX(14); 
           
m1=x1;m2=x2; m3=x3;m4=x4;m5=x5;m6=x6;m7=x7;m8=x8;m9=x9; 
m10=x10;m11=x11;m12=x12; m13=x13;m14=x14;m15=x15;m16=x16; 
      
resm(a,1)=a; 
resm(a,2)=m1; 
resm(a,3)=m2; 
resm(a,4)=m3; 
resm(a,5)=m4; 
resm(a,6)=m5; 
resm(a,7)=m6; 
resm(a,8)=m15; 
resm(a,9)=m7*377; 
resm1(a,1)=a; 
resm1(a,2)=m8*377; 
resm1(a,3)=m9*377; 
resm1(a,4)=m10*377; 
resm1(a,5)=m16*377; 
resm1(a,6)=m11; 
resm1(a,7)=m12; 
resm1(a,8)=m13; 
resm1(a,9)=m14;  
         
end    
disp('ESTIMATED PARAMETERS AND RESIDUAL VALUES ARE') 
disp('=============================================') 
disp('    ITERNO     Xad       Xaq       Xfd       Xfq       Xkd       X1q       X2q       Rfd         '); 
disp('    ======     ===       ===       ===       ===       ===       ===       ===       ====  '); 
disp(resm); 
disp('    ITERNO     Rfq       Rkd       R1q       R2q       Td1       Td2       Tq1       Tq2          '); 
disp('    ======     ===       ===       ===       ===       ===       ===       ===       ===   '); 
disp(resm1); 
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disp('==================================================================================
======') 
  
disp('                         RESIDUE MATRIX'); 
disp('==================================================================================
======') 
disp('    ITERNO     Xad       Xaq       Xfd       Xfq       Xkd       X1q       X2q       Rfd         '); 
disp('    ======     ===       ===       ===       ===       ===       ===       ===       ====  '); 
disp(resd); 
disp('    ITERNO     Rfq       Rkd       R1q       R2q       Td1       Td2       Tq1       Tq2          '); 
disp('    ======     ===       ===       ===       ===       ===       ===       ===       ===   '); 
disp(resd1); 
disp('==================================================================================
======') 
disp('                        ********THANKING YOU******** ') 
disp('==================================================================================
======') 
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 FUNCTION CODE FOR MODEL(0.0) : 

Function f1=lfun1(x1,x2,x3,x4,x7,x8,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d); 
syms z1; 
syms z2; 
syms z3; 
syms z4; 
 
syms z7; 
syms z8; 
 
syms z11;  
syms z12; 
syms z13; 
syms z14; 
 
if i==1 
g=y1-y11-z1; 
end 
 
if i==2 
g=y2-y11-z2; 
end 
 
if i==3 
g=(1/(y3-y11))-(1/z1)-(1/z3); 
end 
 
if i==4 
g=(1/(y4-y11))-(1/z2)-(1/z4); 
end 
 
if i==5 
g=((z3+z1)/(377*y7)) -z7; 
end 
 
if i==6 
g=((z4+z2)/(377*y8))-z8; 
end 
 
if i==7 
g=(y3*y7)/y1 - z11; 
end 
 
if i==8 
g=(y4*y8)/y2 - z13; 
end 
 
if i==9 
g=(y5*y9)/y3 - z12; 
end 
 
if i==10  



 56 

g=(y6*y10)/y4 - z14; 
end 
 
if(j==1) 
f2=subs(g,{z1,z2,z3,z4,z7,z8,z11,z12,z13,z14},{x1,x2,x3,x4,x7,x8,x11,x12,x13,x14}); 
f1=double(f2); 
end  
 
if(j==2) 
if d==1 
der=diff(g,z1);  
end 
 
if d==2 
der=diff(g,z2);  
end 
 
if d==3 
der=diff(g,z3);  
end 
 
if d==4 
der=diff(g,z4);  
end 
 
if d==5 
der=diff(g,z7);  
end 
if d==6 
der=diff(g,z8);  
end  
if d==7 
der=diff(g,z11);  
end  
if d==8 
der=diff(g,z12);  
end  
if d==9 
der=diff(g,z13);  
end  
if d==10 
der=diff(g,z14);  
end  
 
f2=subs(der,{z1,z2,z3,z4,z7,z8,z11,z12,z13,z14},{x1,x2,x3,x4,x7,x8,x11,x12,x13,x14}); 
f1=double(f2); 
end 
end 
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FUNCTION CODE FOR MODEL(2.1) : 

function f1=lfun2(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d); 
syms z1; 
syms z2; 
syms z3; 
syms z4; 
syms z5; 
syms z6; 
syms z7; 
syms z8; 
syms z9; 
syms z10; 
syms z11;  
syms z12; 
syms z13; 
syms z14; 
if i==1 
g=y1-y11-z1; 
end 
if i==2 
g=y2-y11-z2; 
end 
if i==3 
g=(1/(y3-y11))-(1/z1)-(1/z3); 
end 
if i==4 
g=(1/(y4-y11))-(1/z2)-(1/z4); 
end 
if i==5 
g=(1/(y5-y11))-(1/(y3-y11))-(1/z5); 
end 
if i==6 
g=(1/(y6-y11))-(1/(y4-y11))-(1/z6); 
end 
if i==7 
g=((z3+z1)/(377*y7)) -z7; 
end 
if i==8 
g=((z4+z2)/(377*y8))-z8; 
end 
if i==9 
g=((z5*z1 + z5*z3 + z1*z3)/((377*y9)*(z1+z3))) - z9; 
end 
if i==10 
g=((z6*z2 + z6*z4 + z2*z4)/((377*y10)*(z2+z4))) - z10; 
end 
if i==11 
g=(y3*y7)/y1 - z11; 
end 
if i==12 
g=(y4*y8)/y2 - z13; 
end 
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if i==13 
g=(y5*y9)/y3 - z12; 
end 
if i==14  
g=(y6*y10)/y4 - z14; 
end 
if(j==1) 
f2=subs(g,{z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14},{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14}
); 
f1=double(f2); 
end  
if(j==2) 
if d==1 
der=diff(g,z1);  
end 
if d==2 
der=diff(g,z2);  
end 
if d==3 
der=diff(g,z3);  
end 
if d==4 
der=diff(g,z4);  
end 
if d==5 
der=diff(g,z5);  
end 
if d==6 
der=diff(g,z6);  
end  
if d==7 
der=diff(g,z7);  
end  
if d==8 
der=diff(g,z8);  
end  
if d==9 
der=diff(g,z9);  
end  
if d==10 
der=diff(g,z10);  
end  
if d==11 
der=diff(g,z11);  
end  
if d==12 
der=diff(g,z12);  
end 
if d==13 
der=diff(g,z13);  
end 
if d==14 
der=diff(g,z14); 
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end 
f2=subs(der,{z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14},{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x1
4}); 
f1=double(f2); 
end 
end 
 

 FUNCTION CODE FOR MODEL(2.2): 

function 
f1=lfun4(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d); 
syms z1; 
syms z2; 
syms z3; 
syms z4; 
syms z5; 
syms z6; 
syms z7; 
syms z8; 
syms z9; 
syms z10; 
syms z11;  
syms z12; 
syms z13; 
syms z14; 
syms z15; 
syms z16; 
if i==1 
g=y1-y11-z1; 
end 
if i==2 
g=y2-y11-z2; 
end 
if i==3 
g=(1/(y3-y11))-(1/z1)-(1/z3); 
end 
if i==4 
g=(1/(y4-y11))-(1/z2)-(1/z4); 
end 
if i==5 
g=(1/(y5-y11))-(1/(y3-y11))-(1/z5); 
end 
if i==6 
    g=y11+(1/((1/z2)+(1/z6)))-y4; 
% g=(1/(y6-y11))-(1/(y4-y11))-(1/z6)-(1/z15); 
end 
if i==7 
g=((z3+z1)/(377*y7)) -z7; 
end 
if i==8 
g=((z4+z2)/(377*y8))-z8; 
end 
if i==9 
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g=((z5*z1 + z5*z3 + z1*z3)/((377*y9)*(z1+z3))) - z9; 
end 
if i==10 
    g=(1/(377*y10))*(z6+(z15*z2*z4/(z15*z2+z15*z4+z2*z4)))-z10; 
end 
if i==11 
g=(y3*y7)/y1 - z11; 
end 
if i==12 
g=(y4*y8)/y2 - z13; 
end 
if i==13 
g=(y5*y9)/y3 - z12; 
end 
if i==14  
g=(y6*y10)/y4 - z14; 
end 
if i==15 
 g=y11+(1/((1/z2)+(1/z6)+(1/z15)))-y6; 
% g=y11+(1/((1/x2)+(1/x6)+(1/x15)+(1/x4)))-y5; 
end 
if i==16  
g=((z15+(z6*z2*z4/(z6*z2+z6*z4+z2*z4)))/(377*y10))-z16; 
end 
if(j==1) 
f2=subs(g,{z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,z15,z16},{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,
x13,x14,x15,x16}); 
f1=double(f2); 
end  
if(j==2) 
if d==1 
der=diff(g,z1);  
end 
if d==2 
der=diff(g,z2);  
end 
if d==3 
der=diff(g,z3);  
end 
if d==4 
der=diff(g,z4);  
end 
if d==5 
der=diff(g,z5);  
end 
if d==6 
der=diff(g,z6);  
end  
if d==7 
der=diff(g,z7);  
end  
if d==8 
der=diff(g,z8);  
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end  
if d==9 
der=diff(g,z9);  
end  
if d==10 
der=diff(g,z10);  
end  
if d==11 
der=diff(g,z11);  
end  
if d==12 
der=diff(g,z12);  
end 
if d==13 
der=diff(g,z13);  
end 
if d==14 
der=diff(g,z14); 
end 
if d==15 
der=diff(g,z15);  
end 
if d==16 
der=diff(g,z16); 
end 
f2=subs(der,{z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,z15,z16},{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13,x14,x15,x16}); 
f1=double(f2); 
end 
end 
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  Conclusion 
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10.1 A Comparative Study of Fundamental Parameters for different        

Models of Synchronous Machine: 

 

 

Table 10.1 Comparative chart for fundamental parameters of same synchronous machine represented by 

three different models 

 

 

`Sl. No. 

 

Parameters Model(0.0) Model(2.1) Model(2.2) 

1. Xad 

 

1.66 1.66 1.66 

2. Xaq 

 

1.58 1.58 1.58 

3. Xfd 

 

0.0399 0.0399 0.0399 

4. Xfq 

 

0.1045 0.1045 0.1045 

5. 

 

Xkd - 0.0057 0.0057 

6. 

 

X1q - 0.2450 0.1045 

7. 

 

X2q - - 0.2450 

8. 

 

Rfd 0.3953 0.3953 0.3953 

9. 

 

Rfq 1.9817 1.9817 1.9817 

10. 

 

Rkd - 1.3980 1.3980 

11. 

 

R1q - 6.8600 3.4896 

12. 

 

R2q - - 5.9114 

13. 

 

Td1 0.4060 0.4060 0.4060 

14. 

 

Td2 0.0256 0.0256 0.0256 

15. 

 

Tq1 0.1133 0.1133 0.1133 

16. Tq2 0.0439 0.0439 0.0439 
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10.2 Discussion: 
 
Stability analysis is one of the most important tasks in power system operations and 

planning. Synchronous generators play a very important role in this way. A valid model 

for synchronous generators is essential for a reliable analysis of stability and dynamic 

performance. Almost three quarters of a century after the first publications in modeling 

synchronous generators, this subject is still a challenging and attractive research topic.  

Two axis equivalent circuits are commonly used to represent the behavior of synchronous 

machines. The direct determination of circuit parameters from design data is very 

difficult due to intricate geometry and nonlinear constituent parts of machines. So several 

tests have been developed which indirectly obtain the parameter values of equivalent 

circuits. 

 

10.3 Comparison among different models: 

 
Synchronous machine models of various degrees of complexity have been developed 

from the fundamental parameters.The comparison of machine models is useful in the 

evaluation of the transient performance of multimachine power systems. Synchronous-

machine models of various degrees of complexity which are developed from the 

fundamental machine equations show different responses. They can be used to simulate 

the transient behavior of a simple multimachine power system under both non-pole-

slipping and pole-slipping conditions. The comparisons made between predicted and 

actual responses can show the degree of accuracy which may be expected for the various 

models employed.  

Model (2.2) is widely used in the literature. Model (3.3) is claimed to be the most 

detailed model applicable to turbogenerator, while models (2.1) and (1.1) are widely used 

for hydro generators. It is to be noted that while higher order models provide better result 

for such applications, they also require an exact determination of parameters.With 

constraints on data availability and for study of large systems, it may be adequate to use 

model (1.1) if the data is correctly determined. 

Models in which sub transient phenomena are simulated, but where some transformer 

voltages in the stator equations, together with sub transient saliency, are neglected, 
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provide a model which is adequate and economical in computing demands for system 

disturbances including those in which the machine may momentarily fall from 

synchronism. Model (2.2) can fulfill these requirements in all but specialized studies of 

an exacting nature, with certain simplification like Model (2.2) becomes more 

economical in computational requirements. 
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