ESTIMATION OF EXACT EQUIVALENT PARAMETERS OF SYNCHRONOUS MACHINES FOR POWER SYSTEM STUDIES

A Project Report Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology in Electrical Engineering

ALOK RANJAN DHARA
(Roll No. - 10602037)

National Institute of Technology Rourkela Rourkela-769008, Orissa

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

CERTIFICATE

This is to certify that the project entitled "ESTIMATION OF EXACT EQUIVALENT PARAMETERS OF SYNCHRONOUS MACHINES FOR POWER SYSTEM STUDIES" submitted by Ms. Garima Gupta (Roll No. 10602068) and Mr. Alok Ranjan Dhara (Roll No. 10602037) was in partial fulfillment of the requirements for the award of Bachelor of Technology Degree in Electrical Engineering at NIT Rourkela is an authentic work carried out by them under my supervision and guidance.

Date:

(Prof. P. C. Panda)
Dept. of Electrical Engg.
National Institute of
Technology, Rourkela
Rourkela-769008, Orissa

ACKNOWLEDGEMENT

We would like to thank NIT Rourkela for giving us the opportunity to use their resources and work in such a challenging environment. .

We would like to articulate our profound gratitude and indebtedness to our project guide Prof. Dr. P.C. Panda who has always been a constant motivation and guiding factor throughout the project time. It has been a great pleasure for us to get an opportunity to work under him and progress with the project.

We would also like to extend our gratitude to friends and senior students of the department who have always encouraged and supported us in the progress of the project.

Last but not the least we would like to thank all the staff members of the Department of Electrical Engineering who have been very cooperative with us.

Garima Gupta
(10602068)

Alok Ranjan Dhara
(10602037)

CONTENTS

Certificate $i i$
Acknowledgement iii
Contents $i v$
List of Figures $v i$
Abstract $x i$

1. Introduction 9
2. Physical Description of Synchronous machine 10
2.1 Physical description 11
2.2 Armature and field structure 11
3. Mathematical Description of Synchronous Machine 13
3.1 Assumptions for developing the equations 14
for synchronous machine
3.2 Basic equations of a Synchronous machine 16
3.3Stator Circuit equations 17
3.4Stator self-inductances 17
3.5Stator mutual inductances 19
3.6Mutual inductances between stator and rotor windings 19
3.67Rotor circuit equations 20
4. The dq0 Transformation 21
4.1 dq0 transformation matrix 22
4.2 Stator flux linkage in dq0 components 22
4.3 Rotor flux linkage in dq0 components 23
4.4 Stator voltage equations in dq0 components 23
4.5 Advantages of dq0 transformation 23
4.6 Per unit representation 24
5. Operational Parameters of Synchronous machine 25
5.1 Synchronous machine parameters 26
5.2 Operational Parameters 26
6. Model representations of Synchronous machine 31
6.1 Different models classification 32
6.2 Applications of different models 33
7. Analysis of Synchronous machine models 34
7.1 Model Representation (2.1) 35
7.1.1 Equivalent circuit 35
7.1.2 Detailed analysis of the model 36
7.1.3 Derivation for obtaining open circuit time constants 37
7.1.4 Derivation for obtaining short circuit time constants 38
7.1.5 Simulation results 40
7.2 Model Representation (0.0) 41
7.2.1 Equivalent Circuit 41
7.2.2 Circuit equations 42
7.2.3 Simulation results 42
7.3 Model Representation (2.2) 43
7.3.1 Equivalent Circuit 43
7.3.2 Circuit equations 44
7.3.3 Simulation results 45
8. MATLAB code 46
9. Conclusion 62
10.1 A comparative chart of parameters for different machine models 63
10.2 Discussion 63
10.3 Comparison between the three models 64
10. Bibliography 66

LIST OF FIGURES

Fig. 2.1 Schematic diagram of a three- phase synchronous machine 11
Fig. 3.1 Stator and rotor circuits of a synchronous machine 15
Fig. 3.2 Variation of permeance with rotor position 16
Fig. 3.3 Phase $\boldsymbol{a} \mathrm{mmf}$ wave and its components 18
Fig. 3.4 Variation of mutual inductance between stator windings 19
Fig. 5.1 The d-axis and q-axis networks identifying terminal quantities 27
Fig. 5.2 Structure of Commonly used model 28
Fig. 7.1d-axis and q-axis equivalent circuits for Model (2.1) 35
Fig. 7.2 d -axis and q -axis equivalent circuits for Model (2.1) 37
to obtain open circuit time constants
Fig. 7.3 d -axis and q -axis equivalent circuits for Model (2.1) 38
to obtain short circuit time constants
Fig. 7.4 d -axis and q-axis equivalent circuits for Model (0.0). 41
Fig. 7.5 d -axis and q -axis equivalent circuits for Model (2.2) 42

LIST OF TABLES

Table 7.1 Manufacturer provided data 40
Table 7.2 d-axis and q-axis parameters for Model (2.1) 40
Table 7.3 d -axis and q-axis parameters for Model (0.0) 42
Table 7.4 d -axis and q-axis parameters for Model (2.2) 45
Table 10.1 Comparative chart for by three different models 63

Abstract

Synchronous generators form the principal source of electrical energy in power system. Many large loads are driven by synchronous motors. For stability studies of large power systems, accurate representation of the synchronous machine is required. The synchronous machine equations have the inductances and resistances of the stator and rotor circuits as parameters. These are referred to as fundamental parameters or basic parameters. While the fundamental parameters completely specify the machine electrical characteristics, they cannot be directly determined from measured responses of the machine. Therefore, the traditional approach to assigning machine data has been to express them in terms of derived parameters that are related to observed behavior as viewed from the terminals under suitable test conditions. This project is aimed at modeling and analyzing different models of synchronous machine. Models with different number of damper windings are analyzed and fundamental parameters of the machine are obtained using manufacturer's data. Newton Raphson method is used to solve the rotor and stator equations for the equivalent circuits of models and simulated in MATLAB. An experimental data is used to simulate the models and results are studied. Frequency domain analysis is performed to obtain transient time constants and compared with those obtained from computer simulation.

Chapter 1

INTRODUCTION

Synchronous Machine Theory

Introduction

Synchronous generators form the principal source of electrical energy in power systems. Many large loads are driven by synchronous motors. Synchronous condensers are sometimes used as a means of providing reactive power compensation and controlling voltage. These devices operate on the same principle and are collectively referred to as synchronous machines. The power system stability problem is largely one of keeping interconnected synchronous machines in synchronism. Therefore, an understanding of their characteristics and accurate modeling of their dynamic performance are of fundamental importance in the study of power system stability.

The synchronous machine equations have the inductances and resistances of the stator and rotor circuits as parameters. These are referred to as fundamental or basic parameters and are identified by the elements of the d- and q- axis equivalent circuits. While the fundamental parameters completely specify the machine electrical characteristics, they cannot be directly determined from measured responses of the machine. Therefore the traditional approach to assigning machine data has been to express them in terms of derived parameters that are related to observed behavior as viewed from the terminals under suitable test conditions. This project will define these derived parameters and develop their relationships to the fundamental parameters.

Chapter 2

Physical Description of Synchronous Machine

2.1 Physical Description

Figure 2.1 Schematic diagram of a three-phase synchronous machine

Figure 2.1 shows the schematic of the cross section of a three-phase synchronous machine with one pair of field poles. The machine consists of two essential elements: the field and the armature. The field winding carries direct current and produces a magnetic field which induces alternating voltages in the armature windings.

2.2 Armature and Field Structure

The armature windings usually operate at a voltage that is considerably higher than that of the field and thus they require most space for insulation. They are also subjected to high transient currents and must have adequate mechanical strength. Therefore normal practice is to have the armature on stator. The three-phase windings of the armature are distributed 120 degrees in time space so that, with uniform rotation of the magnetic field, voltages displaced by 120 degrees in time phase will be produced in the windings. Because the armature is subjected to a varying magnetic flux, the stator iron is built up of thin laminations to reduce eddy current losses.

When carrying balanced three-phase currents, the armature will produce a magnetic field in the air gap rotating at synchronous speed. The field produced by the direct current in the rotor winding on the other hand, revolves with the rotor. For production of a steady torque, the fields of stator and rotor must rotate at the same speed. Therefore, the rotor must run at precisely the synchronous speed.

The number of field poles is determined by the mechanical speed of the rotor and electric frequency of stator currents. The synchronous speed is given by,

$$
\begin{equation*}
\mathrm{n}=(120 \mathrm{f}) / \mathrm{p}_{\mathrm{f}} \tag{1.1}
\end{equation*}
$$

where n is the speed in rev/min, f is the frequency in Hz , and p_{f} is the number of field poles.

Chapter 3

Mathematical Description of Synchronous Machine

3.1 Assumptions for developing the equations for synchronous machine

In developing equations of a synchronous machine, the following assumptions are made:
(a) The stator windings are sinusoidally distributes along the air-gap as far as the mutual effects with the rotor are concerned.
(b) The stator slots cause no appreciable variation of the rotor inductances with rotor position.
(c) Magnetic hysteresis is negligible.
(d) Magnetic saturation effects are negligible.

Assumptions (a), (b), and (c) are reasonable. The principal justification comes from the comparison of calculated performance. Assumption (d) is made for convenience in analysis. With magnetic saturation neglected, we are required to deal with only linear coupled circuits, making superposition applicable. However, saturation effects are important.

Figure 3.1 shows the circuits involved in the analysis of a synchronous machine. The stator circuits involved in the analysis of a synchronous machine. The rotor circuits comprise field and amortisseur windings. The field winding is connected to a source of direct current. For purpose of analysis, the currents in the amortisseur (solid rotor and/or damper winding) may be assumed to flow in the two sets of closed circuits: one set whose flux is in line with that of the field along the d-axis and the other set whose flux is at right angles to the field axis or along the q -axis. The amortisseur circuits take different forms and distinct, electrically independent circuits may not exist. In Figure 3.1, only one amortisseur circuit is assumed in each axis.

Rotor

a, b,c: Stator phase windings
fd: Field winding
kd : d-axis amortisseur circuit
kq : q -axis amortisseur circuit
$\mathrm{k}: \quad 1,2, \ldots \mathrm{n} ; \mathrm{n}=$ no. of amortisseur circuits
θ : Angle by which d-axis leads the magnetic axis of phase a winding
w_{r} : Rotor angular velocity, electrical rad/s
Figure 3.1 Stator and rotor circuits of a synchronous machine
In figure $3.1, \theta$ is defined as the angle by which the d-axis leads the centerline of phase a winding in the direction of rotation. Since the rotor is rotating with respect to the stator, angle θ is continuously increasing and is related to the rotor angular velocity $\mathrm{wr}_{\text {and }}$ time t as follows:

$$
\begin{equation*}
\theta=\mathrm{w}_{\mathrm{r}} \mathrm{t} \tag{3.1}
\end{equation*}
$$

The electrical performance equations of a synchronous machine can be developed by writing equations of the coupled circuits identified in Figure 3.1

3.2 Basic equations of a synchronous machine

The equations for the synchronous machine is developed using the generator convention for polarities so that the positive direction of a stator winding current is assumed to be out of the machine. The positive direction of field and amortisseur currents is assumed to be into the machine.

In addition to the large number of circuits involved, the fact that the mutual and self inductances of the stator circuits vary with rotor positions complicates the synchronous machine equations. The variations in inductances are caused by the variations in the permeances of the magnetic flux path due to non-uniform air-gap. This is pronounced in a salient pole machine in which permances in the two axes are significantly different. Even in a round rotor machine there are differences in the two axes due mostly to the large number of slots associated with the field winding.

The flux produced by a stator by a stator winding follows a path through the stator iron, across the air-gap, through the rotor iron, and back across the air-gap. The variations in permeance of this path as a function of the rotor position can be approximated as,

$$
\begin{equation*}
\mathrm{P}=\mathrm{P} 0+\mathrm{P} 2 \operatorname{Cos} 2 \alpha \tag{3.2}
\end{equation*}
$$

In the above equation, alpha is the angular distance from the d-axis along the periphery as shown in figure 3.2.

Figure 3.2 Variation of permeance with rotor position
A double frequency variation is used produced, since the permeances of the north and south poles are equal. Higher order even harmonics of permeance exist but are small enough to be neglected.

We will use the following notations in writing the equations for the stator and rotor circuits:

$\mathrm{e}_{\mathrm{a}}, \mathrm{e}_{\mathrm{b}}, \mathrm{e}_{\mathrm{c}}$	$=$ instantaneous stator phase to neutral voltages
$\mathrm{i}_{\mathrm{a}} \mathrm{i}_{\mathrm{b}}, \mathrm{i}_{\mathrm{c}}$	$=$ instantaneous stator currents in phase $\mathrm{a}, \mathrm{b}, \mathrm{c}$
$\mathrm{i}_{\mathrm{fd}}, \mathrm{i}_{\mathrm{kd}}, \mathrm{i}_{\mathrm{kq}}$	$=$ field and amortisseur currents
$\mathrm{R}_{\mathrm{fd}}, \mathrm{R}_{\mathrm{kd}}, \mathrm{R}_{\mathrm{kq}}$	$=$ rotor circuit resistances
$\mathrm{l}_{\mathrm{aa}}, \mathrm{l}_{\mathrm{bb}}, \mathrm{l}_{\mathrm{cc}}$	$=$ self inductance of stator windings
$\mathrm{l}_{\mathrm{ab},} \mathrm{l}_{\mathrm{bc}}, \mathrm{l}_{\mathrm{ca}}$	$=$ mutual inductances between stator windings
$\mathrm{l}_{\mathrm{afd}}, l_{\mathrm{akd}}, \mathrm{l}_{\mathrm{akq}}$	$=$ mutual inductances between stator and rotor windings
$\mathrm{l}_{\mathrm{ffd}} \mathrm{l}_{\mathrm{kkd}}, \mathrm{l}_{\mathrm{kkq}}$	$=$ self inductance of rotor windings
Ra	$=$ armature resistance per phase
p	$=$ differential operator d / dt
e_{fd}	$=$ field voltage

3.3 Stator Circuit Equations:

The voltage equations of the three phases are-

$$
\begin{align*}
& e_{a}=(d \Psi a / d t)-i_{a} R_{a}=p \Psi a-i_{a} R_{a} \tag{3.3}\\
& e_{b}=p \Psi b-i_{b} R_{a} \tag{3.4}\\
& e_{c}=p \Psi c-i_{c} R_{a} \tag{3.5}
\end{align*}
$$

The flux linkage in the phase a winding at any instant is given by-

$$
\begin{equation*}
\Psi_{a}=-l_{a a} i_{a}-l_{a b} i_{b}-l_{a c} i_{f d}+l_{a k d} i_{k d}+l_{a k q} i_{k q} \tag{3.6}
\end{equation*}
$$

Similar expressions apply to flux linkages of windings b and c. The units used are webers, henrys and amperes. The negative sign associated with the stator wonding currents is due to their assumed direction.

3.4 Stator Self-inductances:

The self-inductance laa is equal to the ratio of flux linking phase a winding to the current ia, with currents in all other circuits equal to zero. The inductance is directly proportional to the permeance, which as indicated earlier has a second harmonic variation. The inductance laa will be a maximum for $\theta=0$ degree, a minimum for $\theta=90$ degrees, a maximum again for $\theta=180$ degrees and so on.

Neglecting space harmonics, the mmf of phase a has a sinusoidal distribution in space with its peak centred on the phase a axis. The peak amplitude of the mmf wave is equal to Naia, where Na is the effective turns per phase. As shown in figure 3.3, this can be resolved into two other sinusoidally distributed mmf's, one centred on the d-axis and other on the q -axis.

The peak values of the two component waves are-

$$
\begin{align*}
& \text { peak } \mathrm{MMF}_{\mathrm{ad}}=\mathrm{N}_{\mathrm{a}} \mathrm{i}_{\mathrm{a}} \cos \theta \tag{3.7}\\
& \text { peak } \mathrm{MMF}_{\mathrm{aq}}=\mathrm{N}_{\mathrm{a}} \mathrm{i}_{\mathrm{a}} \cos (\theta+90)=-\mathrm{N}_{\mathrm{a}} \mathrm{i}_{\mathrm{a}} \sin \theta \tag{3.8}
\end{align*}
$$

The reason for resolving the mmf into the d -axis and q -axis components is that each acts on specific air-gap geometry of defined configurations. Air-gap per pole along the two axes are-

$$
\begin{align*}
& \Phi_{\mathrm{gad}}=\left(\mathrm{N}_{\mathrm{a}} \mathrm{i}_{\mathrm{a}} \cos \theta\right) \mathrm{P}_{\mathrm{d}} \tag{3.9}\\
& \Phi_{\mathrm{gaq}}=\left(-\mathrm{N}_{\mathrm{a}} \mathrm{i}_{\mathrm{a}} \sin \theta\right) \mathrm{P}_{\mathrm{q}} \tag{3.10}
\end{align*}
$$

Figure 3.3 Phase $\boldsymbol{a} \mathrm{mmf}$ wave and its components
The self inductance 1_{ga} of phase a due to air-gap flux is-

$$
\begin{aligned}
1_{\text {gaa }} & =\left(\mathrm{N}_{\mathrm{a}} \phi_{\mathrm{goa}}\right) / \mathrm{i}_{\mathrm{a}} \\
& =\mathrm{Na}^{2}\left\{\left(\mathrm{P}_{\mathrm{d}}+\mathrm{P}_{\mathrm{q}}\right) / 2+\left(\mathrm{P}_{\mathrm{d}}-\mathrm{P}_{\mathrm{q}}\right) / 2 \cos 2 \theta\right\} \\
& =\mathrm{L}_{\mathrm{g} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2 \theta
\end{aligned}
$$

The total self-inductance l_{aa} is given by adding to the above the leakage inductance L_{al} which represents the leakage flux not crossing the air-gap:

$$
\begin{align*}
l_{\mathrm{aa}} & =\mathrm{L}_{\mathrm{al}}+\mathrm{L}_{\mathrm{gaa}} \\
& =\mathrm{L}_{\mathrm{a} 1}+\mathrm{L}_{\mathrm{g} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2 \theta \\
& =\mathrm{L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2 \theta \tag{3.12}
\end{align*}
$$

Since the windings of phases b and c are identical to that of phase a and are displaced from it by 120 degrees and 240 degrees respectively, we have

$$
\begin{align*}
& l_{\mathrm{bb}}=\mathrm{L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2(\theta-120) \\
& 1_{\mathrm{cc}}=\mathrm{L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2(\theta+120) \tag{3.13}
\end{align*}
$$

3.5 Stator Mutual Inductance:

The mutual inductances between any two stator windings also exhibits a second harmonic variation because of the rotor shape. It is always negative, and has the greatest absolute value when the north and south poles are equidistant from the centres of the two windings concerned. For example, lab has maximium absolute value when $\theta=-30$ degrees or $\theta=150$ degrees.

Thus the mutual inductances phase a and b, b and c, c and a are given as:

$$
\begin{align*}
\mathrm{L}_{\mathrm{ab}}=\mathrm{L}_{\mathrm{ba}} & =-\mathrm{L}_{\mathrm{ab} 0}+\mathrm{L}_{\mathrm{ab} 2} \cos (2 \theta-120) \tag{3.14}\\
& =-\mathrm{L}_{\mathrm{ab} 0}-\mathrm{L}_{\mathrm{ab} 2} \cos (2 \theta+120) \\
\mathrm{L}_{\mathrm{bc}}=\mathrm{L}_{\mathrm{cb}} & =-\mathrm{L}_{\mathrm{ab} 0}-\mathrm{L}_{\mathrm{ab} 2} \cos (2 \theta+120) \tag{3.15}\\
\mathrm{L}_{\mathrm{ca}}=\mathrm{L}_{\mathrm{ac}} & =-\mathrm{L}_{\mathrm{ab} 0}-\mathrm{L}_{\mathrm{ab} 2} \cos (2 \theta+120) \tag{3.16}
\end{align*}
$$

The variation of mutual inductance between phases a and b as a function of θ is illustrated in figure 3.4.

Figure 3.4 Variation of mutual inductance between stator windings

3.6 Mutual inductance between stator and rotor windings:

With the variations in air-gap due to stator slots neglected, the rotor circuits see a constant permeance. Therefore, the situation in this case is not one of variation of permeance; instead, the variation in the mutual inductance is due to the relative motion between the windings themselves.When a stator winding is lined up with a rotor winding, the flux linking the two windings is maximum and the mutual inductance is maximum. When the two windings are displaced by 90 degrees, no flux links the two circuits and the mutual inductance is zero.

With the sinusoidal distribution of mmf and flux waves,

$$
\begin{align*}
l_{\text {afd }} & =\mathrm{L}_{\text {afd }} \cos \theta \\
l_{\text {akd }} & =\mathrm{L}_{\text {akd }} \cos \theta \tag{3.17}\\
l_{\text {akq }} & =\mathrm{L}_{\text {akq }} \cos (\theta+90) \\
& =-\mathrm{L}_{\text {akq }} \sin \theta
\end{align*}
$$

For considering the mutual inductance between phase b winding and the rotor circuits, θ is replaced by $\theta-120$; for phase c winding θ is replaced by $(\theta+120)$.
Using the expressions for all the inductances that appear in stator voltage equations, we have:

$$
\begin{align*}
\Psi_{\mathrm{a}}= & -\mathrm{i}_{\mathrm{a}}\left[\mathrm{~L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2 \theta\right]+\mathrm{i}_{\mathrm{b}}\left[\mathrm{~L}_{\mathrm{ab} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos (2 \theta+60)\right. \\
& +\mathrm{i}_{\mathrm{c}}\left[\mathrm{~L}_{\mathrm{ab} 0}+\mathrm{L}_{\mathrm{a} 2} \cos (2 \theta-30)\right]+\mathrm{i}_{\mathrm{fd}} \mathrm{~L}_{\mathrm{afd}} \cos \theta \tag{3.18}\\
& +\mathrm{i}_{\mathrm{kd}} \mathrm{~L}_{\mathrm{akd}} \cos \theta-\mathrm{i}_{\mathrm{kq}} \mathrm{~L}_{\mathrm{akq}} \sin \theta
\end{align*}
$$

Similarly,

$$
\begin{align*}
\Psi_{\mathrm{b}}=- & \mathrm{i}_{\mathrm{a}}\left[\mathrm{~L}_{\mathrm{ab} 0}+\mathrm{L}_{\mathrm{a} 2} \cos (2 \theta+60)\right]-\mathrm{i}_{\mathrm{b}}\left[\mathrm{~L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2(\theta-120)\right. \\
& +\mathrm{i}_{\mathrm{c}}\left[\mathrm{~L}_{\mathrm{ab} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos (2 \theta-180)\right]+\mathrm{i}_{\mathrm{fd}} \mathrm{~L}_{\mathrm{afd}} \operatorname{Cos}(\theta-120) \tag{3.19}\\
& +\mathrm{i}_{\mathrm{kd}} \mathrm{~L}_{\mathrm{akd}} \cos (\theta-120)-\mathrm{i}_{\mathrm{kq}} \mathrm{~L}_{\mathrm{akq}} \sin (\theta-120)
\end{align*}
$$

and

$$
\begin{align*}
\Psi_{\mathrm{c}}= & -\mathrm{i}_{\mathrm{a}}\left[\mathrm{~L}_{\mathrm{ab} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos (2 \theta-60)\right]+\mathrm{i}_{\mathrm{b}}\left[\mathrm{~L}_{\mathrm{ab} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2(\theta-180)\right. \tag{3.20}\\
& -\mathrm{i}_{\mathrm{c}}\left[\mathrm{~L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{aa} 2} \cos 2(\theta+120)\right]+\mathrm{i}_{\mathrm{fd}} \mathrm{~L}_{\mathrm{afd}} \cos (\theta+120) \\
& +\mathrm{i}_{\mathrm{kd}} \mathrm{~L}_{\mathrm{akd}} \cos (\theta+120)-\mathrm{i}_{\mathrm{kq}} \mathrm{~L}_{\mathrm{akq}} \sin (\theta+120)
\end{align*}
$$

3.7 Rotor circuit equations:

The rotor circuit voltage equations are:

$$
\begin{align*}
\mathrm{e}_{\mathrm{fd}} & =\mathrm{p} \Psi_{\mathrm{fd}}+\mathrm{R}_{\mathrm{fd}} \mathrm{i}_{\mathrm{fd}} \tag{3.21}\\
0 & =\mathrm{p} \Psi_{\mathrm{kd}}+\mathrm{R}_{\mathrm{kd}} \mathrm{i}_{\mathrm{kd}} \tag{3.22}\\
0 & =\mathrm{p} \Psi_{\mathrm{kq}}+\mathrm{R}_{\mathrm{kq}} i_{\mathrm{kq}} \tag{3.23}
\end{align*}
$$

The rotor circuit flux linkages may be expresses as follows:

$$
\left.\begin{array}{l}
\Psi_{\mathrm{fd}}=L_{\mathrm{ffd}} \mathrm{i}_{\mathrm{fd}}+\mathrm{L}_{\mathrm{fkd}} \mathrm{i}_{\mathrm{kd}}-\mathrm{L}_{\mathrm{afd}}\left[\mathrm{i}_{\mathrm{a}} \cos \theta+\mathrm{i}_{\mathrm{b}} \cos (\theta-120)+\mathrm{i}_{\mathrm{c}} \cos (\theta+120)\right] \\
\Psi_{\mathrm{kd}}=\mathrm{L}_{\mathrm{fkd}} i_{\mathrm{fd}}+\mathrm{L}_{\mathrm{kkd}} i_{\mathrm{kd}}-\mathrm{L}_{\mathrm{akd}}\left[i_{\mathrm{a}} \cos \theta+\mathrm{i}_{\mathrm{b}} \cos (\theta-120)+\mathrm{i}_{\mathrm{c}} \cos (\theta+120)\right] \tag{3.24}\\
\Psi_{\mathrm{fq}}=\mathrm{L}_{\mathrm{kkq}} \mathrm{i}_{\mathrm{kq}}+\mathrm{L}_{\mathrm{akq}}\left[i_{\mathrm{a}} \sin \theta+\mathrm{i}_{\mathrm{b}} \sin (\theta-120)+\mathrm{i}_{\mathrm{c}} \cos (\theta+120)\right]
\end{array}\right\}
$$

The rotor circuits see constant permeance because of the cylindrical structure of the stator. Therefore, the self-inductances of rotor circuits and mutual inductances between each other do not vary with rotor positions. Only the rotor to stator mutual inductances vary periodically with θ.

Chapter 4

The dq0 Transformation

4.1 The dq0 Transformation:

The transformation from the abc phase variables to the dq0 variables can be written in the following matrix form:

$$
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta & \cos \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) \\
-\sin \theta & -\sin \left(\theta-\frac{2 \pi}{3}\right) & -\sin \left(\theta+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]
$$

The inverse transformation is given by:

$$
\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 1 \\
\cos \left(\theta-\frac{2 \pi}{3}\right) & -\sin \left(\theta-\frac{2 \pi}{3}\right) & 1 \\
\cos \left(\theta+\frac{2 \pi}{3}\right) & -\sin \left(\theta+\frac{2 \pi}{3}\right) & 1
\end{array}\right]\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]
$$

4.2 Stator flux linkages in dq0 components:

Transforming the flux linkages and currents into dq0 components and with suitable reduction of terms involving trigonometric terms, we obtain the following expressions:

$$
\begin{align*}
& \Psi_{\mathrm{d}}=-\left(\mathrm{L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{ab} 0}+\left(\frac{3}{2}\right) \mathrm{L}_{\mathrm{aa} 2}\right) \mathrm{i}_{\mathrm{d}}+\mathrm{L}_{\mathrm{afd}} * \mathrm{i}_{\mathrm{fd}}+\mathrm{L}_{\mathrm{akd}} * \mathrm{i}_{\mathrm{kd}} \tag{..}\\
& \Psi_{\mathrm{q}}=-\left(\mathrm{L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{ab0} 0}+\left(\frac{3}{2}\right) \mathrm{L}_{\mathrm{aa} 2}\right) \mathrm{i}_{\mathrm{q}}+\mathrm{L}_{\mathrm{akq}} * \mathrm{i}_{\mathrm{kq}} \tag{4.2}\\
& \Psi_{0}=-\left(\mathrm{L}_{\mathrm{aa} 0}+2 \mathrm{~L}_{\mathrm{ab} 0}\right) \mathrm{i}_{0} \tag{4.3}
\end{align*}
$$

Defining the following new inductances:

$$
\begin{align*}
& \mathbf{L}_{\mathrm{d}}=\mathrm{L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{ab} 0}+\left(\frac{3}{2}\right) \mathrm{L}_{\mathrm{az2}} \tag{4.}\\
& \mathbf{L}_{\mathrm{q}}=\mathrm{L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{ab0} 0}-\left(\frac{3}{2}\right) \mathrm{L}_{\mathrm{az2}} \tag{4.5}\\
& \mathbf{L}_{0}=\mathrm{L}_{\mathrm{aa} 0}-2 \mathrm{~L}_{\mathrm{ab0} 0} \tag{4.6}
\end{align*}
$$

The flux linkage equation become

$$
\begin{align*}
& \Psi_{\mathrm{d}}=-\mathbf{L}_{\mathrm{d}} \quad \mathbf{i}_{\mathrm{d}}+\mathbf{L}_{\mathrm{afd}} \quad \mathbf{i}_{\mathrm{fd}}+\mathbf{L}_{\mathrm{akd}} \mathbf{i}_{\mathrm{kd}} \tag{4.7}\\
& \Psi_{\mathrm{q}}=-\mathbf{L}_{\mathrm{q}} \tag{4.8}\\
& \mathbf{i}_{\mathrm{qq}}+\mathbf{L}_{\mathrm{akq}} \mathbf{i}_{\mathrm{kq}} \tag{4.9}\\
& \Psi_{\mathrm{o}}=-\mathrm{L}_{0} \quad \mathbf{i}_{0}
\end{align*}
$$

The dq0 components of stator flux linkages are seen to be related to the components of stator and rotor currents through constant inductances.

4.3 Rotor flux linkages in dq0 components:

$$
\begin{align*}
& \Psi_{\mathrm{fd}}=\mathrm{L}_{\mathrm{ffd}} i_{\mathrm{fd}}+\mathrm{L}_{\mathrm{fkd}} \mathrm{i}_{\mathrm{kd}}-\frac{3}{2} \mathrm{~L}_{\mathrm{afd}} i_{\mathrm{d}} \tag{4.10}\\
& \Psi_{\mathrm{kd}}=\mathrm{L}_{\mathrm{fkd}} i_{\mathrm{fd}}+\mathrm{L}_{\mathrm{kkd}} i_{\mathrm{kd}}-\frac{3}{2} \mathrm{~L}_{\mathrm{zkd}} i_{\mathrm{d}} \tag{4.11}\\
& \Psi_{\mathrm{kq}}=\mathrm{L}_{\mathrm{kkq}} i_{\mathrm{kq}}-\frac{3}{2} \mathrm{~L}_{\mathrm{zkq}} i_{\mathrm{q}} \tag{4.12}
\end{align*}
$$

Again, all inductances are seen to be constant.

4.4 Stator voltage equations in dq0 components:

By applying dq0 transformation, following stator voltage equations are obtained:

$$
\begin{align*}
& \mathrm{e}_{\mathrm{d}}=\mathrm{p} \Psi_{\mathrm{d}}-\Psi_{\mathrm{q}} \mathrm{p} \theta-\mathrm{R}_{\mathrm{a}} \mathrm{i}_{\mathrm{d}} \tag{4.13}\\
& \mathrm{e}_{\mathrm{q}}=\mathrm{p} \Psi_{\mathrm{q}}-\Psi_{\mathrm{d}} \mathrm{p} \theta-\mathrm{R}_{\mathrm{a}} \mathbf{i}_{\mathrm{q}} \tag{4.14}\\
& \mathrm{e}_{0}=\mathrm{p} \Psi_{0}-\mathrm{R}_{\mathrm{a}} \mathbf{i}_{0} \tag{4.15}
\end{align*}
$$

The angle θ is the angle between axis of phase a and d-axis. The term ($\mathrm{p} \theta$) in the above equations represents angular velocity of the rotor.

4.5 Advantages of dq0 transformation:

The dq0 transformation may be viewed as a means of referring the stator quantities to the rotor side.

The analysis of synchronous machine equations in terms of dq0 variables considerably simpler than in terms of phase quantities for the following reasons:

- The dynamic performance equations have constant inductances.
- For balanced conditions, zero sequence quantities disappear.
- For balanced steady-state operation, the stator quantities have constant values.
- The parameters associated with d- and q-axis may be directly measured from terminal tests.

4.6 Per unit representation:

In power system analysis, it is usually convenient to use a per unit system to normalize system variables.

$$
\text { quantity in per unit }=\frac{\text { actual quantity }}{\text { base value of quantity }}
$$

In the case of a synchronous machine, the per-unit system may be used to remove arbitrary constants and simplify mathematical equations so that they may be expressed in terms of equivalent circuits.
Per unit stator voltage equations:

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{d}}=\mathrm{p} \Psi_{\mathrm{d}}-\Psi_{\mathrm{q}} \mathrm{p} \theta-\mathrm{R}_{\mathrm{a}} \mathrm{i}_{\mathrm{d}} \\
& \mathrm{e}_{\mathrm{q}}=\mathrm{p} \Psi_{\mathrm{q}}-\Psi_{\mathrm{d}} \mathrm{p} \theta-\mathrm{R}_{\mathrm{a}} \mathrm{i}_{\mathrm{q}} \\
& \mathbf{e}_{0}=\mathrm{p} \Psi_{0}-\mathrm{R}_{\mathrm{a}} \mathrm{i}_{0}
\end{aligned}
$$

Per unit rotor voltage equations:

$$
\begin{align*}
& \mathbf{e}_{\mathrm{fd}}=p \Psi_{\mathrm{fd}}+\mathbf{R}_{\mathrm{fd}} \mathbf{i}_{\mathrm{fd}} \\
& p \Psi_{1 \mathrm{~d}}+\mathbf{R}_{1 \mathrm{~d}} \mathbf{i}_{\mathbf{1 d}=0}=0 \\
& p \Psi_{1 \mathrm{q}}+\mathbf{R}_{1 \mathrm{q}} \mathbf{i}_{1 \mathrm{q}}=0 \tag{4.17}\\
& p \Psi_{2 \mathrm{q}}+\mathbf{R}_{2 \mathrm{qq}} \quad \mathbf{i}_{2 \mathrm{q}}=0
\end{align*}
$$

For power system stability analysis, the machine equations are normally solved with all quantities expressed in per unit.

Chapter 5

Operational parameters of Synchronous machine

5.1 Synchronous Machine Parameters:

The synchronous machine equations developed in Chapter 3 have the inductances and resistances of the stator and rotor circuits as parameters. These are referred to as fundamental or basic parameters and are identified by the elements of the d-and q-axis equivalent circuits. While the fundamental parameters completely specify the machine electrical characteristics, they cannot be directly determined from the measured responses of the machine. Therefore, the traditional approach to assigning machine data has been to express them in terms of derived parameters that are related to observed behaviour as viewed from the terminals under suitable test conditions.

5.2 Operational Parameters:

A convenient method of identifying the machine electrical characteristics is in terms of operational parameters relating the armature and field terminal quantities. Referring to Figure 4.1, the relationship between the incremental values of terminal quantities may be expressed in the operational form as follows:

$$
\begin{align*}
& \Delta \Psi_{\mathrm{d}}(\mathrm{~s})=\mathrm{G}(\mathrm{~s}) \Delta \mathrm{e}_{\mathrm{fd}}(\mathrm{~s})-\mathrm{L}_{\mathrm{d}}(\mathrm{~s}) \Delta \mathrm{i}_{\mathrm{d}}(\mathrm{~s}) \tag{5.1}\\
& \Delta \Psi_{\mathrm{q}}(\mathrm{~s})=-\mathrm{L}_{\mathrm{q}}(\mathrm{~s}) \Delta \mathrm{i}_{\mathrm{q}}(\mathrm{~s}) \tag{5.2}
\end{align*}
$$

Figure 5.1 The d- and q-axis networks identifying terminals quantities
where,
$G(s)$ is the stator to field transfer function
$\mathrm{Ld}(\mathrm{s})$ is the d -axis operational inductance
$\mathrm{Lq}(\mathrm{s})$ is the q -axis operational inductance
Equations 5.1 and 5.2 are true for any number of rotor circuits. With the equations in operational form, the rotor can be considered as a distributed parameter system. The operational parameters can be determined either from design calculations or more readily from frequency response measurements.

When a finite number of rotor circuits are assumed, the operational parameters can be expressed as a ratio of polynomial in s. The orders of the numerator and denominator polynomials of $\mathrm{Ld}(\mathrm{s})$ and $\mathrm{Lq}(\mathrm{s})$ are equal to the number of rotor circuits assumed in the respective axes, and $\mathrm{G}(\mathrm{s})$ has the same denominator as $\operatorname{Ld}(\mathrm{s})$, but a different numerator of order one less than the denominator..

We will develop here the expressions for the operational parameters of the model represented by the equivalent circuits shown in Figure 5.1. This model structure is generally considered adequate for stability studies and is widely used in large scale stability programs. The rotor characterstics are represented by the field winding and a damper winding in the d-axis and the two damper windings in the q-axis. The mutual inductances Lfd and Lad are assumed to be equal; this makes all mutual inductances in the d-axis equal.

Figure 5.1 Structure of commonly used model
With equal mutual inductances, flux linkages for the d-axis in the operational form can be written as:

$$
\begin{align*}
& \Psi_{d}(s)=-L_{d} i_{d}(s)+L_{a d} i_{f d}(s)+L_{a d} i_{1 d}(s) \\
& \Psi_{f d}(s)=-L_{a d} i_{d}(s)+L_{f f d} i_{f d}(s)+L_{a d} i_{1 d}(s) \\
& \Psi_{1 d}(s)=-L_{a d} i_{d}(s)+L_{a d} i_{f d}(s)+L_{11 d} i_{1 d}(s)
\end{align*}
$$

The operational forms for rotor voltages are:

$$
\begin{align*}
e_{f d}(s) & =s \Psi_{f d}(s)-\Psi_{f d}(0)+R_{f d} i_{f d}(s) \\
0 & =s \Psi_{1 d}(s)-\Psi_{1 d}(0)+R_{1 d} i_{1 d}(s)
\end{align*}
$$

where $\psi_{d}(0), \psi_{f d}(0)$ and $\psi_{1 d}(0)$ denote initial values of the flux linkages. It is preferable to express the above equations in terms of incremental values about the initial operating condition so that the initial values drop out; this makes it more convenient to manipulate the operational equations. Substituting for the flux linkages in terms of the currents, the rotor voltage equations in incremental form become

$$
\begin{align*}
\Delta e_{f d}(s) & =s \Delta \Psi_{f d}(s)+R_{f d} \Delta i_{f d}(s) \\
& =-s L_{a d} \Delta i_{d}(s)+\left(R_{f d}+s L_{f f d}\right) \Delta i_{f d}(s)+s L_{a d} \Delta i_{1 d}(s) \\
0= & s \Delta \psi_{1 d}(s)+R_{1 d} \Delta i_{f d}(s) \\
= & -s L_{a d} \Delta i_{d}(s)+s L_{a d} \Delta i_{f d}(s)+\left(R_{1 d}+s L_{11 d}\right) \Delta i_{1 d}(s)
\end{align*}
$$

Our objective is to express the d-axis equations in the form of equations 5.1 and this can be achieved by eliminating the rotor currents in terms of the terminal quantities e_{fd} and i_{d}. Accordingly the solution of above two equations gives:

$$
\begin{align*}
& \Delta i_{f d}(s)=\frac{1}{D(s)}\left[\left(R_{1 d}+s L_{11 d}\right) \Delta e_{f d}(s)+s L_{a d}\left(R_{1 d}+s L_{1 d}\right) \Delta i_{d}(s)\right] \\
& \Delta i_{1 d}(s)=\frac{1}{D(s)}\left[-s L_{a d} \Delta e_{f d}(s)+s L_{a d}\left(R_{f d}+s L_{f d}\right) \Delta i_{d}(s)\right]
\end{align*}
$$

Where

$$
D(s)=s^{2}\left(L_{11 d} L_{f f d}-L_{a d}^{2}\right)+s\left(L_{11 d} R_{f d}+L_{f d d} R_{1 d}\right)+R_{1 d} R_{f d}
$$

Given that

$$
\begin{aligned}
L_{d} & =L_{a d}+L_{l} \\
L_{f f d} & =L_{a d}+L_{f d} \\
L_{11 d} & =L_{a d}+L_{1 d}
\end{aligned}
$$

substitution of equations 5.10 and 5.11 in the incremental form of equation 5.3 then gives the relationship between d-axis quantities in the desired form:

$$
\Delta \psi_{d}(s)=G(s) \Delta e_{f d}(s)-L_{d}(s) \Delta i_{d}(s)
$$

The expressions for the d -axis operational parameters are given by:

$$
\begin{align*}
& L_{d}(s)=L_{d} \frac{1+\left(T_{4}+T_{5}\right) s+T_{4} T_{6} s^{2}}{1+\left(T_{1}+T_{2}\right) s+T_{1} T_{3} s^{2}} \\
& G(s)=G_{0} \frac{\left(1+s T_{k d}\right)}{1+\left(T_{1}+T_{2}\right) s+T_{1} T_{3} s^{2}}
\end{align*}
$$

where,

$$
\begin{array}{ll}
G_{0}=\frac{L_{a d}}{R_{f d}} & T_{k d}=\frac{L_{1 d}}{R_{1 d}} \\
T_{1}=\frac{L_{a d}+L_{f d}}{R_{f d}} & T_{2}=\frac{L_{a d}+L_{1 d}}{R_{1 d}} \\
T_{3}=\frac{1}{R_{1 d}}\left(L_{1 d}+\frac{L_{a d} L_{f d}}{L_{a d}+L_{f d}}\right) & T_{4}=\frac{1}{R_{f d}}\left(L_{f d}+\frac{L_{a d} L_{l}}{L_{a d}+L_{l}}\right) \\
T_{5}=\frac{1}{R_{1 d}}\left(L_{1 d}+\frac{L_{a d} L_{l}}{L_{a d}+L_{l}}\right) & T_{6}=\frac{1}{R_{1 d}}\left(L_{1 d}+\frac{L_{a d} L_{f d} L_{l}}{L_{a d} L_{l}+L_{a d} L_{f d}+L_{f d} L_{l}}\right)
\end{array}
$$

Equations 5.13 and 5.14 can be expressed in the factored form:

$$
\begin{align*}
& L_{d}(s)=L_{d} \frac{\left(1+s T_{d}^{\prime}\right)\left(1+s T_{d}^{\prime \prime}\right)}{\left(1+s T_{d 0}^{\prime}\right)\left(1+s T_{d 0}^{\prime \prime}\right)} \\
& G(s)=G_{0} \frac{\left(1+s T_{k d}\right)}{\left(1+s T_{d 0}^{\prime}\right)\left(1+s T_{d 0}^{\prime \prime}\right)}
\end{align*}
$$

The expression for the q-axis operational inductance may be written by inspection and recognizing the similarities between d - and q - axis equivalent circuits. In the factored form, it is given by:

$$
L_{q}(s)=L_{q} \frac{\left(1+s T_{q}^{\prime}\right)\left(1+s T_{q}^{\prime \prime}\right)}{\left(1+s T_{q 0}^{\prime}\right)\left(1+s T_{q 0}^{\prime \prime}\right)}
$$

The time constants associated with the expressions for $\operatorname{Ld}(\mathrm{s}), \mathrm{Lq}(\mathrm{s})$ and $\mathrm{G}(\mathrm{s})$ in the factored form represent important machine parameters.

Chapter 6

Models of Synchronous machine

6.1 Different Models of synchronous machines:

Depending upon the number of rotor windings on d -axis and q -axis and degree of complexity following models are suggested:

1. Classical model (Model 0.0)
2. Field circuit only (Model 1.0)
3. Field circuit with one equivalent damper on q -axis (Model 1.1)
4. Field circuit with one equivalent damper on d-axis -
(a) Model 2.1 (one damper on q-axis)
(b) Model 2.2 (two damper on q -axis)
5. Field circuit with two equivalent damper circuits on d-axis -
(a) Model 3.2 (with two damper on q -axis)
(b) Model 3.3 (with three dampers on q-axis)

It is to be noted that in the classification of the machine models, the first number indicates the number of winding on the d-axis while the second number indicates the number of windings on the q axis.(Alternatively the number represent the number of state variables considered in the d axis and q axis).Thus, the classical model which neglects damper winding circuits and field flux decay, ignores all sate variable for the rotor coil and is termed (0.0)

6.2 Applications of different models:

Model (2.2) is widely used in the literature. Model (3.3) is claimed to be the most detailed model applicable to turbogenerator, while models (2.1) and (1.1) are widely used for hydro generators. It is to be noted that while higher order models provide better result for such applications, they also require an exact determination of parameters. With constraints on data availability and for study of large systems, it may be adequate to use model (1.1) if the data is correctly determined.

In the project, Model (0.0), $\operatorname{Model}(2.1)$ and $\operatorname{Model}(2.2)$ have been analysed mathematically and simulated to obtain machine's fundamental parameters.

Chapter 7

Analysis of Models for Synchronous machine

7.1 Model (2.1) :

The standard representation of a Synchronous machine is done by using $\operatorname{Model}(2.1)$ which includes field circuit and an equivalent damper winding on d -axis and a damper winding on q -axis.

Following assumptions are being made during analysis of the model :

- Main field flux decay is considered.
- An equivalent damper winding included in both $q-a x i s$ and d-axis each.
- Speed is assumed to be constant.
- Saturation is neglected.

7.1.1 Equivalent circuits

Equivalent circuits representing the complete characteristics of the synchronous machines for direct axis and qudrature axis is shown in Fig-1 and Fig-2 respectively below-

Fig-7.1 d-axis and q-axis equivalent circuits for model (2.1)
In the d-axis equivalent circuit, there is a field winding and a damper winding along with a field source. In the case of q-axis, there is no field winding and the amortisseurs represent the overall effect of the damper windings and eddy current paths.

7.1.2 Detailed analysis of the model:

Following notations are used in writing the equations for the stator and rotor circuits:
$\mathrm{Xd}=\mathrm{d}$-axis synchronous reactance
Xd' $=\mathrm{d}$-axis transient reactance
$X d^{\prime}{ }^{\prime}=d$ - axis subtransient reactance
$\mathrm{Xq}=\mathrm{q}$-axis synchronous reactance
$\mathrm{Xq}^{\prime}=\mathrm{q}$-axis transient reactance
Xq" ${ }^{\prime}=\mathrm{q}$ - axis subtransient reactance
$\mathrm{Xl}=$ leakage reactance
Tdo' = open circuit d-axis transient time constant
Tdo" $=$ open circuit d-axis sub-transient time constant
Tqo' $=$ open circuit q-axis transient time constant
Tqo" $=$ open circuit q-axis sub-transient time constant
Td' $=$ short circuit d-axis transient time constant
Td" ${ }^{\prime}=$ short circuit d -axis transient time constant
Tq ' = short circuit q -axis transient time constant
Tq" $=$ short circuit q-axis transient time constant
Rfd,Rfq,Rkq = Rotor circuit resistances of field along d and q axis and damper along q -axis respectively
Total flux produced by stator winding has two components such as mutual component and leakage component. Hence,
Along d axis:

$$
\begin{equation*}
\mathrm{X}_{\mathrm{ad}}=\mathrm{X}_{\mathrm{d}}-\mathrm{X}_{\mathrm{l}} \tag{7.1}
\end{equation*}
$$

Along q axis:

$$
\mathrm{X}_{\mathrm{aq}}=\mathrm{X}_{\mathrm{q}}-\mathrm{X}_{\mathrm{l}}
$$

Now immediately following a fault, when a sudden disturbance occurs, flux can't change instantaneously in an inductive- resistive circuit. Hence for a small change :

$$
\begin{gather*}
\Delta \psi \mathrm{d}=0 \tag{7.3}\\
\Delta \psi 1 \mathrm{~d}=0 \tag{7.4}
\end{gather*}
$$

Thus equivalent circuit is reduced to a open circuit consisting of three parallel branches and corresponding equation for d -axis is:

$$
\begin{equation*}
\frac{1}{X_{\mathrm{fd}}}+\frac{1}{X_{\mathrm{kd}}}+\frac{1}{X_{\mathrm{ad}}}=\frac{1}{X_{\mathrm{d}}{ }^{*}-X_{\mathrm{l}}} \tag{7.5}
\end{equation*}
$$

Similarly for q axis equivalent equation can be written as -

$$
\begin{equation*}
\frac{1}{\mathrm{X}_{\mathrm{fq}}}+\frac{1}{\mathrm{X}_{\mathrm{kq}}}+\frac{1}{\mathrm{X}_{\mathrm{aq}}}=\frac{1}{\mathrm{X}_{\mathrm{q}}{ }^{*}-\mathrm{X}_{\mathrm{l}}} \tag{7.6}
\end{equation*}
$$

7.1.3 Derivation for obtaining open circuit time constants:

The relationship of open circuit time constants can be found by open circuiting the AB branch of the circuit (from fig. shown below). During open circuit condition, current through this branch is zero.

$$
\text { Thus, } \quad \text { admittance }=\Delta \mathrm{id}(\mathrm{~s}) / \Delta \mathrm{ed}(\mathrm{~s})=0
$$

Figure 7.2d-axis and q-axis equivalent circuits for model (2.1) to obtain open circuit time constants

Thus the equations for transient and sub-transient case along d-axis and q-axis are:
$\frac{1}{\mathrm{X}_{\mathrm{fd}}-377 \mathrm{~T}_{\mathrm{do}}^{j} \mathrm{R}_{\mathrm{fd}}}+\frac{1}{\mathrm{X}_{\mathrm{kd}}-377 \mathrm{~T}_{\mathrm{do}}{ }^{0} \mathrm{R}_{\mathrm{kd}}}+\frac{1}{\mathrm{X}_{\mathrm{ad}}}=0$
$\frac{1}{\mathrm{X}_{\mathrm{fq}}-377 \mathrm{~T}_{\mathrm{q} 0} \mathrm{R}_{\mathrm{fq}}}+\frac{1}{\mathrm{X}_{\mathrm{kq}}-377 \mathrm{Tq}_{\mathrm{q} 0}{ }^{0} \mathrm{R}_{\mathrm{kq}}}+\frac{1}{\mathrm{X}_{\mathrm{aq}}}=0$
$\frac{1}{\left.X_{f d}-377 T_{\text {do }} R_{-} f d\right)+1 /\left(X_{-} k d-377 T_{-} d 0 R_{\text {fd }}\right.}+\frac{1}{X_{\text {ad }}}=0$
$\frac{1}{\left.\mathrm{X}_{\mathrm{fq}}-377 \mathrm{~T}_{\mathrm{qo}} \mathrm{R}_{-} \mathrm{fq}\right)+1 /\left(\mathrm{X}_{-} \mathrm{kq}-377 \mathrm{~T}_{-} \mathrm{q}^{0} \mathrm{R}_{\mathrm{kq}}\right.}+\frac{1}{\mathrm{X}_{\mathrm{aq}}}=0$

7.1.4 Derivation for Short circuit time constants :

Equivalent circuit diagram is short circuited to obtain the relations .Here only additional term X_{1} will be introduced which is obvious from the figure shown below:

Figure 7.3 d -axis equivalent circuit for model (2.1) to obtain short circuit time constants

The equations for transient and sub-transient conditions for short circuit situation along daxis and q -axis are:

$$
\begin{align*}
& \frac{1}{\mathrm{X}_{\mathrm{fd}}-377 \mathrm{~T}_{\mathrm{d}}^{z} \mathrm{R}_{\mathrm{fd}}}+\frac{1}{\mathrm{X}_{\mathrm{hd}}-377 \mathrm{~T}_{\mathrm{d}} \mathrm{R}_{\mathrm{hd}}}+\frac{1}{\mathrm{X}_{\mathrm{ad}}}+\frac{1}{\mathrm{X}_{\mathrm{l}}}=0 \\
& \frac{1}{\mathrm{X}_{\mathrm{fq}}-377 \mathrm{~T}_{\mathrm{q}} \mathrm{R}_{\mathrm{fq}}}+\frac{1}{\mathrm{X}_{\mathrm{kq}}-377 \mathrm{~T}_{\mathrm{q}}{ }^{\prime} \mathrm{R}_{\mathrm{kq}}}+\frac{1}{\mathrm{X}_{\mathrm{aq}}}+\frac{1}{\mathrm{X}_{1}}=0 \tag{7.12}\\
& \frac{1}{\left.X_{f d}-377 T_{d} R_{-} f d\right)+1 /\left(X_{-} k d-377 T_{-} d R_{\text {kd }}\right.}+\frac{1}{X_{\text {ad }}}+\frac{1}{X_{1}}=0 \tag{7.13}\\
& \frac{1}{\left.\mathrm{X}_{\mathrm{fq}}-377 \mathrm{~T}_{\mathrm{q}} \mathrm{R}_{-} \mathrm{fq}\right)+1 /\left(\mathrm{X}_{-} \mathrm{kq}-377 \mathrm{~T}_{-} \mathrm{q} \mathrm{R}_{\mathrm{hq}}\right.}+\frac{1}{\mathrm{X}_{\mathrm{aq}}}+\frac{1}{\mathrm{X}_{\mathrm{l}}}=0 \tag{7.14}
\end{align*}
$$

Now from operational analysis of inductance, we know that-

$$
\begin{equation*}
X_{d d}(s)=\frac{X_{d}\left(1+s T_{d}\right)\left(1+s T_{d^{*}}{ }^{*}\right)}{\left(1+s T_{d 0}{ }^{*}\right)\left(1+s T_{d 0}{ }^{*}\right)} \tag{7.15}
\end{equation*}
$$

For sub-transient condition, when 's'tends to zero, sub-transient reactance along d-axis is obtained as:

$$
\begin{equation*}
\left.\llbracket X_{1}(d)^{w}=\lim \rrbracket\right]_{T}(s \rightarrow 0) 【 X_{1} d(s) \rrbracket=\left(X_{1} d\left(T_{1} d^{\prime} T_{1} d^{\prime \prime}\right)\right) /\left(T_{1} d 0^{\prime} T_{1} d 0^{\circ}\right) \tag{7.16}
\end{equation*}
$$

Similarly, Transient reactance along d-axis is obtained as

$$
\begin{equation*}
\mathrm{X}_{\mathrm{d}}^{s}=\frac{\mathrm{X}_{\mathrm{d}} \mathrm{~T}_{\mathrm{d}}{ }^{\prime}}{\mathrm{T}_{\mathrm{do}}{ }^{\prime}} \tag{7.17}
\end{equation*}
$$

$$
\begin{equation*}
\text { Thus } X_{1}(d)^{\prime \prime}=\left(X_{1} d^{\prime} T_{1} d^{\prime \prime}\right) /\left(T_{1} d^{\prime \prime}\right) \tag{7.18}
\end{equation*}
$$

Similarly following relation can be obtained:

$$
\begin{equation*}
X_{1}(q)^{\prime \prime}=\left(X_{1} q^{\prime} T_{1} q^{\prime \prime}\right) /\left(T_{1} q 0^{"}\right) \tag{7.19}
\end{equation*}
$$

To find the parameters involved in the equations Newton- raphson method has been applied where initial values are taken considering following equations-

$$
\begin{align*}
& \mathrm{X}_{\mathrm{ad}}=\mathrm{X}_{\mathrm{d}}-\mathrm{X}_{\mathrm{l}} \tag{7.20}\\
& \mathrm{X}_{\mathrm{aq}}=\mathrm{X}_{\mathrm{q}}-\mathrm{X}_{\mathrm{l}} \tag{7.21}\\
& \frac{1}{\mathrm{X}_{\mathrm{fd}}}=\frac{1}{\mathrm{X}_{\mathrm{d}}{ }^{0}-\mathrm{X}_{\mathrm{l}}}-\frac{1}{\mathrm{X}_{\mathrm{ad}}} \tag{7.22}\\
& \frac{1}{\mathrm{X}_{\mathrm{fq}}}=\frac{1}{\mathrm{X}_{\mathrm{q}}{ }^{\prime}-\mathrm{X}_{\mathrm{l}}}-\frac{1}{\mathrm{X}_{\mathrm{aq}}} \tag{7.23}\\
& 1 / \mathrm{X}_{\mathrm{l}} \mathrm{kd}=1 /\left(\mathrm{X}_{\mathrm{l}} \mathrm{~d}^{\prime \prime}=-\mathrm{X}_{\mathrm{l}} \mathrm{l}\right)-1 /\left(\mathrm{X}_{\mathrm{l}} \mathrm{~d}^{\prime}-\mathrm{X}_{\mathrm{l}} \mathrm{l}\right) \tag{7.24}\\
& 1 / \mathrm{X}_{\mathrm{l}} \mathrm{kq}=1 /\left(\mathrm{X}_{\mathrm{l}} \mathrm{q}^{\prime \prime}=-\mathrm{X}_{\mathrm{l}} \mathrm{l}\right)-1 /\left(\mathrm{X}_{1} \mathrm{q}^{\prime}-\mathrm{X}_{\mathrm{l}} \mathrm{l}\right) \tag{7.25}
\end{align*}
$$

$\mathrm{R}_{\mathrm{fd}}=\frac{\mathrm{X}_{\mathrm{fd}}+\mathrm{X}_{\mathrm{ad}}}{377 \mathrm{~T}_{\mathrm{d} 0}{ }^{\circ}}$
$\mathrm{R}_{\mathrm{fq}}=\frac{\mathrm{X}_{\mathrm{fq}}+\mathrm{X}_{\mathrm{aq}}}{377 \mathrm{~T}_{\mathrm{q} 0}{ }^{\circ}}$

$R_{4} k q=\left(X_{\downarrow} k q X_{4} a q+X_{4} k q X_{4} f q+X_{\downarrow} a q X_{4} f q\right) /\left(377 T_{1} q 0 "\right)\left(X_{4} a q+X_{4} f q\right)$
$\mathrm{T}_{\mathrm{d}}{ }^{\prime}=\frac{\mathrm{X}_{\mathrm{d}}{ }^{4} \mathrm{~T}_{\mathrm{do}}{ }^{\prime}}{\mathrm{X}_{\mathrm{d}}}$
$\mathrm{T}_{\mathrm{q}}{ }^{\prime}=\frac{\mathrm{X}_{\mathrm{q}}{ }^{\prime} \mathrm{T}_{\mathrm{q} 0}{ }^{\prime}}{\mathrm{X}_{\mathrm{q}}}$
$T_{1} \mathrm{~d}^{\prime \prime}=\left(\mathrm{X}_{1} \mathrm{~d}^{"} \mathrm{~T}_{1} \mathrm{~d} 0{ }^{\prime \prime}\right) / \mathrm{X}_{1} \mathrm{~d}^{\prime}$
$T_{1} q^{\prime \prime}=\left(X_{1} q^{"} T_{1} q^{\prime \prime}\right) / x_{1} q^{\prime}$

These equations are being solved using NEWTON RAPHSON method and simulated in MATLAB using a set of manufacturer's data, taken from an IEEE Transaction on Power Apparatus and Systems, Vol. PAS-96, no.5. "First benchmark model for computer simulation of sub synchronous resonance."

7.1.5 Simulation Result:

The equations were simulated using manufacturer's data given in Table 6.1 and fundamental parameters were obtained shown in Table 6.2

Table 7.1 Manufacturer provided data

$\begin{aligned} & \hline \mathrm{Xd} \\ & (\mathrm{pu}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{Xq} \\ & (\mathrm{pu}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{Xd}{ }^{\prime} \\ & (\mathrm{pu}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{Xq}{ }^{\prime} \\ & (\mathrm{pu}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{Xd} " \\ & (\mathrm{pu}) \end{aligned}$	$\begin{aligned} & \mathrm{Xq} " \\ & (\mathrm{pu}) \end{aligned}$	$\begin{aligned} & \text { Tdo’ } \\ & \text { (s) } \end{aligned}$	Tqo' (s)	Tdo" (s)	Tqo" (s)	$\begin{aligned} & \hline \mathrm{Xl} \\ & (\mathrm{pu}) \end{aligned}$
1.79	1.71	0.169	0.228	0.135	0.2	4.3	0.85	0.032	0.05	0.13

Table 7.2 d -axis and q -axis parameters for model(2.1)

Xa d (pu)	$\begin{aligned} & \mathrm{Xa} \\ & \mathrm{q} \\ & \text { (pu } \\ & \text {) } \end{aligned}$	$\begin{aligned} & \mathrm{Xfd} \\ & (\mathrm{pu}) \end{aligned}$	$\begin{aligned} & \mathrm{Xfq} \\ & (\mathrm{pu}) \end{aligned}$	$\begin{aligned} & \text { Xkd } \\ & \text { (pu) } \end{aligned}$	$\begin{aligned} & \mathrm{X} 1 \mathrm{q} \\ & \text { (pu) } \end{aligned}$	$\begin{aligned} & \mathrm{Rfd} \\ & \text { (pu) } \end{aligned}$	Rfq (pu)	$\begin{aligned} & \text { Rkd } \\ & \text { (pu) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} 1 \\ & \mathrm{q} \\ & (\mathrm{pu} \\ &) \end{aligned}$	Td' (s)	$\begin{aligned} & \mathrm{Td}{ }^{\prime} \\ & (\mathrm{s}) \end{aligned}$	Tq' (s)	Tq'’ (s)
1.6	1.5 8	0.039 9	$\begin{aligned} & \hline 0.104 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.245 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.395 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 8 \end{aligned}$	$\begin{aligned} & 1.39 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 6.8 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.406 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.113 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 9 \end{aligned}$

7.2 Model(0.0):

This is the simplest model of the machine representation, also called as "Classical Model". The model has only field circuit on d-axis with no damper windings on either axis.

Following are the assumptions used during mathematical analysis of the model:

- Transformer voltages in the stator equations are neglected
- Speed is assumed constant
- Effect damper windings are neglected
- Saturation is not simulated
- Main flux linkages are assumed to be constant
- Transient saliency is neglected, that is approximating

7.2.1 Equivalent circuit:

The circuit diagram for model (0.0) is obtained from the flux model analysis and the circuit is shown below for both d-axis and q-axis axis:

Fig-7.4 d-axis and q-axis equivalent circuits for model (0.0)

7.2.2: Circuit Equations:

Following equations can be derived from equivalent circuits using flux model analysis as done for model (2.1) :
$X_{a d}=X_{d}-X_{1}$
$\mathrm{X}_{\mathrm{aq}}=\mathrm{X}_{\mathrm{q}}-\mathrm{X}_{\mathrm{l}}$
$\frac{1}{X_{\mathrm{fd}}}=\frac{1}{X_{\mathrm{d}}{ }^{\prime}-X_{\mathrm{l}}}-\frac{1}{\mathrm{X}_{\mathrm{ad}}}$
$\frac{1}{X_{f q}}=\frac{1}{X_{q}{ }^{1}-X_{1}}-\frac{1}{X_{\mathrm{xq}}}$
$\mathrm{R}_{\mathrm{fd}}=\frac{\mathrm{X}_{\mathrm{fd}}+\mathrm{X}_{\mathrm{ad}}}{377 \mathrm{~T}_{\mathrm{d} 0}{ }^{\circ}}$
$\mathrm{R}_{\mathrm{fq}}=\frac{\mathrm{X}_{\mathrm{fq}}+\mathrm{X}_{\mathrm{aq}}}{377 \mathrm{~T}_{\mathrm{q} 0}{ }^{\circ}}$
$\mathrm{T}_{\mathrm{d}}{ }^{\prime}=\frac{\mathrm{X}_{\mathrm{d}}{ }^{4} \mathrm{~T}_{\mathrm{d} 0}{ }^{\prime}}{\mathrm{X}_{\mathrm{d}}}$
$\mathrm{T}_{\mathrm{q}}{ }^{\prime}=\frac{\mathrm{X}_{\mathrm{q}}{ }^{\text {a }} \mathrm{T}_{\mathrm{q} 0}{ }^{\text { }}}{\mathrm{X}_{\mathrm{q}}}$
$\mathrm{T}_{1} \mathrm{~d}^{"}=\left(\mathrm{X}_{1} \mathrm{~d}^{\mathrm{n}} \mathrm{T}_{1} \mathrm{~d} 0^{"}\right) / \mathrm{X}_{1} \mathrm{~d}^{\prime}$
$T_{1} q^{\prime \prime}=\left(X_{1} q^{\prime \prime} T_{1} q^{\prime \prime}\right) / X_{1} q^{\prime}$

7.2.3 Simulation Result:

Above equations were simulated using the same machine data provided by manufacturer for model(2.1) and following results were obtained as shown in Table 6.3:

Table 7.3 d -axis and q -axis parameters for model(0.0)

Xad (pu)	Xaq (pu)	Xfd (pu)	Xfq (pu)	Rfd (pu)	Rfq (pu)	Td’ (s)	Td"" (s)	Tq' (s)	Tq"" (s)
1.66	1.58	0.0399	0.1045	0.3953	1.9817	0.4060	0.0256	0.1133	0.0439

7.3 Model (2.2):

This is a representation intended to maintain a balance by using two windings (one field, one equivalent damper)on d -axis and two equivalent dampers on q -axis.

Following assumptions have been used for analysis of the model:

- Main field flux decay is considered.
- Two equivalent damper winding included in $q-$ axis.
- One equivalent damper winding included in $\mathrm{d}-$ axis.
- Speed is assumed constant.
- Saturation is neglected.

7.3.1 Equivalent circuit:

The circuit diagram for both d-axis and q - axis has been shown below :

Fig-7.5 d-axis and q-axis equivalent circuits for model (2.2)

7.3.2 Circuit Equations:

As developed in previous models the relationship between various time constants and transient parameter can be found out from equivalent circuits. The circuit equations are shown below:

$$
\begin{equation*}
\mathrm{R}_{1 \mathrm{q}}=\left(\frac{\mathrm{X}_{1 \mathrm{q}}+\left(\frac{\mathrm{X}_{\mathrm{aq}} \mathrm{X}_{\mathrm{fq}} \mathrm{X}_{2 \mathrm{q}}}{\mathrm{X}_{\mathrm{aq}} \mathrm{X}_{\mathrm{fq}}+\mathrm{X}_{\mathrm{aq}} \mathrm{X}_{2 \mathrm{q}}+\mathrm{X}_{\mathrm{fq}} \mathrm{X}_{2 \mathrm{q}}}\right)}{377 * \mathrm{~T}_{\mathrm{q} 0} *}\right) \tag{7.54}
\end{equation*}
$$

$$
\begin{equation*}
R_{2 q}=\left(\frac{X_{2 q}+\left(\frac{X_{\mathrm{aq}} X_{\mathrm{fq}} X_{1 q}}{X_{\mathrm{aq}} X_{\mathrm{fq}}+X_{\mathrm{aq}} X_{1 q}+X_{\mathrm{fq}} X_{1 q}}\right)}{377 * T_{\mathrm{qq} 0} *}\right) \tag{7.55}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{T}_{\mathrm{d}}{ }^{\prime}=\frac{\mathrm{X}_{\mathrm{d}}{ }^{4} \mathrm{~T}_{\mathrm{d} 0}{ }^{\prime}}{\mathrm{X}_{\mathrm{d}}} \tag{7.56}
\end{equation*}
$$

$$
\begin{align*}
& X_{a d}=X_{d}-X_{1} \tag{7.44}\\
& \mathrm{X}_{\mathrm{aq}}=\mathrm{X}_{\mathrm{q}}-\mathrm{X}_{\mathrm{l}} \tag{7.45}\\
& \frac{1}{X_{f d}}=\frac{1}{X_{d}{ }^{\prime}-X_{1}}-\frac{1}{X_{a d}} \tag{7.46}\\
& \frac{1}{X_{f q}}=\frac{1}{X_{q}{ }^{\prime}-X_{l}}-\frac{1}{X_{\mathrm{aq}}} \tag{7.47}\\
& \mathrm{R}_{\mathrm{fd}}=\frac{\mathrm{X}_{\mathrm{fd}}+\mathrm{X}_{\mathrm{ad}}}{377 \mathrm{~T}_{\mathrm{d} 0}{ }^{7}} \tag{7.48}\\
& \mathrm{R}_{\mathrm{fq}}=\frac{\mathrm{X}_{\mathrm{fq}}+\mathrm{X}_{\mathrm{aq}}}{377 \mathrm{~T}_{\mathrm{q} 0}{ }^{\circ}} \tag{7.49}\\
& 1 / X_{1} k d=1 /\left(X_{1} d^{m}-X_{1} 1\right)-1 /\left(X_{1} d^{\prime}-X_{1} 1\right) \tag{7.50}\\
& X_{q}{ }^{\prime}=X_{1}+\frac{X_{\text {aq }} X_{1 q}}{X_{a q}+X_{1 q}} \tag{7.51}\\
& X_{q} *=X_{1}+\frac{X_{a q} X_{1 q} X_{2 q}}{X_{a q} X_{1 q}+X_{a q} X_{2 q}+X_{1 q} X_{2 q}} \tag{7.52}\\
& R_{\text {hd }}=\frac{X_{\text {hd }} X_{\text {ad }}+X_{\text {hd }} X_{f d}+X_{\mathrm{ad}} X_{\mathrm{fd}}}{\left(377 * \mathrm{~T}_{\mathrm{do}}{ }^{*}\right)\left(\mathrm{X}_{\mathrm{ad}}+\mathrm{X}_{\mathrm{fd}}\right)} \tag{7.53}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{T}_{\mathrm{q}}{ }^{\prime}=\frac{\mathrm{X}_{\mathrm{q}}{ }^{\text {' }} \mathrm{T}_{\mathrm{q} 0}{ }^{\text { }}}{\mathrm{X}_{\mathrm{q}}} \tag{7.57}\\
& T_{1} \mathrm{~d}^{"}=\left(\mathrm{X}_{1} \mathrm{~d}^{"} \mathrm{~T}_{1} \mathrm{~d} 0^{"}\right) / \mathrm{X}_{1} \mathrm{~d}^{\prime} \tag{7.58}\\
& T_{1} q^{\prime \prime}=\left(x_{1} q^{\prime \prime} T_{1} q^{\prime \prime}\right) / x_{1} q^{\prime} \tag{7.59}
\end{align*}
$$

7.3.1 Simulation Result:

The above equations were simulated using NEWTON RAPHSON method in MATLAB using the same machine data provided by manufacturer as done for previous models .Following fundamental parameters were obtained as shown in Table 6.4:

Table 7.4 d -axis and q -axis parameters for $\operatorname{model}(2.2)$

Xad (pu)	Xaq (pu)	Xfd (pu)	Xfq (pu)	Xkd (pu)	X1q (pu)	X2q (pu)	Rfd (pu)	Rfq (pu)	Rkd (pu)	R1q (pu)	R2q (pu)
1.66	1.58	0.0399	0.1045	0.0057	0.1045	0.2450	0.3953	1.9817	1.3980	3.4896	5.9114

Td' (s)	Td" (s)	Tq' (s)	Tq" (s)
0.4060	0.0256	0.1133	0.0439

Chapter 8

MATLAB Simulation for the Synchronous machine
 Models

8.1 MAIN FILE

```
% MAIN FILE
clear all;
close all;
clc
B=zeros(10,1);
J=zeros(10,10);
I=zeros(10,10);
resm=zeros(10,6);
resm1=zeros(10,6);
resd=zeros(10,6);
resd1=zeros(10,6);
disp('BTECH FINAL YEAR PROJECT')
disp('========================')
disp('Enter intial values :PARA METERS IN DATASHEET ')
% y1=input('Xd : ');
% y2=input('Xq : ');
% y3=input('Xd1 : ');
% y4=input('Xq1 : ');
% y5=input('Xd2 : ');
% y6=input('Xq2 : ');
% y7=input('Tdo1 : ');
% y8=input('Tqo1 : ');
% y9=input('Tdo2 : ');
% y10=input('Tqo2 : ');
% y11=input('XI :');
y1=1.79;
y2=1.71;
y3=0.169;
y4=0.228;
y5=0.135;
y6=0.2;
y7=4.3;
y8=0.85;
y9=0.032;
y10=0.05;
y11=0.13;
disp('========================================================================')
disp('FOR MODEL1 ....NO DAMPER ATALL... ')
disp('========================================================================')
disp('=========================================================================')
disp('INITIALIZATION OF PARAMETERS TO B ESTIMATED..ENTER INITIAL VALUE... ')
disp('===========================================================================')
% x1=input('Xad : ');
% x2=input('Xaq : ');
% x3=input('Xfd : ');
% x4=input('Xfq : ');
% x5=input('Xkd : ');
% x6=input('Xkq : ');
```

```
% x7=input('Rfd : ');
% x8=input('Rfq : ');
% x9=input('Rkd : ');
% x10=input('Rkq : ');
% x11=input('Td1 : ');
% x12=input('Td2 : ');
% x13=input('Tq1 : ');
% x14=input('Tq2 : ');
x1=1;
x2=1;
x3=0.01;
x4=0.1;
x5=0.001;
x6=0.1;
x7=0.001;
x8=0.001;
x9=0.001;
x10=0.01;
x11=0.01;
x12=0.01;
x13=0.1;
x14=0.01;
k=1;
DX =ones(14,1);
ecc=0.0001;
disp('======================WAIT ITERATION GOING ON================='')
for a=1:1:10
    k=k+1;
    for i=1:1:10
        d=1;j=1;
        B(i)=0- Ifun1(x1,x2,x3,x4,x7,x8,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d);
        j=2;
        for d=1:1:10
            J(i,d)=Ifun1(x1,x2,x3,x4,x7,x8,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d);
        end
    end
det(J); I=inv(J); DX=I*B;
disp(a)
\%Updation of variables
x1=x1+DX(1); x2= x2+DX(2); x3= x3+DX(3); x4= x4+DX(4);
x7= x7+DX(5); x8= x8+DX(6); x11= x11+DX(7);
x12= x12+DX(8); x13= x13+DX(9);x14= x14+DX(10);
resd(a,1)=a; resd1(a,1)=a; resd(a,2)=DX(1); resd(a,3)=DX(2); resd(a,4)=DX(3);
resd(a,5)=DX(4);
resd(a,6)=DX(5); resd1(a,2)=DX(6); resd1(a,3)=DX(7); resd1(a,4)=DX(8); resd1(a,5)=DX(9);
resd1(a,6)=DX(10);
m1=x1;m2=x2;m3=x3;m4=x4;m7=x7; m8=x8; m11=x11;m12=x12;m13=x13;m14=x14;
```

```
resm(a,1)=a; resm(a,2)=m1;
resm(a,3)=m2;resm(a,4)=m3;
resm(a,5)=m4; resm(a,6)=m7*377;
resm1(a,1)=a; resm1(a,2)=m8*377;resm1(a,3)=m11;
resm1(a,4)=m12;resm1(a,5)=m13;resm1(a,6)=m14;
end
disp('ESTIMATED PARAMETERS AND RESIDUAL VALUES ARE')
disp('============================================'')
disp(' ITERNO Xad Xaq Xfd Xfq Rfd ');
disp(' ====== === === === === === ');
disp(resm);
disp(' ITERNO Rfq Td1 Td2 Tq1 Tq2 ');
disp(' ====== === === === === === ');
disp(resm1);
disp('=========================================================================')
disp(' RESIDUE MATRIX');
disp('=========================================================================')
disp(' ITERNO Xad Xaq Xfd Xfq Rfd ');
disp(' ====== === === === === === ');
disp(resd);
disp(' ITERNO Rfq Td1 Td2 Tq1 Tq2 ');
disp(' ====== === === === === === ');
disp(resd1);
disp('===========================================================================')
disp('=======================================================================')
disp('FOR MODEL2 .... 1 DAMPER IN D AXIS AND }1\mathrm{ IN Q AXIS... ')
disp('=====================================================================')
disp('====================================================================')
disp('INITIALIZATION OF PARAMETERS TO B ESTIMATED..ENTER INITIAL VALUE... ')
disp('=======================================================================')
B=zeros(14,1);
J=zeros(14,14);
I=zeros(14,14);
resm=zeros(10,8);
resm1=zeros(10,8);
resd=zeros(10,8);
resd1=zeros(10,8);
k=1;
DX =ones(14,1);
ecc=0.0001;
disp('=====================WWIT ITERATION GOING ON=================')
for a=1:1:10
        k=k+1;
    for i=1:1:14
        d=1;j=1;
        B(i)=0-
Ifun2(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d);
        j=2;
```

for $d=1: 1: 14$

```
J(i,d)=Ifun2(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d);
        end
    end
        det(J); I=inv(J); DX=I*B;
    disp(a)
%Updation of variables
x1=x1+DX(1); x2= x2+DX(2); x3= x3+DX(3);
x4=x4+DX(4); x5=x5+DX(5); x6= x6+DX(6);
x7=x7+DX(7); x8=x8+DX(8); x9= x9+DX(9);
x10= x10+DX(10); x11= x11+DX(11);
x12= x12+DX(12); x13= x13+DX(13); x14= x14+DX(14);
resd(a,1)=a;
resd1(a,1)=a;
resd(a,2)=DX(1);
resd(a,3)=DX(2);
resd(a,4)=DX(3);
resd(a,5)=DX(4);
resd(a,6)=DX(5);
resd(a,7)=DX(6);
resd(a,8)=DX(7);
resd1(a,2)=DX(8);
resd1(a,3)=DX(9);
resd1(a,4)=DX(10);
resd1(a,5)=DX(11);
resd1(a,6)=DX(12);
resd1(a,7)=DX(13);
resd1(a,8)=DX(14);
m1=x1; m2=x2; m3=x3; m4=x4; m5=x5; m6=x6; m7=x7; m8=x8; m9=x9;
m10=x10; m11=x11; m12=x12; m13=x13; m14=x14;
resm(a,1)=a;
resm(a,2)=m1;
resm(a,3)=m2;
resm(a,4)=m3;
resm(a,5)=m4;
resm(a,6)=m5;
resm(a,7)=m6;
resm(a,8)=m7*377;
resm1(a,1)=a;
resm1(a,2)=m8*377;
resm1(a,3)=m9*377;
resm1(a,4)=m10*377;
resm1(a,5)=m11;
resm1(a,6)=m12;
resm1(a,7)=m13;
resm1(a,8)=m14;
end
```

```
disp('ESTIMATED PARAMETERS AND RESIDUAL VALUES ARE')
disp('=============================================')
```



```
disp(' ====== === === === === === === === ');
disp(resm);
disp(' ITERNO Rfq Rkd Rkq Td1 Td2 Tq1 Tq2 ');
disp(' ====== === === === === === === === ');
disp(resm1);
disp('=========================================================================================
======')
disp(' RESIDUE MATRIX');
disp('========================================================================================
======')
disp(' ITERNO Xad Xaq DXfd Xfq Xkd Xkq Rfd ');
disp(' ====== === === === === === === === ');
disp(resd);
disp(' ITERNO Rfq Rkd Rkq Td1 Td2 Tq1 Tq2 ');
disp(' ====== === === === === === === === ');
disp(resd1);
disp('==========================================================================')
disp('FOR MODEL3 .... 1 DAMPER IN D AXIS AND 2 IN Q AXIS... ')
disp('========================================================================')
disp('=======================================================================')
disp('INITIALIZATION OF PARAMETERS TO B ESTIMATED..ENTER INITIAL VALUE... ')
disp('=====================================================================')
B=zeros(16,1);
J=zeros(16,14);
I=zeros(16,14);
resm=zeros(7,9);
resm1=zeros(7,9);
resd=zeros(7,9);
resd1=zeros(7,9);
y1=1.79;
y2=1.71;
y3=0.169;
y4=0.228;
y5=0.135;
y6=0.2;
y7=4.3;
y8=0.85;
y9=0.032;
y10=0.05;
y11=0.13; x1=1;
x2=1;
x3=0.01;
x4=0.1;
x5=0.001;
x6=0.2;
x7=0.001;
x8=0.001;
x9=0.001;
```

```
x10=0.02;
x11=0.01;
x12=0.01;
x13=0.1;
x14=0.01;
x15=0.2;
x16=0.02;
% x1=input('Xad : ');
% x2=input('Xaq : ');
% x3=input('Xfd : ');
% x4=input('Xfq : ');
% x5=input('Xkd : ');
% x6=input('X1q : ');
% x15=input('X2q : ');
% x7=input('Rfd : ');
% x8=input('Rfq : ');
% x9=input('Rkd : ');
% x10=input('R1q:');
% x16=input('R2q:');
% x11=input('Td1:');
% x12=input('Td2 : ');
% x13=input('Tq1 : ');
% x14=input('Tq2 : ');
k=1;
DX =ones(16,1);
ecc=0.0001;
disp('======================WAIT ITERATION GOING ON=================')
for a=1:1:7
        k=k+1;
        for i=1:1:16
            d=1;j=1;
            B(i)=0-
Ifun4(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d);
            j=2;
            for d=1:1:16
J(i,d)=Ifun4(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,
d);
            end
            end
det(J);
I=inv(J);
DX=|*B;
disp(a)
%Updation of variables
x1= x1+DX(1); x2= x2+DX(2); x3= x3+DX(3);
x4=x4+DX(4); x5=x5+DX(5); x6= x6+DX(6);
x7= x7+DX(7); x8=x8+DX(8); x9=x9+DX(9);
```

```
x10= x10+DX(10); x11= x11+DX(11); x12= x12+DX(12);
x13= x13+DX(13); x14= x14+DX(14); x15= x15+DX(15); x16= x16+DX(16);
resd(a,1)=a;
resd1(a,1)=a;
resd(a,2)=DX(1);
resd(a,3)=DX(2);
resd(a,4)=DX(3);
resd(a,5)=DX(4);
resd(a,6)=DX(5);
resd(a,7)=DX(6);
resd(a,8)=DX(15);
resd(a,9)=DX(7);
resd1(a,2)=DX(8);
resd1(a,3)=DX(9);
resd1(a,4)=DX(10);
resd1(a,5)=DX(16);
resd1(a,6)=DX(11);
resd1(a,7)=DX(12);
resd1(a,8)=DX(13);
resd1(a,9)=DX(14);
m1=x1;m2=x2; m3=x3;m4=x4;m5=x5;m6=x6;m7=x7;m8=x8;m9=x9;
m10=x10;m11=x11;m12=x12; m13=x13;m14=x14;m15=x15;m16=x16;
resm(a,1)=a;
resm(a,2)=m1;
resm(a,3)=m2;
resm(a,4)=m3;
resm(a,5)=m4;
resm(a,6)=m5;
resm(a,7)=m6;
resm(a,8)=m15;
resm(a,9)=m7*377;
resm1(a,1)=a;
resm1(a,2)=m8*377;
resm1(a,3)=m9*377;
resm1(a,4)=m10*377;
resm1(a,5)=m16*377;
resm1(a,6)=m11;
resm1(a,7)=m12;
resm1(a,8)=m13;
resm1(a,9)=m14;
end
disp('ESTIMATED PARAMETERS AND RESIDUAL VALUES ARE')
disp('============================================')
disp(' ITERNO Xad Xaq Xfd Xfq Xkd X1q X2q Rfd ');
disp(' ====== === === === === === === === ==== ');
disp(resm);
disp(' ITERNO Rfq Rkd R1q R2q Td1 Td2 Tq1 Tq2 ');
disp(' ====== === === === === === === === === ');
disp(resm1);
```

```
disp('=======================================================================================
======')
disp(' RESIDUE MATRIX');
disp('===================================================================================
======')
disp(' ITERNO Xad Xaq Xfd Xfq Xkd X1q X2q Rfd ');
disp(' ====== === === === === === === === ==== ');
disp(resd);
disp(' ITERNO Rfq Rkd R1q R2q Td1 Td2 Tq1 Tq2 ');
disp(' ====== === === === === === === === === ');
disp(resd1);
disp('=======================================================================================
======')
disp(' ********THANKING YOU******** ')
disp('=========================================================================================
======')
```


FUNCTION CODE FOR MODEL(0.0) :

Function $f 1=\mid f u n 1(x 1, x 2, x 3, x 4, x 7, x 8, x 11, x 12, x 13, x 14, y 1, y 2, y 3, y 4, y 5, y 6, y 7, y 8, y 9, y 10, y 11, i, j, d)$; syms z1;
syms z2;
syms z3;
syms $\mathrm{z4}$;
syms z7;
syms $\mathrm{z8}$;
syms z11;
syms z12;
syms z13;
syms z14;
if $\mathrm{i}==1$
$\mathrm{g}=\mathrm{y} 1-\mathrm{y} 11-\mathrm{z} 1$;
end
if $\mathrm{i}==2$
$g=y 2-y 11-z 2$;
end
if $\mathrm{i}==3$
$g=(1 /(y 3-y 11))-(1 / z 1)-(1 / z 3)$;
end
if $i==4$
$g=(1 /(y 4-y 11))-(1 / z 2)-(1 / z 4)$;
end
if $\mathrm{i}==5$
$\mathrm{g}=\left((\mathrm{z} 3+z 1) /\left(377^{*} \mathrm{y} 7\right)\right)-\mathrm{z7}$;
end
if $\mathrm{i}==6$
$\mathrm{g}=\left(\left(\mathrm{z4+z2)} /\left(377^{*} \mathrm{y} 8\right)\right)-\mathrm{z8}\right.$;
end
if $\mathrm{i}==7$
$\mathrm{g}=\left(\mathrm{y} 3^{*} \mathrm{y} 7\right) / \mathrm{y} 1-\mathrm{z} 11$;
end
if $\mathrm{i}==8$
$\mathrm{g}=(\mathrm{y} 4 * \mathrm{y} 8) / \mathrm{y} 2-\mathrm{z} 13$;
end
if $\mathrm{i}==9$
$\mathrm{g}=\left(\mathrm{y} 5^{*} \mathrm{y} 9\right) / \mathrm{y} 3-\mathrm{z} 12$;
end
if $\mathrm{i}==10$

```
g=(y6*y10)/y4 - z14;
end
if(j==1)
f2=subs(g,{z1,z2,z3,z4,z7,z8,z11,z12,z13,z14},{x1,x2,x3,x4,x7,x8,x11,x12,x13,x14});
f1=double(f2);
end
if(j==2)
if d==1
der=diff(g,z1);
end
if d==2
der=diff(g,z2);
end
if d==3
der=diff(g,z3);
end
if d==4
der=diff(g,z4);
end
if d==5
der=diff(g,z7);
end
if d==6
der=diff(g,z8);
end
if d==7
der=diff(g,z11);
end
if d==8
der=diff(g,z12);
end
if d==9
der=diff(g,z13);
end
if d==10
der=diff(g,z14);
end
f2=subs(der,{z1,z2,z3,z4,z7,z8,z11,z12,z13,z14},{x1,x2,x3,x4,x7,x8,x11,x12,x13,x14});
f1=double(f2);
end
end
```


FUNCTION CODE FOR MODEL(2.1) :

```
function f1=Ifun2(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d);
syms z1;
syms z2;
syms z3;
syms z4;
syms z5;
syms z6;
syms z7;
syms z8;
syms z9;
syms z10;
syms z11;
syms z12;
syms z13;
syms z14;
if i==1
g=y1-y11-z1;
end
if i==2
g=y2-y11-z2;
end
if i==3
g=(1/(y3-y11))-(1/z1)-(1/z3);
end
if i==4
g=(1/(y4-y11))-(1/z2)-(1/z4);
end
if i==5
g=(1/(y5-y11))-(1/(y3-y11))-(1/z5);
end
if i==6
g=(1/(y6-y11))-(1/(y4-y11))-(1/z6);
end
if i==7
g=((z3+z1)/(377*y7)) -z7;
end
if i==8
g=((z4+z2)/(377*y8))-z8;
end
if i==9
g=((z5*z1 + z5*z3 + z1*z3)/((377*y9)*(z1+z3))) - z9;
end
if i==10
g=((z6*z2 + z6*z4 + z2*z4)/((377*y10)*(z2+z4))) - z10;
end
if i==11
g=(y3*y7)/y1 - z11;
end
if i==12
g=(y4*y8)/y2 - z13;
end
```

```
if i==13
g=(y5*y9)/y3 - z12;
end
if i==14
g=(y6*y10)/y4 - z14;
end
if(j==1)
f2=subs(g,{z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14},{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14}
);
f1=double(f2);
end
if(j==2)
if d==1
der=diff(g,z1);
end
if d==2
der=diff(g,z2);
end
if d==3
der=diff(g,z3);
end
if d==4
der=diff(g,z4);
end
if d==5
der=diff(g,z5);
end
if d==6
der=diff(g,z6);
end
if d==7
der=diff(g,z7);
end
if d==8
der=diff(g,z8);
end
if d==9
der=diff(g,z9);
end
if d==10
der=diff(g,z10);
end
if d==11
der=diff(g,z11);
end
if d==12
der=diff(g,z12);
end
if d==13
der=diff(g,z13);
end
if d==14
der=diff(g,z14);
```

end
f2=subs(der, $\{z 1, z 2, z 3, z 4, z 5, z 6, z 7, z 8, z 9, z 10, z 11, z 12, z 13, z 14\},\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10, x 11, x 12, x 13, x 1$ 4\});
f1=double(f2);
end
end

FUNCTION CODE FOR MODEL(2.2):

```
function
f1=Ifun4(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,i,j,d);
syms z1;
syms z2;
syms z3;
syms z4;
syms z5;
syms z6;
syms z7;
syms z8;
syms z9;
syms z10;
syms z11;
syms z12;
syms z13;
syms z14;
syms z15;
syms z16;
if i==1
g=y1-y11-z1;
end
if i==2
g=y2-y11-z2;
end
if i==3
g=(1/(y3-y11))-(1/z1)-(1/z3);
end
if i==4
g=(1/(y4-y11))-(1/z2)-(1/z4);
end
if i==5
g=(1/(y5-y11))-(1/(y3-y11))-(1/z5);
end
if i==6
    g=y11+(1/((1/z2)+(1/z6)))-y4;
%g=(1/(y6-y11))-(1/(y4-y11))-(1/z6)-(1/z15);
end
if i==7
g=((z3+z1)/(377*y7)) -z7;
end
if i==8
g=((z4+z2)/(377*y8))-z8;
end
if i==9
```

```
g=((z5*z1 + z5*z3 + z1*z3)/((377*y9)*(z1+z3))) - z9;
end
if i==10
    g=(1/(377*y10))*(z6+(z15*z2*z4/(z15*z2+z15*z4+z2*z4)))-z10;
end
if i==11
g=(y3*y7)/y1-z11;
end
if i==12
g=(y4*y8)/y2 - z13;
end
if i==13
g=(y5*y9)/y3 - z12;
end
if i==14
g=(y6*y10)/y4 - z14;
end
if i==15
g=y11+(1/((1/z2)+(1/z6)+(1/z15)))-y6;
% g=y11+(1/((1/x2)+(1/x6)+(1/x15)+(1/x4)))-y5;
end
if i==16
g=((z15+(z6*z2*z4/(z6*z2+z6*z4+z2*z4)))/(377*y10))-z16;
end
if(j==1)
f2=subs(g,{z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,z15,z16},{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,
x13,x14,x15,x16});
f1=double(f2);
end
if(j==2)
if d==1
der=diff(g,z1);
end
if d==2
der=diff(g,z2);
end
if d==3
der=diff(g,z3);
end
if d==4
der=diff(g,z4);
end
if d==5
der=diff(g,z5);
end
if d==6
der=diff(g,z6);
end
if d==7
der=diff(g,z7);
end
if d==8
der=diff(g,z8);
```

```
end
if d==9
der=diff(g,z9);
end
if d==10
der=diff(g,z10);
end
if d==11
der=diff(g,z11);
end
if d==12
der=diff(g,z12);
end
if d==13
der=diff(g,z13);
end
if d==14
der=diff(g,z14);
end
if d==15
der=diff(g,z15);
end
if d==16
der=diff(g,z16);
end
f2=subs(der,{z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,z15,z16},{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x1
2,x13,x14,x15,x16});
f1=double(f2);
end
end
```


Chapter 9

Conclusion

10.1 A Comparative Study of Fundamental Parameters for different

 Models of Synchronous Machine:| `Sl. No. | Parameters | Model(0.0) | Model(2.1) | Model(2.2) |
| :---: | :---: | :---: | :---: | :---: |
| 1. | Xad | 1.66 | 1.66 | 1.66 |
| 2. | Xaq | 1.58 | 1.58 | 1.58 |
| 3. | Xfd | 0.0399 | 0.0399 | 0.0399 |
| 4. | Xfq | 0.1045 | 0.1045 | 0.1045 |
| 5. | Xkd | - | 0.0057 | 0.0057 |
| 6. | X1q | - | 0.2450 | 0.1045 |
| 7. | X2q | - | - | 0.2450 |
| 8. | Rfd | 0.3953 | 0.3953 | 0.3953 |
| 9. | Rfq | 1.9817 | 1.9817 | 1.9817 |
| 10. | Rkd | - | 1.3980 | 1.3980 |
| 11. | R1q | - | 6.8600 | 3.4896 |
| 12. | R2q | - | - | 5.9114 |
| 13. | Td1 | 0.4060 | 0.4060 | 0.4060 |
| 14. | Td2 | 0.0256 | 0.0256 | 0.0256 |
| 15. | Tq1 | 0.1133 | 0.1133 | 0.1133 |
| 16. | Tq2 | 0.0439 | 0.0439 | 0.0439 |

Table 10.1 Comparative chart for fundamental parameters of same synchronous machine represented by three different models

10.2 Discussion:

Stability analysis is one of the most important tasks in power system operations and planning. Synchronous generators play a very important role in this way. A valid model for synchronous generators is essential for a reliable analysis of stability and dynamic performance. Almost three quarters of a century after the first publications in modeling synchronous generators, this subject is still a challenging and attractive research topic.
Two axis equivalent circuits are commonly used to represent the behavior of synchronous machines. The direct determination of circuit parameters from design data is very difficult due to intricate geometry and nonlinear constituent parts of machines. So several tests have been developed which indirectly obtain the parameter values of equivalent circuits.

10.3 Comparison among different models:

Synchronous machine models of various degrees of complexity have been developed from the fundamental parameters. The comparison of machine models is useful in the evaluation of the transient performance of multimachine power systems. Synchronousmachine models of various degrees of complexity which are developed from the fundamental machine equations show different responses. They can be used to simulate the transient behavior of a simple multimachine power system under both non-poleslipping and pole-slipping conditions. The comparisons made between predicted and actual responses can show the degree of accuracy which may be expected for the various models employed.

Model (2.2) is widely used in the literature. Model (3.3) is claimed to be the most detailed model applicable to turbogenerator, while models (2.1) and (1.1) are widely used for hydro generators. It is to be noted that while higher order models provide better result for such applications, they also require an exact determination of parameters.With constraints on data availability and for study of large systems, it may be adequate to use model (1.1) if the data is correctly determined.
Models in which sub transient phenomena are simulated, but where some transformer voltages in the stator equations, together with sub transient saliency, are neglected,
provide a model which is adequate and economical in computing demands for system disturbances including those in which the machine may momentarily fall from synchronism. Model (2.2) can fulfill these requirements in all but specialized studies of an exacting nature, with certain simplification like Model (2.2) becomes more economical in computational requirements.

REFERENCES

[1] Kundur Prabha,Power System Stability and Control, Tata McGraw-Hill Publishing Company Limited,2007.
[2] Wadhwa, C.L., Electrical Power Systems, New Delhi, New Age International publishers, 2005.
[3] IEEE Subsynchronous Resonance Task Force of the Dynamic System Performance Working Group Power System Engineering Committee, " First Benchmark Model For Computer Simulation of Sunsynchronous Resonanace",Vol. PAS-96, no. 5, September/October 1977.
[4] Yao-nan Yu, H.A.M. Moussa, "Experimantal Details of Exact Equivalent Circuit Parameters of Synchronous Machines", IEEE Trans. On Power Apparatus and Systems, Vol. PAS-90, Nov./ Dec. 1971.
[5] M.R.Aghamohammadi, M.Pourgholi, " Experience with SSFR Test for Synchronous Generator Model Identification Using Hook-Jeeves Optimization Method", international Journal of Systems Applications, Engineering \& Development, Issue 3, Volume2, 2008.
[6] Bernard Adkins, The General Theory of Electrical Machines, London, Chapman \& Hall Ltd., 1957, pp. 101-124, pp. 145-151.
[7] IEEE Standard Procedures for Obtaining Synchronous Machine Parameters by Standstill Frequency Response Testing (Supplement to ANSI/IEEE Std 115-1983)
[8] H. Bora Karayaka, Ali Keyhani, Fellow, IEEE, Gerald Thomas Heydt, Fellow, IEEE, Baj L. Agrawal, Fellow, IEEE, and Douglas A. Selin, Senior Member, IEEE, "Synchronous Generator Model Identification and Parameter Estimation From Operating Data"
[9] R.H.Park , "Two-Reaction Theory of Synchronous Machine", NAPS, UNIVERSITY of Waterloo, Canada, October 23-24, 2000.
[10] Clifton Ellis1, Harson Nouri2, Rade Ciric3 and Bogdan Miedzinsky4, (1) University of the West of England, Bristol BS16 1QY, UK, (2) Science and Technological development of Autonomous Province of Vojvodina, Novi Sad, Serbia, (4) Wroclaw University of Technology, Wroclaw, Poland, " Overview of the Development, Simplification and Numerical Analysis of Synchronous Machine Models for Stability Studies".
[11] Comparisons of synchronous-machine models in the study of the transient behaviour ofelectrical power systems by T. J. Hammons, B.Sc, Ph.D., A.C.G.I., D.I.C., Sen.Mem.I.E.E.E., C.Eng., M.I.Mech.E., M.I.E.E.,and D. J. Winning, B.Sc, Ph.D.

