
 

MODIFIED HILL- CIPHER AND CRT METHODS IN 

GALOIS FIELD GF(2
M

) FOR CRYPTOGRAPHY 
 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 
OF THE REQUIREMENTS FOR THE DEGREE OF 

 

Master of Technology 

in 

Telematics and Signal Processing 

 

By 

      JYOTIRMAYEE   MAJHI 

 

    207EC114 
 

 

 

 

 

 

 

Department of Electronics and Communication Engineering 

National Institute Of Technology 

Rourkela 

2007-2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

MODIFIED HILL- CIPHER AND CRT METHODS IN 

GALOIS FIELD GF(2
M

) FOR CRYPTOGRAPHY 

 
A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 
 

Master of Technology 

in 

Telematics and Signal Processing 

 

By 

      JYOTIRMAYEE   MAJHI 

 

    207EC114 
 

 

Under the Guidance of 
 

Prof. G. S. RATH 

 

 

 

Department of Electronics and Communication Engineering 

National Institute Of Technology 

Rourkela 

2007-2009 



 
 

NATIONAL INSTITUTE OF TECHNOLOGY 

ROURKELA 

 

 

 

 

CERTIFICATE 
 

This is to certify that the thesis titled ― Modified  Hill -Cipher  and CRT Methods in Galois 

Field  gf(2
m

) for cryptography” submitted by Miss. Jyotirmayee majhi in partial fulfillment 

of the requirements for the award of Master of Technology degree Electronics & 

Communication Engineering with specialization in ―Telematics and Signal Processing‖ 

during session 2008-2009 at National Institute Of Technology, Rourkela (Deemed University) 

is an authentic work by him under my supervision and guidance. 

 

 

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any 

other university / institute for the award of any Degree or Diploma. 

 

 

 

Date:                                                                                                                    Prof. G. S.RATH 

Dept. of E.C.E 

National Institute of Technology 

Rourkela-769008 

        Email: gsrath@nitrkl.ac.in 



i 
 

 

Acknowledgement 

 

 

I would like to express my gratitude to my thesis guide Prof. G. S. Rath for his guidance, 

advice and constant support throughout my thesis work. I would like to thank him for being my 

advisor here at National Institute of Technology, Rourkela. 

Next, I want to express my respects to Prof. G. Panda, Prof. K. K. Mahapatra, Prof. S.K. 

Patra , Dr. S. Meher , Prof. S. k. Behera , Prof Poonam singh , Prof. U. C. Pati , Prof P. k. 

Sahoo  and Prof D. P. Acharya for teaching me and also helping me how to learn. They have 

been great sources of inspiration to me and I thank them from the bottom of my heart. 

I would like to thank all faculty members and staff of the Department of Electronics and 

Communication Engineering, N.I.T. Rourkela for their generous help in various ways for the 

completion of this thesis. 

I would also like to mention the names of Vikas Baghel, Pyarimohan Pradhan and 

Naresh kumar koppala for helping me a lot during the thesis period. 

I would like to thank all my friends and especially my classmates for all the thoughtful and 

mind stimulating discussions we had, which prompted us to think beyond the obvious. I‘ve 

enjoyed their companionship so much during my stay at NIT, Rourkela. 

I am especially indebted to my parents for their love, sacrifice, and support. They are my 

first teachers after I came to this world and have set great examples for me about how to live, 

study, and work. 

Jyotirmayee Majhi 

Roll No: 207ec114 

Dept of ECE, NIT, Rourkela 



ii 
 

 

Contents    

Acknowledgement…………………………………………………………………………...i 

Contents……………………………………………………………………………….……..ii 

Abstract……………………………………………………………………………….…..…iv 

List of Figures………………………………………………………………………….…….v 

List of Tables…………………………………………………………………………………v 

Chapter I………………………………………………………………………………………………1 

1.1 Introduction ................................................................................................................................... 2 

1.2 Objective ....................................................................................................................................... 3 

       1.3. Layout  .................................................................................................................................... 3 

Chapter II………………………………………………………………………………….………….5 

2.1 Literature Review  ...................................................................................................................... 6 

Chapter III…………………………………………………………………………………………...11 

3.1 Definition of cryptograph  ........................................................................................................... 12 

3.2 Goal of cryptography ................................................................................................................... 13 

3.3 Symmetric key encryption ........................................................................................................... 13 

3.4 Symmetric-key vs. public-key cryptography ............................................................................ 14 

3.5 Number theory .............................................................................................................................. 16 

3.6 Modular arithmetic ....................................................................................................................... 17 

3.7 Galois field .................................................................................................................................... 18 

3.8 Irreducible polynomials ............................................................................................................... 19 

3.9 Primitive polynomial  ................................................................................................................... 20 

3 .10 Modular   polynomial   arithmetic ........................................................................................... 20 

3.11 Multiplication .............................................................................................................................. 21 

3.12 Division ........................................................................................................................................ 21 

3.13 Multiplicative inverse ................................................................................................................. 22 

   3 .14 Exponentiation ............................................................................................................................ 23 

3.15 Fast exponentiation ..................................................................................................................... 23 

3.16 Minimal value of polynomial .................................................................................................... 24 



iii 
 

3.17 Hill -cipher encryption ............................................................................................................... 25 

     3 .18 Traditional Chinese Remainder theorem  .............................................................................. 26 

3.19 Extension of the Theorem to polynomials  .............................................................................. 28 

Chapter IV……………………………………………………………………………………………..31 

4.1 Hill-ciphers  ................................................................................................................................... 32 

4.2 Traditional Hill- cipher ................................................................................................................ 32 

4.3 Modified Hill -cipher method in Galois field ........................................................................... 33 

4.3.1 Encryption  ............................................................................................................................. 33 

        4.3.2 Decryption .............................................................................................................................. 35 

4.4 A novel modified Hill -cipher method in GF( ……………………………. .................. 37 

4.4.1 Encryption  ............................................................................................................................. 37 

4.4.2 Decryption  ............................................................................................................................. 38 

4.5 Modified CRT in Galois field GF( ……………………………. ..................................... 40 

4.5.1. Encryption  ............................................................................................................................ 40 

4.5.2 Decryption  ............................................................................................................................. 41        

Chapter V 

Results................................................................................................................................................ 44 

    5.1. Modified CRT in Galois Field GF(2  ................................................................................ 45 

    5.2 Modified Hill- Cipher Method in Galois Field ........................................................................ 46 

    5.3 Novel Method of Hill -Cipher using Exponentiation in GF(  ............................................... 49 

Chapter VI 

Conclusion ......................................................................................................................................... 51 

6.1 Conclusion  .................................................................................................................................... 52 

6.2 Future work ................................................................................................................................... 52 

References ......................................................................................................................................... 55 

 

 

 

 

 

 



iv 
 

 

 

 

ABSTRACT 

 

 

 
Security can only be as strong as the weakest link. In this world of Cryptography, it is 

now well established, that the weakest link lies in the implementation of cryptographic 

algorithms. Galois field is extensively used in coding. Recently Galois field particularly 

GF(  has been used for Cryptography. Hill-cipher is an old symmetric key Technique of 

Cryptography. In this project, a novel method of Hill-cipher has been introduced in 

Cryptography. This new type of cipher matrix utilizes. The polynomials as element in GF(  . 

Simulation and results confirm the utility such a data security in a private network. In addition 

to this, encryption and decryption of data are implemented in GF(  using the principle of 

data  Chinese Remainder Theorem. 
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1.1  Introduction 

In this age of universal electronic connectivity, of viruses and hackers, of electronic 

eavesdropping and electronic fraud, there is indeed needed to store the information securely. 

This, in turn, led to a heightened awareness  to protect data and resources from disclosure, to 

guarantee the authenticity of data and messages, and to protect systems from network-based 

attacks.[1] cryptography, the science of encryption, plays a central role in mobile phone 

communications, pay-tv, e-commerce, sending private emails, transmitting financial 

information, security of ATM cards, computer passwords, electronic commerce digital signature 

and touches on many aspects of our daily lives . Cryptography is the art or science 

encompassing the principles and methods of transforming an intelligible message (plaintext) 

into one that is unintelligible (cipher text) and then retransforming that message back to its 

original form .In modern times, cryptography is considered to be a branch of both mathematics 

and computer science, and is affiliated closely with information theory, computer security, and 

engineering. 

Although in the past cryptography referred only to the encryption and decryption of 

message using secret keys. Nowadays, cryptography generally classified into two categories, the 

symmetric and asymmetric. Conventional Encryption is referred to as symmetric encryption or 

single key encryption. The Hill cipher algorithm in Galois field GF( using polynomial is one 

of the symmetric key algorithms that have several advantages in data encryption. Galois field is 

used for one of error detecting code. But, the inverse of the key matrix used for decrypting of 

the cipher text does not always exist. If the key matrix is not invertible, then encrypted text 

cannot be decrypted. In the Self-invertible matrix generation method, the key matrix used for 

the encryption is self invertible. So, at the time of decryption we need not find the inverse of the 

key matrix. 

In this thesis a modified method of Hill -cipher is developed by the principle of 

exponentiation operation on plain text in GF(  polynomial form. In these method minimal 

polynomials is used in decryption to find out the original cipher -text. Minimal polynomial is 

one that the original polynomial will become one after some repeated multiplication by itself. In 

Cipher text-only cryptanalysis of this method is very difficult. 

In the 3
rd

 part of the thesis another method of Chinese Remainder Theorem in Galois 

field has been developed. Minimal polynomial are the basic part of this algorithm. This 
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algorithm is an asymmetric key cryptography. In asymmetric key cryptography there two key 

present, one is private key another one is public key. The security of the RSA cryptosystem is 

based on the widely believed difficulty of factoring large number. One of the useful features of 

the Chinese remainder theorem is that it provides a way to manipulate (potentially very large) 

numbers mod N in terms of tuples of smaller numbers. This can be useful when  is 150 digits 

or more. However, it is necessary to know beforehand the factorization of N. 

 

1.2 Objectives 

 There are so many algorithms present to encrypt and decrypt the data for security 

purpose in cryptography. Hill cipher method is one of the monoalphabetic polygraphic 

substitution ciphers. The mathematician LESTER HILL in1929 first developed the Hill- cipher 

algorithm. But till now no one had done the Hill cipher method in Galois field using 

polynomial. In this algorithm, Galois is field is used to increase the speed of encryption in Hill 

cipher method. Also to avoid the wastage of bit pattern and for implementation efficiency, 

Galois field ( ) is used. In novel modified hill cipher method an exponential polynomial is 

used which is quite robust as for as cryptanalysis is concerned. But it has some mathematical 

complexity to find exponential. The Chinese remainder theorem (CRT) allows for an efficient 

and faster algorithms for implementation of the RSA algorithm.CRT avoids the complexity of 

the RSA decryption , where  specifies the modular multiplications necessary 

to perform the exponentiation and  determines the size of the intermediate results. The 

objective of this algorithm is that to reduce the size of both  &  for that it increases the speed 

of the algorithm. 

 

1.3 Layout of the Thesis 

 The remainder of the thesis is organized as follows. Chapter II gives a brief review 

literature. It also presents the recent developments of Hill cipher,  conversion, mathematical 

operation in Galois field & CRT theorem. Chapter III presents all the theorems and algorithms 

that are used in this thesis. Chapter IV contains the description of my whole project work i.e, 

modified Hill- cipher method in Galois field GF(  A novel modified  Hill- cipher method 

based on exponentiation value in GF(  and Modified CRT method in Galois field.  
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Simulation result for both for Hill cipher method and Modified CRT method using in Galois 

field are present in chapter V. Last but not the least chapter 6 contents the conclusion, 

application and future work.   
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This chapter gives a review of existing literature about Hill cipher and CRT method. A 

small overview about Galois field and Meressen prime number in cryptography. 

 

2.1 Cryptography 

Cryptography, a word with Greek origins, means‖ secret writing‖. Crypto is secret and 

grapy is writing .Cryptography is the science of using mathematics to transform the contents of 

information in secure mode and also immunes to attack. . Some of the common terms that are 

used in cryptosystems are explained here. The original message is called as the Plaintext. The 

disguised message is called as the Cipher text. The method of producing cipher text from 

plaintext using the key is called as Encryption. The reverse procedure of producing the 

plaintext from cipher text using the key is called as Decryption [3]. The science of breaking 

cryptosystems is called the Cryptanalysis. Cryptanalysis plays an important role in the 

cryptography because; it attacks the encoded message to produce the relevant plaintext. 

Virtually all encryption algorithms, both symmetric and public key, involve arithmetic 

operations on integers. For convenience and for implementation efficiency, Galois field is one 

that fit exactly into a given number of bits, with no wasted bit patterns. The high complexity of 

the arithmetic operations that are performed in these algorithms makes formal verification [4] of 

such circuits of utmost necessity. Galois field architectures are represented using modulo-2 

sum-of products (SOP) canonical form and are thus better expressed. In this paper, an 

isomorphism property between GF(   and , where  is used which decrease 

the time. 

The technique that is proposed in [5] is briefly stated here. 

Step 1) Simplify a given Galois field expression using well-known mathematical theorems in      

Galois field. 

Step 2) 

a. Transform the expressions into SOP form. 

b. Evaluate all multiplication using exponential representation of the Galois elements. 

c. Convert all elements in the expressions from exponential representation to vector 

representation of the elements. 
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d. Evaluate all addition over GF(  using vector representation. 

 

 Lehmer‘s algorithm is used to calculate the multiplicative inverse based on extended 

Euclidean   algorithm in Galois field. Extended Euclidean algorithm is derived from the ancient 

GCD method which is not suitable for higher order bit. This is primarily because a multi 

precision division operation is relatively expensive. Lehmer [6] observed that many of these 

division steps can be avoided. His idea was to extract the leading digits rˆ and sˆ of the inputs r 

and s, and run the Euclidean GCD algorithm on these single precision approximations of the 

inputs. In this electronics Letter we use this approach to develop a Lehmer‘s ‗fast‘ Euclidean 

algorithm for computing multiplicative inverses in Galois fields  

 

Algorithm. Lehmer-Based Inversion in  

Input: . 

Output:  

1 ; 

2.  

3.  

 

Lehmer step- Inputs and outputs:  

1.  

2.  

3. ; 

4.  

5.  

6.  

7.  

 

Euclidean step- Inputs and outputs:  

1.  
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Where   be the polynomial representation of an element of 

 and  its canonical basis representation. generator matrix. 

 

  

In classical cryptography, the Hill -cipher is a polygraphic substitution cipher based on 

linear algebra, in which it was practical (though barely) to operate on more than three symbols 

at once. Each letter is first encoded as a number. A block of  letters is then considered as a 

vector of  dimensions, and multiplied by a  matrix, modulo .The key size is the 

binary logarithm of the number of possible keys. There are matrices of dimension . 

Thus or about  is an upper bound on the key size of the Hill -cipher using 

 matrices. This is only an upper bound because not every matrix is invertible and thus 

usable as a key. The number of invertible matrices can be computed via the Chinese Remainder 

Theorem. i.e., a matrix is invertible modulo  if and only if it is invertible both  and 

. The number of invertible  matrices modulo  is equal to the order of the 

general linear group GF  [7]. 

The hallmark of conventional encryption is that the cipher or key to the algorithm is 

shared, i.e., known by the parties involved in the secured communication. Substitution Cipher is 

one of the basic components of classical ciphers. A substitution cipher is a method of encryption 

by which units of plaintext are substituted with cipher text according to a regular system; the 

units may be single letters (the most common), pairs of letters, triplets of letters, mixtures of the 

above, and so forth. The receiver deciphers the text by performing an inverse substitution [3]. 

The units of the plaintext are retained in the same sequence in the cipher text, but the units 

themselves are altered. There are a number of different types of substitution cipher. If the cipher 

operates on single letters, it is termed a simple substitution cipher; a cipher that operates on 

larger groups of letters is termed polygraphic. A monoalphabetic cipher uses fixed substitution 

over the entire message, whereas a polyalphabetic cipher uses a number of substitutions at 

different times in the message— such as with homophones, where a unit from the plaintext is 

mapped to one of several possibilities in the cipher text. Hill cipher is a type of monoalphabetic 

polygraphic substitution cipher.  

http://en.wikipedia.org/wiki/Classical_cryptography
http://en.wikipedia.org/wiki/Substitution_cipher#Polygraphic
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Dimension
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Binary_logarithm
http://en.wikipedia.org/wiki/Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/General_linear_group
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In the improved version of the hill cipher, a randomly generated non-singular matrix is 

used as encryption key, and the inverse of the matrix is used as the decryption key. But the 

inverse of the matrix is always not present which will make difficult in decryptions. The self 

invertible matrix of encryption key is created to overcome this drawback. In the self-invertible 

matrix generation method, the matrix used for the encryption is itself self-invertible. Moreover, 

this method eliminates the computational complexity involved in finding inverse of the matrix 

while decryption [8]. 

Matrix cryptosystem, like Hill cipher, are resistant to frequency analysis. The key is a 

non singular matrix, for example  matrix  . A modular non-singular key-matrix for matrix 

ciphers can be generated and these results are applied to cryptography and computer security. 

For example a mutual authentication protocol based on Hamiltonian cycle in directed weight 

graphs and modular matrix algebra has been purposed. 

The residue-to-binary (R/B) conversion is the crucial step for any successful RNS 

application. The traditional technique of the (R/B) conversion is based on the Chinese 

Remainder Theorem (CRT). This method has a disadvantage of requiring a  

operation, where the dynamic range  is a large-valued integer. The dynamic range of multiple 

integers that can be uniquely determined from their residue sets [9]. Recently, some new general 

R/B conversion algorithms, the New Chinese Remainder Theorems have been introduced, based 

on three conjunctive module, which improve the CRT in many aspects. These three conjunctive  

module sets, the converters based on the New CRT-I are consistently faster while requiring less 

hardware, compared to the previous residue-to-binary converters which are designed based on 

the traditional Chinese Remainder Theorem [10]. 

The two most important considerations when designing RNS systems are the choices of 

the module sets and the conversion from the residue to the weighted binary system. The Residue 

Number System (RNS) is an integer system capable of supporting parallel, carry-free, high-

speed arithmetic. An important area of application of the RNS is Digital Signal Processing 

(DSP) whose Intensive computations such as digital filtering, convolutions, correlation, DFT 

and FFT are required. 

CRT has various generalizations. A different generalization of CRT has recently 

purposed in, where (instead of single integer in CRT) multiple integers need to be determined 

from (not a sequence of remainders) but a sequence of sets, residue sets, of remainders. A 
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residue set consists of the remainders of multiple integers modulo. A modulus integer, the 

residue set and the multiple integers is not specified. The generalized CRT was motivated from 

the determination of multiple frequencies in super positioned signal of multiple sinusoids from 

its multiple under sample wave forms. As like as sensor network, the multiple sensors have low 

power and low transmission rates, and their sampling rates may be low and much lower than 

nyquist rate of a signal of interest in the field. CRT can also apply in multiple frequency 

determination from multiple under sampled waveforms, such as, from low functionality sensors. 

In Chinese Remainder Theorem, if a codeword is corrupted in (2)  coordinates, then 

there exists a unique integer whose corresponding codeword differs from the corrupted word in 

at most places. Furthermore, Mandelbaum shows how can be recovered efficiently given the 

corrupted word provided that these are very close to one another.[CRT10]. Many emerging 

network applications are based upon group communication models and are implemented with 

multicast communications. In a pair of key management schemes, the session key is distributed 

mathematically based upon the Euler-Fermat Theorem, such that upon receiving the broadcast 

keying material known as the rekey message, each member in the privileged multicast group 

can derive with a modular operation this group oriented common shared secret. The Chinese 

Remainder Theorem, present some unusual analysis results concerning the two novel rekey 

schemes. Both schemes are revealed to have failed to effectively protect the multicast session 

key[CRT11]. 
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3.1  Definition   of   Cryptography    

―Cryptography is the science of using mathematics to transform the contents of 

information in secure mode and also immunes to attack‖. 

 

3.2 Cryptographic Goals 

However, there are other natural cryptographic problems to be solved and they can be 

equally if not more important depending on who is attacking you and what you are trying to 

secure against attackers. The cryptographic goals covered in this text (in order of appearance) 

are privacy, integrity, authentication, and no repudiation. 

 

 

Fig. 1 

These three concepts form what is often referred to as the CIA triad. The three concepts 

embody the fundamental security objectives for both data and for information and computing 

services. FIPS PUB 199 provides a useful characterization of these three objectives in terms of 

requirements and the definition of a loss of security in each category: 

 Confidentiality: Preserving authorized restrictions on information access and 

disclosure, including means for protecting personal privacy and proprietary information. 

A loss of confidentiality is the unauthorized disclosure of information. 

 Integrity: Guarding against improper information modification or destruction, and 

includes ensuring information non-repudiation and authenticity. A loss of integrity is the 

unauthorized modification or destruction of information. 
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  Availability: Ensuring timely and reliable access to and use of information. A loss of 

availability is the disruption of access to or use of information or an information system. 

Although the use of the CIA triad to define security objectives is well established, some 

in the security field feel that additional concepts are needed to present a complete picture. Two 

of the most commonly mentioned are: 

 Authenticity: The property of being genuine and being able to be verified and trusted; 

confidence in the validity of a transmission, a message, or message originator. 

 Accountability: The security goal that generates the requirement for actions of an entity 

to be traced uniquely to that entity. 

Generally there are two types key present 

1. Symmetric-key 

2.  Asymmetric-key 

 

3.3  Symmetric key encryption 

The universal technique for providing confidentiality for transmitted data is symmetric 

encryption. Symmetric encryption also referred to as conventional encryption or single-key 

encryption was the only type of encryption in use prior to the introduction of public-key 

encryption in the late 1970s. Countless individuals and groups, from Julius Caesar to the 

German U-boat force to present-day diplomatic, military, and commercial users, use symmetric 

encryption for secret communication. It remains by far the more widely used of the two types of 

encryption. 

 A symmetric encryption scheme has five ingredients 

 Plaintext: This is the original message or data that is fed into the algorithm as input. 

 Encryption algorithm: The encryption algorithm performs various substitutions and 

transformations on the plaintext. 

 Secret key: The secret key is also input to the encryption algorithm. The exact 

substitutions and transformations performed by the algorithm depend on the key. 
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  Fig. 2 Symmetric key encryption 

 

 Ciphertext: This is the scrambled message produced as output. It depends on the 

plaintext and the secret key. For a given message, two different keys will produce two 

different ciphertexts. 

 Decryption algorithm: This is essentially the encryption algorithm run in reverse. It 

takes the ciphertext and the secret key and produces the original plaintext. 

There are two requirements for secure use of symmetric encryption: 

1. We need a strong encryption algorithm.  

2. Sender and receiver must have secured obtained, & keep secure, the secret key. 

 

3.4   Symmetric-key vs. Public-key Cryptography 

Symmetric-key and public-key encryption schemes have various advantages and 

disadvantages, some of which are common to both. This section highlights a number of these 

and summarizes features pointed out in previous sections. 

3.4.1 Advantages of symmetric-key cryptography 

1. Symmetric-key ciphers can be designed to have high rates of data throughput. Some 

hardware implementations achieve encrypts rates of hundreds of megabytes per second, 
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while software implementations may attain throughput rates in the megabytes per 

second range. 

2. Keys for symmetric-key ciphers are relatively short. 

3. Symmetric-key ciphers can be employed as primitives to construct various 

cryptographic mechanisms including pseudorandom number generators, hash functions, 

and computationally efficient digital signature schemes, to name just a few. 

4. Symmetric-key ciphers can be composed to produce stronger ciphers. Simple 

transformations which are easy to analyze, but on their own weak, can be used to 

construct strong product ciphers. 

5. Symmetric-key encryption is perceived to have an extensive history, although it must be 

acknowledged that, notwithstanding the invention of rotor machines earlier, much of the 

knowledge in this area has been acquired subsequent to the invention of the digital 

computer, and, in particular, the design of the Data Encryption Standard  in the early 

1970s. 

3.4.2 Disadvantages of symmetric-key cryptography 

1. In a two-party communication, the key must remain secret at both ends. 

2. In a large network, there are many key pairs to be managed. Consequently, effective key 

management requires the use of an unconditionally trusted TTP. 

3. In a two-party communication between entities A and B, sound cryptographic practice 

dictates that the key be changed frequently and perhaps for each communication session. 

4. Digital signature mechanisms arising from symmetric-key encryption typically require 

either large keys for the public verification function or the use of a TTP. 

3.4.3 Advantages of public-key cryptography 

1. Only the private key must be kept secret (authenticity of public keys must, however, be 

guaranteed). 

2. The administration of keys on a network requires the presence of only a functionally 

trusted TTP as opposed to an unconditionally trusted TTP. Depending on the mode of 

usage, the TTP might only be required in an ―off-line‖ manner, as opposed to in real 

time. 
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3. Depending on the mode of usage, a private key/public key pair may remain unchanged 

for considerable periods of time, e.g., many sessions (even several years). 

4. Many public-key schemes yield relatively efficient digital signature mechanisms. The 

key used to describe the public verification function is typically much smaller than for 

the symmetric-key counterpart. 

5. In a large network, the number of keys necessary may be considerably smaller than in 

the symmetric-key scenario. 

3.4.4 Disadvantages of public-key encryption 

1. Throughput rates for the most popular public-key encryption methods are several orders 

of magnitude slower than the best known symmetric-key schemes. 

2. Key sizes are typically much larger than those required for symmetric-key encryption, 

and the size of public-key signatures is larger than that of tags providing data origin 

authentication from symmetric-key techniques. 

3. No public-key scheme has been proven to be secure (the same can be said for block 

ciphers). The most effective public-key encryption schemes found to date have their 

security based on the presumed difficulty of a small set of number-theoretic problems. 

4. Public-key cryptography does not have as extensive a history as symmetric-key 

encryption, being discovered only in the mid 1970. 

 

3.5  Number Theory 

Number theory is the branch of pure mathematics concerned with the properties of 

numbers in general, and integers in particular which is essential in the design of cryptographic 

algorithms. Number theory may be subdivided into several fields, according to the methods 

used. This chapter provides an overview of the concepts along with the proofs of the theorems 

used in these algorithms. The various theorem have been elucidated which are further applied in 

Hill cipher and CRT in my work. 

 

 

 

http://en.wikipedia.org/wiki/Pure_mathematics
http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Integer
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3.6    Modular Arithmetic 

 Modular arithmetic is a system of arithmetic for integers, where numbers "wrap 

around" after they reach a certain value—the modulus. The analysis presented here for 

generation of self repetitive matrix is valid for matrix of positive integers that are the residues of 

modulo arithmetic on a prime number. So in analysis the arithmetic operations presented here 

are addition, subtraction, Unary operation, Multiplication and division. 

 

SR. 

No. 

 

Property 

 
Expression 

1. 
Commutative 

Law 

 

 

2. 
Associative 

Law 

 

3. 
Distributive 

Law 

 

 

4. Identities 
 

 

5. Inverse 

 

 

 

 

Table-1 exhibits the properties of modulo arithmetic 

 

The Modulo operator have the following properties: 

1.  

2.  

http://en.wikipedia.org/wiki/Arithmetic
http://en.wikipedia.org/wiki/Integer
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3.  

4.  and  

 

The modulo arithmetic have the following properties: 

Let  the set residues modulo . If modular arithmetic is performed within 

the set , the following equations present the arithmetic identities: 

1. Addition:  

2. Subtraction:  

3. Multiplication:  

4. Negation:  

5. Division:  

6. Multiplicative inverse:  

 

3.7   Galois Field 

The arithmetic operations in the Galois field have several applications in coding theory, 

Computer algebra and cryptography. Galois field  is the  set  of  all  positive  integer  from  

  where    is  a prime  number .It  is  denoted  by GF(P
M

)  where    is  any 

positive value.  Many devices that perform functions such as error-control encoding, error 

detection, and error correction, operate by performing Galois field arithmetic over In 

practice, most implementations take  and use binary digits (bits) to represent elements 

from the field. Performing Galois field arithmetic operations over GF(P
M

)  requires addition and 

multiplication . With , addition and multiplication modulo  become the 

exclusive-OR and logical-AND function, respectively. For this reason, and the ease with which 

a symbol of size may be handled in a binary system [e.g., a single byte may be represented as 

an element from . Galois fields of size are widely used. 

Virtually all encryption algorithms, both symmetric and public key, involve arithmetic 

operations on integers. If one of the operations that are used in the algorithm is division, then we 

need to work in arithmetic defined over a field. For convenience and for implementation 

efficiency, we would also like to work with integers that fit exactly into a given number of bits, 
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with no wasted bit patterns. That is, we wish to work with integers in the range 

through , which fit into an -bit word. 

Suppose we wish to define a conventional encryption algorithm that operates on data  

bits at a time and we wish to perform division. With  bits, we can represent integers in the 

range  through . However,  is not a prime number, so that if arithmetic is performed in 

 (arithmetic modulo ), this set of integers will not be a field. The closest prime number 

less than  is . Thus, the set , using arithmetic modulo , is a field. However, in 

this case the -bit patterns representing the integers  through  would not be used, 

resulting in inefficient use of storage. 

To summarize, we are looking for a set consisting of  elements, together with a 

definition of addition and multiplication over the set that define a field. We can assign a unique 

integer in the range through  to each element of the set. Keep in mind that we will not 

use modular arithmetic, as we have seen that this does not result in a field. Instead, we will show 

how polynomial arithmetic provides a means for constructing the desired field. It obeys all   the 

properties of Modular Arithmetic. 

 

An example of a GF(2
2
)    Field: 

 00 01 10 11 

00 00 01 10 11 

01 01 00 11 10 

10 10 11 00 01 

11 11 10 01 00 

 

Table-2 Addition & Multiplication 

 

3.8  Irreducible Polynomials 

A polynomial of degree n is an expression of the form 

 00 01 10 11 

00 00 00 00 00 

01 00 01 10 11 

10 00 10 11 01 

11 00 11 01 10 
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Before defining the operation on polynomials, it is required to know about the modulus 

polynomials. Addition of two polynomials never creates a polynomial out of the set. However, 

multiplication of two polynomials may create a polynomial with a degree more than n. This 

means it needs to divide the result by a modulus keep only the remainder. For the set of 

polynomials a group of polynomials of degree  is defined as the modulus. The 

modulus in this case acts as a prime polynomial, which means that no polynomial in the set can 

divide this polynomial with degree less than n. Such polynomials are referred to as Irreducible 

polynomials. 

For each, there is often more than one irreducible polynomial, which means when we 

define our we need to declare which irreducible polynomial we are using as the 

modulus. 

3.9   Primitive Polynomial 

Primitive polynomial is an irreducible polynomial that divides , where  is least 

integer in the form of   and  It is not easy to generate a primitive polynomial. 

This means that a primitive polynomial is necessarily an irreducible polynomial, but an 

irreducible polynomial is not necessarily a primitive polynomial. 

3.10 Modular   Polynomial   Arithmetic 

Consider the set  of all polynomials of degree  or less over the field . Thus, 

each polynomial has the form 
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where    ,  ,   

We have seen that addition of polynomials is performed by adding corresponding 

coefficients, and, in the case of polynomials over  addition is just the XOR operation. So, 

addition of two polynomials in GF(2
N
) corresponds to a bitwise XOR operation. 

With the appropriate definition of arithmetic operations, each such set  is a finite field. The 

definition consists of the following elements: 

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules of 

algebra, with the following two refinements. 

2. Arithmetic on the coefficients is performed modulo . That is, we use the rules of 

arithmetic for the finite field . 

3. If multiplication results in a polynomial of degree greater than , then the 

polynomial is reduced modulo some irreducible polynomial  of degree . That is, 

we divide by  and keep the remainder. For a polynomial , the remainder is 

expressed as  Subtraction is done by addition of additive 

inverse. 

3.11 Multiplication 
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Multiplication in polynomials is the sum of the multiplication of the each term of the  

polynomial with each term of the  polynomial. 

1. The coefficient multiplication is done in GF(2
N
)  

2. The multiplying  by results in . 

3. The multiplication may create terms with degree more than , which means results 

needs to reduced using a modulus polynomial. 

Example: The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2
8
) 

with the irreducible polynomial . Consider the two 

polynomials 

  and . Then 

 

. 

 

3.12 Division 

The division of a polynomial is done like the ordinary division of polynomial but the 

coefficient are obey the GF(2). We have shown that the elements of GF(2N) can be defined as the 

set of all polynomials of degree  or less with binary coefficients. Each such polynomial 

can be represented by a unique -bit value. Arithmetic is defined as polynomial arithmetic 

modulo some irreducible polynomial of degree . 
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3.13 Multiplicative Inverse 

Just as the Euclidean algorithm can be adapted to find the greatest common divisor of 

two polynomials, the extended Euclidean algorithm can be adapted to find the multiplicative 

inverse of a polynomial. Specifically, the algorithm will find the multiplicative inverse of 

 if the degree of  is less than the degree of  

and . If  is an irreducible polynomial, then it has no factor other 

than itself or , so that . The algorithm is as follows: 

Extended Euclid  

1.  ;  

   ; 

2.   ;  

               ,   

3. ; 

4.  

 

5.  

6.  

7.  

8. goto  

 

Although the Euler-Fermat Theorem is a well-studied component of the number theory 

and has contributed a lot to the cryptology, it should never be employed in a naive manner as 

observed in [13] [14].  

 



24 
 

3.14 Exponentiation 

In cryptography, a common modular operation is exponentiation .That is, we often need 

to calculate  

 

This exponentiation is mostly required for both encryption and decryption in RSA 

cryptosystem with very large exponentiation. With the use of this exponentiation we purposed 

one Hill cipher method.  It is very difficult to find out when it is very large. So there are two 

methods present to calculate the exponentiation of higher order. 

  

3.15 Fast Exponentiation 

 Fast exponentiation is possible using the square-and-multiple method. In traditional 

algorithms only multiplication is used to simulate exponentiation but in fast exponentiation 

algorithm uses both squaring and multiplication. The main idea behind this method is to treat 

the exponent as a binary number bits ( for example  In 

general  

 

 

Algorithm: 

Square-and-multiply  

{ 

  

                                             // x 

    { 

          If                       //multiply only if the bit is  

                

     } 

 

} 
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Multiplication 

(Initialization ) 

Squaring 

(initialization: ) 

  →  

          →  

          →  

  →  

         →  

Table-3: Calculation of  

 

3.16 Minimal Value Of Polynomial 

Minimal value of a polynomial is one that the exponent power of the polynomial in 

Galois field at which the result will be 1 which means the original polynomial will become one 

after some repeated multiplication by itself.   In mathematics, a Mersenne number is a positive 

integer that is one less than a power of two: 

 

where  is the degree of the primitive polynomial. 

 In case of primitive polynomial it satisfies the above condition. But in case of 

irreducible polynomial it does not satisfy the condition. Minimal values of irreducible 

polynomials are the factor of minimal value of the primitive polynomial.(3). 

Some examples are given in table which contains all the primitive polynomials and 

irreducible polynomials with respected minimal value. The star marks are not the primitive 

polynomial. 
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          m                       Primitive  Polynomial                 Minimal value 

           2                         3 

           3                         7 

                         7 

           4                       15 

                       15 

 (*)                     15(*) 

           5                       31 

                       31 

                       31 

                       31 

                       31 

                       31 

          6                      63 

                      63 

                      63 

                      63 

                      63 

                      63 

                      14(*) 

             7                      127 

                     127 

                     127 

                     127 

                     127 

                     127 

                     127 

                     127 

                     127 

                     127 

                     127 

                     127 

                      127 

                      127 

                      127 

                      127 

                      127 

 

 

Table - 4: List of primitive value and corresponding minimal value 
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3.17 Hill Cipher Encryption 

The Hill cipher, developed by the mathematician Lester Hill in 1929. The encryption 

algorithm takes m successive plaintext letters and substitutes for them m ciphertext letters. The 

substitution is determined by m linear equations in which each character is assigned a numerical 

value . Core of hill cipher is matrix manipulation. For , the 

system can be described as follows: 

 

 

 
 

This can be expressed in terms of column vectors and matrices:  

 

 where  and  are column vectors of length 3, representing the plaintext and the cipher 

text and  is a  matrix, which is the encryption key. All operations are performed  

here.   

Decryption requires the inverse of matrix . The inverse K-1 of a matrix K is defined by 

the equation. 

 , where  is the Identity matrix. 

NOTE: The inverse of a matrix doesn’t always exist, but when it does it satisfies the proceeding 

equation. 

 is applied to the cipher text, and then the plain text is recovered. In general terms 

we can write as follows:  

 For encryption:  

 For decryption:  

 

3.18 Traditional Chinese Remainder Theorem 

The CRT is used to solve a set of congruate equation with one variable but different 

module which is relatively prime, means reconstruction of integers in a certain range of their 

residues modulo a set of pair wise relatively prime module. 



28 
 

 The integers  through  in , can be reconstructed from their two residues modulo 

 and  (the relative ).The known residues of a decimal digit  

and .Therefore,  is an integer in  whose remainder on division by , is .The 

unique solution of . 

 

Theorem 1: 

Let m and n be integers with  and let  and  be any integers. 

Then simultaneous congruence‘s 

  

have  exactly one solution with  

 

Proof:  

We begin by solving the congruence‘s .The solution consists of all 

numbers of the form . We substitute this into second congruence, which 

yields ). 

 We are given that , so the linear congruence theorem tells us that 

there is exactly one solution  with . Then the solution to the original is given by  

   

This will be the only solution  with  since there is only  between  

and  , we multiply  to get . 

 Example:  

 For solution of three simultaneous congruence‘s 

  

Solution: 

Using the theorem,  

Let ,  and ; 

Let , ,  

The integers ,  are found by congruence  

Thus we have 35  ), 21  ), 15  ). So 

 are possible values and  
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This leads us define  as 

 

Remarks: Notice that in the congruence‘s  

 is the multiplicative inverse of  modulus  

 

 

3.19 Extension of the Theorem to Polynomials 

When trying to extend the definition of CRT to polynomials we presented a problem of 

the following kind: 

Example: 

  Find a polynomial that when it is divided by  remainder is , when it is 

divided by  remainder is , and when it is divided by  remainder is . 

 

Solution: 

 Using the theorem, we get  Notice that polynomial 

 can be a polynomial of degree at most 3. 

Let ,  ,    

now let , ,  

the polynomial degree in this particular case) are found by the congruence 

 

We now have (  

(  

(  

So  are possible values and  
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Thus in this way the theorem could be extended to polynomials as long as the module  are 

relatively prime to each other. 

 

Theorem 2: 

 Let  ) ) ) )  denote  prime polynomials of degree 

 that are relatively prime in pairs, and let  denote any  prime 

polynomials of degrees at most p-1.then the system of congruences  

 has a unique solution where 

 

 

Proof: 

Let   denoted polynomial obtained by multiplying together all the  , since 

 is a monic polynomial of degree one we can write it as ( , where  is one of the  

co-ordinate of our points. For each point (  we can write expression  

For which  is just   and     is the logarithm for finding .We now have 

our familiar    in the form of   

 for polynomials. A note of remarkable importance 

is the fact that the algorithm for   is the familiar Lagrance interpolation formula found in 

numerical analysis. 
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CHAPTER 4 
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4.1 Hill Ciphers 

Letter-by-letter substitution ciphers easily succumb to frequency analysis and so are 

notoriously unsecure. Polytrophic ciphers, by contrast, in which each list of n consecutive letters 

of the plaintext—an n-graph—is replaced by another n-graph according to some key, can be 

more challenging to break. The first systematic yet simple polygraphic ciphers using more than 

two letters per group are the Hill ciphers, first described by Lester Hill [4] in 1929.  For a 

polygraphic substitution, changing just one or two plaintext letters can completely change the 

corresponding cipher text! That is one reason that Hill ciphers are so difficult to crack. 

 

4.2 Traditional Hill Cipher 

The Hill cipher algorithm takes m successive plaintext letters and substitute‘s  cipher 

text letters for them. The substitution is determined by m linear equations in which each 

character is assigned a numerical value  . Let  be a positive 

integer, the idea is to take  linear combinations of the  alphabetic characters in one plaintext 

element and produce m alphabetic characters in one cipher text element. Then, a  matrix 

 is used as a key of the system such that is invertible modulo 26 [5]. Let  be the entry of  

 . For the Plaintext block ( ) (the numerical equivalents of m letters) and a key 

matrix   , the corresponding cipher text block (  ) be computed as 

Encryption 

(  

where  

 

The cipher text is obtained from the plaintext by means of a linear transformation. 

Decryption 

The reverse process, deciphering, is computed by 

(  
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Where  

 

 

Since the block length is  , there are  different m letters blocks possible, each of 

them can be regarded as a letter in a   - letter alphabet. Hill‘s method amounts to a 

monoalphabetic substitution on this alphabets [6].  

 We have not yet discussed one complication that exists in picking the encrypting matrix. 

Not all matrices have an inverse. The matrix will have an inverse if and only if its determinant 

is not zero, and does not have any common factors with the modular base. Thus, if we work 

 as above, the determinant must be nonzero, and must not be divisible by  or . If 

the determinant is , or has common factors with the modular base, then the matrix cannot be 

used in the Hill cipher, and another matrix must be chosen (otherwise it will not be possible to 

decrypt). Fortunately, matrices which satisfy the conditions to be used in the Hill cipher are 

fairly common. 

 

4.3 Modified Hill Cipher Method In Galois Field 

 This algorithm   generates random key matrix each block encryption instead of keeping 

the key matrix constant in Galois field. So it increases secrecy of the data. As Galois field is on 

of the error   detecting and correcting code it rectify the code. Randomly generated key matrix 

always generated the invertible key matrix in Galois matrix for encryption of the data. So that it 

avoids the drawback of the traditional method. As Galois field used the entire bit pattern, it 

increases the speed of the encryption. 

 

4.3.1 Encryption 

In this Hill cipher algorithm ASCII character is taken as the plaintext. Then each 

character is converted into corresponding nonnegative integers from the look up table. The 

lookup tables consist of all small alphabet, those are assigned as integers starting 

from  . But this is not an essential feature of the 

cipher. A block of m letters is then considered as a vector of n dimensions. Chose the key as a 

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Vector_space
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square matrix of size  in which  is the size of the block. Each element of key matrix 

express in Galois field. The whole matrix is considered the cipher key, and should be random 

provided that the matrix is invertible in modulo of an irreducible polynomial of degree  (to 

ensure decryption is possible). If the length of plain text is not an integral multiple of the key 

size , then add  as needed. Partition plaintext into  column vectors  . Each integer 

of the plaintext express in polynomial formats in Galois field. Then take the product of key 

matrix and each column vector , equivalently, form the matrix 

product .All the operation should be done in Galois field of modulo 

of irreducible polynomial of degree . Reassemble the consecutive columns of this product into 

a new vector w. Finally, decode w into the corresponding cipher text string of modulo 26. 

 Example: 

In Hill cipher  , the key matrix 

        

Where  = primitive polynomial of degree m. 

The cipher text of this key matrix is in polynomial form 

  

  

  

This case can be expressed in term of column vectors and matrices:   

 

 
 

 , where  and  are column vectors of length , representing the Cipher text 

and Plaintext respectively and  is a  encryption matrix. All operations are performed 

 . 

 

 

http://en.wikipedia.org/wiki/Key_%28cryptography%29
http://en.wikipedia.org/wiki/Random
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ALGORITHM FOR ENCRYPTION 

1.  is taken as plain text string. 

2.  is the integer vector, created from vector with the help of the look up table. 

3.  is the size of the block. 

4. A1 is the integer matrix generated after addition of extra bit in  (if necessary). 

5.  is the number of columns, which is a factor of . 

6. J is the no. of column vectors equal to ratio of length of  and . 

7.  is the equivalent set containing all the column vectors. 

8.  is the random key matrix of size  

9.  is the key matrix generated from , expressed in Galois field. 

10.  is the equivalent polynomial set of  expressed in Galois field. 

11. C is the vector equivalently generated by the multiplication of  with each column 

vector of  (i.e  ) with modulo of irreducible polynomial with 

degree m. 

12. T is the string of character s generated from  by the help of lookup table with 

. 

 

4.3.2 Decryption 

Decryption is the process of getting back the original message(plain text) from the  

encrypted message(cipher text). A Hill cipher is relatively immune from attack if its key size  

is large enough to preclude frequency analysis of -graphs. For decryption, first we have to 

convert the cipher text back into the vector with the same procedure that have taken in 

encryption. For decryption it require to calculate the modulo inverse of the key matrix . The 

inverse  of matrix  is defined by the equation 

 

where  is the matrix that is all zeros expect for ones along the main diagonal from upper 

left to lower right. Hence decryption matrix  is generated by multiplying the modulo inverse 

key matrix with the cipher text. All the operation in this process carried out in modulus of same 
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degree m irreducible polynomial in Galois field. Then the data is converted back into the integer 

form from the polynomial form then into the character string with the help of the lookup table. 

We can explain these as 

  

In general, the algorithm can be expressed as follows: 

  

  

The original message (i.e plaintext). 

 

ALGORITHM FOR DECRYPTION: 

1. Initially  string is converted into  vector with the help of the lookup table. 

2.  is the size of the block. 

3.  is the integer matrix generated after addition of extra bit in  (if necessary . 

4.  is the number of columns taken, which is the factor of . 

5. j  is no. of column vectors equal to ratio of length of and . 

6.  is the equivalent set containing all the column vectors.    

7.  is the set of column vector generated from  expressed in polynomial format in 

Galois field. 

8.  is the inverse  matrix, generated from  with modulus of degree m irreducible 

polynomial . 

9.  is the equivalent vector generated by the multiplication of  with each column   

vector  (i.e  ) with modulo of irreducible polynomial with 

degree . 

10.  is the integer vector generated from the . 

11.  is the string of characters generated from  with the help of lookup table of modulo 

. 
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Table -5: Lookup Table 

 

 

4.4 A Novel Modified Hill Cipher Method Based on Exponentiation Value in 

Gf (2) 

4.4.1 Encryption 

In this modified Hill cipher method encryption is done with another new operation 

which we can named as exponentiations .Exponentiation decreases the average number of 

multiplications required to compute  provided that  is supplied along with   [12]. 

The novel modified Hill cipher method is defined as follows 

 

 

 

where  

In case of polynomials in  for encryption the matrix  is a vector of polynomials 

in which represent ‗ ‘ bit of data. This  vector is the plain text vector is generated as 

before expressed in encryption algorithm step 9.   Matrix A is the key matrix consist of numbers 

a 0 i 8 q 16 y 24 

b 1 j 9 r 17 z 25 

c 2 k 10 s 18   

d 3 l 11 t 19   

e 4 m 12 u 20   

f 5 n 13 v 21   

g 6 o 14 w 22   

h 7 p 15 x 23   
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in Galois field of  where  is equal to .  is the cipher text matrix 

exponentiation as defined above is evaluated in mod of primitive polynomial of degree m. This 

results the cipher text matrix.  

For Hill cipher matrix the encryption is as follows: 

                          

 

Each element of  matrix and  vector are expressed in Galois field of mod of degree m 

of prime polynomial. The exponentiation  matrix is calculated as bellow 

 

 

Where  = primitive polynomial of degree m. 

This  vector converted into ASCII char with the help of the lookup table. 

 

ALGORITHM FOR ENCRYPTION: 

1.   is taken as plain text string. 

2.  is the integer vector created from  vector with the help of the look up table. 

3.  is the size of the block. 

4.  is the integer matrix generated after addition of extra bit in  if necessary. 

5.  is the number of columns taken, which is the factor of . 

6. J is the no. of column vectors is equal to ratio of length of  and . 

7.  is the equivalent set containing all the column vectors. 

8.  is the key matrix created of size . 

9.  is the key matrix generated from k expressed   in Galois field. 

10.  is the set has been generated from  which is expressed  in polynomial format in 

Galois field. 
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11.  is the vector equivalently generated by taking the exponentiation of each element of 

with each element of column vector . It is described bellow with modulo of 

irreducible polynomial of degree . 

 

12.  is the string of character generated from the  with the help of lookup table with 

modulo 26. 

 

4.4.2 Decryption 

For decryption, first we have to convert the cipher text back into the   string of integer 

vector with the same procedure that has taken in encryption. For decryption it require to 

calculate the modulo inverse of the key matrix with the help of multiplicative inverse of the 

matrix and the inverse of matrix with modulo m. After finding out the inverse of the matrix we 

take the exponentiation of the key matrix same that as described in encryption for generating the 

plaintext in Galois field  

It is one of the secure and fast Hill cipher algorithm for encryption. For Hill cipher 

matrix the decryption is as follows: 

                          

 

Each element of  matrix and  vector are expressed in Galois field of mod of degree 

of prime polynomial.  is the multiplicative inverse matrix of . The exponentiation matrix 

is calculated as below 

 

                  

As we know that  
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Now we get plain text matrix . 

 

 

ALGORITHM FOR DECRYPTION: 

1. Vector matrix   is converted into integer vector.  

2. Inverse of key matrix is calculated. 

3. Multiplicative inverse of the determinant of key matrix with modulo of  is found. 

4. Multiplicative inverse of the key matrix is calculated by simple multiplication of Output 

of step 3 and step2 with modulo m. Output of this step is denoted as . 

5. is the equivalent vector  generated by  taking the exponentiation of each element of  

with each element of column vector . It is described bellow with modulo of irreducible 

polynomial with degree . 

  

 

6.  is the string of character generated from the  with the help of lookup table with 

. 

 

4.5  Modified CRT in Galois Field  

 

4.5.1 Encryption 

 The CRT is used to solve a set of congruate equation with one variable but different 

module, which is relatively prime, means reconstruction of integers in a certain range of their 

residues modulo, a set of pair wise relatively prime module. In this method two prime 

polynomial  of different degree  respectively have taken which is relatively 
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prime to each other. A is the vector matrix of plain text is expressed in polynomial form in 

Galois field  Intermediated vector   is calculated as defined below: 

 

   

 

             where = quotient of the , when it is divided by the 1
st
 element of the  vector 

                        = remainder of the , when it is divided by the 1
st
 element of the  vector 

   Primitive polynomial of degree , where  

In this method another two prime polynomial  are also taken of same degree 

respectively. The cipher text  is the vector matrix in polynomial format is generated by 

taking the exponent of  where  is not the factor of product of  are the minimal 

polynomial of the  prime polynomial. Mathematically it express as below 

 

                         where  is the product of  

All the calculation is done in Galois field. 

 

ALGORITHM FOR ENCRYPTION: 

1.  are two prime polynomials taken with degree of   respectively. 

2.   is the plain text of string of ASCII characters. 

3.   is the integer vector created from . 

4. A matrix is the polynomial format of  vector matrix in the Galois field of modulo . 

where    

5. The formula for calculation of   is given below: 

  =  

where = quotient of the ,when it is divided by the 1
st
 element of the  vector 

                        = remainder of the , when it is divided by the 1
st
 element of the  vector 

   Primitive polynomial of degree , where  

6.  another two primitive polynomial with degree of  respectively. 
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7.   the minimal polynomials calculated from   respectively. 

8.   is the integer taken, which not the factor is of , where  and  are the 

minimal polynomials of the  prime polynomial. 

9.  is the cipher text matrix calculated as below 

 where  ×   

10.  is the encrypted string generated by conversion of the  into ASCII code  

 

4.5.2 Decryption 

Cryptosystem of CRT is highly vulnerable to attacks. The Chinese Remainder Theorem 

can also be used in Secret sharing, which consists of distributing a set of shares among a group 

of people who, all together (but no one alone), can recover a certain secret from the given set of 

shares. Each of the shares is represented in congruence, and the solution of the system of 

congruence using the Chinese remainder theorem is the secret to be recovered. Secret Sharing 

using the Chinese Remainder Theorem, along with the Galois field with special sequences of 

integers that guarantee the impossibility of recovering the secret from a set of shares with less 

than certain cardinality. 

For decryption of the CRT, initially it required to find out multiplicative inverse of 

exponent value of the cipher text with modulo of the product minimal value of the other two 

prime polynomial. Multiplicative inverse can be calculated with the help of extended Euclidean 

algorithm. This is the inter-mediate value. From this we can get the original message or 

plaintext. We can explain it in bellow 

 

ALGORITHM FOR DECRYPTION: 

1.  Vector matrix is converted into integer vector. 

2.  Multiplicative inverse of K with modulo   is calculated with the help of 

Extended Euclidean algorithm. 

3.  is the exponentiation of with modulo of primitive polynomial of degree M.  

4. Original message or plain text is calculate as below  

 

http://en.wikipedia.org/wiki/Secret_sharing
http://en.wikipedia.org/wiki/Secret_Sharing_using_the_Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Secret_Sharing_using_the_Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Secret_Sharing_using_the_Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Cardinality
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Where = integer vector of plaintext 

5. Plaintext is calculated from w1 matrix by conversion of corresponding ASCII code. 
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Chapter 5 
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Results: 

 

5.1 Result of Modified CRT in Galois Field  

5.1.1 Encryption 

W-plaintext= 

Cryptographyistheartorscienceencompassingtheprinciplesandmethodsoftransforminganintelligib

lemessageintoonethatisunintelligibleciphertextandthenretransformingthatmessagebacktoitsorigin

alform 

 

W1-integer= 

     99   114  121  112   116   111  103  114  97  112  104  121  105  115  116  104  101   97  114   

116  111  114  115   99  105  101  110   99  101  101  110   99  111  109  112   97  115   115  

105   110  103  116  104  101  112  114  105  110  99  105  112  108  101  115   97  110  109  

101  116   104  111  100  115  111  102  116  114   97  110  115  102   111  114  109  105  110  

103   97   110  105  110  116  101  108  108  105  103  105   98  108  101  109  101  115  115   

97  103   101  105  110  116  111  111   110  101  116  104   97  116  105  115  117  110  105  

110  116   101  108   108   105  103  105   98  108  101  99  105  112  104  101  114  116  101  

120  116 

97  110  100  116  104  101  110  114  101  116  114   97  110  115  102  111 114  109  105  110   

103  116  104  97  116  109  101  115  115   97 103  101  98   97   99  107  116  111  105   116 

115  111  114  105  103  105  110   97  108  102  111  114  109 

 

>>P1=1      0      1      1 

 

>> P2=1      0      0      1      0      1 

 

q1=1      1      0      1 

 

>> q2=1      0      1      0      0      1 
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k=17 

 

>> k1=7 

 

> k2 =31 

 

C=,üË±]ÄüdËîE±îÃdü±]ü,EÃþ,ÃÃþ,] ËdEþÄ±îÃËüEþ,EËûÃdþ Ã±î]]ô±üdþô]ü EþÄdþEþ±Ãû

ûEÄEìûÃ ÃdÄÃEþ±]]þÃ±îd±EÁþEþ±ÃûûEÄEìûÃ,EËîÃü±Ãdþ±îÃþüÃ±üdþô]ü EþÄ±îd± Ãd

ÄÃìd,÷±]E±]üEÄEþdûô]ü 

 

5.1.2 Decryption 

 

=166 

 

=113   102   110   100    96   126   117   102   115   100   121   110   120   103   96  121   19    

115   102    96   126  102  103   113   120   119   127   113   119   119   127   113   126  124    

100  115  103  103  120 127   117   96  121  119   100  102  120   127  113   120   100  125  119   

103    115   97  118  124  119  96  121  126  118  103  126 116  96  102  115  127   103  116  

126  102    124  121  127  117  115  121  120  127  96  119  125   125  120  117  120  112  125  

119  124    119   103  103  115  117  119  120  127  96  126  126  127   119   96  121  115  96  

120 103   97    127  120  127   96  119  125  125  120  117  120  112  125  119  113  120  100  

121  119 102  96 

119 111  96  115  127  118  96 121 119  127 102  119  96  102  115  127  103  116  126  102   

124 120  127  117  96  121  115  96 124  119  103  103  115  117  119  112  115  113  122 96    

126  120  96  103  26  102  120  117  120  127  115 125  116  126  102  124 

 

>> w1= 

Cryptographyistheartorscienceencompassingtheprinciplesandmethodsoftransforminganintelligib

lemessageintoonethatisunintelligibleciphertextandthenretransformingthatmessagebacktoitsorigin

alform 
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Elapsed time is 2048.046575 seconds. 

 

5.2 Result of Modified Hill Cipher Method in Galois Field 

5.2.1 Encryption 

 

P = 

Cryptographyistheartorscienceencompassingtheprinciplesandmethodsoftransforminganintelligib

lemessageintoonethatisunintelligibleciphertextandthenretransformingthatmessagebacktoitsorigin

alform 

 

A =  

     2  17  24  15  19  14   6  17  0  15  7  24  8  18  19  7  4  0  17  19  14  17  18  2   8  4  13  2   4     

4  13  2  14  12  15   0  18  18  8  13  6  19  7   4  15 17  8  13  2  8 15 11  4  18  0 13  3  12  4 19     

7  14  3 18  14  5 19 17   0  13  18  5  14  17 12  8  13  6  0  13  8  13  19  4  11  11  8  6   8 1  11     

4  12  4 18  18 0  6  4  8  13  19  14  14  13  4  19  7  0  19  8  18  20  13  8  13  19  4  11  11  

8  6  8  1  11  4  2  8 15  7  4  17  19  4  23  19  0  13  3  19  7   4  13  17  4  19  17   0  13  18  5    

14  17  12  8  13  6  19  7  0  19  12   4  18  18  0  6  4  1  0  2  10  19  14  8  19  18  14  17   8  6     

8   3  0  11  5  14  17 12 

>>M=5 
 

 N = 5 

 

K = 

    28    15    16    24    25 

     6     2    10    16    21 

     9    31    13    20    14 

    21    18     7     6    18 

     9    13    18    12    25 

  

  C = 
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 2 7  6 25 11  20  16  11 10   6   19  29  24  27  13  22   1   10   19   20  30  22   31   14  11    

21  31  2  19  30  5  31  15   6  4  30  7  2  20 25  22  27 19 29  18  29 21 24 7  8  16  5  20  4  21     

12  31 29  11   3   9  29  16  18  14   9   0   20   5  28 15 1 16  7   8  2  17  4  10   11   30   21   9      

3  20  15  5   23 14  18   11  12  8  1  17   5   24   9  24   22  22   25  2  14  19  18  29  5  12  11    

14  22  31 0  28  28   3   7  28  29  8  8  16  20  22  25  12   9   0  20  20  0  9  5  19   0  22   0     

20  26  24  3  4  28  11  6  1  20  30  21  20  9  30  20  29  18   5  23 24  21 27  4   0   9  29  19  

21     17  13  25  5  30  21 10  25  0 11  3  2  6  8  3  26  6  4  24  25  28  1  7 

 

>>T 

Gzluqlkgtynwbktuwolvctfpgehcuzwtsvyhiqfuevmldjqsojaufpqhicreklvjdupfxoslmsbrfyjywwzco

tsfmlowadhsiquwzmjauuajptawauydelgbuvujusfxyveattvrnzfvkzaldcgidgeyzbhcbhrtdkcletdcgid

geyzbhc 

 

5.2.2 Decryption 

 

 =  

     27      2      8     29     12 

     16      5     24      6      7 

      8     11     15      5     22 

      0     17     15      7     30 

      2      4     17     28     15 

 

R1= 

   2  17  24  15  19  14    6  17   0  15   7  24   8  18  19   7   4   0  17  19  14   17  18   2   8    4     

13   2  4   4  13    2   14   12   15  0  18  18   8  13  6  19  7   4  15  17   8  13  2   8  15   11   4   18      

0  13  3  12   4  19   7   14    3  18 14  5 19 17  0  13 8   5  14  17  12   8  13   6    0    13   8  13     

19  4  11  11   8   6   8   1  11   4   12    4  18   18   0    6  4   8   13  19  14  14  13   4   19   7    0     

19  8 18  20  13   8  13  19   4  11 11   8   6   8  1  11  4  2  8  15  7    4   17  19  4   23  19   0   13      

3  19   7   4  13  17   4  19  17   0   13 18  5  14  17  12  8  13  6  19   7   0  19  12   4  18  18   0      

6   4   1   0   2  10  19 14  8  19  18  14  17   8   6   8  13  0  11   5  14  17  12 
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T = 

Cryptographyistheartorscienceencompassingtheprinciplesandmethodsoftransforminganintelligib

lemessageintoonethatisunintelligibleciphertextandthenretransformingthatmessagebacktoitsorigin

alform. 

Elapsed time is 4.057650 seconds. 

 

5.3 Result of Novel Method of Hill Cipher using Exponentiation in  

 

5.3.1 Encryption 

 

Please enter a sentence – 

 

'cryptographyistheartorscienceencompassingtheprincipleandmethodsoftransforminganintelligibl

emessageplaintextintoonethatisunintelligibleciphertextandthenretransformingthatmessagebackto

itsoriginalform' 

 

int_word = 

 

  3  18  25  16  20  15   7  18   1  16   8  25   9  19  20   8   5   1  18  20  15  18  19   3  9   5  14         

3   5   5  14   3  15  13  16   1  19  19   9  14   7  20   8   5  16  18   9  14   3   9  16  12   5   1  14     

4  13   5  20   8  15   4  19  15   6  20  18   1  14  19   6  15  18  13   9  14   7   1  14   9  14  20     

5  12  2   9   7   9   2  12   5  13   5  19  19   1   7   5  16  12   1   9  14  20   5  24  20   9  14  20    

15  15  14   5  20   8   1  20   9  19  21  14   9  14  20   5  12  12   9   7   9   2  12   5   3   9  16   8     

5  18  20   5  24  20   1  14   4  20   8   5  14  18   5  20  18   1  14  19   6  15  18  13   9  14   7    

20   8   1  20  13   5  19  19   1   7   5   2   1   3  11  20  15   9  20  19  15  18   9   7   9  14   1 

12   6  15  18 13 

 

the number of row you want = 2 

input no. of bits u want = 7 
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ket_word= 

 

 

tran_dec_mat = GF(2^7) array. Primitive polynomial = D^7+D^3+1 (137 decimal) 

  

Array elements =  

  

  52  103  24  73  106   3   7  10  50  16  54 114  76  11  72  82 17  85  84  89  66  12  84 100     

125  66  58  59  95  19  58 59  55  91  18  50  121  7 122  34  44  98  40   61   6   114  122          

34  66 119  112  74   17   85  104  35  119   35  72   82  40 93  100  111   4  12  22   94  10          

62  59  5  65  105  122  34  21  107  71  40  57  38   120  67  104   56  119   5   103  96 38        

22  56  124  23  91 25  92  112  74  109  9  57  38 127  5   83  122   57   38   13  49  100  77         

72  82  40  20  76  11  59  104  122  34   35  1  27   32  45  17  44   83  34    24   66  119  44          

11 109  41 35  1 64 54  110   14   45  90   40  61  28   80  5 76  22   94  10   62   59  5  65         

105  122   34   44   98   64   36  68   83  56  124  23  91  25   92   4  8  112   105  106   3  21         

26  100   111  73   3   119   5  84   110  48  16  66  12  43  66 

 

tran_char = 

 

Çx©ÊcgjpÒ¬k¨²qµ´¹¢l´ÄÝ¢¿s»rÙgÚÂ•fÒÚ¢×ÐªqµÈ×¨²½ÄÏdlv¾je¡ÉÚuË§Ø£È×eÇÀvÜw»y

¼ÐªÍißo³ÚmÄ¨²t¬kÈÚa{•q³x¢×kÍa În•º•|°e¬v¾je¡ÉÚÂ ¤³Üw»y¼dhÐÉÊcuzÄÏ©c×e´Î•p¢l

¢ 

 

5.3.2 Decryption 

exp_value  =   127 
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Inverse key martrix 

 

 

 

>> res1_dec_mat 

  

3  18  25  16  20  15   7  18  1 16  8  25   9  19   20   8  5  1  18   20  15   18  19  3  9  5   14  3         

5   5  14  3  15  13  16  1 19  19   9  14  7  20   8   5  16  18  9  14  3   9  16  12   5  1   14   4         

13  5  20  8  15  4   19  15   6  20  18  1  14  19  6  15  18  13  9  14  7  1  14   9  14  20  5  12      

12  9  7   9  2  12   5   13  5  19  19   1  7  5 16  12  1  9  14   20  5  24   20  9  14  20  15 15         

14   5  20   8   1  20  9  19  21  14   9  14   20   5  12   12  9  7  9  2  12  5 3  9 16  8  5  18          

20  5  24  20  1  14  4  20   8   5  14   18   5   20  18  1  14   19   6  15  18  13   9  14  7   20           

8  1  20  13  5  19  19   1  7  5  2   1   3  11  20  15   9  20  19  15   18   9    7     9   14   1  12          

6  15  18  13  26 

res_char = 

 

cryptographyistheartorscienceencompassingtheprincipleandmethodsoftransforminganintelligible

messageplaintextintoonethatisunintelligibleciphertextandthenretransformingthatmessagebacktoit

soriginalform 

 

 

Elapsed time is 14.143951 seconds. 
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Chapter 6 
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6.1 Conclusion 

Arithmetic operations in Galois Fields GF(2
M

) play an essential role in the area of 

communications including error-correcting codes, cryptography, and digital signal processing. 

In these applications, area and speed requirements are essential. Therefore, an efficient 

hardware structure for such operations is desirable. The efficiency of these applications heavily 

depends on the efficiency of the arithmetic operations in Galois fields like addition (sum), 

multiplication (product), inversion, and exponentiation. So all  the work done in this project  

related to  Galois field. With extensive simulation studies, it is shown that modified Hill cipher 

method is one of the secure method of encryption in Galois field as compared to any other 

encryption method, because the bit pattern of the message and higher order key size matrix is 

difficult to crack the message. As this algorithm uses a different key for each block encryption 

thereby significantly increases its resistance to various attacks.  In this method, the 

exponentiation of data represented in Galois field which is computationally quite efficient 

compare to normal exponentiation. It is very tedious and computationally very intense to crack 

the code. Cipher text-only cryptanalysis of Hill cipher is very difficult. Cryptosystem of CRT is 

highly vulnerable to attacks. Secret Sharing using the Chinese Remainder Theorem, along with 

the Galois field with special sequences of integers that guarantee the impossibility of recovering 

the secret form a set of shares with less than a certain cardinality. 

 

6.2  Future Work 

 

 Though it is very complicated to find out the inverse of higher order matrix in 

polynomial modular arithmetic, It is proposed to developed an self invertible matrix in 

Galois field which will provide the robustness of the Hill cipher method with the higher 

order of the key size. For finding out, the self invertible matrix 1
st
 we have to find out 

the Eigen values of the matrix of higher order key size which is very mathematically 

complicated one in polynomial Galois field.  

 

 Among basic arithmetic operations in multiplicative inversion specially in 

extended Euclidean algorithm and exponentiation using square-and multiply algorithm 

is the most time consuming which increases cost .Recently one paper is published on 

http://en.wikipedia.org/wiki/Secret_Sharing_using_the_Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Cardinality
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finding out the Inversion in  suitable for Implementation Using a Polynomial 

Multiply Instruction on  [15]. So it is proposed to apply this algorithm in the 2
nd

 

Hill cipher method and modified CRT method reduction of computation time [16]. 
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