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ABSTRACT 

As the growing demand for mobile communications is constantly increasing, the need for better 

coverage, improved capacity, and higher transmission quality rises. Thus, a more efficient use of 

the radio spectrum is required. A smart antenna system is capable of efficiently utilizing the 

radio spectrum and is a promise for an effective solution to the present wireless system problems 

while achieving reliable and robust high-speed, high-data-rate transmission. Smart antenna 

technology offer significantly improved solution to reduce interference level and improve system 

capacity. With this technology, each user’s signal is transmitted and received by the base station 

only in the direction of that particular user. Smart antenna technology attempts to address this 

problem via advanced signal processing technology called beamforming. 

The adaptive algorithm used in the signal processing has a profound effect on the 

performance of a Smart Antenna system that is known to have resolution and interference 

rejection capability when array steering vector is precisely known. Adaptive beamforming is 

used for enhancing a desired signal while suppressing noise and interference at the output of an 

array of sensors. However the performance degradation of adaptive beamforming may become 

more pronounced than in an ideal case because some of underlying assumptions on environment, 

sources or sensor array can be violated and this may cause mismatch. There are several efficient 

approaches that provide an improved robustness against mismatch as like LSMI algorithm.  

 Neural network is a massively parallel distributed processor made up of simple 

processing units, which has a natural propensity for storing experimental knowledge and making 

it available for use. Neural network methods possess such advantages as general purpose nature, 

nonlinear property, passive parallelism, adaptive learning capability, generalization capability 

and fast convergence rates. Motivated by these inherent advantages of the neural network, in this 

thesis work, a robust adaptive beamforming algorithm using neural network is investigated 

which is effective in case of signal steering vector mismatch. This technique employs a three-

layer radial basis function neural network (RBFNN), which treats the problem of computing the 

weights of an adaptive array antenna as a mapping problem. The robust adaptive beamforming 

algorithm using RBFNN, provides excellent robustness to signal steering vector mismatches, 

enhances the array system performance under non ideal conditions and makes the mean output 

array SINR (Signal-to-Interference-plus- Noise Ratio) consistently close to the optimal one.  
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       Chapter   

     1                          INTRODUCTION 

 

1.1 Introduction 

 

In recent years a substantial increase in development of broadband wireless access technologies 

for evolving wireless internet services and improved cellular system has been observed because 

of them there is traffic that demands on both the manufacturer and operators to provide sufficient 

capacity in the networks. This becomes major challenging problems for service provider to solve 

since there exists certain negative factors in the radiation environment contributing to limit the 

capacity. As the growing demand for mobile communications is constantly increasing, the need 

for better coverage, improved capacity, and higher transmission quality rises. Thus, a more 

efficient use of the radio spectrum is required. Smart antenna systems [1] are capable of 

efficiently utilizing the radio spectrum and are a promise for an effective solution to the present 

wireless systems problems while achieving reliable and robust high-speed, high-data-rate 

transmission. In fact, smart antenna systems comprise several critical areas such as individual 

antenna array design, signal processing algorithms, space-time processing, wireless channel 

modeling and coding, and network performance. 

 

In order to manipulate the radiation pattern of an antenna structure with software, 

multiple antennas are required instead of a single antenna. Unlike a single antenna, which has a 

fixed radiation pattern, the radiation pattern of an antenna array can be quite flexible. The 

flexibility varies according to the algorithm being implemented in the system. The most straight 

forward approach to generate a flexible radiation pattern is the switched lobe (SL) or the 

switched beam technique where the antenna array contains a number of highly directional 

antennas. Each of the antenna points are in a slightly different direction. The system then 

analyzes the received signal from each of the antennas and selects the one that has the best 

signal. A more intelligent approach would be, instead of switching antennas, determine the 

direction of arrival (DoA) of the signal. Once the DoA is obtained, the system uses the antenna 

array to form a highly directional beam pointing toward the user. Both methods should provide 
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some advantages over the conventional system; however the benefit would be minimal if the 

signal suffers a lot of angular spread where the signal arrives at many different directions in a 

multipath environment. The situation would be even worse when no line-of-sight (LOS) is 

present between the user and the base station. 

 

         To overcome the above shortcoming, a more advanced method was developed. This 

method, usually called the optimum beam forming technique, fully utilizes the spatial diversity 

present in the multipath channel so that a stronger received signal can be generated. With 

optimum beam forming, signals received from multiple antennas are adjusted separately in both 

amplitude and phase before being combined. By doing so, the system behaves as if it has 

multiple adjustable radiation patterns. Each of the patterns is tuned to receive signals from a 

single user. An adaptive algorithm is used at the base station so that the system has the ability to 

determine the optimal radiation pattern for each user. As part of the training procedure, each of 

the users transmits a short training sequence to the base station. The algorithm then makes use of 

this information from a user by comparing each received signal to the original sequence to find 

out the correct radiation pattern for that user. With this method, all received signals from each 

antenna element are used and are optimally combined to enhance the desired signal and to cancel 

unwanted interference. During the training process, a lot of number crunching is needed at the 

base station. So it was not popular in the past due to the expensive cost of computation power. 

However, intensive signal processing is no longer an issue with the availability of low cost, 

extremely fast processors. Keep in mind that what actually happens in optimal beam forming is 

more complicated than what is shown in the diagram. It is more complicated when interference 

from other mobile occurs. 

 

                  Though smart antenna techniques are new in the area of mobile communications, the 

technology itself was introduced in 1960’s. Early smart antenna technology was deployed in 

military communication systems, where narrow beams are used in order to avoid interference 

arising from noise and other jamming signals. Extending the smart antenna concept further 

researchers worked on the technology to apply it to the personal communication industry to 

accommodate more users in the wireless network by suppressing interference. It increases 
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network capacity [2, 3] by precise control of signal nulls quality and mitigation of interference 

combine to frequency reuse reduce distance (or cluster size), improving capacity. 

 

      Switched beamforming is a smart antenna approach in its simplest form, where multiple 

fixed beams in predetermined directions are used to serve the users. In this approach the base 

station switches between several beams that give the best performance as the mobile user moves 

through the cell. Most advance approach based on smart antenna techniques, known as adaptive 

beamforming uses antenna arrays backed by strong signal processing capability to automatically 

change the beam pattern in accordance with the changing signal environment. It not only directs 

maximum radiation in the direction of the desired mobile user but also introduces nulls at 

interfering directions while tracking the desired mobile user at the same time. The adaptation is 

achieved by multiplying the incoming signal with complex weights and then summing them 

together to obtain the desired radiation pattern. These weights are computed adaptively to adapt 

to the changes in the signal environment. The complex weight computation based on different 

criteria is incorporated in the signal processor in the form of software algorithms.  

 

Adaptive Beamforming [1] is a technique in which an array of antennas is exploited to 

achieve maximum reception in a specified direction by estimating the signal arrival from a 

desired direction (in the presence of noise) while signals of the same frequency from other 

directions are rejected. This is achieved by varying the weights of each of the sensors (antennas) 

used in the array. Adaptive beamforming is used for enhancing desired signal while suppressing 

noise and interference at output of array of sensor. It basically uses the idea that, though the 

signals emanating from different transmitters occupy the same frequency channel, they still 

arrive from different directions. This spatial separation is exploited to separate the desired signal 

from the interfering signals. In adaptive beamforming the optimum weights are iteratively 

computed using complex algorithms based upon different criteria. There are various methods of 

adaptive beamforming to optimize the array weights as Least Mean Square, Sample Matrix 

Inversion, Recursive Least Square, Constant Modulus algorithms. 

 

Adaptive beamforming has wide applications in fields such as radar, sonar, seismology, 

radio astronomy, and wireless communications [1, 4, 5]. When adaptive arrays are applied to 
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practical problems, the performance of adaptive beamforming methods may become worse than 

in the ideal case because of violation of underlying assumptions on the environment, sources, or 

sensor array and this may cause a mismatch between the assumed array response and true array 

response. During the past two decades, many approaches have been developed to improve the 

robustness against even slight mismatches. The most common is linearly constrained minimum 

variance (LCMV) beamformer [6], which provides robustness against uncertainty in the signal 

look direction. But, the beamformer loses degrees of freedom for interference suppression. 

Diagonal loading [7] has been a popular and widely used approach to improve the robustness of 

the adaptive beamforming algorithms. However, a serious drawback of the approach is that it 

is not clear how to choose the diagonal loading level based on information about the uncertainty 

of the array steering vector. From the above brief review, it is clear that these approaches cannot 

be expected to provide sufficient robustness improvements. 

 

Neural networks have found numerous applications in the field of signal processing [8, 

9], mainly because of their general purpose nature, fast convergence rates, and new VLSI 

implementations. Neural network, using simple addition, multiplication, division, and threshold 

operations in the basic processing element, can be readily implemented in analog VLSI. Neural 

network methods possess such advantages as general purpose nature, nonlinear property, passive 

parallelism, adaptive learning capability, generalization capability and fast convergence rates. 

Neural network method is typically used in two steps: training phase and performance phase. 

Neural network is first trained with known input/output pattern pairs. It can be implemented off-

line, although a large training pattern set is required for network training. After the training 

phase, it can be used directly to replace the complex system dynamics.  

 

 

1.2 Motivation of Thesis  

Smart antenna is recognized as promising technologies for higher user capacity in wireless 

communication system. The core of smart antenna is the adaptive beam- forming algorithms in 

antenna array. Adaptive Beamforming technique achieve maximum reception in a specified 

direction by estimating the signal arrival from a desired direction (in the presence of noise) while 

signals of the same frequency from other directions are rejected. There are several Adaptive 
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beamforming algorithms as SMI, RLS, CMA varying in complexity based on different criteria 

for updating and computing the optimum weights. 

Adaptive beamforming is known to have resolution and interference rejection capability 

when the array steering vector is precisely known, however the performance of adaptive 

beamforming techniques may degrade severely in the presence of mismatches between assumed 

array response and true array response.  

 

 This problem can be overcome by neural network approach. In this thesis the 

development of a neural network- based robust adaptive beamforming algorithm, which treats 

the problem of computing the weights of an adaptive array antenna as a mapping problem. Using 

MATLAB in this thesis work, we investigated a novel approach to robust adaptive beamforming 

and show clearly how efficiently we compute the weight vector by using the neural network 

method. This algorithm provides excellent robustness to signal steering vector mismatches, 

enhances the array system performance under non ideal conditions and makes the mean output 

array SINR consistently close to the optimal one. 

 

1.3 Literature Survey 

 

 Carl B. Dietrich has reported that Smart antennas can improve system performance, and fond 

increasing use of it. He experimentally reported that smart handled terminals demonstrated over   

20 dB of interference rejection with single- and multi-polarized arrays and shows that Adaptive 

beamforming improved  reliability, range, talk time, and capacity in both peer-to-peer and 

cellular systems [2]. 

 

 

Michael Chryssomallis has given the overview of smart antenna and provided a basic model for 

determining the angle of arrival for incoming signals, the appropriate antenna beamforming and 

the adaptive algorithms that are used for array processing. Moreover he shows how smart 

antennas, with spatial processing, can provide substantial additional improvement when used 

with TDMA and CDMA digital-communication systems [3].  
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Brennan L. E reported the ability of an AMTI (airborn moving target indication) radar to reject 

clutter is often seriously degraded by the motion of the radar. An adaptive receiving array can 

compensate for platform motion and provide excellent AMTI performance. Scattering from 

aircraft structure can also distort antenna patterns and reduce AMTI capability. He produced a   

technique that can adapt the element weights to compensate for near-field scatterers and element 

excitation errors [4]. 

 

Syed Shah Irfan Hussain developed a mobile tracking algorithm that has been devised for 

adapting the weights of the transmit antenna to attain optimal weights for a particular wireless 

static channel configuration. This algorithm was based on the sign gradient feedback algorithm 

(SGF), which was a coarse form of least mean square algorithm (LMS). This algorithm does not 

require knowledge of the transmit antenna configuration. It has been shown that this algorithm 

converges to optimum weights of the transmit beamformer as well as reduces their un-necessary 

perturbations around the point of convergence [15]. 

 

Mohammad Tariqul Islam developed a Matrix Inversion Normalized Least Mean Square (MI-

NLMS) adaptive beam forming algorithm  for smart antenna application which combined  the 

individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean 

Square (NLMS) algorithms and he is describe to improve the convergence speed with small BER 

. MI-NLMS computes the optimal weight vector based on the SMI algorithm and updates the 

weight vector by NLMS algorithm [16]. 

 

Ahmed H. El Zooghby used RBFNN for the direction of Arrival (DOA). He was found that 

networks implementing these functions were indeed successful in performing the required task 

and yielded good performance in the sense that the network produced actual output very close to 

the desired DOA. Also it was demonstrated that these networks are able to generalize, by 

training and testing using data sets derived from different signal conditions mainly with the 

effect of noise added to the data used for testing. The main advantage of the RBFNN is the 

substantial reduction in the CPU time needed to estimate the DOA [8] 
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Xin Song proposed the robust Capon beamformer (RCB) based on some types of mismatches 

and shows that the proposed robust Capon beamformer is much less sensitive to some types of 

mismatches and the small training sample size than the standard Capon beamformer (CB). 

Moreover, the mean output SINR of RCB is better than that of CB in a wide range of SNR and N 

[17].  

 

1.4 Outline of Thesis 

This thesis is organized into six chapters. Following this introduction, Chapter 2 provides 

Antennas and antenna system. In chapter 3, the brief overview of Smart antenna system 

discusses. Chapter 4 contains several Beamforming Algorithms. Chapter 5 contains neural 

network based robust adaptive beamforming algorithm with all the simulation and results. 

Chapter 6 provides conclusion remarks and scope of future work. 
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CHAPTER 2 

ANTENNAS AND ANTENNA SYSTEMS 
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  Chapter  

   2   ANTENNAS AND ANTENNA SYSTEMS 

 

 
 

2.1 A Useful Analogy for Adaptive Smart Antenna 

 

For an intuitive grasp of how an adaptive antenna system works, close your eyes and converse 

with someone as they move about the room. You will notice that you can determine their 

location without seeing them because of the following: 

• You hear the speaker's signals through your two ears, your acoustic sensors. 

• The voice arrives at each ear at a different time. 

• Your brain, a specialized signal processor, does a large number of calculations to correlate 

information and compute the location of the speaker. 

       Your brain also adds the strength of the signals from each ear together, so you perceive 

sound in one chosen direction as being twice as loud as everything else. 

        Adaptive antenna systems [10] do the same thing, using antennas instead of ears. As a 

result, 8, 10, or 12 ears can be employed to help fine-tune and turn up signal information. Also, 

because antennas both listen and talk, an adaptive antenna system can send signals back in the 

same direction from which they came. This means that the antenna system cannot only hear 8 or 

10 or 12 times louder but talk back more loudly and directly as well. 

        Going a step further, if additional speakers joined in, your internal signal processor could 

also tune out unwanted noise (interference) and alternately focus on one conversation at a time.  

Thus, advanced adaptive array systems have a similar ability to differentiate between desired and 

undesired signals. 

 

2.2 Antennas 

 

        A device able to receive or transmit electromagnetic energy is called an ―antenna‖. 

Antennas have become ubiquitous devices and occupy a salient position in wireless system 

experienced the largest growth among industry systems. Antennas couple electromagnetic 
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energy from one medium (space) to another medium as wire, coaxial cable, or waveguide. 

Physical designs can vary greatly. Antenna produces complex electromagnetic fields both near to 

and far from antennas.  Not all of the electromagnetic fields generated actually radiated into 

space. Some of the fields remain in the vicinity of antenna and are viewed as reactive near fields; 

much the same way as inductor or capacitor is a reactive storage element in lumped element 

circuits.   

 

2.2.1 Omni Directional Antennas 

            Since the early days of wireless communications, there has been the simple dipole 

antenna, which radiates and receives equally well in all directions. To find its users, this single-

element design broadcasts Omni directionally in a pattern resembling ripples radiating outward 

in a pool of water. While adequate for simple RF environments where no specific knowledge of 

the users where about is available, this unfocused approach scatters signals, reaching desired 

users with only a small percentage of the overall energy sent out into the environment. 

Given this limitation, Omni directional strategies attempt to overcome environmental 

challenges by simply boosting the power level of the signals broadcast. In a setting of numerous users 

and interferers, this makes a bad situation worse in that the signals that miss the intended user 

become interference for those in the same or adjoining cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.1. Omni directional Antenna and Coverage Patterns 
 

           In uplink applications (user to base station), Omni directional antennas offer no 

preferential gain for the signals of served users. In other words, users have to shout over 

competing signal energy. Also, this single-element approach cannot selectively reject signals 

interfering with those of served users and has no spatial multi-path mitigation or equalization 

capabilities. Omni directional strategies directly and adversely impact spectral efficiency, 

limiting frequency reuse. These limitations force system designers and network planners to 
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devise increasingly sophisticated and costly remedies. In recent years, the limitations of 

broadcast antenna technology on the quality, capacity, and coverage of wireless systems have 

prompted an evolution in the fundamental design and role of the antenna in a wireless system. 

 

2.2.2 Directional Antennas 

          A single antenna can also be constructed to have certain fixed preferential transmission 

and reception directions. As an alternative to the brute force method of adding new transmitter 

sites, many conventional antenna towers today split, or sectaries cells. A 360° area is often split 

into three 120° subdivisions, each of which is covered by a slightly less broadcast method of 

transmission. 

 

 

 

 

 

 

Fig.2.2. Directional Antenna and Coverage Pattern 
 

 

         All else being equal, sector antennas provide increased gain over a restricted range of 

azimuths as compared to an Omni directional antenna. This is commonly referred to as antenna 

element gain and should not be confused with the processing gains associated with smart antenna 

systems. While sectaries antennas multiply the use of channels, they do not overcome the major 

disadvantages of standard Omni directional antenna broadcast such as co channel Interference.   

 

 

2.3 Antenna Systems 

 

      An antenna be made more intelligent by first, its physical design can be modified by adding 

more elements. Second, the antenna can become an antenna system that can be designed to shift 

signals before transmission at each of the successive elements so that the antenna has a 

composite effect. This basic hardware and software concept is known as the phased array 

antenna. The following summarizes antenna developments in order of increasing benefits and 

intelligence.  
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2.3.1 Sectorized Systems 

         Sectorized antenna systems take a traditional cellular area and subdivide it into sectors that 

are covered using directional antennas looking out from the same base station location. 

Operationally, each sector is treated as a different cell, the range of which is greater than in the 

omni directional case. Sector antennas increase the possible reuse of a frequency channel in such 

cellular systems by reducing potential interference across the original cell, and they are widely 

used for this purpose. As many as six sectors per cell have been used in practical service. When 

combining more than one of these directional antennas, the base station can cover all directions. 

 

2.3.2 Diversity System 

         The diversity system incorporates two antenna elements at the base station, the slight 

physical separation (space diversity) of which has been used historically to improve reception by 

counteracting the negative effects of multipath. Diversity offers an improvement in the effective 

strength of the received signal by using one of the following two methods: 

         Switched diversity: Assuming that at least one antenna will be in a favorable location at a 

given moment, this system continually switches between antennas (connects each of the 

receiving channels to the best serving antenna) so as always to use the element with the largest 

output. While reducing the negative effects of signal fading, they do not increase gain since only 

one antenna is used at a time. 

            Diversity combining: This approach corrects the phase error in two multipath signals 

and effectively combines the power of both signals to produce gain. Other diversity systems, 

such as maximal ratio combining systems, combine the outputs of all the antennas to maximize 

the ratio of combined received signal energy to noise. 

           Because macro cell-type base stations historically put out far more power on the downlink 

(base station to user) than mobile terminals can generate on the reverse path, most diversity 

antenna systems have evolved only to perform in uplink (user to base station). Diversity antennas 

merely switch operation from one working element to another. Although this approach mitigates 

severe multipath fading, its use of one element at a time offers no uplink gain improvement over 

any other single element approach. In high-interference environments, the simple strategy of 

locking onto the strongest signal or extracting maximum signal power from the antennas is 

clearly inappropriate and can result in crystal-clear reception of an interferer rather than the 
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desired signal. 

        The need to transmit to numerous users more efficiently without compounding the 

interference problem led to the next step of the evolution antenna systems that intelligently 

integrate the simultaneous operation of diversity antenna elements. 
 

 

2.4 Smart antenna 

 

              The concept of using multiple antennas and innovative signal processing to serve cells 

more intelligently has existed for many years. In fact, varying degrees of relatively costly smart 

antenna [10, 11] systems have already been applied in defense systems. Until recent years, cost 

barriers have prevented their use in commercial systems. The advent of powerful, low-cost 

digital signal processors (DSPs), general-purpose processors (and ASICs), as well as innovative 

software-based signal-processing techniques (algorithms) have made intelligent antennas 

practical for cellular communications systems. Smart antenna systems are the technology of 

uniting not only antenna technology but also two or more of other technology as digital signal 

processors and high function of antennas. 

         Today, when spectrally efficient solutions are increasingly a business imperative, these 

systems are providing greater coverage area for each cell site, higher rejection of interference, 

and substantial capacity improvements. That can overcome the problem in high speed mobile 

communication such as limited channel bandwidth while satisfying the demand for many 

mobiles in a limited channel. 
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  Chapter  

     3                  SMART ANTENNA SYSTEM 

 

  

In truth, antennas are not smart—antenna systems are smart. Generally collocated with a base 

station, a smart antenna system combines an antenna array with a digital signal-processing 

capability to transmit and receive in an adaptive, spatially sensitive manner. In other words, such  

a system can automatically change the directionality of its radiation patterns in response to its 

signal environment. Smart antennas also known as adaptive array antennas, multiple antennas 

and recently MIMO that are antenna arrays with smart signal processing algorithms used to 

identify spatial signal signature such as the direction of arrival (DOA) of the signal, and use it to 

calculate beamforming vectors, to track and locate the antenna beam on the mobile/target. The 

antenna could optionally be any sensor. This can dramatically increase the performance 

characteristics (such as capacity) of a wireless system. 

 

 

3.1 Types of Smart Antenna Systems  

 

        Terms commonly heard today that embrace various aspects of a smart antenna system 

technology include intelligent antennas, phased array, SDMA, spatial processing, digital beam 

forming, adaptive antenna systems, and others. Smart antenna systems are customarily 

categorized, however, as either switched beam or adaptive array systems. The following are 

distinctions between the two major categories of smart antennas regarding the choices in transmit 

strategy: 

• Switched beam. A finite number of fixed, predefined patterns or combining strategies (sectors) 

• Adaptive array. An infinite number of patterns (scenario-based) that are adjusted in real time. 

 

3.1.1 Switched Beam Antennas 

        Switched beam antenna systems form multiple fixed beams with heightened sensitivity in 

particular directions. These antenna systems detect signal strength, choose from one of several 

http://en.wikipedia.org/wiki/Beamforming
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predetermined, fixed beams, and switch from one beam to another as the mobile moves 

throughout the sector. Instead of shaping the directional antenna pattern with the metallic 

properties and physical design of a single element (like a sectorized antenna), switched beam  

systems combine the outputs of multiple antennas in such a way as to form finely sectorized 

(directional) beams with more spatial selectivity than can be achieved with conventional, single- 

element approaches. 

 

 

 

                                                        

 

 

 

  

 

Fig.3.1. Switched Beam System Coverage Patterns 

 

 

3.1.2 Adaptive Array Antennas 

         Adaptive antenna technology represents the most advanced smart antenna approach to date. 

Using a variety of new signal-processing algorithms, the adaptive system takes advantage of its 

ability to effectively locate and track various types of signals to dynamically minimize 

interference and maximize intended signal reception. 

             Both systems attempt to increase gain according to the location of the user; however, 

only the adaptive system provides optimal gain while simultaneously identifying, tracking, and 

minimizing interfering signals. 

 
 
 
    
 
 
 
                                                                  Fig3.2. Adaptive Array Coverage 
 

 

          Omni directional antennas are obviously distinguished from their intelligent counterparts 

by the number of antennas (or antenna elements) employed. Switched beam and adaptive array 

systems, however, share many hardware characteristics and are distinguished primarily by their 
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adaptive intelligence. 

          To process information that is directionally sensitive requires an array of antenna elements  

(typically 4 to 12), the inputs from which are combined to control signal transmission adaptively. 

Antenna elements can be arranged in linear, circular, or planar configurations and are most often 

installed at the base station, although they may also be used in mobile phones or laptops.                       

 

 

3.2 Architecture of Smart Antenna System 

        Traditional switched beam and adaptive array systems enable a base station to customize 

the beams they generate for each remote user effectively by means of internal feedback control. 

Generally speaking, each approach forms a main lobe toward individual users and attempts to 

reject interference or noise from outside of the main lobe. 

 

 

3.2.1 Listening to the Cell (Uplink Processing) 

           It is assumed here that a smart antenna is only employed at the base station and not at the 

handset or subscriber unit. Such remote radio terminals transmit using omni directional antennas, 

leaving it to the base station to separate the desired signals from interference selectively. 

         Typically, the received signal from the spatially distributed antenna elements is multiplied 

by a weight, a complex adjustment of amplitude and a phase. These signals are combined to 

yield the array output. An adaptive algorithm controls the weights according to predefined 

objectives. For a switched beam system, this may be primarily maximum gain; for an adaptive 

array system, other factors may receive equal consideration. These dynamic calculations enable 

the system to change its radiation pattern for optimized signal reception. 

 

 

3.2.2 Speaking to the Users (Downlink Processing) 

        The task of transmitting in a spatially selective manner is the major basis for differentiating 

between switched beam and adaptive array systems. As described below, switched beam systems 

communicate with users by changing between preset directional patterns, largely on the basis of 

signal strength. In comparison, adaptive arrays attempt to understand the RF environment more 

comprehensively and transmit more selectively. 
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       The type of downlink processing used depends on whether the communication system uses  

time division duplex (TDD), which transmits and receives on the same frequency or frequency 

division duplex (FDD), which uses separate frequencies for transmit and receiving (e.g., GSM). 

In most FDD systems, the uplink and downlink fading and other propagation characteristics may 

be considered independent, whereas in TDD systems the uplink and downlink channels can be 

considered reciprocal. Hence, in TDD systems uplink channel information may be used to 

achieve spatially selective transmission. In FDD systems, the uplink channel information cannot 

be used directly and other types of downlink processing must be considered. 

 

3.3 Switched Beam Systems 

           In terms of radiation patterns, switched beam is an extension of the current microcellular 

or cellular sectorization method of splitting a typical cell. The switched beam approach further 

subdivides macro sectors into several micro sectors as a means of improving range and capacity. 

Each micro sector contains a predetermined fixed beam pattern with the greatest sensitivity 

located in the center of the beam and less sensitivity elsewhere. The design of such systems 

involves high-gain, narrow azimuthally beam width antenna elements. 

         The switched beam system selects one of several predetermined fixed-beam patterns (based  

on weighted combinations of antenna outputs) with the greatest output power in the remote user's  

channel. These choices are driven by RF or base band DSP hardware and software. The system 

switches its beam in different directions throughout space by changing the phase differences of 

the signals used to feed the antenna elements or received from them. When the mobile user 

enters a particular macro sector, the switched beam system selects the micro sector containing 

the strongest signal. Throughout the call, the system monitors signal strength and switches to 

other fixed micro sectors as required. 

 

         Smart antenna systems communicate directionally by forming specific antenna beam 

patterns. When a smart antenna directs its main lobe with enhanced gain in the direction of the user, it 

naturally forms side lobes and nulls or areas of medium and minimal gain respectively in 

directions away from the main lobe. Different switched beam and adaptive smart antenna 

systems control the lobes and the nulls with varying degrees of accuracy and flexibility. 
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3.4 Adaptive Antenna System 

 

           The adaptive antenna systems approach communication between a user and base station in 

a different way, in effect adding a dimension of space. By adjusting to an RF environment as it 

changes (or the spatial origin of signals), adaptive antenna technology can dynamically alter the 

signal patterns to near infinity to optimize the performance of the wireless system. 

            Adaptive arrays utilize sophisticated signal-processing algorithms to continuously 

distinguish between desired signals, multipath, and interfering signals as well as calculate their 

directions of arrival. This approach continuously updates it’s transmit strategy based on changes 

in both the desired and interfering signal locations. The ability to track users smoothly with main 

lobes and interferers with nulls ensures that the link budget is constantly maximized because there are 

neither micro sectors nor predefined patterns. 

       Both types of smart antenna systems provide significant gains over conventional sectored 

systems. The low level of interference on the left represents a new wireless system with lower 

penetration levels. The significant level of interference on the right represents either a wireless 

system with more users or one using more aggressive frequency reuse patterns. In this scenario, 

the interference rejection capability of the adaptive system provides significantly more coverage 

than either the conventional or switched beam system.  

                                       

 

3.5 Relative Benefits/Tradeoffs of Switched Beam and Adaptive Array Systems 

 Integration: ─ Switched beam systems are traditionally designed to retrofit widely 

deployed cellular systems. It has been commonly implemented as an add-on or appliqué 

technology that intelligently addresses the needs of mature networks. In comparison, adaptive 

array systems have been deployed with a more fully integrated approach that offers less 

hardware redundancy than switched beam systems but requires new build-out. 

 

 Range/coverage─ Switched beam systems can increase base station range from 20 to 

200 percent over conventional sectored cells, depending on environmental circumstances and the 

hardware/software used. The added coverage can save an operator substantial infrastructure costs 

and means lower prices for consumers. Also, the dynamic switching from beam to beam 

conserves capacity because the system does not send all signals in all directions. In comparison, 
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adaptive array systems can cover a broader, more uniform area with the same power levels as a 

switched beam system. 

 Interference suppression─ Switched beam antennas suppress interference arriving from 

directions away from the active beam's center. Because beam patterns are fixed, however, actual 

interference rejection is often the gain of the selected communication beam pattern in the 

interferer's direction. Also, they are normally used only for reception because of the system's 

ambiguous perception of the location of the received signal (the consequences of transmitting in 

the wrong beam being obvious). Also, because their beams are predetermined, sensitivity can 

occasionally vary as the user moves through the sector.   

           Switched beam solutions work best in minimal to moderate co channel interference and 

have difficulty in distinguishing between a desired signal and an interferer. If the interfering 

signal is at approximately the center of the selected beam, and the user is away from the center of 

the selected beam, the interfering signal can be enhanced far more than the desired signal. In 

these cases, the quality is degraded for the user. Adaptive array technology currently offers more 

comprehensive interference rejection. Also, because it transmits an infinite, rather than finite, 

number of combinations, its narrower focus creates less interference to neighboring users than a 

switched-beam approach. 

 Spatial division multiple access (SDMA)—Among the most sophisticated utilizations 

of smart antenna technology is SDMA, which employs advanced processing techniques to, in 

effect, locate and track fixed or mobile terminals, adaptively steering transmission signals toward  

users and away from interferers. This adaptive array technology achieves superior levels of 

interference suppression, making possible more efficient reuse of frequencies than the standard 

fixed hexagonal reuse patterns. In essence, the scheme can adapt the frequency allocations to 

where the most users are located.   

       Utilizing highly sophisticated algorithms and rapid processing hardware, spatial processing 

takes the reuse advantages that result from interference suppression to a new level. In essence, 

spatial processing dynamically creates a different sector for each user and conducts a 

frequency/channel allocation in an ongoing manner in real time. 

      Adaptive spatial processing integrates a higher level of measurement and analysis of the 

scattering aspects of the RF environment. Whereas traditional beam forming and beam-steering 

techniques assume one correct direction of transmission toward a user, spatial processing 
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maximizes the use of multiple antennas to combine signals in space in a method that transcends a 

one user-one beam methodology. 

3.6 The Goals of the Smart Antenna System 

         The dual purpose of a smart antenna system is to augment the signal quality of the radio- 

based system through more focused transmission of radio signals while enhancing capacity 

through increased frequency reuse. More specifically, the features of and benefits derived from a 

smart antenna system include these – 

 

3.6.1 Features: 

 Signal gain-Inputs from multiple antennas are combined to optimize available power 

required to establish given level of coverage. 

 Interference rejection- Antenna pattern can be generated toward interference sources, 

improving the signal- to interference ratio of the received signals. On the reverse link or uplink 

this reduces the interference seen by base station. It also reduces the amount of interference 

spread in the system forward link or downlink. Such improvements in the carrier to interference 

ratio to increased capacity. 

 Spatial diversity-Composite information from the array is used to minimize fading and 

other undesirable effects of multipath propagation. 

 Power efficiency -Combines the inputs to multiple elements to optimize available 

processing gain in the downlink (toward users). 

 

3.6.2 Benefits: 

 Increased antenna gain- It helps increase the base station range and coverage, extends 

battery life, and allows for smaller and lighter handset design. 

  Better range/coverage-Focusing the energy sent out into the cell increases base station 

range and coverage. Lower power requirements also enable a greater battery life and 

smaller/lighter handset size. 

 Increased capacity- Precise control of signal nulls quality and mitigation of interference 

combine to frequency reuse reduce distance (or cluster size), improving capacity. Certain 

adaptive technologies (such as space division multiple access) support the reuse of frequencies 

within the same cell. 
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 Multipath rejection-It can reduce the effective delay spread of the channel, allowing 

higher bit rates to be supported without the use of an equalizer. 

 Reduced expense-Lower amplifier costs, power consumption, and higher reliability will 

result. 

 

 

3.7 Drawbacks of Smart Antenna   

        Smart-antenna transceivers are much more complex than traditional base-station 

transceivers. The antenna array needs separate transceiver chains for each antenna element in the 

array, and accurate real-time calibration for each of them. Moreover, the antenna beam forming 

is computationally intensive, which means that smart-antenna base stations must be equipped 

with very powerful digital signal processors. This tends to increase the system costs in the short 

term; however, since the benefits outweigh the costs, it will be cheaper in the long run. 

For a smart antenna to have a reasonable gain, an array of antenna elements is necessary. 

Consequently, this means that a linear array consisting of 10 elements with an inter-element 

spacing of λ/2, operating at 2 GHz, would be approximately 70 cm wide. This might pose 

problems, due to the growing public demand for less-visible base stations.  
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 Chapter  
 4  BEAMFORMING ALGORITHM  

   
 

 

 

Beamforming 

Beamforming is a general signal processing technique used to control the directionality of the 

reception or transmission of a signal on a transducer array. Beam forming creates the radiation 

pattern of the antenna array by adding the phases of the signals in the desired direction and by 

nulling the pattern in the unwanted direction. The phases and amplitudes are adjusted to optimize 

the received signal. A standard tool for analyzing the performance of a beam-former is the 

response for a given N-by-1 weight vector W (k) as function of , known as the beam response. 

This angular response is computed for all possible angles. 

 

 4.1 Fixed Weight Beamforming 

A Fixed weight beam-former [1] as shown in fig4.1 is a smart antenna in which fixed weight is 

used to study the signal arriving from a specific direction. Since it optimize the signal arriving 

from specific direction while attenuating signals from other directions, thus it is called the spatial 

matched filter.  In the fixed weight beamforming approach the arrival angles does not change 

with time, so the optimum weight would not need to be adjusted. 

 

    𝒙𝒔(𝒌)   

 

     

   𝒙𝟏(𝒌)                                                                                                                 𝒚(𝒌) 

                 . 

                 . 

                 .      

   𝒙𝑵(𝒌) 

    

                            Fig. 4.1 Block diagram of Fixed weight Beamformer 
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4.1.1 Maximum Signal-to-Interference Ratio: 

         One criterion which can be applied to enhancing the received signal and minimizing 

interfering signals is based upon maximizing SIR. The SIR is defined as the ratio of the desired 

signal power and undesired signal power.  

        Let one desired signal arriving from angle 𝜃0 and N interferers arriving from angles 

𝜃1,..., 𝜃𝑁 . The signal and interferers are received by an array of M elements with M potential 

weights. Each received signal at element m also includes additive Gaussian noise. Time is 

represented by the k
th

 time smples. Thus the weighted array output can be given in the following 

form: 

 

                                               𝑦 𝑘 =  𝑤 𝐻 . 𝑥 (𝑘)                                                        ............... (4.1) 

          Where 

                                  𝑥  𝑘 =  𝑎 0𝑠 𝑘 +   𝑎 1  𝑎 2 … . . 𝑎 𝑁    .

 
 
 
 
 
𝑖1 𝑘 

𝑖2 𝑘 
.
.

𝑖𝑁 𝑘  
 
 
 
 

+  𝑛 (𝑘) 

                                           =  𝑥 𝑠 𝑘 +  𝑥 𝑖 𝑘 +  𝑛 (𝑘)                                              ............... (4.2) 

With              

      𝑤 =   𝑤1  𝑤2 … . 𝑤𝑀  
𝑇    = Array weights 

                   𝑥 𝑠 𝑘  = desired signal vector 

                   𝑥 𝑖 𝑘  = interfering signals vector 

                    𝑛 (𝑘) = zero mean Gaussian noise for each channel 

                    𝑎 𝑖  = M-element array steering vector for 𝜃𝑖  direction of arrival  

 

 The weighted array output of desired signal is 

                                  𝜎𝑠
2 = 𝐸  𝑤 𝐻 . 𝑥 𝑠 

2 =  𝑤 𝐻 . 𝑅 𝑠𝑠 . 𝑤                                             ............... (4.3) 

         Where 

                         𝑅 𝑠𝑠 = 𝐸  𝑥 𝑠  𝑥 𝑠
𝐻  = signal correlation matrix                                   ............... (4.4) 

 

The weighted array output power for undesired signals is 

                            𝜎𝑢
2 = 𝐸  𝑤 𝐻 .   𝑢  2 =  𝑤 𝐻 .  𝑅 𝑢𝑢  .  𝑤                                                .............. (4.5) 
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    Where           

                                      𝑅 𝑢𝑢  =  𝑅 𝑖𝑖  +  𝑅 𝑛𝑛                                                                 ............... (4.6) 

     With           

                           𝑅 𝑖𝑖   = correlation matrix for interferers 

                         𝑅 𝑛𝑛   = correlation matrix for noise. 

 Then SIR is defined as 

                                               SIR =   
𝜎𝑠

2

𝜎𝑢
2 =  

𝑤 𝐻 . 𝑅 𝑠𝑠 .  𝑤 

𝑤 𝐻 .  𝑅 𝑢𝑢  .  𝑤 
                                    ............... (4.7) 

The SIR can be maximized by optimizing weight, the weight vector in terms of optimum Weiner 

solution         

                                          𝑤 𝑆𝐼𝑅 = 𝛽 .  𝑅 𝑢𝑢
−1 .  𝑎 0                                                         ............... (4.8) 

                              Where                          

                                                𝛽 =  
𝐸  𝑠 2 

𝑆𝐼𝑅  𝑚𝑎𝑥
 𝑎 0

𝐻  . 𝑤 𝑆𝐼𝑅                                           ............... (4.9) 

   

4.1.2. Minimum Mean-Square Error Method: 

 

           In this method array weights is found by minimizing the MSE. So the MSE adaptive 

system can be drawn as  

 

                  
 

                                      Fig. 4.2 Block diagram of MSE adaptive system 
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   Error signal is defined as the difference of desired signal d(k) and output signal y(k). 

                                      𝜀 𝑘 =  𝑑 𝑘 −  𝑤 𝐻  𝑥  𝑘                                                   ............... (4.10) 

     Thus by the simple algebra MSE is 

                       𝜀(𝑘) 2 =   𝑑(𝑘) 2 −  2 𝑑 𝑘  𝑤 𝐻  𝑥  𝑘 + 𝑤 𝐻  𝑥  𝑘  𝑥 𝐻 𝑘  𝑤            ............... (4.11) 

     Taking expected value of both sides and simplifying expression we get  

                        𝐸 |𝜀|2 = 𝐸   𝑑 2 −  2 𝑤 𝐻  𝑟 +  𝑤 𝐻  𝑅 𝑥𝑥   𝑤                                     ............... (4.12) 

                Where correlations are defined as  

                                     𝑟 = 𝐸 𝑑∗ .  𝑥  = 𝐸 𝑑∗ .  (𝑥 𝑠 +  𝑥 𝑖 +  𝑛                                ............... (4.13) 

                                𝑅 𝑥𝑥  = 𝐸 𝑥  𝑥 𝐻 =  𝑅 𝑠𝑠 + 𝑅 𝑢𝑢                                                  ............... (4.14) 

               By the Weiner-Hopf solution the optimum weights provide minimum MSE. So the 

optimum weight is   

                                              𝑤 𝑀𝑆𝐸 =  𝑅 𝑥𝑥
−1 𝑟                                                            ............... (4.15) 

 

                                                 

 4.1.3. Maximum Likelihood Method: 

            The maximum likelihood method is predicated on the assumption that we have an 

unknown desired signal 𝑥 𝑠 and that unwanted signal 𝑛  has a zero mean Guassian distribution. 

The goal of this method is to define a likelihood function which can give an estimate on desired 

signal. The input signal vector is given by 

                                            𝑥 =  𝑎 0 𝑠 +  𝑛 =  𝑥 𝑠 + 𝑛                                              ............... (4.16) 

The probability function can be defined as 

                              𝑝 𝑥 𝑥 𝑠  =  
1

 2𝜋𝜎𝑛
2
𝑒−  𝑥 −𝑎 0𝑠 𝐻𝑅 𝑛𝑛

−1 𝑥 −𝑎 0𝑠                  ............... (4.17) 

Where 

                         𝜎𝑛  = noise standard deviation 

                     𝑅 𝑛𝑛 =  𝜎𝑛  
2 𝐼    = noise correlation matrix                                            ............... (4.19) 

We can define the log-likelihood function as 

                       𝐿 𝑥  =  −𝑙𝑛 𝑝 𝑥 𝑥 𝑠   = 𝐶  𝑥 − 𝑎 0𝑠 
𝐻𝑅 𝑛𝑛

−1 𝑥 − 𝑎 0𝑠                    ............... (4.20) 

Where C is constant. 

              Thus the Maximum Likelihood weight is 

                                             𝑤 𝑀𝐿 =  
𝑅 𝑛𝑛  

−1  𝑎 0

𝑎 0
𝐻  𝑅 𝑛𝑛  

−1  𝑎 0
                                                         ............... (4.21) 
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4.1.4. Minimum Variance Method:  

          Minimum Variance solution is also called minimum variance distortionless response 

(MVDR) or minimum variance performance measure. The goal of MV method is to minimize 

the array output noise variance. 

The weighted array output is given as 

                                             𝑦 =  𝑤 𝐻𝑥 =  𝑤 𝐻  𝑎 0 𝑠 + 𝑤 𝐻  𝑢                                    ............... (4.22) 

For distortionless response, we must add the constraint that 

                                               𝑤 𝐻  𝑎 0 = 1                                                                 ............... (4.23) 

Applying the constraint to above eq. the array output is given as 

                                             𝑦 = 𝑠 + 𝑤 𝐻  𝑢                                                               ............... (4.24) 

The variance of y calculated as 

𝜎𝑀𝑉
2 = 𝐸  𝑤 𝐻  𝑥  2 = 𝐸  𝑠 +  𝑤 𝐻  𝑢  2  

                                                        = 𝑤 𝐻  𝑅 𝑢𝑢  𝑤                                                      ............... (4.25) 

We can minimize variance by using the method of Lagrange. The cost function defined as 

 

                                                  𝐽 𝑤  =  
𝜎𝑀𝑉

2

2
+  𝜆 (1 − 𝑤 𝐻  𝑎 0)                                ............... (4.26) 

 

                                               𝐽 𝑤  =  
𝑤 𝐻  𝑅 𝑢𝑢  𝑤 

2
+  𝜆 (1 − 𝑤 𝐻  𝑎 0)                          ............... (4.27) 

 

The cost function is a quadratic function and can be minimized by setting gradient equal to zero 

then minimum variance weight becomes 

                                                      𝑤 𝑀𝑉 =  𝜆 𝑅 𝑢𝑢
−1 𝑎 0                                                ............... (4.28) 

Where 𝜆 is Lagrange multiplier and defined as 

                                                          𝜆 =  
1

𝑎 0  𝑅 𝑢𝑢
−1  𝑎 0

                                                   ............... (4.29) 

So the minimum variance optimum weight is 

                                                          𝑤 𝑀𝑉 =  
𝑅 𝑢𝑢

−1  𝑎 0

𝑎 0  𝑅 𝑢𝑢
−1  𝑎 0

                                            ............... (4.30) 
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4.2 Adaptive Beamforming: 

              The adaptive algorithm used in the signal processing has a profound effect on the 

performance of a Smart Antenna system. Although the smart antenna system is sometimes called 

the ―Space Division Multiple Access‖, it is not the antenna that is smart. The function of an 

antenna is to convert electrical signals into electromagnetic waves or vice versa but nothing else. 

The adaptive algorithm is the one that gives a smart antenna system its intelligence. Without an 

adaptive algorithm, the original signals can no longer be extracted. 

               In the fixed weight beamforming approach the arrival angles does not change with 

time, so the optimum weight would not need to be adjusted. However, if desired arrival angles 

change with time, it is necessary to devise an optimization scheme that operates on-the-fly so as 

to keep recalculating the optimum array weight  that’s done by using adaptive beamforming 

algorithm . The task of the algorithm in a Smart antenna system is to adjust the received signals 

so that the desired signals are extracted once the signals are combined. Various methods can be 

used in the implementation of an adaptive algorithm.  

                In comparison, the hearing system of a human being is much like a smart antenna 

system. Like the antenna, our ears pick up all sound waves from the surrounding environment. 

From what has been received, the human brain picks out the important information. For example, 

people are able to listen to a conversation even though the conversation may take place in a very 

noisy environment. The desired signal can be mixed with other interference like traffic noise, 

background music, etc., but the human brain is able to suppress the unrelated sounds and 

concentrate on the conversation. Furthermore, a human can even listen to sound which is weaker 

than the interference. The adaptive algorithm in a smart antenna system serves a similar purpose 

as the brain in this analogy, however it is less sophisticated. Our brain can perform the above 

signal selection and suppression with only two ears, but multiple antennas are required for the 

adaptive algorithm so that enough information on the user signals can be acquired to perform the 

task. In human beings, some people are more intelligent than others. In order for them to be more 

intelligent, they have to have a more developed brain. Similarly, some algorithms are smarter 

than other algorithms. A smart algorithm usually requires more resources than algorithms that 

are less intelligent. Unlike our brain which is a free resource, more resources in the world of 

technology always mean more expensive components and more complicated system.  
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                                 Fig. 4.3 Block diagram of Adaptive Beamforming Algorithm 

 

4.2.1 Least Mean Square Algorithm: 

           This algorithm was first developed by Widrow and Hoff in 1960 [1, 12, 13]. The design of 

this algorithm was stimulated by the Wiener-Hopf equation. By modifying the set of Wiener-

Hopf equations with the stochastic gradient approach, a simple adaptive algorithm that can be 

updated recursively was developed. This algorithm was later on known as the least-mean-square  

(LMS) algorithm. 

          The algorithm contains three steps in each recursion: the computation of the processed 

signal with the current set of weights, the generation of the error between the processed signal 

and the desired signal, and the adjustment of the weights with the new error information by the 

gradient method. 

 The error can be defined as desired minus output of array weight. 

                                                        𝜀 𝑘 =  𝑑 𝑘 −  𝑤 𝐻  𝑥  𝑘                                 ............... (4.31) 

The squared error is 

                                       𝜀 𝑘  2 =   𝜀 𝑘 =  𝑑 𝑘 −  𝑤 𝐻  𝑥  𝑘  2                            ............... (4.32) 

The cost function is defined as 

                                         𝐽 𝑤  = 𝐷 − 2 𝑤 𝐻  𝑟  +  𝑤 𝐻  𝑅 𝑥𝑥𝑤                                    ............... (4.33) 

To minimize the cost function we take gradient of above eq. and equate to zero .thus the solution 

for weights is optimum Weiner solution is 

                                           𝑤 𝑜𝑝𝑡 =  𝑅 𝑥𝑥
−1 𝑟                                                                 ............... (4.34) 



32 
 

By using the gradient of cost function we have the LMS solution: 

                                   𝑤  𝑘 + 1 =  𝑤  𝑘 +  𝜇 𝑒∗ 𝑘 𝑥 (𝑘)                                      ............... (4.35) 

Where 𝜇 is the step size parameter that control rate of adaptation.     

 This algorithm is simple and easy in computation. 

 

 

4.2.2. Sample Matrix Inversion: 

        This method is also alternatively known as direct matrix inversion (DMI). The sample 

matrix [1, 11] is a time average estimate of array correlation matrix using K-time samples. If 

random process is ergodic in the correlation, the time average estimate will equal the actual 

correlation matrix. In this method we use K–length block of data, so this method is called a 

block-adaptive approach. We are thus adapting the weight block by block.  

K samples of signal vector X defined as 𝑀 × 𝐾 matrix as 

 

                     𝑋 𝐾 𝑘 =  

 
 
 
 
 
 
𝑥1 1 + 𝑘𝐾   𝑥1 2 + 𝑘𝐾   … .   𝑥1 𝐾 + 𝑘𝐾 

𝑥2 1 + 𝑘𝐾   𝑥2 2 + 𝑘𝐾   … .   𝑥𝑀 𝐾 + 𝑘𝐾 
.                             .                                          .
.                             .                                          .
.                             .                                          .

𝑥1 1 + 𝑘𝐾   𝑥2 2 + 𝑘𝐾   … .   𝑥𝑀(𝐾 + 𝑘𝐾) 
 
 
 
 
 

                   ............... (4.36) 

 

Where 𝑘 is the block number and  𝐾 is the block-length. 

Then the estimate of the array correlation matrix is: 

                                                         𝑅 𝑥𝑥  𝑘 =  
1

𝐾
 𝑋 𝐾 𝑘  𝑋 𝐾

𝐻 𝑘                              ............... (4.37) 

And the estimate of correlation vector is: 

                                                             𝑟  𝑘 =  
1

𝐾
  𝑑∗ 𝑘  𝑋 𝐾 𝑘                               ............... (4.38) 

The SMI weights can be calculated for 𝑘𝑡  block of length K as 

 

𝑤 𝑆𝑀𝐼 𝑘 =  𝑅 𝑥𝑥
−1 𝑘  𝑟  𝑘  

                                                                         =   𝑋 𝐾 𝑘  𝑋 𝐾
𝐻 𝑘  −1𝑑∗ 𝑘  𝑋 𝐾 𝑘   ............... (4.39)         
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4.2.3. Recursive Least Square Algorithm: 

         The recursive least-square (RLS) algorithm does not require any matrix inversion 

computations as the inverse correlation matrix is computed directly. The recursive least-squares 

(RLS) algorithm uses a different approach in carrying out the adaptation. Instead of minimizing 

the mean square error as in the LMS algorithm, the sum of the squared errors of different set of 

inputs is the subject of minimization. This algorithm was first derived from the Kalman filter. 

Although it is intended to be used in a multi-tap transversal filter where the squared error 

information is sampled over a varying time frame, this method also works in our system where 

input information originates from different elements.  It requires reference signal and correlation 

matrix information. In RLS [1, 13] algorithm the weights are updated by the equation: 

 

                         𝑤  𝑘 =  𝑤  𝑘 − 1 +  𝑔  𝑘   𝑑∗ 𝑘 −  𝑥 𝐻 𝑘  𝑤 (𝑘 − 1)                ............... (4.40) 

 Where   𝑔 𝑘 𝑘   is the gain vector and it expressed as 

                                             𝑔  𝑘 =  𝑅 𝑥𝑥
−1 𝑘  𝑥 (𝑘)                                                  ............... (4.41) 

         Where 

                                       𝑅 𝑥𝑥   𝑘 =  𝑥  𝑖 𝑥 𝐻(𝑖)𝑘
𝑖=1                                                  ............... (4.42) 

 

 

4.2.4. Constant Modulus Algorithm: 

            Many adaptive beamforming algorithms are based on minimizing the error between 

reference signal and array output. The reference signal is typically a training sequence used to 

train the adaptive array or a desired signal based upon a priori knowledge of nature of the 

arriving signals. In the case where a reference signal is not available one must resort to an 

assortment of optimization techniques that are blind to exact content of the incoming signals.       

            The Constan Modulus algorithm [1, 13] is blind algorithm where a reference signal is not 

available. It is a gradient-based algorithm that has a constant amplitude or modulus. Godard was 

the first to propose a family of constant modulus blind equalization algorithms .The algorithm 

contains three steps in each recursion: (1) the computation of the processed signal with the 

current set of weights(Initial weight w(1) are chosen), (2) the generation of the error , and (3) the 

adjustment of the weights with the new error information. The following equations summarize 

the above three steps. 
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Output signal with weight- 

                                         𝑦 𝑘  =  𝑊𝐻  .  𝑋 (𝑘)                                                       ............... (4.43) 

The resulting error signal is  

                                          𝑒 𝑘 = 𝑦 𝑘  𝑦 𝑘  𝑝−2(𝑅𝑝 −  𝑦(𝑘) 𝑝)                          ............... (4.44) 

The Godard cost function is given as 

                                         𝐽 𝑘 = 𝐸   𝑦(𝑘) 𝑝 − 𝑅𝑝 
𝑞
                                             ............... (4.45) 

Where 𝑝 is positive integer and 𝑞 is the positive integer = 1. 

The 𝑅𝑝  is defined as when gradient of cost function is zero, 

                                          𝑅𝑝 =
𝐸  𝑠(𝑘) 2𝑝  

𝐸  𝑠(𝑘) 𝑝  
                                                                ............... (4.46) 

The weight is updated by the equation 

                                     𝑤  𝑘 + 1 = 𝑤  𝑘 + 𝜇𝑒∗ 𝑘 𝑥 (𝑘)                                       ............... (4.47) 

           

 
4.2.5. Least Square Constant Modulus: 

           One severe disadvantage of the Godard CMA is slow convergence time .The slow 

converges limits the usefulness of the algorithm in the dynamic environment where the signal 

must be captured quickly. This also limits the usefulness of CMA when channel conditions are 

rapidly changing. The previous Godrad CMA is based upon the method of steepest descent by 

taking the gradient of the cost function.  A faster algorithm was developed by Agee [14] using 

the method of non-linear least square. The least square algorithm is also known as the Gauss 

method based upon the work of Gauss in 1795.This method is known as least square constant 

modulus algorithm. The least-squares constant modulus algorithm (LSCMA) is summarized as 

following:                                               

                       𝑤  𝑘 + 1 =  𝑤  𝑘 −  (𝑋 ∗𝑋 𝐻)−1 𝑋 ∗ (𝑦  𝑘 −  𝑟 (𝑘)                        ............... (4.48) 

                                        =  (𝑋 ∗𝑋 𝐻)−1 𝑋 ∗ 𝑟 (𝑘)                                                       ............... (4.49) 

        Where 𝑋 is input data matrix and 𝑦(𝑘) and 𝑟(𝑘) are output data and complex limited output 

data vectors.While only one block of data is used to implement the LS-CMA algorithm iterates 

through n values until convergence. The initial weight vector 𝑤 (1)  is chosen, the complex-

limited output data vector 𝑟 ∗(1) is calculated, and then the next weight vector 𝑤 (2)  is 

calculated, and the iteration continue until satisfactory convergence is satisfied. This is called the 

static LS-CMA because only one block, of length K, is used for the iteration process. 
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 Chapter  

   5   NEURAL NETWORK BASED ROBUST    

ADAPTIVE BEAMFORING ALGORITHM 

 

 

 Adaptive Beamforming is a technique in which an array of antennas is exploited to achieve 

maximum reception in a specified direction by estimating the signal arrival from a desired 

direction (in the presence of noise) while signals of the same frequency from other directions are 

rejected. Adaptive beamforming has wide applications in fields such as radar, sonar, seismology, 

radio astronomy, and wireless communications [4], [5]. When adaptive arrays are applied to 

practical problems, the performance of adaptive beamforming methods may become worse than 

in the ideal case because of violation of underlying assumptions on the environment, sources, or 

sensor array and this may cause a mismatch between the assumed array response and true array 

response. During the past two decades, many approaches have been developed to improve the 

robustness against even slight mismatches However, the performance of adaptive beamforming 

techniques may degrade severely in the presence of mismatches between the assumed array 

response and the true array response.  

             Neural networks have found numerous applications in the field of signal processing [8], 

[9], mainly because of their general purpose nature, fast convergence rates, and new VLSI 

implementations. The aspect of antenna array signal processing focuses on adaptive 

beamforming. Adaptive beamforming is used for enhancing a desired signal while suppressing 

noise and interference at the output of an array of sensors. When adaptive arrays are applied to 

practical problems, the performance degradation of adaptive beamforming techniques may 

become even more pronounced than in the ideal case because some of underlying assumptions 

on the environment, sources, or sensor array can be violated and this may cause a mismatch 

between the presumed and actual signal steering vectors. To account for the signal steering 

vector mismatches, additional linear constraints (point and derivative constraints) can be 

imposed to improve the robustness of adaptive beamforming [18]. But, the beamformers lose 

degrees of freedom for interference suppression. Diagonal loading [19] has been a popular 
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approach to improve the robustness of adaptive beamforming algorithms. However, a serious 

drawback of the approach is that there is no reliable way to choose the diagonal loading factor. 

                  Neural network methods possess such advantages as general purpose nature, 

nonlinear property, passive parallelism, adaptive learning capability, generalization capability 

and fast convergence rates. Neural network method is typically used in two steps: training phase 

and performance phase. Neural network is first trained with known input/output pattern pairs. 

It can be implemented off-line, although a large training pattern set is required for network 

training. After the training phase, it can be used directly to replace the complex system 

dynamics. By these inherent advantages of the neural network, this thesis presents the 

development of a neural network-based robust adaptive beamforming algorithm, which treats the 

problem of computing the weights of an adaptive array antenna as a mapping problem. 

 

5.1 Mathematical Model 

         Consider a uniform linear array (ULA) with M omni directional sensors spaced by the 

distance d and D narrow-band incoherent plane waves, impinging from directions 

{𝜃1 , 𝜃2 , … . 𝜃𝐷−1 } . 

       The observation vector is given by 

                                                         𝑋 𝑘 = 𝑠 𝑘 + 𝑖 𝑘 + 𝑛 𝑘                     

                                                                 = 𝑠0 𝑘 𝑎 + 𝑖 𝑘 + 𝑛(𝑘)                           ............... (5.1) 

Where 𝑋 𝑘  is the complex vector of array observations and it expressed as  

                  𝑋 𝑘 = [𝑥1 𝑘 , 𝑥2 𝑘 , ……𝑥𝑀 𝑘 ]𝑇                                                        ............... (5.2) 

                𝑠0 𝑘   = the signal waveform,                             𝑎 is the signal steering vector,    

              𝑖 𝑘  is the interference component,                      𝑛(𝑘) is the noise component. 

   The output of a narrowband beamformer is 

                                                      𝑦 𝑘 = 𝑤𝐻𝑋(𝑘)                                                   ............... (5.3) 

Where 𝑤 is the complex vector of beamformer weight and it expressed as 

                                                                  𝑤 = [𝑤1, 𝑤2, … . . , 𝑤𝑀]𝑇                                        .............. (5.4) 
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The signal to interference plus noise ratio (SINR) has the following form 

                                                          𝑆𝐼𝑁𝑅 =
𝑤𝐻𝑅𝑠𝑤

𝑤𝐻𝑅𝑖+𝑛𝑤
                                              ............... (5.5) 

Where 𝑅𝑠  is 𝑀 × 𝑀 signal matrix that is statistical expectation of signal vector and it is 

                                                    𝑅𝑠 = 𝐸{𝑠 𝑘 𝑠𝐻 𝑘 }                                               ............... (5.6) 

and 𝑅𝑖+𝑛  is signal plus noise covariance matrix as  

                                        𝑅𝑖+𝑛 = 𝐸{ 𝑖 𝑘 + 𝑛 𝑘   𝑖 𝑘 + 𝑛 𝑘  
𝐻

}                        ............... (5.7) 

The adaptive beamformer weight vector is computed in order to optimize the performance in 

terms of a certain criterion. Although several criteria can be used, we limit our consideration by 

the output SINR criterion, which is rewritten as 

                                                              𝑆𝐼𝑁𝑅 =
𝜎𝑠

2 𝑤𝐻𝑎 
2

𝑤𝐻𝑅𝑖+𝑛𝑤
                                          ............... (5.8) 

Where 𝜎𝑠
2 is the signal power. 

The problem of finding the maximum of (8) is equivalent to the following optimization problem 

                               min 𝑤𝐻𝑅𝑖+𝑛𝑤  subject to 𝑤𝐻𝑎 = 1.                                          ............... (5.9) 

From (9), the following solution can be found for the optimal weight vector  

                                                         𝑤𝑜𝑝𝑡 =
𝑅𝑖+𝑛

−1 𝑎

𝑎𝐻𝑅𝑖+𝑛
−1 𝑎

                                                ............... (5.10) 

Inserting (10) into (8), we obtain that the optimal SINR is given as 

                                                   𝑆𝐼𝑁𝑅𝑜𝑝𝑡 = 𝜎𝑠
2𝑎𝐻𝑅𝑖+𝑛

−1 𝑎                                   ............... (5.11) 

Where equation (11) gives an upper bound on the output SINR (8). 

 

5.1.1 Sample matrix inversion (SMI) algorithm 

The sample matrix is a time average estimate of array correlation matrix using N-time samples. If 

random process is ergodic in the correlation, the time average estimate will equal the actual 

correlation matrix. In this method we use N–length block of data. In practical applications, the 
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exact interference-plus-noise covariance matrix Ri+n is unavailable. Therefore, the sample 

covariance matrix 𝑅  is used instead of Ri+n . 

                                              𝑅 =
1

𝑁
 𝑋 𝑖 𝑋𝐻𝑁

𝑖=1 (𝑖)                                               ............... (5.12) 

Where N is the number of snapshots available. 

Thus weight of SMI algorithm is 

                                           𝑤𝑆𝑀𝐼 = 𝛼𝑅 −1𝑎                                                            ............... (5.13) 

where  𝛼 = 𝑎𝐻𝑅 −1𝑎  is the normalization constant that does not affect the output SINR. 

      The SMI algorithm is very sensitive to the mismatch between the presumed and actual spatial 

signature vectors. 

 

5.1.2 Loaded sample matrix inversion (LSMI) algorithm 

           One of the most popular robust approaches is the loaded SMI (LSMI) algorithm, which 

attempts to improve the robustness of the SMI technique against an arbitrary spatial signature 

mismatch by means of diagonal loading of the sample covariance matrix [20]. The essence of 

LSMI algorithm is to replace the conventional sample covariance matrix 𝑅  by the so-called 

diagonally loaded covariance matrix. 

 

                                                   𝑅 𝑑𝑙 = 𝑅 + 𝜉𝐼                                                         ............... (5.14) 

where 𝜉 is a diagonal loading factor. So that, we can write the LSMI weight vector in the 

following form 

                                              𝑤𝐿𝑆𝑀𝐼 = 𝑅 𝑑𝑙
−1𝑎 = (𝑅 + 𝜉𝐼)−1𝑎                                  ............... (5.15) 

       So the LSMI algorithm can improve the performance of SMI algorithm in scenarios with an 

arbitrary steering vector mismatch, this improvement is not significant because LSMI algorithm 

exploits the presumed steering vector and, therefore, its performance degrades when the norm of 

the error vector is large. Furthermore, the proper choice of 𝜉 represents a serious problem in 

practical applications because  𝜉 depends on the unknown signal and interference parameters. 
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5.1.3 Robust Adaptive Beamforming 

        We assume that the norm of the steering vector distortion 𝑎𝑒  can be bounded by some 

known constant 𝜖2 

                                                             𝑎𝑒 
2 ≤ 𝜖2                                                   ............... (5.16) 

Then, the actual signal steering vector 

                                                              𝑎 = 𝑎𝑒 + 𝑎                                                  ............... (5.17) 

Where 𝑎  is the assumed steering vector.  

         Cost function of robust adaptive beamforming algorithm minimizes the mean output power 

subject to the inequality constraint. Thereby, the optimization problem can be formulated as 

                                   min(𝑎𝑒 +  𝑎 )𝐻𝑅−1(𝑎𝑒 +  𝑎 )  subject to  𝑎𝑒 
2 ≤ 𝜖2 .         ............... (5.18) 

The solution to (18) can be obtained using Lagrange multiplier method by minimizing the 

function 

                                   𝐻 =   𝑎𝑒 +  𝑎  𝐻𝑅−1 𝑎𝑒 + 𝑎  +  𝜆 𝑎𝑒
𝐻𝑎𝑒 −  𝜖2                  ............... (5.19) 

Where 𝜆 is Lagrange multiplier. 

       For finding the norm of steering vector computing this gradient of (19) and equating it to 

zero yields 

                                 𝑎𝑒 =  − 𝑅 −1 +  𝜆 𝐼 
−1

 𝑅 −1 𝑎                                                  ............... (5.20) 

So by equations (18) and (20) .we get 

                               𝑎 𝐻𝑅 −1  𝑅 −1 +  𝜆 𝐼 
−2

 𝑅 −1 𝑎 =  𝜀2                                          ............... (5.21) 

The covariance matrix decompose into Eigen value and eigenvector form as 

                                            𝑅 =  𝑈𝛬𝑈𝐻                                                                  ............... (5.22) 

Where columns of 𝑈 are the eigenvectors and diagonal elements of  𝛬 are known values of 𝑅  . 

Then inserting (22) into (21), we can obtain 

                                  𝑎 𝐻  𝑈 𝛬−1  𝛬−1 +  𝜆 𝐼 −2 𝛬−1𝑈𝐻  𝑎 =  𝜀2                              ............... (5.23) 

Let 𝐹 =  𝑈𝐻𝑎  and above equation can be simplified as 

                                       𝑓 𝜆 =   
 𝐹𝑖 

2

(1+ 𝜆𝛾𝑖)2
𝑀
𝑖=1 =  𝜀2                                              ............... (5.24) 

Left side of (24) is a monotonically decreasing function of 𝜆, and we can obtain a unique 

solution 𝜆 > 0. And hence 𝜆 can be obtained efficiently by Newton’s method [7], [21]. 

From eq. (24) , we have 
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 𝐹𝑖 

2

(1+ 𝜆𝛾𝑖)2
𝑀
𝑖=1 =  𝜀2 <   

 𝐹𝑖 
2

( 𝜆𝛾𝑖)2
𝑀
𝑖=1                                     ............... (5.25) 

 

This gives the upper bound on 𝜆  

                                               𝜆 <  
1

𝜀
  

 𝐹𝑖  
2

𝛾𝑖
2

𝑀
𝑖=1  

1

2
                                                    ............... (5.26) 

By replacing the 𝛾𝑖  in (24) with 𝛾1 and 𝛾𝑀respectively, we get 

                                             
 𝑎  − 𝜀

𝛾1𝜀
 ≤  𝜆 ≤  

 𝑎  − 𝜀

𝛾𝑀 𝜀
                                                   ............... (5.27) 

We can combine (26) and (27) to give the following upper and lower bounds on the solution of 𝜆 

                                   
 𝑎  − 𝜀

𝛾1𝜀
 ≤  𝜆 ≤ min{

 𝑎  − 𝜀

𝛾𝑀 𝜀
 ,

1

𝜀
  

 𝐹𝑖 
2

𝛾𝑖
2

𝑀
𝑖=1  

1

2
}                  ............... (5.28) 

Solving (22) for 𝜆 by a Newton’s method using that the solution is unique and it follows the 

above condition. Thus the weight vector for RAB written as 

                                              𝑤𝑅𝐴𝐵 =
𝑅 −1( 𝜆𝑅 +𝐼 −1−𝐼)𝑎 

𝑎 𝐻𝑅 −1( 𝜆𝑅 +𝐼 −1−𝐼)2𝑎 
                               ............... (5.29)                                                                                       

                                 =
𝑈 𝜆−1( 𝜆𝛬+𝐼 −1−𝐼)𝑈𝐻  𝑎 

𝑎 𝐻𝑈𝛬−1( 𝜆𝛬+𝐼 −1−𝐼)2𝑈𝐻𝑎 
                                  ............... (5.30) 

 

5.2 Radial Basis Function Neural Network (RBFNN) 

        The weight vector of the above algorithm is a nonlinear function of the sample covariance 

matrix, and is not suitable for real-time implementation. Therefore, it can be approximated using 

a suitable architecture such as RBFNN in this thesis. The array outputs are preprocessed, and 

then applied to the RBFNN. The sample covariance matrix 𝑹  is presented to the input layer of 

the RBFNN, and the vector wRAB is produced at the output layer. As it is the case, with most 

neural network, the RBFNN is designed to perform an input-output mapping, trained with 

examples (𝑹 ; wRAB), l=1, 2,...., NT , where NT stands for the number of examples contained in the 

training set. 

5.2.1 Radial Basis Function 

Radial Basis Functions emerged as a variant of artificial neural network in late 80s. However, 

their roots are entrenched in much older pattern recognition techniques as for example potential 

functions, clustering, functional approximation, and spline interpolation and mixture models. The 
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RBF originated in the study for the interpolation problems of multi-variable and is still a main 

research area in numeric analysis. From other standpoint, the design of a neural network can also 

be viewed as a surface fitting (reconstruction) problem in a hyperspace where the RBF method is 

a nature choice. As one of the most popular neural network models, RBF network has attracted 

lots of attentions on the improvement of its approximation as well as the construction of its 

architecture. RBF’s are embedded into a two-layer feed forward neural network. Such a network 

is characterized by a set of inputs and a set of outputs. In between the inputs and outputs there is 

a layer of processing units called hidden units. Each of them implements a radial basis function. 

The output units implement a weighted sum of hidden units outputs. The input into a RBF 

network is non-linear while the output is linear. Due to their nonlinear approximation properties, 

RBF networks are able to model complex mapping, while perceptron neural networks can only 

model by means of multiple intermediary layers. 

     In order to use a radial Basis function Network we need to specify the hidden unit activation 

function, the number of processing units, a criterion for modeling a given task and a training 

algorithm for finding the parameters of the network. Finding the RBF weights is called network 

training. If we have at hand a set of input-output pairs, called training set, we optimize the 

network parameters in order to fit the network outputs to the given inputs. The fit is evaluated by 

means of a cost function, usually assumed to be the mean square error. After training, the RBF 

network can be used with data whose underlying statistics is similar to that of training set. 

 

 

 

 

 

 

 

 

 

Fig.5.1 Structure of RBF Neural Network 
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5.2.1.1 Network Topology 

 

Basic principle of the RBF method is detailed in the remarkable literature of Haykin [23]. The 

construction of a RBF network, in its most basic form, involves three layers with entirely 

different roles. The input layer is made up of source nodes (sensory units) that connect the 

network to its environment. The second layer, the only hidden layer in the network, applies a 

nonlinear transformation from the input space to the hidden space; in most applications the 

hidden space is of high dimensionality. The output layer is linear, supplying the response of the 

network to the activation pattern (signal) applied to the input layer. The way in which the 

network is used for data modeling is different when approximating time-series and in pattern 

classification. In the first case, the network inputs represent data samples at certain past time-

laps, while the network has only one output representing a signal value. In the pattern 

classification applications the inputs represent feature entries, while each output corresponds to a 

class. Generally, for given set of different points x, RBF technique uses a function 𝐹∗ 𝑥  of the 

following form 

                                         𝐹∗ 𝑥 =   𝑤𝑖  𝜑𝑖
𝑚1
𝑖=1 (x)                                                 ............... (5.31) 

Where, 𝜑𝑖(𝑥|𝑖 = 1,2, … . 𝑚1) is a new set of basis functions that we assume to be linearly 

independent without loss of generality, G(x, ti) is a Green function centered at ti, wi constitute a 

new set of weights, and m1 is the number of centers (or the size of the hidden layer). Typically, 

the number of basis functions is less than the number of data points (i.e., 𝑚1  ≤ 𝑁). A commonly 

used Green function is the multivariate Gaussian function. 

                                     G x, ti =  𝑒𝑥𝑝(−
1

2 𝜎𝑖
2  x − ti 

2)                                  ............... (5.32) 

Where ||.|| denotes a norm that is usually Euclidean. 

 

5.2.1.2 Learning Strategies 

 

There are different strategies that used in the design of an RBF network, depending on how the 

centers of the redial basis functions of the network are specified. These design strategies pertain 

to an RBF network whose formulation is based on interpolation theory. Here we used Supervised 

Selection of Centers as a learning strategy. 
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         In this approach, the centers of the radial basis functions and all other free parameters of 

the network undergo a supervised learning process; in other words, the RBF network takes on its 

most generalized form. A natural candidate for such a process is error-correlation learning, 

which is most conveniently implemented using a gradient descent procedure that represents a 

generalization of the LMS algorithm. 

        The first step in the development of such a learning procedure is to define the instantaneous 

value of the cost function 

                                            𝜉 =  
1

2
 𝑒𝑗

2𝑁
𝑗 =1                                                           ............... (5.33) 

Where N is the size of the training sample used to do the learning, and ej is the error signal 

defined by 

                                             𝑒𝑗 =  d𝑗  −  𝐹∗ x𝑗                                                         ............... (5.34) 

                                                 =  d𝑗  –   G( x𝑗 − t𝑖 
2

)𝐶𝑖

𝑚1
𝑖=1                                   ............... (5.35) 

The requirement is to find the free parameters wi, ti and  ()−1
𝑖  (the latter being related to the 

norm-weighting matrix Ci) so as to minimize𝜉. The results of this minimization are summarized 

below: 

1. Linear weights (output layer) 

                                          
𝜕𝜉 (𝑛)

𝜕w 𝑖(𝑛)
=   𝑒𝑗  𝑛 𝑁

𝑗 =1 G( x𝑗 − t𝑖(𝑛) )𝐶𝑖
                         ............... (5.36) 

                                  w𝑖 𝑛 + 1 = w𝑖 𝑛 −  𝜂1
𝜕𝜉 (𝑛)

𝜕w 𝑖(𝑛)
,          𝑖 = 1, 2, … , 𝑚1         ............... (5.37) 

2. Positions of Centers (hidden layer) 

                         
𝜕𝜉 (𝑛)

𝜕t𝑖(𝑛)
=  2 w𝑖(n)  𝑒𝑗  𝑛 𝑁

𝑗 =1 𝐺 ′  x𝑗 − t𝑖 𝑛   
𝐶𝑖
Σ𝑖

−1[x𝑗 − t𝑖 𝑛 ]    ............. (5.38) 

                   t𝑖 𝑛 + 1 =  t𝑖 𝑛 −  𝜂2
𝜕𝜉 (𝑛)

𝜕t𝑖(𝑛)
,          𝑖 = 1, 2, … , 𝑚1                             .............. (5.39) 

 

3. Spreads of centers (hidden layer) 

                        
𝜕𝜉 (𝑛)

𝜕Σ𝑖
−1(𝑛)

=  − w𝑖 n  𝑒𝑗  𝑛 𝑁
𝑗 =1 𝐺 ′  x𝑗 − t𝑖 𝑛   

𝐶𝑖
Q𝑗𝑖 (𝑛)              ............... (5.40) 

                        Q𝑗𝑖  𝑛 = [x𝑗 − t𝑖 𝑛 ]  [𝑥_𝑗 − 𝑡_𝑖 (𝑛)]𝑇                                           ............... (5.41) 

                  Σ𝑖
−1 𝑛 + 1 =  Σ𝑖

−1 𝑛 −  𝜂3 
𝜕𝜉 (𝑛)

𝜕Σ𝑖
−1(𝑛)

                                                     ............... (5.42) 
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            Where the term 𝑒𝑗  𝑛  is the error signal of output unit j at time n. The term G′(.) is the 

first derivative of the Green’s function G(.) with respect to its argument. The update equation for 

wi, ti and Σ𝑖
−1  are assigned different learning-rate parameters 𝜂1 , 𝜂2 and 𝜂3 , respectively. The 

covariance matrix  determines the receptive field of the Gaussian radial-basis function G 

(||x−ti||C) given in the equation 

                             𝐺( x −  t𝑖 𝐶 = 𝑒𝑥𝑝  −
1

2
(x −  t𝑖)

𝑇  Σ−1 (x −  t𝑖)                      ............... (5.43) 

 

Here the required training input/output pairs of the training set, that is {𝑅  , 𝑤𝑅𝐴𝐵 } . In the 

application, desired sources are located at elevation angels θ ranging from −90𝜊  to +90𝜊  to span 

the field of view of the antenna. Once the RBFNN is trained with a representative set of training 

input/output pairs, it is ready to function in the performance phase. In the performance phase, the 

RBFNN produces estimation of the weight vector 𝑤𝑅𝐴𝐵  . 

 

5.2.1.3 Performance Phase of the RBFNN 

 

After the training phase is complete, the RBFNN has established an approximation of the desired 

input-output mapping. In the performance phase, the neural network is expected to generalize, 

that is, respond to inputs that has never seen before, but drawn from the same distribution as the 

inputs used in the training set. In the performance phase, the RBFNN produces outputs to 

previously unseen inputs by interpolating between the inputs used in the training phase. 

(a) Generate the rearranged covariance matrix; 

(b) Present the array output vector at the input layer of the trained RBFNN. The output layer of 

the trained RBFNN will produce the estimation of the weight vector for the array output. 

            Unlike the SMI, the least mean-square, or recursive least squares algorithms, where the 

optimization is carried out whenever the directions of the desired or interfering signals change, in 

our algorithm, the weight vector of the trained network can be used to produce the optimum 

weight vector needed to steer the narrow beams of the adaptive array to the directions of the 

desired signal in real time. 
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5.2.2 Simulation and Results 

 

        We present here some simulations to justify the performance of the SMI, LSMI and robust 

adaptive beamforming.  

5.2.2.1 Array Factor Plots with variation of number of array elements with different 

element spacing- 

              We determined that the element spacing must be d ≤ λ / 2 to prevent spatial aliasing. 

Here we relax this restriction and look at various element spacing with different element linear 

array and resulting array characteristics, namely, their beam-pattern. Here we show the beam-

pattern plots for different algorithm when the angle of arrival of desired user is at 30𝜊  and 

interferer at −60𝜊  for different element spacing λ/2, λ/4 and λ/8 .We note that from simulation 

the algorithm places adaptively the maxima in the direction of desired user and nulls at the AOA 

of the interferer for various values of N.  

(a) SMI algorithm  

The array factor plots of SMI algorithm for different element spacing as λ/2, λ/4 and λ/8 

with N = 5, 8, 10 are as 

 

  

         Fig 5.2 Array Factor plots for SMI algorithm (for d=0.5λ)              Fig 5.3 Array Factor plots SMI algorithm (for d=0.25λ) 
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Fig 5.4 Array Factor plots for SMI algorithm (for d=0.125λ) 

 

(b) The array factor plots of LSMI algorithm for different element spacing as λ/2, λ/4 and λ/8 

with N = 5, 8, 10 are as 

 

   

          Fig 5.5 Array Factor plots for LSMI algorithm (d=0.5λ)         Fig 5.6 Array Factor plots for LSMI algorithm (d=0.25λ) 
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            Fig 5.7 Array Factor plots for LSMI algorithm (d=0.125λ) 

 

(c) The array factor plots of Robust Adaptive Beamforming algorithm for different element 

spacing as λ/2, λ/4 and λ/8 with N = 5, 8, 10 are as 

       

    Fig 5.8 Array Factor plots for RAB algorithm (d=0.5λ)                      Fig 5.9 Array Factor plots for RAB algorithm (d=0.25λ) 
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            Fig 5.10 Array Factor plots for RAB algorithm (d=0.125λ) 

 

        From figures with different element spacing it is evident that the optimum spacing between 

elements is half wavelength and as number of element spacing increases width of main lobe 

decreases, this is crucial for the application of smart antennas when single narrower beam is 

required to track the mobile, and number of side lobes increases these represents power radiated 

or received in potentially unwanted directions. So in a wireless communication system side lobes 

will contribute to the level of interferences spreads in the cell or sector by a transmitter as well as 

level of interference seen by a receiver when antenna arrays are used. It is evident that more 

elements an array has or alternatively the larger the array gets, the better the characteristics of 

radiation pattern as for as its shape and degree of freedom. 

         From these figures we get that array factor with different element spacing λ/2, λ/4 and λ/8 

for Robust Adaptive beamfoming algorithm is better than the SMI and LSMI algorithms. 

 

5.2.2.2 Comparison of Array Beampatterns of Algorithms 

We assume a uniform linear array with M =10 omnidirectional sensors spaced half a wavelength 

apart. For each scenario, 100 simulation runs are used to obtain each simulated point. In the 

training phase, desired sources are located at elevation angles θ ranging from −90𝜊  to +90𝜊 . In 

all examples, two interfering sources are assumed to impinge on the array from the directions of 

arrival (DOAs) 30𝜊  and 50𝜊  , respectively. The diagonal loading factor 𝜉 = 10 𝜎𝑛
2  is taken in 

the LSMI algorithm, where 𝜎𝑛
2 is the noise power. 
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           We assume that both the presumed and actual signal spatial signatures are plane waves 

impinging from the DOAs 0𝜊  and 2𝜊  , respectively. Fig. 5.11 displays the beampatterns of the 

methods tested for the fixed SNR =10dB for the no-mismatch case.  

 

Fig 5.11 Comparison of beampatterns (for no mismatch) 

 

                                                      Fig 5.12 Comparison of beampatterns (for 2𝜊  mismatch) 
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    From Fig. 5.11, we note that the robust adaptive beamforming algorithm based on RBFNN 

can adapt the radiation pattern of the antenna to direct narrow beam to the desired signal and 

nulls interfering sources. Fig. 5.12 displays the beampatterns of the methods tested for the fixed 

SNR =10dB for a 2𝜊  mismatch. From Fig. 5.12, we note that although the beampatterns of the 

robust adaptive beamforming algorithm based on RBFNN do not have nulls at the DOAs of the 

interferences as deep as those of the SMI algorithm, the interferences are sufficiently suppressed 

by our algorithm. 

 

5.2.2.3 Comparison of Performance for known signal steering vector 

The plane-wave signal is assumed to impinge on the array from θ = 0𝜊  . Fig.5.13 displays the 

performance of the three methods tested versus the number of snapshots for the fixed SNR 

=10dB. Fig. 5.14 shows the performance of these algorithms versus the SNR for the fixed 

training data size N = 500. In the second example, note that the performance of the robust 

adaptive beamforming algorithm based on RBFNN can outperform that of the other 

beamforming algorithms. 

 

 

Fig 5.13 Output SINR versus N  for no mismatch case         
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Fig 5.14 Output SINR versus SNR for no mismatch case 

5.2.2.4 Comparison of Performance for Signal look direction mismatch 

In the example, a scenario with the signal look direction mismatch is considered. We assume that 

both the presumed and actual signal spatial signatures are plane waves impinging from the DOAs 

0𝜊  and 3𝜊  , respectively. This corresponds to a 3𝜊  mismatch in the signal look direction. Fig. 

5.15 displays the performance of the three methods tested versus the number of snapshots for  

SNR =10 dB. 

 

Fig 5.15 Output SINR versus N  for mismatch case 
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Fig 5.16 Output SINR versus SNR for mismatch 

 

      The performance of these algorithms versus the SNR for fixed training data size N = 500is 

shown in fig 5.16. We see that SMI algorithm is very sensitive even to slight mismatches that 

can easily occur in practical situations and LSMI algorithm can improve the performance of the 

SMI algorithm. The robust adaptive beamforming algorithm based on RBFNN provides a 

significantly improved robustness against signal steering vector mismatches and makes the mean 

output array SINR close to the optimal one at all values of the SNR and N. 
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  Chapter  

   6   CONCLUSION AND SCOPE OF FURURE WORK 
 

 

 

 

 

6.1 Conclusion 

The robust adaptive beamforming algorithm is based on explicit modeling of uncertainty 

in the desired signal array response and three layer radial basis function neural network which 

treats the problem of computing weights of an adaptive array antenna as a mapping problem. We 

have seen that SMI, LSMI and neural network based robust adaptive beamforming algorithm to 

track the desired signal while simultaneously nulling the interference sources. 

 These algorithms have optimum spacing between array elements is d = 0.5λ and it is 

found that more elements an array has or alternatively the larger the array gets, the better the 

characteristics of radiation pattern as for as its shape and degree of freedom. 

 LSMI algorithm improves the performance of SMI algorithm in scenarios with an 

arbitrary steering vector mismatch, but choice of diagonal loading factor represents a serious 

problem. 

 Robust adaptive beamforming algorithm based on RBFNN is much less sensitive to 

signal steering vector mismatch but the SMI algorithm is very sensitive even to slight mismatchs. 

The robust adaptive beamforming algorithm based on RBFNN adapted the radiation pattern of 

antenna to direct narrow beam to desired signals and nulls the interference sources.  

 The robust adaptive beamforming algorithm based on RBFNN consistently enjoys 

excellent performance because it achieves the values of SINR that are close to the optimal one in 

a wide range of the SNR and N but values of SMI and LSMI algorithm did not achieve to the 

optimal one. 

                So, it is concluded that the robust adaptive beamforming algorithm based on neural 

network consistently enjoys a significantly improved performance as compared with other 

existing algorithms.  
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6.2 Scope of future work 

 Neural network like Reurrent Neural Network (RNN) with reduced structural complexity 

can be incorporated for adaptive beamforming. 

 Adaptive Neuro-Fuzzy Inference System (ANFIS) may be considered better robustness to 

the beamforming algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

 

REFERENCES: 

[1] Frank Gross,―Smart Antenna for Wireless Communication‖, Mcgraw-hill, September 14, 

2005.  

 [2] Carl B. Dietrich, Jr., Warren L. Stutzman, Byung-Ki Kim, and Kai Dietze, “Smart Antennas 

in Wireless Communications: Base-Station Diversity and Handset Beam forming”, lEEE 

Antennas and Propagation Magazine, Vol. 42, No. 5, October 2000. 

[3] Michael Chryssomallis, “Smart Antennas”, IEEE Antennas and Propagation Magazine, Vol. 

42, No. 3, June 2000. 

 [4] Brennan L. E., Mallet J. D. and Reed I. S. ―Adaptive Arrays in Airborne MTI Radar‖, IEEE 

Trans. Antennas Propagation, 24, pp. 607-615, 1976. 

 

 [5] Lal C. Godara, ―Application of antenna arrays to mobile communications, partП:  beam-

forming and direction-of-arrival considerations‖, Proceeding of the IEEE, Vol. 85, No. 8, 

pp.1195-1234, August 1997. 

 

[6] Monzingo R. A. and Miller T. W., ―Introduction to Adaptive Arrays”, New York: Wiley, 

1980. 

 

 [7] Li J., Stoica P. and Wang Z., ―On Robust Capon Beamforming and Diagonal Loading‖, 

IEEE Trans. Signal Processing, 51, pp. 1702-1715, 2003. 

 

 [8] A. H. El Zooghby, C. G. Christodoulou, and M. Georgiopoulos, ―Performance of radia basis 

function networks for direction of arrival estimation with antenna arrays,‖ IEEE Trans. 

Antennas Propagat., vol.45, pp. 1611-1617, Nov. 1997 

 

[9] P. R. Chang, W. H. Yang and K. K. Chan, ―A neural network approach to MVDR 

beamforming problem‖, IEEE Trans. Antennas Propagat., vol.40, pp. 313-322, 1992. 

 



58 
 

  

[10] Salvatore Bellofiore, Consfan fine A. Balanis, Jeffrey Foufz, and Andreas S. 

Spanias,―Smart-Antenna Systems for Mobile Communication Networks Part I: Overview and 

Antenna Design‖, IEEE Antenna’s and Propagation Magazine, Vol. 44, No. 3, June 2002. 

 

 [11] Dimitris G. Manolakis, Vinay K.Ingle,Stephen M. Kogon, ―Statistical and adaptive signal 

processing‖, Mc Graw Hill  Publication, 2005. 

 

 [12] Simon Haykin, ―Adaptive filter theory‖, Forth edition, Pearson education asia, Second 

Indian reprint, 2002.  

 [13] Bernard widrow, Semuel D. Stearns, ―Adaptive signal processing‖, Pearson education asia, 

Second Indian reprint, 2002. 

 

 [14] Agee, B, ―The Least-Square CMA: A New Technique for Rapid Correction of Constant 

Modulus Signal‖, IEEE International Conference on ICASSP’86, Vol. 11, pp. 953-956, April 

1986.   

 

 [15] Syed Shah Irfan Hussain,Syed Amjad Hussain Shah and Mohammad Imran Sheikh ―A 

Mobile Tracking Algorithm for Adaptive Array Smart Antennas by Adapting the Weights of 

Transmit Antenna‖,  IEEE transaction on Smart Antenna  pp. 58-63 , jul 2004 

[16] Mohammad Tariqul Islam,Zainol Abidin Abdul Rashid ―MI-NLMS adaptive 

beamformingalgorithm for smart antenna system applications‖, Journal of Zhejiang University 

SCIENCE A ,vol 10, pp. 1709-1716 , Jul 2006. 

 

[17] Xin Song, Jinkuan Wang, and Yinghua Han, ―Robust Capon Beamforming in the Presence 

of Mismatches‖, Proceedings of ISCIT2005,pp.135-138,  July2005. 

 

[18] S. Zhang and I. L. Thng,―Robust presteering derivative constraints for broadband antenna 

arrays‖, IEEE Trans. Signal Processing, vol. 50, pp. 1-10, Jan. 2002. 

 



59 
 

[19] B. D. Carlson,―Covariance matrix estimation errors and diagonal loading in adaptive 

arrays‖, IEEE Trans. Aerosp. Electron. Syst., vol. 24, pp. 397-401, July 1988. 

 

 [20] H. Cox, R. M. Zeskind, and M. H. Owen, ―Robust adaptive beamforming‖, IEEE Trans. 

Acoust., Speech, Signal Processing, vol. 35, pp. 1365-1376, Oct. 1987. 

 

 [21] J. Li, P. Stoica, and Z. Wang, ―Doubly constrained robust Capon beamformer‖, IEEE 

Trans. Signal Processing, vol. 52, pp. 2407-2423, Sept. 2004. 

 

[22] Xin Song Jinkuan Wang Xuefen Niu, ―Robust Adaptive Beamforming Algorithm Based on 

Neural Network‖, Proceedings of the IEEE International Conference on Automation and 

Logistics, pp. 1844-1849, Sep. 2008. 

 

 [23] Simon Haykin, ―Neural Networks‖, Second edition, Pearson education asia, Fourth Indian 

reprint, 2004.  

 

 


