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Abstract

In this thesis two efficient signcryption schemes based on elliptic curve cryptosystem

are proposed which can effectively combine the functionalities of digital signature and

encryption and also take a comparable amount of computational cost and communi-

cation overhead. They provide confidentiality, authentication, integrity, unforgeability

and nonrepudiation, along with forward secrecy of message confidentiality and public

verification. By forward secrecy of message confidentiality function we mean, although

the private key of the sender is divulged inattentively, it does not affect the confiden-

tiality of the previously stored messages. By the public verification function we mean,

any third party can verify directly the signature of the sender of the original message

without the sender’s private key when dispute occurs. It enhances the justice of judge.

In addition, proposed schemes save great amount of computational cost. The proposed

scheme II gives a better result as compare to the proposed scheme I, but it requires a

zero-knowledge interactive protocol to exchange recipient’s private key to a third party

or judge for verification. The proposed schemes can be applied to the lower computa-

tional power devices, like mobile devices, smart card based applications, e-voting and

many more, due to their lower computational cost.

Keywords: Signcryption, Public key cryptography, Elliptic curve cryptography, Dig-

ital signature, Forward secrecy.
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| Divides
|| Concatenation
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Dk(c) Symmetric key decryption
Ek(m) Symmetric key encryption
GF (p) The finite field of order p
mod modulo operator
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∀ For all
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Chapter 1

Introduction

Information is an asset that has a value like any other asset. As an asset, information

needs to be secured from attacks. Now-a-days security becomes an essential feature

in almost all area of communication. While sending a message to a person over an

insecure channel such as internet we must provide confidentiality, integrity, authenticity

and non-repudiation [1]. These are the four major security aspects [2] or goals. Be-

fore the modern era, cryptography was concerned solely with message confidentiality

(i.e., encryption)-conversion of messages from a comprehensible form into an incompre-

hensible one and back again at the other end, rendering it unreadable by interceptors

or eavesdroppers without secret knowledge (namely the key needed for decryption of

that message). Encryption was used to (attempt to) ensure secrecy in communica-

tions, such as those of spies, military leaders, and diplomats. In recent decades, the

field has expanded beyond confidentiality concerns to include techniques for message

integrity checking, sender/receiver identity authentication, digital signatures, and in-

teractive proofs and secure computation, among others. In ancient times, the use of

cryptography was restricted to a small community essentially forms by the military and

secret services. The keys were distributed secretly by a courier and the same key is used

to encipher and decipher the message. We have a number of encryption algorithms those

can be broadly classified into two categories: Symmetric/Private key encipherment and

Asymmetric/Public key encipherment [3,4]. The difference between these two is that to

communicate with n people private key cryptography requires (n× (n−1))/2 number of

keys as shown in the Figure 1.1 whereas; public key cryptography requires only n number

of key pairs (one private and one public key) as shown in the Figure 1.2.

2



Introduction

Figure 1.1: Symmetric Key Encryption requires (n× (n− 1))/2 number of keys.

Figure 1.2: Asymmetric/public Key Encryption requires n number of key pairs.

Public key cryptography discovered nearly two decades ago has revolutionized the

way for the people to communicate securely and in an authenticated way [1]. Any mes-

sage (text, binary files, or documents) that are encrypted by using the public key can

only be decrypted by applying the same algorithm, but by using the matching private

key. Any message that is encrypted by using the private key can only be decrypted

by using the matching public key. This means that you do not have to worry about

passing public keys over the Internet (the keys are supposed to be public). A problem

with asymmetric encryption, however, is that it is slower than symmetric encryption. It

requires far more processing power to both encrypt and decrypt the content of the mes-

sage. To check the authenticity of the message, i.e. the proof of originator, the sender

has to sign the message before it gets delivered to the recipient. To achieve authenticity

3



Chapter 1 Introduction

of the message the sender uses any one of the digital signature scheme [3, 4] depending

upon the level of security. Message security and sender’s authentication for communi-

cation in the open channel is a basic and important technology of Internet. Until the

before decade, message encryption and digital signature have been viewed as important

but distinct building blocks [5, 6] of various cryptographic systems. In the public key

schemes, the traditional method is to digitally sign the message then encrypt it and send

it to the recipient. Then the recipient will decrypt the message and check the authen-

ticity of the message. We call this two step approach as “Signature-Then-Encryption

”. The main disadvantage of this approach is that any arbitrary scheme can’t guar-

antee the security. Signature generation and encryption consumes machine cycles, and

also introduce ”expanded” bits to an original message. Now it is possible to combine

both the operations logically in a single step. This process is called Signcryption [1].

A signcryption scheme simultaneously fulfills the security attributes of an encryption

and those of a digital signature. Such properties mainly include: confidentiality, in-

tegrity, unforgeability and non-repudiation. Some signcryption scheme provides further

attributes such as public verifiability and forward secrecy of the message.

1.1 Message Encryption

Encryption means conversion of messages from a comprehensible form into an incom-

prehensible one and back again at the other end, rendering it unreadable by interceptors

or eavesdroppers without secret knowledge (namely the key needed for decryption of

that message). The sequence of data processing steps required for the transformation

of the plaintext into cipher text is called message encryption. Various parameters used

by an encryption algorithm, are derived from a secret key. As discussed in the previous

Chapter we have a number of encryption algorithms. DES or AES can be used for

message encryption. We can also use the RSA encryption algorithm for simplicity.

1.2 Digital Signature

Figure 1.3 shows the digital signature [7, 8] process. Here Alice is the sender and Bob

is the receiver. Alice uses a signing algorithm to sign the message. The message and

the signature are sent to the receiver. Then the receiver receives both and applies the

4



Chapter 1 Introduction

verifying algorithm whether to accept the message or not. Several digital signature

Figure 1.3: Digital Signature Process.

schemes have been evolved during the last few decades. Some of them have been im-

plemented [9]. They are: RSA Digital Signature Scheme, ElGamal Digital Signature

Scheme, Schnoor Digital Signature Scheme, Digital Signature standard (DSS), Elliptic

Curve Digital signature Scheme.

Now we can apply both the operations one after other to provide message confidential-

ity and authenticity. This is known as “Signature-Then-Encryption” [1]. In the next

section, “Signature-Then-Encryption” is discussed more in detail.

1.3 Signature-Then-Encryption

In order to send a confidential letter in a way that it can’t be forged, it has been a

common practice for the sender of the letter to be sign it, put it in an envelope and

then seal it before handing it over to be delivered.

Discovering public key cryptography has made communication between people who have

never met before over an open and insecure network such as Internet [10], in a secure

and authenticated way possible. Before sending a message the sender has to do the

following:

1. Sign it using a digital signature scheme (DSS)

2. Encrypt the message and the signature using a private key encryption algorithm

under randomly chosen encryption key

3. Encrypt the random message encryption key using receiver’s public key

4. Send the message following steps 1 to 3

5



Chapter 1 Introduction

This approach is known as “Signature-Then-Encryption ”. It can be shown in the

following Figure 1.4. This figure has been taken from [10].

Figure 1.4: (a) Signature-Then-Encryption (b) Decryption-Then-Verification

1.4 Disadvantages of Signature-Then-Encryption Ap-

proach

The main disadvantage of this approach is that, digitally signing a message and then

encrypting it, consumes more machine cycles and bloats the message by introducing

extended bits to it [1]. Hence, decrypting and verifying the message at the receivers

end, a lot of computational power is used up. Thus you can say that the cost of delivering

a message using signing-then-encryption is in effect the sum of the costs of both digital

signatures and public key encryption.

Is it possible to send a message of arbitrary length with cost less than that required

by signature-then-encryption?

6



Chapter 1 Introduction

The answer is yes; according to Yuliang Zheng [1] it is possible to combine both the

operations logically in a single step. It is discussed in the section 1.5.

1.5 Signcryption

1.5.1 What is signcryption?

The word signcryption was first coined by Yuliang Zheng in the year 1997 at Monash

University, Australia. According to him signcryption [1] is a cryptographic primitive

which combines both the functions of digital signature and public key encryption logi-

cally in a single step, and with a computational cost significantly less than that needed

by the traditional signature-then-encryption approach.

1.5.2 Preliminaries on signcryption

A signcryption scheme typically consists of three algorithms: Key Generation, sign-

cryption, Unsigncryption. The key generation algorithm generates all the public keys

required for signcryption and unsigncryption. It also generates the key pair of Alice and

Bob. The signcryption scheme will generate signcrypted message (c, r, s) and send it to

Bob. Bob, the verifier decrypts the message and checks the authenticity of the message

in the unsigncryption phase.

Any signcryption scheme should have the following properties:

1. Correctness: There exist an unsigncryption schemes from which the plain text can

be recovered from the signcrypted message.

2. Efficiency: A signcryption scheme is said to be efficient if the computational

cost and the communication cost should be smaller than that of signature-than-

encryption standard.

3. Security: It should fulfill the security properties of both digital signature and

encryption standard. Some of the security issues are discussed hereunder:

• Confidentiality: It should be infeasible for an eavesdropper to get any in-

formation from the signcrypted message without knowing the sender′s and

receiver′s private key.

7
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• Integrity: The intended or authenticated user can only modify the content

of the message.

• Unforgeability: There should not be two signcrypted messages which give

the same plain text. Otherwise an adaptive attacker can create an authentic

signcrypted text that can be accepted by the unsigncryption algorithm.

• Forward Secrecy If the long term private key of the sender is compromised,

no one should be able to extract any information of the past messages.

• Non-repudiation After sending the message later Alice should not deny that

she has sent the message or after receiving the message Bob can not deny

that he has received the message.

• Public Verifiability Any third party or judge can verify whether the message

has been sent by the intended user.

1.5.3 How it works?

The sender Alice uses her private key for signing the message and also uses the public

key of the recipient for generating the secret key in the signcryption phase. After the

recipient receives the cipher text and the digital signature, he uses his private key to

derive the same secret key and using that key he decrypts the message and avows the

authenticity of the message originator [10].

1.5.4 Key Generation

The different phases of signcryption are discussed here after. These include: key gener-

ation, signcryption phase, unsigncryption phase, and finally verification phase.

8



Chapter 1 Introduction

Public key parameters

The public parameters used in the process of signcryption and unsigncryption are given

below:

• p — a large prime.

• q — a large prime factor of p-1.

• g — an integer with order q modulo p chosen randomly from [1,...,p-1].

• hash — a one way hash function.

• KH — a keyed one way hash function.

• Ek(·)/Dk(·) — symmetric encryption/decryption algorithm with private key k

such as DES or AES.

Alice’s keys:

1. xa — Alice’s private key chosen at random from [1,...,q-1].

2. ya — Alice’s public key ya = gxa mod p.

Bob’s keys:

1. xb — Bob’s private key chosen at random from [1,...,q-1].

2. yb — Bob’s public key (yb = gxb mod p)

Figure 1.5: Key generation phase

1.5.5 Signcryption Phase

In this phase Alice, sends the signcrypted message to the recipient Bob. First she

digitally signs the message then encrypts it and sends it to Bob.

9



Chapter 1 Introduction

Signcryption of a message by Alice the sender

• Choose a number x at random from the set [1, ..., q-1].

And compute k = hash(yx
b mod p).

Split k into k1 and k2 of equal length.

• Calculate r = KHk2(m).

• c = Ek1(m).

Figure 1.6: Signcryption phase

• s = x/(r + xa) mod q if SDSS1 is used. or

s = x/(1 + xa · r) mod q if SDSS2 is used instead.

• Send (c, r, s) to Bob the recipient.

Figure 1.7: Signature

1.5.6 Unsigncryption Phase

In this phase Bob decrypts the message sent by Alice and verifies the authenticity of the

message.

Unsigncryption Phase

After receiving the signcrypted message Bob does the following steps:

10
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Figure 1.8: Alice sends c, r, s to Bob

• Compute k from r, s, g, p, ya, xb.

k = hash((ya · gr)s·xb mod p) if SDSS1 is used, or

k = hash((g · yr
a)

s·xb mod p) if SDSS2 is used.

Figure 1.9: Derive the key K

• Split k into k1 and k2 of equal length.

• Calculate m = Dk1(c).

Figure 1.10: Decryption of the message

• Accept m if KHk2(m) = r. It ensures that the message has come from Alice.

Otherwise he rejects.

11



Chapter 1 Introduction

Figure 1.11: Verification

1.6 Cost of Signcryption vs. Cost of Signature-

Then-Encryption

To compare the efficiency of two different methods for secure and authenticated message

delivery, two types of cost involved [1, 10, 11]: computational cost and communication

overhead (storage overhead). The computational cost indicates how much computational

effort has to be invested both by the sender and recipient of a message. Generally,

the computational cost is estimated by counting the number of dominant operations

involved. Typically these operations include private key encryption and decryption,

hashing, modular addition, multiplication, division and exponentiation. In addition to

computational cost, digital signature and encryption based on public key cryptography

also require extra bits to be appended to a message. This is known as communicational

overhead. On the basis of these two we can say one algorithm is better than another if

these costs are less in the former algorithm as compare to the later.

The advantage of signcryption over signature-then-encryption [1] lies in the dramatic

reduction of computational cost and communication overhead which can be symbolized

by the following inequality,

Cost(signcryption) ¿ Cost(signature) + Cost(encryption)

where, [ EXP = the number of modular exponentiation, MUL = the number of

modular multiplication, DIV = the number of modular division, ADD = the number of

modular addition or subtraction, HASH= the number of one way or keyed hash function,

ENC = the number of encryption using a private key cipher, DEC = the number of

decryption using a private key cipher. Parameters in the brackets indicate the number

of operations involved in the unsigncryption process ].

Table 1.1 gives the comparative analysis of signcryption scheme proposed by Yuliang

12
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Table 1.1: Cost of signature-Then-Encryption vs. Cost of Signcryption
Various Computational Communication
schemes cost overhead

signature-then-encryption EXP=2,HASH=1,ENC=1 |na|+ |nb|
based on RSA (EXP=2,HASH=1,DEC=1)

signature-then-encryption EXP=3,MUL=1,DIV=1
based on ”DSS ADD=1,HASH=1,ENC=1 2|q|+ |p|

+ ElGamal encryption” (EXP=2.17,MUL=1,DIV=2
ADD=0,HASH=1,DEC=1)

signature-then-encryption based EXP=3,MUL=1,DIV=0
on ”Schnoor signature ADD=1,HASH=1,ENC=1 |hash(.)|+ |q|+ |p|

+ ElGamal encryption” (EXP=2.17,MUL=1,DIV=0
ADD=0,HASH=1,DEC=1)
EXP=1,MUL=0,DIV=1

signcryption ADD=1,HASH=2,ENC=1 |KH(.)|+ |p|
SCS1 (EXP=1.17,MUL=2,DIV=0

ADD=0,HASH=2,DEC=1)
EXP=1,MUL=1,DIV=1

signcryption ADD=1,HASH=2,ENC=1 |KH(.)|+ |p|
SCS2 (EXP=1.17,MUL=2,DIV=0

ADD=0,HASH=2,DEC=1)

Zheng, which was based on DLP, with signature-then-encryption schemes. From this it

is clear that signcryption scheme saves less computational time as well as communication

overhead as compare to other schemes.

With the signature-then-encryption based on Schnoor digital signature and ElGamal

encryption [4], the number of modular exponentiation is three, for both the processes.

Out of three, two of them are used to verify the signature. That′s why they spent more

time in computing gs · yr
a mod p. Shamir [10] has suggested a technique (see Appendix

B) for fast computation of the product of multiple exponentials with the same with

the same modulo such as gs · yr
a mod p can be computed, on an average, in (1+3/4)|q|

modular multiplication.

Since a modular exponentiation can be completed, on average, in about 1.5|q| mod-

ular multiplications using the well known square-and-multiply method [4], (1+3/4)|q|
modular multiplication is computationally equivalent to 1.17 modular exponentiation.

Thus, the number of modular exponentiations involved in the decryption-then-verification

phase of Schnoor Digital signature scheme, can be reduced from 3 to 2.17. Combined

computational cost for both sender and receiver will be 5.17 as compare to 2.17 for the

13
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signcryption scheme shown in the Table 1.1.

5.17− 2.17

5.17
= 58%

So this represents a reduction of 58% in average computational cost.

Saving in computational overhead

From the Table 1.1 it may conclude that the saving in communication overhead will be,

|hash()|+ |q|+ |p| − (|KH()|+ |q|)
|hash()|+ |q|+ |p|

Yuliang Zheng assumed that |hash()| = |KH()| ∼= |q|/2 , |p|=512 bits and |q|=144 bits.

Hence the saving in communication overhead will be 70.3%.

1.7 Application of Signcryption

As discussed in the introduction, a major motivation of this work is to identify for

a more efficient method for secure and authenticated message transfer. So it can be

applied in smart card based applications, e-voting, personal health card, digital card

payment systems and many more. If we could apply digital signcryption in this area,

then we could save 50% computational cost and 85% communication overhead.

1.8 Motivation

Public key cryptography has drawn considerable attention over the last two decades.

From there onwards a lot of public key cryptosystems have been stated. It includes

RSA cryptosystem, Rabin Cryptosystem, ElGamal cryptosystem, Elliptic Curve cryp-

tosystem. Currently, the elliptic curve cryptography is being used in a wide variety

of applications. The elliptic curve based cryptosystem (ECC) [12, 13] can attend to a

desire security level with significantly smaller keys than those of required for their coun-

terparts. It is suitable for smart card based application, e-voting and also in other areas

like digital cash payment system. There are lots of constraints like memory, bandwidth,

and computational speed that must be considered while developing smart cards. ECC’s

unique properties make it especially well suited for smart card [14] based applications

and in any such area of applications. It provides the highest strength per bit of any
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cryptosystem known today. Now it is better to use ECC to generate the keys for sign-

cryption as well as unsigncryption phase. This could save the computational cost and

communication overhead.

1.9 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 discusses various literature surveyed related to the work. The Zheng

and Imai scheme as well as Hwang et. al signcryption scheme are discussed here in

detail which are based on elliptic curve cryptography.

The mathematical preliminaries required for the implementation of the proposed

schemes have been depicted in Chapter 3. SHA-1 hash function is used to produce

a message digest of size 160 bits. A comparison has been made between ECDLP and

DLP. The elliptic curve cryptosystem is discussed here more in detail. Finally it ends

with the application of ECC.

In Chapter 4, two forward secure signcryption schemes have been proposed which

are based on ECC. The security features along with the cost of computation and com-

munication are analyzed. It has been observed that the proposed approaches performs

better in terms of computational cost and communication overhead as compare to other

existing signcryption schemes.

Finally, Chapter 5 discusses the concluding remarks with the scope of further

research work.
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Chapter 2

Literature Review

2.1 Related Work

Many of the proposed signcryption scheme include modular exponentiation while some

of them are based on elliptic curves. Y.Zheng [1] proposed signcryption scheme which

saves about 58% computational cost and saving about 40% communication cost than

the traditional signature-then-encryption scheme . This scheme was based on discrete

logarithmic problem. It involves modular exponentiation and RSA takes a large key

size of about 1024 bits. After that, Jung et al. showed that Zheng’s scheme does

not provide forward secrecy of message confidentiality when the sender’s private key

disclosed. They also proposed a new signcryption based on discrete logarithm problem

(DLP) with forward secrecy. In Jung’s scheme [15], even attacker obtains the sender’s

private key, he cannot get the corresponding original message yet that sender had sent.

However, in those research results, when dispute occurs, the judge cannot directly verify

the signature because of not knowing the recipient’s private key. Bao and Deng [16]

enhanced Zheng’s signcryption scheme such that the judge can verify signature without

the recipient’s private key. But a key exchange protocol is required in the process of

verification. Gamage et al. [17] modified Zheng’s signcryption scheme so that anyone can

verify the signature of cipher text. Their scheme only verifies the cipher text to protect

confidentiality of message in firewall application. Then Zheng and Imai [18] suggested

an ECC based signcryption scheme thus providing all the basic security features, with

cost less than as required by “signature-then-encryption ”. They choose ECC because

elliptic curve based solutions are usually based on the difficulty of ECDLP which is

discussed in the next Chapter. As it is based on elliptic curve cryptosystem the key size
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used is smaller as compare to the other schemes, which is one of the advantages of this

scheme but still it needs forward secrecy.

2.1.1 Zheng and Imai Signcryption Scheme:

Task: Alice has to send a message m to Bob. The key generation phase has the following

steps:

Public parameters:

• C — Consider C as an elliptic curve over a finite field GF(pm) ,either with p ≥
2160 and m=1 or p=2 and m≥160.

• q — a large prime whose size is approximately of order pm-1.

• G — a point with order q. Chosen randomly from the points on C.

• hash(.) — a one way hash function whose output has say at least 160 bits.

• KH(.) — a keyed one-way hash function.

• (E,D) — the encryption and decryption algorithms of a private key cipher.

Alice’s keys:

• va — Alice’s private key chosen uniformly at random from [ 1,...,q-1].

• Pa — Alice’s public key. (Pa = vaG , a point on C).

Bob’s keys:

• vb — Bob’s private key chosen uniformly at random from [ 1,...,q-1].

• Pb — Bob’s public key. (Pb = vbG , a point on C).

Signcryption scheme by Zheng and Imai

v ε [1,...,q-1].A random number chosen by Alice.

(k1, k2)=hash(vPb).

c=Ek1(m).

r=KHk2(m, blind info).

s= v
r+va

mod q.
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send c,r,s to Bob.

Unsigncryption scheme by Zheng and Imai

u=svb mod q.

(k1, k2)=hash(uPa + urG).

if SECDSS1 is used, or

(k1, k2)=hash(uG + urPa).

if SECDSS2 is used.

m=Dk1(c).

Accept m only if

KHk2(m, blind info)=r.

The disadvantage of the above scheme is that it doesn’t support forward secrecy

and encrypted message authentication. From the above Zheng and Imai scheme we can

see that if Alice divulged his private key va inattentively then an adversary can get the

information about the past messages.

Now let′s discuss Hwang et al. [10] signcryption scheme based on elliptic curve cryp-

tosystem, which provides forward secrecy.

2.1.2 Hwang et al. Signcryption Scheme:

Task: Alice has to send a message m to Bob. The key generation phase has the following

steps:

Signcryption Phase:

Step 1: Choose r ε [1,...,q-1]

Step 2: K = rPb = (xk, yk)

Step 3: Calculate R = rG = (xR, yR)

Step 4: c=Exk
(m).

Step 5: e = hash(m||xR).

Step 6: s = va-er mod n.

sends c, R, s to Bob.
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Unsigncryption Phase:

Step 1: K = vbR = (xk, yk)

Step 2: m=Dxk
(c).

Step 3: e = hash(m||xR).

Step 4: He verifies the signature by comparing sG + eR = Pa ?

The Hwang et al scheme satisfies all the security attributes. The signcryption phase

involve with 2 elliptic curve point multiplication in the signcryption phase and 3 elliptic

curve point multiplication in the unsigncryption phase. In chapter 4 this scheme has

been compared with the proposed scheme.

2.2 Observation

So finally it has been observed that out of all signcryption schemes stated above the

signcryption scheme given by Zheng and Imai [18] supports all the four major security

goals, discussed in the introduction Chapter, takes a considerable amount of computa-

tional and communication overhead. But it does not support forward secrecy. So our

objective is to propose a new scheme such that it will take a comparable computational

and communication cost and should provide forward secrecy.

2.3 Problem Definition

From the above scheme of Zheng and Imai [18] we may conclude that if the private key of

Alice divulged inattentively then anyone can get the message. But it generally doesn’t

happen; if it happens then the system is no more secure. Hence it is necessary to provide

forward secrecy to the past messages. Elliptic curve cryptosystem [19, 20] is one of the

best public key cryptosystem which gives same level of security with smaller key size as

required by its counterparts. This can enhance the speed. The power, bandwidth, and

storage space which are basic limitations of resource restricted devices can be efficiently

utilized. So we need to formulate signcryption schemes based on ECC thus providing

the forward secrecy and public verification.
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2.4 Contribution

In this thesis, two signcryption schemes based on elliptic curve have been proposed and

implemented. They provide all the basic security goals such as confidentiality, authen-

tication, integrity, unforgeability and non-repudiation, along with forward secrecy of

message confidentiality and public verification. By forward secrecy of message confi-

dentiality function, although the private key of the sender is disclosed, it does not affect

the confidentiality of previous messages. Any third party should be able to verify di-

rectly the signature of original message without the sender’s private key when dispute

occurs [10]. In addition, they save great amount of computational cost. The proposed

schemes can be applied to the lower computational power devices like mobile devices

and many more, efficiently due to their lower computation cost.

2.5 Summary

Signcryption is a new cryptographic primitive which can fulfill both message encryp-

tion and signature logically in a single step thus reducing the computational cost and

communication overhead. For the implementation of signcryption and unsigncryption

algorithms, based on ECC, we must know about the elliptic curve cryptosystem and

hash functions. These are discussed in the next Chapter in detail.
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Chapter 3

Mathematical Background

3.1 Mathematics of Cryptography

The basic properties of groups, rings, fields [2, 4, 8] along with the fundamentals of

elliptic curve cryptography are discussed in this Chapter along with the secure hash

algorithm (SHA-1) [4].

3.1.1 Elementary algebraic structures

Groups

Definition 3.1: A Group (G) is a set of elements with a binary operator “•”that

satisfies the following four properties

1. Closure: If x and y are the elements of G, then z = x •y is also an element of G.

2. Associativity: If x, y and z are elements of G, then (x •y) •z = x •(y •z).

3. Existence of identity: For all x in G, there exist an element e, called the identity

element, such that e •a = a •e = a.

4. Existence of inverse: For each x in G, there exists an element x′, called the inverse

of x, such that x •x′ =x′ •x = e.

Along with those properties if it also satisfies the commutative property then it is called

as commutative group or abelian group. Commutative property means for all x and y in

G, we have x •y = y •x.
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Ring

A Ring is an abelian [4] structure with two operations. It is denoted as R =<

{...}, •,¤ > The first operation must satisfy all the five properties that is required

for an abelian group. The second operation must satisfy only the first two. In addition,

it should also satisfy the Distributive property which states that for all x, y and z

elements of R, we have x¤(y • z) = (x¤y) • (x¤z) and (x • y)¤z = (x¤z) • (y¤z).

A Ring is said to be commutative ring if the second operation also satisfy the commu-

tative property.

Field

A Field, denoted by F =< {...}, •,¤ >, is a commutative ring in which the second

operation satisfies all the five properties defined for the first operation except that the

identity of the first operation.

Finite Fields

Only finite fields are extensively used in cryptography. Galois showed that for a field to

be finite, the number of elements should be pn, where p is a prime and n is a positive

integer. The finite fields are usually called as Galois fields and denoted as GF(P n).

GF (P)

When n=1, we have GF(P) field [2,4]. This field consists of the elements 0, 1, ..., P-1,

with two arithmetic operations addition and multiplication.

3.2 Secure hash algorithm (SHA-1)

The Merkle-Damgard scheme [4] is the basic for many cryptographic hash functions

today. We should use a compression function that is collision resistant. There are two

different approaches in designing a hash function: it can be made from scratch like MD,

MD2, MD4, MD5, SHA, SHA1. Second approach is that it can also be designed by using

symmetric key block cipher. SHA-1 [21] hash function is being used in our schemes. A

hash function is a function hash() which should satisfy the following properties:
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• Compression – hash() takes input m of arbitrary length and produce a fixed length

string output hash(m).

• Non-invertible– Given hash(m) and hash() it is difficult to get m.

Two types of hash function are discussed: keyed or non-keyed hash function.

Modification detection code (MDC) [8] is a non-keyed hash function which is fur-

ther divided into one way hash function(OWHF) and collision resistance hash function

(CRHF). Both of them supports random oracle model as described in [4].

In our thesis work we have used the SHA-1, one way hash function, for the message

digest. This compression function will give a fixed length output of 160 bits. Maximum

message size that it takes is 264-1 and the block size is 512 bits.. Total 80 numbers of

rounds has been used with a word size of 32 bits. For the implementation of SHA-1 you

may refer [4].

3.3 Elliptic curve Cryptosystem

3.3.1 Introduction

Since the invention of public key cryptography in 1976 by Whitefield Diffie and Martin

Hellman numerous public key cryptographic systems have been proposed. All of these

systems are based on the difficulty of solving a mathematical problem. Over the years,

many of the public key cryptography systems have been broken and some are proved to

be impractical. Today only three types of system are considered to be safe, secure and

efficient. They are,

1. Integer factorization problem (IFP)

2. Discrete Logarithm Problem (DLP)

3. Elliptic Curve Discrete Logarithm Problem (ECDLP)

3.3.2 Integer factorization problem

The integer factorization problem (IFP) is the following: given a composite number n

that is the product of two large prime numbers p and q, find p and q. While finding large

prime numbers is a relatively easy task, the problem of factoring the product of two such
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numbers is considered computationally intractable if the primes are carefully selected.

Based on the difficulty of this problem, Rivest, Shamir and Adleman [2] developed the

RSA public-key cryptosystem.

3.3.3 Discrete Logarithm Problem

If p is a prime number, then Zp denotes the set of integers 0, 1, 2, . . . , p - 1,

where addition and multiplication are performed modulo p. It is well-known that there

exists a non-zero element α ∈ Zp such that each non-zero element in Zp can be written

as a power of α such an element α is called a generator of Zp. The discrete logarithm

problem (DLP) [5] is the following: given a prime p, a generator α of Zp, and a non-zero

element β ∈ Zp, find the unique integer k, 0 ≤ k ≤ p - 2, such that β ≡ αk(mod p).

The integer k is called the discrete logarithm of β to the base α.

3.3.4 Elliptic Curve Discrete Logarithm Problem

If q is a prime power, then Fq denotes the finite field containing q elements. In applica-

tions, q is typically a power of 2 (2m) or an odd prime number (p). The elliptic curve

discrete logarithm problem (ECDLP) [13, 15, 20, 22] is the following: given an elliptic

curve E defined over Fq, a point P∈(Fq) of order n, and a point Q∈(Fq), determine the

integer k, 0 ≤ k ≤ p - 1, such that Q = kP, provided that such an integer exists.

3.3.5 Comparison

Figure 3.1 compares, the time required to solve an instance of a problem based on

ECC with the time required to solve the problem based on IFP or DLP. Here the time

is measured in MIPS. As a benchmark, it is generally accepted that 1012 MIPS years

represents reasonable security at this time. In the Figure 3.1 the times of RSA and DSA

are grouped together because the asymptotic running time for both is same. As we can

see that to achieve reasonable security, RSA and DSA should employ 1024-bit modulo,

while a 160-bit modulus should be sufficient for ECC [19,20,23]. Moreover, the security

gap between the systems increases dramatically as the modulo sizes increases.
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Figure 3.1: Comparison of security levels

3.4 Elliptic curves over Finite fields

Elliptic curve cryptosystems(ECCs) are becoming more popular because of the reduced

number of key bits required in comparison to other cryptosystems(e.g. a 160 bit ECC

has roughly the same security strength as 1024 bits RSA). The original ElGamal public

key encryption and digital signature schemes are defined on finite fields. In 1985 Niel

Koblitz and Victor Miller from the University of Washington proposed the elliptic curve

cryptosystem (ECC). Elliptic curves over finite fields appeared to be intractable and

hence ElGamal encryption and signature schemes have natural counterparts on these

curves. Elliptic curve can be defined over Fq and F2m . For simplicity we will discuss

only Elliptic curves over Fq which is discussed in the next section.

3.4.1 Elliptic curves over Fq

A finite field is a set of elements that have a finite order (number of elements).The order

of Galois field (GF) [4] is normally a prime number or a power of a prime number.

Assume first that Fq has characteristic greater than 3. An elliptic curve E over Fq is

the set of all solutions (x, y) ∈ F q ×F q to an equation called Weierstrass equation (see

Appendix A).
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y2 = x3 + ax + b

where a, b ∈ Fq and 4a3 +27b2 6= 0, together with a special point ∞ called the point

at infinity [8].

It is well known that E is an (additively written) abelian group [4] with the point ∞
serving as its identity element. The rules for group addition are summarized below.

Addition Formulas for the Curve (1). There is a rule, called the chord-and-tangent

rule, for adding two points on an elliptic curve E(Fq) to give a third elliptic curve point.

Together with this addition operation, the set of points E(Fq) forms a group with ∞
serving as its identity. It is this group which is used in the construction of elliptic curve

cryptosystems. The addition rule is best explained geometrically.

Figure 3.2: Addition of two points P and Q : R=P+Q

Let P(x1, y1) and Q(x2, y2) are the two points on the elliptic curve. Then the sum

of P and Q is denoted by another point say R=(x3, y3) as it is shown in Figure3.2 Let

P =(x1,y1) ∈ E ; then -P = (x1,−y1). If Q = (x2,y2) ∈ E , Q 6= −P , then P + Q =

(x3,y3),where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1,
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λ =





y2−y1

x2−x1
if P 6= Q

3x2
1+a

2y1
Otherwise.

The above elliptic curve is said to be non singular if it satisfy the following condition,

4a3 + 27b2 6= 0

else, the curve is singular.

Adding and doubling points on an elliptic curve C over GF(2m) are defined in a

similar way as shown in the Fig. 3.

Figure 3.3: Doubling a point P : R=P+P=2P

Excluding the point at infinity ∞ every point P =(x,y) on an elliptic curve C over

GF(pm) can be represented as (or ”compressed” to) P = (x,ỹ),where ỹ is a single bit:

1. if x =0 then ỹ =0.

2. if x 6= 0, then ỹ is the parity of y when it is viewed as an integer.

An advantage of compressed representation of a point is that when a compressed point

is stored internally in a computer or communicated over a network, it takes only one
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bit more than half of the bits required for storing or transmitting its uncompressed

counterpart. This advantage, however, is not for free: recovering the y-coordinate

from a compressed point involves a few arithmetic operations in the underlying finite

field [11,18].

If E is an elliptic curve over a finite field Fq , then let E(Fq) denote the points in

E having both coordinates in Fq , including the point ∞; the points in E(Fq) are also

known as Fq - rational points. E(Fq) is an abelian group of rank 1 or 2. We have

E(Fq) ∼= Cn1 ⊕ Cn2 , where Cn denotes the cyclic group of order n, n2 divides n1, and

furthermore n2|q − 1. A well known theorem of Hasse states [18, 20, 24] that E(Fq) =

q + 1 - t, where |t| ≤ 2
√

q. The curve E is said to be super singular if t2 = 0, q, 2q,

3q, or 4q; otherwise the curve is non-super singular. If q is a power of 2 and E is super

singular, then E(Fq) is odd; if q is a power of 2 and E is non-super singular, then E(Fq)

is even. If q is a prime, then for each t satisfying |t| ≤ 2
√

q there exists at least one

elliptic curve E defined over Fq with E(Fq) = q + 1 - t; if q is a power of 2, then for each

odd t satisfying |t| ≤ 2
√

q there exists at least one (non-super singular) elliptic curve E

defined over Fq with E(Fq) = q + 1 - t [24].

3.4.2 ECC Domain Parameters

Elliptic curve cryptography (ECC) domain parameters over GF(P), can be represented

by a six tuple:

E = (q, a, b, G, n, h), where

q = P or q = 2m, where m is a natural number.

a and b are the co-efficients of x3 and x respectively used in the equation.

y2 ≡ x3 + ax + b (mod P) for q = P ≥ 3

y2 + xy = x3 + ax2 + b for q = 2m ≥ 1

G is a base point on the elliptic curve.

n is prime number which is of the order of G. The order of a point on an elliptic curve

is the smallest positive integer r such that rP = ∞.

Finally h = |E|/n. where |E| represents the total number of points on elliptic curve

and it is called the curve order.
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3.4.3 ECC key generation

A public key Q = (xq, yq) associated with a domain parameter (q, a, b, G, n, h) is

generated for an entity say Alice using the following procedure:

• Select a random number or pseudo random integer d in the interval [1, ..., n-1].

• Compute Q=dG.

• Alice’s public key is Q and her private key is d.

3.4.4 ECDSA

The elliptic curve digital signature algorithm (ECDSA) was proposed by Abdalla, Bel-

lare and Rogaway in 1999 [4,24]. Entity Alice has domain parameters D = (q, a, b, G,

n, h) and public key Qa and private key da. And entity Bob has authentic copies of D

and Qa. To sign a message m, Alice does the following:

• Select a random integer k from [1,n-1].

• Compute kG = (x1, y1) and r = x1modn. If r = 0 then go to step 1.

• Compute k−1 mod n. Compute e = hash(m).

• Compute s = k−1e + da.r mod n. If s = 0 then go to step 1.

Alice’s signature for the message m is (r, s).

To verify Alice’s signature (r, s) on m, Bob performs the following steps: Verify that r

and s are integers in [1,n-1].

• Compute e = hash(m).

• Compute w = s−1 mod n.

• Compute u1 = ew mod n and u2 = rw mod n.

• Compute (x1, y1) = u1G+ u2Qa.

• Compute v = x1 mod n. Accept the signature if and only if v = r. SHA-1 denotes

the 160-bit hash function.
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3.5 Application of ECC

Smart card [25] is a very good example where ECC can be applied. These are used

in a wide variety of applications such as e-commerce, identification and many more.

It is really advantageous if we use asymmetric key cryptography for short messages.

The most important constraints from the programmer’s point of view are the limited

RAM, ROM and EEPROM available, and the requirement to limit the processing time.

A typical inexpensive smart card has between 128 and 1024 bytes of RAM, 4 and 16

Kbytes of EEPROM, and 16 and 32 Kbytes of ROM. The CPU is typically 8-bit and

clocked at 3.57 MHz [14,25]. Any addition to memory or processing capacity increases

the cost of the card. It is certainly not acceptable to use all resources available on the

smart card to implement the cryptographic services. So it is better to use ECC on smart

card which uses smaller key size. Table 3.1 shows a comparison of key sizes of different

cryptosystems. From this it is clear that ECC gives same level of security with a smaller

key size as compare to others. But we must choose the ECC parameters carefully.

Table 3.1: A comparison of key sizes needed to achieve equivalent level of security with
three different methods.

Symmetric Encryption RSA and Diffie-Hellman Elliptic Curve
Key size in bits Key size in bits Key size in bits

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

3.5.1 Summary

The use of public key cryptography received considerable attention. An important ad-

vantage of elliptic curve is the shorter key lengths. ECC’s unique properties make it

especially well suited for smart card base applications and in any such area of applica-

tion. It provides the highest strength per bit of any cryptosystem known today. Based

on the best known algorithms today, one can estimate that 160-bit elliptic curves corre-

spond to 1024-bit RSA, and 224-bit elliptic curves correspond to 2048-bit RSA (Table

3.1).
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Even though ECC was proposed in 1985 [8], the market was initially reluctant to

move towards this new and more complex primitive. However, recently ECC has been

adopted by the governments of Austria, Germany and the USA and is gaining more

widespread acceptance [25]. The main attraction lies clearly in the shorter key lengths,

this advantage over RSA will increase over time.
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Chapter 4

The proposed signcryption schemes

4.1 The proposed signcryption schemes with for-

ward secrecy

Two signcryption schemes are proposed here in this thesis, which provide the security

functions such as message confidentiality, sender’s authenticity, message integrity, non-

repudiation, forward secrecy and public verification, with a cost less than or comparable

with the existing schemes. Both of them are based on elliptic curve cryptosystem. The

proposed schemes spend lower time in computation, especially for sender. It contains

four phases: initialization phase, signcryption phase, unsigncryption phase and judge

verification phase. In the initialization phase, system generates and publishes domain

parameters of elliptic curve, and each user generates his own private key and the related

public key. Each user should get the certification of his public key from the certificate

authority (CA) [4, 8].

4.1.1 Algorithm of the proposed scheme I

In the signcryption phase, the sender Alice signs and encrypts a message. Then she sends

the signcrypted text to the recipient Bob. In the unsigncryption phase, the recipient

Bob derives secret key to decrypt plain text. He also verifies the signature. In the judge

verification phase, a judge decides whether the sender Alice sent the signcrypted message

or not, when dispute occurs. We describe these four phases in the following [6, 10].

Initialization phase:

In this phase, some public parameters are generated. The steps are as follows:

q — a large prime number, where q is greater than 2160 [15].
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a, b are two integer elements which are smaller than q and satisfy the following condition

4a3 + 27b2 mod q 6= 0

Let F the selected elliptic curve over finite field q: y2 = x3 + ax + b mod q,

G — a base point of elliptic curve F with order n,

O — a point of F at infinite,

n — the order of point G, where n is a prime, n×G = O and n ≥ 2160. (The symbol “×
”denotes the elliptic curve point multiplication,)

H — a one-way hash function,

Ek(·)/Dk(·) — symmetric encryption/decryption algorithm with private key k such as

DES or AES.

The sender Alice randomly selects an integer da as her private key and da ≤ n-1.

She computes her public key Pa = da·G. The recipient Bob also selects private key db

and public key Pb = db·G by the same way as Alice. They need to get a certificate of

their public key from the certificate authority (CA).

Signcryption phase:

Assume that Alice wants to send a message m to Bob. Alice generates digital signa-

ture (T, s) of message m and uses the symmetric encryption algorithm and secret key

k to encrypt m. Let c be the cipher text. Alice generates the signcrypted text (c, T, s)

in the following steps.

Step 1: Verifies Bob’s public key Pb by using his certificate.

Step 2: Randomly selects an integer v, where v ≤ n - 1.

Step 3: Computes k1 = hash(vG).

Step 4: Computes (k2, k3) = hash(vPb).

Step 5: Uses the symmetric encryption algorithm to generate cipher text

c = Ek2(m)

where the secret k2 is generated in Step 4.

Step 6: Uses the one-way keyed hash function to generate

r = KHk3(c||k1||IDA||IDB)
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where IDA and IDB are the identifications given by the certificate authority(CA).

Step 7: Computes

s =
v

r + va

mod q

Step 8: Compute T = rG.

Step 9: Sends the signcrypted text (c, T, s) to Bob.

Unsigncryption phase:

Bob receives the signcrypted text (c, T, s). He decrypts cipher text ’c’ by performing

symmetric decryption algorithm with secret key k. He also verifies the signature. Bob

gets the plain text as follows.

Step 1: Verifies Alice’s public key Pa by using her certificate.

Step 2: Computes k1 = hash(sT + sPa).

Step 3: Computes (k2,k3) = hash(vbsT + vbsPa).

Step 4: Uses the one-way keyed hash function to generate

r = KHk3(c||k1||IDA||IDB)

where IDA and IDB are the identifications given by the certification authority(CA).

Step 5: Uses a symmetric decryption algorithm to generate plain text

m = Dk2(c)

where the secret key k2 is computed in Step 3.

Step 6: Bob accepts the message ’m’ only when rG = T .Otherwise he rejects.

Verification of the signcrypted message by a firewall or judge.

k1=hash(sT+sPa).

r=KHk2(c||k1||IDa||IDb).

Accept m if and only if

rG = T
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Proof:

To proof the verification condition.

vbsT + svbPa = vb

(
v

r+va

)
rG +

(
v

r+va

)
vbPa

= vbvrG
r+va

+ vvbPa

r+va

= Pbvr
r+va

+ vvbGva

r+va

= vPbr
r+va

+ vPbva

r+va

= vPb

(
r+va

r+va

)

= vPb

To proof the decryption stage

sT + sPa = vT
r+va

+ vPa

r+va

= vrG
r+va

+ vvaG
r+va

= vG
(

r+va

r+va

)

= vG

Hence it is proved.

4.1.2 Algorithm of the proposed scheme II

The parameters, defined for scheme I, are also remaining same for this scheme.

Signcryption phase:

Assume that Alice wants to send a message m to Bob. Alice generates digital signa-

ture (T, s) of message m and uses the symmetric encryption algorithm and secret key

k to encrypt m. Let c be the cipher text. Alice generates the signcrypted text (c, T, s)

in the following steps.

Step 1: Verifies Bob’s public key Pb by using his certificate.

Step 2: Randomly selects an integer v, where v ≤ n - 1.

Step 3: Computes (k1, k2) = hash(vPb).

Step 4: Uses the symmetric encryption algorithm to generate cipher text

c = Ek1(m)

where the secret k1 is generated in Step 3.
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Step 5: Uses the one-way keyed hash function to generate

r = KHk2(c||IDA||IDB)

where IDA and IDB are the identifications given by the certificate authority(CA).

Step 6: Computes

s =
v − r

va

mod q

Step 7: Compute T = rG.

Step 8: Sends the signcrypted text (c, T, s) to Bob.

Unsigncryption phase:

Bob receives the signcrypted text (c, T, s). He decrypts cipher text ’c’ by performing

symmetric decryption algorithm with secret key k. He also verifies the signature. Bob

gets the plain text as follows.

Step 1: Verifies Alice’s public key Pa by using her certificate.

Step 2: Computes (k1,k2) = hash(vbT + vbsPa).

Step 3: Uses the one-way keyed hash function to generate

r = KHk2(c||IDA||IDB)

where IDA and IDB are the identifications given by the certification authority(CA).

Step 4: Uses a symmetric decryption algorithm to generate plain text

m = Dk1(c)

where the secret key k1 is computed in Step 2.

Step 5: Bob accepts the message ’m’ only when rG = T .Otherwise he rejects.

Verification of the signcrypted message by a firewall or judge.

Using Diffie-Hellman key exchange protocol Bob will send his private key to the verifier

or judge.

The verifier computes (k1,k2) = hash(vbT + vbsPa) and then

r = KHk2(c||IDA||IDB)
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where IDA and IDB are the identifications given by the certification authority(CA).

Finally the verifier accepts the message ’m’ only when rG = T .Otherwise he rejects.

Proof:

To proof the decryption stage.

vbT + vbsPa = vb(rG + sPa)

= vbG(r + sva)

= Pb(r + v−r
va

va)

= vPb

Hence proved.

4.2 The security functions of the proposed schemes

Table 4.1 indicates the security features supported by existing signcryption schemes

along with the proposed schemes. The proof is based on the fact that it is almost

intractable to solve the elliptic curve discrete logarithmic problem (ECDLP) [8, 20].

We should choose the parameters in such a way that it will become infeasible for an

eavesdropper to solve ECDLP.

Table 4.1: Comparison based on security properties
Confi- Un- Non- Forward Public
dentiality Integrity forgeability repudiation secrecy Verification

Proposed
scheme I

Yes Yes Yes Directly Yes Yes

Proposed
scheme II

Yes Yes Yes Another
protocol

Yes Yes

Zheng Yes Yes Yes Another
protocol

No No

Zheng and
imai

Yes Yes Yes Another
protocol

No No

Bao and
Deng

Yes Yes Yes Directly No Yes

Gamage et
al.

Yes Yes Yes Directly No Yes

Jung et al. Yes Yes Yes Another
protocol

Yes No
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Confidentiality

To be secure, the information needs to be hidden from unauthorized access. To achieve

this we must make the data non-intelligible to the interceptor/eavesdropper. This is

called confidentiality. In this discussion let us consider Eve as the attacker/eavesdropper.

In both the schemes, if Eve wants to derive the key k then he has to solve ECDLP.

Suppose he has got hash (m) and he knows the seed value of the curve i.e. G which is

public to all. Then it is quite infeasible for Eve to solve it.

Authenticity

In the proposed schemes I, the recipient and the judge can use the sender’s public key Pa

with its certificate to authenticate the validity of the sender. But in case of scheme II,

the recipient Bob should establish a zero-knowledge interactive protocol or Diffi-Hellman

key exchange protocol with the judge to send his private key, for the authentication of

the message sent by Alice. When the recipient decrypted the cipher text c to get the

plain text m, he can use the formula given below to authenticate the correctness of the

received message. If the equation holds, the recipient is sure that the received message

does not modify in the transmission process. Therefore, the proposed scheme provides

the authentication of the sender’s identity and the transmitted message.

rG = T.

Integrity

In our proposed schemes, the recipient can verify whether the received message is the

original one that was sent by the sender. In the signcryption phase, the sender computes

and sends (c, T, s) to the recipient. If the attacker changes the cipher text c to c′ then by

the property of Random Oracle Model [4] it is infeasible to obtain two messages which

give the same digest [4].

Unforgeability

Dishonest Bob is the most powerful attacker to forge a signcrypted message, because he

is the only person who knows the private key vb which is required to directly verify a

signcryption from Alice. Given a signcrypted text(c, T, s) Bob can use his private key
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vb to decrypt the cipher text c and obtain (m, T, s). As we know ECDSA is unforgeable

against adaptive attack. Hence it is unforgeable.

Non-repudiation

The target of non-repudiation is to prevent Alice from denying the signcryption she

sent. Unforgeability implies non-repudiation if there is no duplication of the signcrypted

message. If the signcryption text is forgeable, Alice will have opportunity to deny. When

dispute occurs between sender and recipient, the recipient can send the signcrypted

message to the judge for settling the original message M sent by the intended sender or

not. Judge now run the verification algorithm and take the necessary action.

Forward Secrecy

An adversary that obtains va will not be able to decrypt past messages. Previously

recorded values of (c, T, s) that were obtained before the compromise cannot be de-

crypted because the adversary that has va will need to calculate r to decrypt. Calculating

r requires solving the ECDLP on T, which is computationally infeasible [8].

Public Verifiability

Verification requires knowing only Alice’s public key. All public keys are assumed to

be available to all system users through a certification authority or a public directly.

For scheme I, the receiver of the message does not need to engage in a zero-knowledge

proof communication with a judge or to provide to prove where as for scheme II, a zero

knowledge key exchange protocol is needed.

4.3 Implementation of the proposed algorithms us-

ing JAVA

JAVA being an Object Oriented Language(OOL) includes the security packages. It

could accept a prime number up to 1024 number of bits or even more. That could help

us to generate large prime numbers. The following code is being used to generate the

prime number of size depending upon the value of key size.

SecureRandom rndm1 = new SecureRandom();

BigInteger Pa = BigInteger.probablePrime(keysize,rndm1);
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In our thesis work we have used the SHA-1, one way hash function, for the mes-

sage digest. This compression function will give a fixed length output of 160 bits.

Maximum message size that it takes is 264-1 and the block size is 512 bits.. Total

80 numbers of rounds has been used with a word size of 32 bits. The JAVA code

used for the Secure Hash Function to make the digest of size 160 bits is given below:

The program will generate the points on the elliptic curve depending upon the param-

eters chosen for the curve. It takes a string as input then signcrypt the message then

generates (c, T, s) and send it to the recipient. The unsigncryption of the message

is carried out by the receiver at the other end. The receiver accepts the string after

checking the authenticity of the sender. A snapshot of the output is given below:

4.4 Cost Analysis

The cost which is being invested in the process of signcryption by the sender and in the

process of unsigncryption by the receiver for both the proposed schemes are analyzed

in this section. And also we will compare the cost with the existing schemes.
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Figure 4.1: Snapshot of the output of scheme I
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Figure 4.2: Snapshot of the output of scheme II
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Table 4.2: Elliptic curve DSS and its Variants
shortened Signature(r,s) Verification of Length of
schemes on a message m signature signature

ECDSS r = vG mod q K=s(́hash(m)G+rPa)

s = hash(m)+var
v

mod q where s=́ 1
s

mod q, 2|q|
check whether K mod q = r

SECDSS1 r = hash(vG,m) K = s(Pa + rG) |hash(.)|+ |q|
s = v

r+va
mod q check whether hash(K,m) = r

SECDSS2 r = hash(vG,m) K = s(rPa + G) |hash(.)|+ |q|
s = v

1+rva
mod q check whether hash(K,m) = r

4.4.1 Saving in Computational cost

Table 4.2 taken from [1] shows the computational cost and the communication overhead

of various elliptic curve DSS. With the signature-then-encryption based on SECDSS1

or SECDSS2 and elliptic curve ElGamal encryption [1], the number of computations of

multiples of points is 3, both for the process of signature-then-encryption and that of

decryption-then-verification.

Table 4.3: Comparative analysis of computational overhead

Signcryption Participants EXP DIV ECPM ECPA MUL ADD KH(.)/
scheme hash(.)

Zheng Alice 1 1 - - - 1 2
Bob 2 - - - 2 - 2

Jung et al. Alice 2 1 - - - 1 2
Bob 3 - - - 1 - 2

Bao and Deng Alice 2 1 - - - 1 3
Bob 3 - - - 1 - 3

Gamage et al. Alice 2 1 - - - 1 2
Bob 3 - - - 1 - 2

Zheng and Imai Alice - 1 1 - 1 1 2
Bob - - 2 1 2 - 2

Han et al. Alice - 1 2 - 2 1 2
Bob - 1 3 1 2 - 2

Hwang Alice - - 2 - 1 1 1
Bob - - 3 1 - - 1

Proposed scheme 1 Alice - 1 3 - 1 1 3
Bob - - 2 1 - - 3

Proposed scheme 2 Alice - 1 2 - 1 1 2
Bob - - 2 1 - - 2

We note that the “square and multiply” method for fast exponentiation (see Ap-

pendix B) can be adapted to a “doubling and addition” method for the fast computation

of a multiple of a point on an elliptic curve. Namely a multiple can be obtained in about

1.5|q| point additions [12,18].

Among the three multiples for decryption-then-verification, two are used in verifying

a signature. More specifically these two multiples are spent in computing e1G+e2Pa for

two integer’s e1 and e2. Shamir’s technique [18] for fast computation of the product of
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multiple exponentials with the same modulo can be adapted to the fast computation of

e1G + e2Pa. Thus on average the computational cost for e1G + e2Pa is (1+3/4)|q| point

additions, or equivalently 1.17 point multiples. That is, the number of point multiples

involved in decryption-then-verification, can be reduced from 3 to 2.17.

For scheme I and II:

In the proposed scheme I, we try to reduce the sender’s computational cost. Table

4.3 shows the comparisons of computational cost of sender and recipient among our

signcryption schemes and others [10]. The proposed scheme I require only 3 ECPM for

Table 4.4: comparative analysis of different schemes on the average computational time
of major operations

Various Sender Recipient
schemes Average computational Average computational

time in ms time in ms

Scheme I 3×83=249 2×83=166
Scheme II 2×83=166 2×83=166
Zheng [1] 1×220=220 2×220=440
Zheng and Imai [18] 1×83=83 2×83=166
Bao and Deng [16] 2×220=440 3×220=660
Gamage et al. [17] 2×220=440 3×220=660
Jung et al. 2×220=440 3×220=660
Han et al. [11] 2×83=166 3×83=249
Hwang et al. [10] 2×83=166 3×83=249

signcryption and 2 ECPM for unsigncryption where as scheme II takes 2 ECPM for

signcryption and 2 ECPM for unsigncryption. The elliptic curve point multiplication

needs 83 ms and the modular exponentiation operation needs 220 ms for average com-

putational time in the Infineon’s SLE66CUX640P security controller [23]. Although our

schemes are slower than Zheng and Imai scheme [18] as shown in the Table 4.4 but they

provide added functionality such as forward secrecy, public verifiabilty. Figure 4.3 shows

the comparative analysis of the proposed schemes with the existing schemes. From this

we may conclude that the proposed schemes give better result than all other schemes

except the schemes such as Hwang et al., Zheng and Imai. Scheme II gives better result

as compare to Hwang et al. scheme.
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Figure 4.3: Performance

4.4.2 Analysis of Communication overhead

Communication overhead calculations are based on the following assumptions:

a)

|hash(.)| = |KH(.)| = |q| ÷ 2

b)

|q| ≈ |pm|

c) Point compression is used.

The communication overhead of SECDSS1 (see Table 4.2) followed by ElGamal elliptic

curve encryption is [4],

(|hash(.)|+ |q|) + 2(|q|+ 1) = |hash(.)|+ 3 |q| = 3.5 |q|

assuming that

|q| À 1
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For Scheme I and II:

The communication overhead of the proposed schemes I and II are

|q|+ (|q|+ 1) = 2 |q|+ 1 ≈ 2 |q|

assuming that

|q| À 1

Thus bandwidth saving can be calculated as:

(3.5 |q| − 2 |q|)/3.5 |q| = 42.86%

This saving is higher than the one calculated in Zheng-Imai paper [18], which is 40%.

However, it supports forward secrecy.

49



Conclusion
Conclusion

Limitations of the work
Further development



Chapter 5

Conclusion

This thesis introduces two elliptic curve based signcryption schemes for secure and

authenticated message delivery, which fulfills all the functions of digital signature and

encryption with a cost less than that required by the current standard signature-then-

encryption method. The Zheng and Imai scheme discussed in Chapter 2 is the most

efficient signcryption scheme based on ECC. But the drawback of the above scheme is

that it does not provide forward secrecy. So it is necessary to provide forward secrecy.

There are few schemes which can provide forward secrecy but the computational cost and

communication overhead is more. The cost of the proposed schemes are comparatively

lower than other schemes in terms of computational and communication overhead. ECC

has been used for the implementation of our algorithm because of its unique property

of ECDLP which is significantly more difficult than either the IFP or DLP. Proposed

schemes save more computational cost for the sender to suit the application of restricted

computational devices like smart card based applications, mobile devices, etc.

5.1 Limitations of the work

The elliptic curve parameters must be chosen in such a way that it will be difficult for

an adversary to solve the elliptic curve discrete logarithmic problem(ECDLP). Apart

from it scheme II, proposed in this thesis, requires a zero-knowledge interactive protocol

to verify the authenticity of the sender by a third party or judge.
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5.2 Further development

In 1988 Koblitz [24] suggested to use the generalization of Elliptic Curves (EC) for

cryptography, the so-called Hyperelliptic Curves (HEC). While ECC applications are

highly developed in practice, the use of HEC is still of pure academic interest. However,

one advantage of HECC [24] resides on the fact that the operand size for HECC is at

least a factor of two smaller than the one of ECC. More precisely, while typical bit-

lengths for ECC are at least 160 bits, for HECC this lower bound is around 80 bits (in

the case of genus 2 curves). This fact makes HECC a very good choice for platforms

with limited resources. Now we should look forward to develop schemes based on HECC

which is an open challenge for us.
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Appendix A

Weierstrass Equation

An elliptic curve is the graph of an equation of the form

y2 = x3 + Ax + B Where A and B are constants. This will be reffered to as

the Weierstrass Equation for an elliptic curve shown in the Figure 5.1. The set of points

it includes is given by,

E(L) = {∞} ∪ {(x, y) ∈ L× L|y2 = x3 + Ax + B

Figure 5.1: Three adding cases in an elliptic curve

Adding points on an elliptic curve:

Let P = (x1, y1) and Q = (x2, y2) are the two points on an elliptic curve as shown in

the Figure 5.1. Now we need to find out a point R such that R = P + Q.
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Case 1:

Assuming that P 6=Q and neither one is ∞, draw a line joining P and Q and it should

cut the curve at some point let′s say R′= (x′3, y
′
3).

The slope of the line will be y2−y1

x2−x1
. If x1 = x2 then the line will be a vertical line. Let

us assume that x1 6= x2.

The equation of the line is y = m(x− x1) + y1 To find the intersection point with

the curve E, the must satisfy the curve condition. Substitute the above equation in the

curve we will get

y2 = x3 + Ax + B

(m (x− x1) + y1)
2 = x3 + Ax + B

After rearranging the above equation we will get

0 = x3 −m2x2 + ...

As we know that,

(x− r)(x− s)(x− t) = x3 − (r + s + t)x2 + (rs + st + rt)x− rst

where r, s, t are the roots of that equation.

Therefore we may conclude that r + s + t = m2. It implies x′3 + x1 + x2 = m2

x′3= m2 − x1 − x2

and y′3 = m(x− x1) + y1

Now reflect the point about the x-axis we will get R(x3, y3)=R′(x′3,−y′3).

x3 = x′3 = m2 − x1 − x2

y3 = −y′3 = −[m(x3 − x2) + y1]

= m(x1 − x3)− y1

Therefore,

m = y2−y1

x2−x1

x3 = m2 − x1 − x2

y3 = m(x1 − x3)− y1

Case 2:

When the two points coincides as shown in the Figure 5.1(b), we take the line through

them to be tangent line. Implicit differentiation allow us to find out the slope of that

line,
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y2 = x3 + Ax + B

2y dy
dx

= 3x2 + A

dy
dx

= 3x2+A
2y

Hence slope m =(3x2+A
2y

)

x3 = m2 − 2x1

y3 = m(x1 − x3)− y1

Case 3:

If the two points are additive inverse of each other means P = -P as shown in the Figure

5.1(c) then the line connecting the two points does not intercept the curve at a third

point. It will meet the curve at infinity that′s why P+(-P) = ∞.
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Fast computation of the Product of Multiple expo-
nentials with the same modulo

In unsigncryption, the most expensive part of computation by ge0
0 ge1

1 mod p, where

g0, g1 ,e0, e1 and p are all large integers. According to A. Shamir, the product involving

the same modulo can be obtained with a smaller computational cost( see [3] page no.

618) by using the following algorithm.

Let us analyze the computational complexity of the above algorithm. For a small

value of k, say k ≤ 4, the computational cost for pre-computing G1, G2, ..., G2k−1 is

marginal when compared to the total cost for computing the product. The total com-

putational cost is dominated by (t+v) modulo multiplication where v is the number of

non-zero columns in the array. For e0, e1, ..., ek−1 chosen randomly then
((

1
2

)k
)

t of the

columns in the array are zeros. Thus, the expected number of modulo multiplications

is
(
2− (

1
2

)k
)

t.

For k = 2, the expected computational cost is 1.75t modulo multiplication which

is roughly equivalent to 1.17 modulo exponentiations when the standard square and

multiply method is used.
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