
FPGA Implementation of DHT Algorithms

for Image Compression

A Thesis submitted in partial fulfillment of the requirements for the

degree of

Bachelor of Technology

In

Electronics and communication engineering

By

Richa Agrawal
Roll no. 10609016

Department of Electronics and Communication Engineering

 National Institute Of Technology, Rourkela

2009-2010

2

FPGA Implementation of DHT Algorithms

for Image Compression

A Thesis submitted in partial fulfillment of the requirements for the

degree of

Bachelor of Technology

In

Electronics and communication engineering

By

Richa Agrawal
Roll no. 10609016

Under the supervision of

Dr. Kamala Kanta Mahapatra

Professor

Department of Electronics and Communication Engineering

 National Institute Of Technology, Rourkela

2009-2010

3

ABSTRACT

Digital image processing is the use of computer algorithms to perform image processing on

digital images. The basic operation performed by a simple digital camera is, to convert the light

energy to electrical energy, then the energy is converted to digital format and a compression

algorithm is used to reduce memory requirement for storing the image. This compression

algorithm is frequently called for capturing and storing the images. This leads us to develop an

efficient compression algorithm which will give the same result as that of the existing algorithms

with low power consumption.

Compression is useful as it helps in reduction of the usage of expensive resources, such as

memory (hard disks), or the transmission bandwidth required. But on the downside, compression

techniques result in distortion (due to lossy compression schemes) and also additional

computational resources are required for compression-decompression of the data. Reduction of

these resources by comparing different algorithms for DHT is required.

FPGA Implementations of different algorithms for 1-DHT using VHDL as the synthesis tool are

carried out and their comparison gives the optimum technique for compression. Finally 2-D DHT

is implemented using the optimum 1-D technique for 8x8 matrix input. The results obtained are

discussed and improvements are suggested to further optimize the design.

4

Contents

Certificate

Acknowledgment

List of figures

List of tables

CHAPTER 1: INTRODUCTION

1.1 Data Compression 10

1.2 Image Compression Model 11

1.3 Discrete hartley transform 12

CHAPTER 2: LITERATURE REVIEW

2.1 IC technology 13

2.2 FPGA Architecture 14

2.3 Image Compression 15

2.3.1 Transformation of image data 17

2.3.2 Quantization 17

2.3.3 Entropy coding 19

2.3.3.1 Huffman coding 19

2.3.3.2 Run-length coding 20

2.4 Discrete Hartley Transform 20

2.4.1 Formula 21

2.4.2 Fourier transform and convolution 21

5

2.4.3 Properties of DHT 22

2.5 Performance Measures of Image Compression 22

2.5.1 Compression efficiency 22

2.5.2 Complexities 22

2.5.3 Distortion measurement for lossy compression 22

CHAPTER 3: PROBLEM STATEMENT

3.1 DHT vs. DCT 24

3.2 Advantages of FPGAs 24

CHAPTER 4: DIFFERENT MODELING TECHNIQUES AND

ARCHITECTURES DEVELOPED

4.1 Baugh-Wooley algorithm for multiplication 27

4.2 DHT based Systolic Architecture (SA) 28

4.2.1 Mathematical modeling 28

4.2.2 Architecture 29

4.3 DHT based Distributed Arithmetic design methodology (DA) 30

4.3.1 Mathematical modeling 30

4.3.2 Architecture 33

4.4 Eight point DHT with pipelined stages with delays 34

4.4.1 Mathematical modeling 34

4.4.2 Architecture 35

6

4.5 Two-Dimensional DHT 37

4.5.1 Mathematical modeling 37

4.5.2 Architecture 37

4.5.3 Working 39

CHAPTER 5: RESULTS AND DISCUSSION

5.1 MATLAB Simulation Results 41

5.2 Xilinx Simulation Results and Discussion 43

5.2.1 Design Summary for different Architectures 43

5.2.2 Power Analysis 46

5.2.3 Comparison between the Matlab and VHDL outputs obtained 46

for 2-D DHT.

CHAPTER 6: CONCLUSION AND FUTURE WORK 50

References 51

7

ACKNOWLEDGEMENT

I place on record and warmly acknowledge the continuous encouragement,

invaluable supervision and inspired guidance offered by my guide Dr. K. K.

Mahapatra, Professor, Department of Electronics and Communication

Engineering, National Institute of Technology, Rourkela, in bringing this report to

a successful completion. This project has been a great learning experience and I am

grateful to him for all his support and suggestions during this project.

I would also like to thank Mr. Vijay Sharma, M.tech student at NIT Rourkela, for

his continuous encouragement and support during the completion of the project.

I am grateful to Prof. S.K Patra, Head of the Department of Electronics and

Communication Engineering, for permitting me to make use of the facilities

available in the department to carry out the project successfully. Last but not the

least I express my sincere thanks to all of my friends who have patiently extended

all sorts of help for accomplishing this undertaking.

Richa Agrawal

8

LIST OF FIGURES

Figure No.

Title

Page No.

1.1 Functional block diagram of a general image compression system

11

2.1 Basic Architecture of FPGA

14

2.2 Energy quantization based image compression encoder

16

2.3 Energy quantization based image compression decoder

16

2.4 Scanning order for DHT

18

2.5 Huffman source reductions

19

2.6 Huffman code assignment procedure

20

4.1 Systolic architecture for DHTs (N=4)

29

4.2 Structure of a Processing element 30

4.3 DHT based OBC using DA principles 33

4.4 Flow chart of the 8-point DHT implementation in pipelined

approach with delays

36

4.5 Flow diagram of 2-D DHT implemntation 38

5.1 Lena original bitmap image 40

5.2 Baboon original bitmap image 40

5.3 Reconstructed Lena Images and the error images with the

threshold values given as a percentage of normalized energy of

the image. (a-f: reconstructed images; g-l: error images)

41

5.4 Reconstructed Baboon Images and the error images with the

threshold values given as a percentage of normalized energy of

the image.(a-f: reconstructed images; g-l: error images)

42

5.5 Design Summary of the 2-D DHT design using VHDL as the

synthesis tool.

45

5.6 Simulation result for the 1
st
 input matrix 47

5.7 Simulation result for the 2
nd

 input matrix 48

9

LIST OF TABLES

Table No. Title Page No.

4.1 The contents of ROM i 32

4.2 The new contents of ROM i 33

5.1 MSE and PSNR tabulated for Lena and Baboon images 40

5.2 Design Summary for SA architecture for 3-point DHT 43

5.3 Design Summary for DA architecture for 3-point DHT 43

5.4 Design Summary for architecture of 8-pt DHT using two

4-point modules

44

5.5 Design Summary for architecture of 8-pt DHT by DA (8-

bit to 10-bit)

45

5.6 Design Summary for architecture of 8-pt DHT by DA (10-

bit to 12-bit)

45

10

Chapter 1

INTRODUCTION

Image compression, the art and science of reducing the amount of data required to represent an

image, is one of the most useful and commercially successful technologies in the field of digital

image processing. Digital image and video compression is now very essential. Internet

teleconferencing, High Definition Television (HDTV), satellite communications and digital

storage of movies would not be feasible unless a high degree of compression is achieved.

Compression is useful as it helps in reduction of the usage of expensive resources, such as

memory (hard disks), or the transmission bandwidth required. In today‟s age of competition

where everything is reducing its size every minute, the smaller is the better. But on the downside,

compression techniques result in distortion (due to lossy compression schemes) and also

additional computational resources are required for compression-decompression of the data.

1.1 Data compression

The term data compression refers to the process of reducing the amount of data required to

represent a given quantity of information. Because various amounts of data can be used to

represent the same amount of information, representations that contain irrelevant or repeated

information are said to contain redundant data. Various techniques have been proposed for

reducing the redundancy as far as possible.

Compression ratio is defined as the ratio of the size of compressed data to that of the

uncompressed data.

 So, 𝐶 =
 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎
 (1.1)

 Redundancy is the reduction in size in comparison of the uncompressed size.

 So, R = 1 – C (1.2)

Two-dimensional intensity arrays suffer from three principle data redundancies that can be

identified and exploited:

 Coding redundancy

11

 Spatial and temporal redundancy

 Irrelevant information

1.2 Image compression model

In the first step of encoding process the image f(x,y) is mapped to a format to reduce spatial

redundancy [2]. The various transforms used for mapping are

 Discrete cosine transform

 Discrete wavelet transform

 Discrete Hartley transform

Next quantization is done, where the loss of information takes place. Since it is an irreversible

process, we can omit this step for a lossless coding technique.

The final step is symbol coding, where various coding techniques can be used to represent the

information in minimum possible number of bits. The various coding techniques used are

Huffman coding, run-length coding, LZW coding, bit plane coding, block transform coding and

many other.

Figure 1.1 Functional block diagram of a general image compression system

12

1.3 DiscreteHartley Transform

 The discrete Hartley transform is a linear, invertible function H: R→R (where R denotes the set

of real numbers). The N real numbers𝑥0𝑥1…𝑥𝑁−1are transformed into N real numbers

𝐻0𝐻1,….𝐻𝑁−1 according to the formula [8]:

𝐻𝑘 = 𝑥𝑛 cos
2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁

𝑁−1

𝑛=0
for k= 0, 1… N-1 (1.3)

Properties:

1. The transform is a linear operator as it can be evaluated by the multiplication of the input

series by an NxN matrix. Also the inverse transform can be evaluated by simply

calculating the DHT of 𝐻𝑘 multiplied by a factor 1/N.

2. The DHT can be used to compute both convolution and DFT.

3. It is a real valued function (unlike DFT) and the memory requirement to compute both

forward and inverse DHT transforms is 50% that of the DCT.

Hence DHT is a better option for compression algorithms and is used for mapping the input

image pixels and quantization.

13

Chapter 2

LITERATURE REVIEW

2.1 IC technology

Every processor must be implemented on an integrated circuit(IC). IC technology involves the

manner in which we map a digital (gate level) implementation onto an IC. IC technologies differ

by how customized the IC is for a particular design [3]. They are of three different types:

1. Full-custom/VLSI

2. Semi-custom/ASIC

3. Programmable logic device (FPGA)

In full custom IC technology, all layers for a particular embedded system‟s digital

implementation are optimized. But this design has a very high non-recurring(NRE) cost and long

turnaround time, typically many months. It is usually used only in high-volume or extremely

performance-critical applications like in defense, spacecraft etc.

ASIC or Application specific integrated circuits are semi-custom ICs which can be implemented

in two types: gate array and standard cell. In gate-array ASIC technology, the masks for the

transistor level and gate levels are already built and in standard-cell ASIC technology, the masks

for logic level cells such as NAND gate or AND-OR combinations are present. The designer has

to connect the gates (routing) to implement the desired circuit. It has reduced NRE cost and

faster time-to-market than full-custom designs.

An FPGA consists of arrays of field programmable logic blocks connected by programmable

interconnected blocks. It is a more flexible and modular approach to PLD design. It is basically

consists of look-up tables and flip flops. The FPGAs need to be programmed i.e. configuring the

logic circuits and interconnection switches to implement a desired structural circuit. Applications

of FPGAs include digital signal processing, software-defined radio, aerospace and defense

systems, ASIC prototyping, medical imaging, computer vision, speech recognition,

cryptography, bioinformatics, computer hardware emulation, radio astronomy, metal detection

and a growing range of other areas.

14

2.2 FPGA Architecture

The FPGA is an integrated circuit that contains many large number of identical logic cells that

can be viewed as standard components. Each logic cell can independently take on any one of a

limited set of personalities. The individual cells are interconnected by a matrix of wires and

programmable switches. A user's design is implemented by specifying the simple logic function

for each cell and selectively closing the switches in the interconnect matrix. The array of logic

cells and interconnects form a fabric of basic building blocks for logic circuits. Complex designs

are created by combining these basic blocks to create the desired circuit.

Conceptually it can be considered as an array ofConfigurable Logic Blocks (CLBs) that can be

connected together through a vast interconnectionmatrix to form complex digital circuits.

Figure 2.1: Basic Architecture of FPGA

The logic cell architecture varies between different device families.Generally speaking, each

logic cell combines a few binary inputs (typically between 3 and 10) to one or two outputs

according to a boolean logic function specified in the user program. The cell's combinatorial

logic may be physically implemented as a small look-up table memory (LUT) or as a set of

15

multiplexers and gates. LUT devices tend to be a bit more flexible and provide more inputs per

cell than multiplexer cells at the expense of propagation delay.Programmable

interconnectsprovide routing paths to connect the inputsand outputs of the logic cell and I/O

blocks.

2.3 Image Compression

Image compression is minimizing the size in bytes of a graphics file without degrading the

quality of the image to an unacceptable level. The reduction in file size allows more images to be

stored in a given amount of disk or memory space. It also reduces the time and

bandwidthrequired for images to be sent over the Internet or downloaded from Web pages.

There are several different ways in which image files can be compressed. For Internet use, the

two most common compressed graphic image formats are the JPEG format and the GIF format.

The JPEG method is more often used for photographs, while the GIF method is commonly used

for line art and other images in which geometric shapes are relatively simple.

The steps involved in image compression are as follows:

1. First of all the image is divided into blocks of 8x8 pixel values. These blocks are then fed

to the encoder from where we obtain the compressed image.

2. The next step is mapping of the pixel intensity value to another domain. The mapper

transforms images into a (usually non-visual) format designed to reduce spatial and

temporal redundancy. It can be done by applying various transforms to the images. Here

discrete Hartley transform is applied to the 8x8 blocks.

3. Quantizing the transformed coefficients results in the loss of irrelevant information for

the specified purpose.

4. Source coding is the process of encoding information using fewer bits (or other

information-bearing units) than an unencoded representation would use, through use

ofspecific encoding schemes.

16

The block diagram of the steps is given in figure 2.2

Figure 2.2: Energy quantization based image compression encoder

For retrieving the image back, the steps have to be reversed from the forward process. First the

data is decoded using the decoder. Next inverse transform (IDHT) is calculated to get the 8x8

blocks. These blocks are then connected to form the final image. From the reconstructed

imagepixel values it is clear that some of the high frequency components are preserved.This

indicates that the edge property of the image is preserved.

Figure 2.3: Energy quantization based image compression decoder

17

Different steps in image compression are as follows[1]:

2.3.1Transformation of image data

It is required to convert the pixel values into another domain so that it is easier to compress. A

transform operates on an image‟s pixel values and converts them to a set of less correlated

transformed coefficients. Natural images (which are the most common images to be compressed)

have a lot of spatial correlation between the pixel intensities in its neighborhood. These

correlations can be exploited by using the transform and so the spatial and temporal redundancy

is reduced. This operation is generally reversible and may or may not reduce the data content of

the images. Here discrete Hartley transform (DHT) is used for generating the coefficients.

2.3.2 Quantization

Quantization is the process of approximating a continuous range of values (or a very large set of

possible discrete values) by a relatively small ("finite") set of discrete symbols or values. In other

words it means mapping a broad range of input values to a limited number of output values.It

reduces the accuracy of the transformed coefficients in accordance with a pre-established fidelity

criterion. The goal is to reduce the amount of irrelevant information present in the image. Since

information is lost in this process, it is an irreversible process. In error-free techniques this step

hence must be omitted to keep the whole information intact.

The human eye is fairly good at seeing small differences in brightness over a relatively large

area, but not so good at distinguishing the exact strength of a high frequency brightness

variation. This fact allows one to get away with a greatly reduced amount of information in the

high frequency components. This is done by simply dividing each component in the frequency

domain by a constant for that component, and then rounding to the nearest integer. This is the

main lossy operation in the whole process. As a result of this, it is typically the case that many of

the higher frequency components are rounded to zero, and many of the rest become small

positive or negative numbers. The quantization matrices are formed for different transforms

according to their frequency distribution in the coefficient matrix.

18

Quantization matrix for DCT can be easily obtained but it is difficult for DHT since the scanning

order is special for DHT. The scanning order for DHT is given in figure 2.4.

Figure2.4: Scanning order for DHT

Since it is difficult to design the quantization matrix, energy quantization method can be applied.

In this method the energy content of each matrix of transformed coefficients is obtained by the

following formula. The normalized energy is given by:

 𝐸𝑛 = 𝑥(𝑚,𝑛)2
𝑁

𝑛=0
 (2.1)

𝑀

𝑚=0

where M and N are the widths of the sample block and x(m,n) is the transformed sample.

Next a threshold value is selected (i.e. pre-defined according to the fidelity criterion) according

to which the transformed values will be truncated or kept intact. The threshold value is not a

global value but determined as a percentage of the energy content of the matrix and hence varies

for each matrix. The percentage value is only pre-decided. If the transformed co-efficient is less

than the threshold value, it is truncated otherwise kept intact. This helps in treating the image in

segments and sustaining the information in different regions of the images. For higher

compression rates the threshold value is increased and for lower compression the threshold value

is kept large (close to normalized value).

19

2.3.3 Entropy coding

An entropy encoding is a lossless data compression scheme that is independent of the specific

characteristics of the medium.One of the main types of entropy coding creates and assigns a

unique prefix code to each unique symbol that occurs in the input. These entropy encoders then

compress data by replacing each fixed-length input symbol by the corresponding variable-length

prefix code word. The length of each code word is approximately proportional to the negative

logarithm of the probability. Therefore, the most common symbols use the shortest codes.Two of

the most common entropy encoding techniques are Huffman coding and arithmetic coding.

2.3.3.1Huffman coding: it is one of the most popular techniques for removing coding

redundancy. The term refers to the use of a variable-length code table for encoding a source

symbol (such as a character in a file) where the variable-length code table has been derived in a

particular way based on the estimated probability of occurrence for each possible value of the

source symbol.A Huffman coder determines the compressed symbols by forming a data treefrom

the original data symbols and their associated probabilities.

The first step in Huffman coding is to create a series of source reductions by ordering the

probabilities of the symbols under consideration and combining the lowest probability symbols

into a single symbol that replaces them in the next source reduction. It is shown in figure 2.5 as

an example.

Figure 2.5: Huffman source reductions

20

The second step is to code each reduced source, starting with the smallest source and working

back to the original source, as shown in figure 2.6. The minimal length binary code for a two-

symbol source is the symbols 0 and 1.

Figure 2.6: Huffman code assignment procedure

Huffman‟s procedure creates the optimal code for a set of symbols and probabilities subject to

the constraint that the symbols can be coded one at a time.

2.3.3.2 Run-length coding: Run-length is the number of bits for which signal remains unchanged.

A run-length of 3 for bit 1, represents a sequence of '111'. Images with repeating intensities along

their rows (or columns) can often be compressed by representing runs of identical intensities a

run-length pairs, where each run length pair specifies the start of a new intensity and the number

of consecutive pixels that have that intensity.

2.4 Discrete Hartley Transform

The Hartley transform is an integral transform closely related to the Fourier transform, but which

transforms real-valued functions to real-valued functions. It was proposed as an alternative to the

Fourier transform by R. V. L. Hartley in 1942[8]. Compared to the Fourier transform, the Hartley

transform has the advantages of transforming real functions to real functions (as opposed to

requiring complex numbers) and of being its own inverse.The discrete version of the transform,

the Discrete Hartley transform, was introduced by R. N. Bracewell in 1983.

21

2.4.1 Formula

Formally, the discrete Hartley transform is a linear, invertible function H: R→R (where R

denotes the set of real numbers). The N real numbers𝑥0𝑥1…𝑥𝑁−1 are transformed into N real

numbers𝐻0𝐻1…𝐻𝑁−1 according to the formula[6]:

𝐻𝑘 = 𝑥𝑛 cos
2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁

𝑁−1

𝑛=0
for k= 0, 1… N-1 (2.2)

The inverse transform is given by:

𝑥𝑛 =
1

𝑁
 𝐻𝑘 cos

2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁

𝑁−1

𝑘=0
for n= 0, 1… N-1 (2.3)

The casfunction is given by:

𝑐𝑎𝑠(
2𝜋𝑛𝑘

𝑁
) = cos

2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
 (2.4)

and one of the properties of cas function is:

2𝑐𝑎𝑠 𝑎 + 𝑏 = 𝑐𝑎𝑠 𝑎 𝑐𝑎𝑠 𝑏 + 𝑐𝑎𝑠 −𝑎 𝑐𝑎𝑠 𝑏 + 𝑐𝑎𝑠 𝑎 𝑐𝑎𝑠 −𝑏 − 𝑐𝑎𝑠 −𝑎 𝑐𝑎𝑠(−𝑏) (2.5)

2 –Dimensional DHT of an array x (m, n) of size MxN may be defined as:

𝑋(𝑘, 𝑙) = 𝑥 𝑚,𝑛 𝑐𝑎𝑠(
𝑁

𝑛=0

2𝜋𝑚𝑘

𝑀
+

2𝜋𝑛𝑙

𝑁
)

𝑀

𝑚=0

for k=0,1.…M-1 & l=0,1…..N-1 (2.5)

The inverse transform is given by the same formula along with a scaling factor of 1/MN i.e.

𝑋 𝑘, 𝑙 =
1

𝑀𝑁
 𝑥 𝑚, 𝑛 𝑐𝑎𝑠(

𝑁

𝑛=0

2𝜋𝑚𝑘

𝑀
+

2𝜋𝑛𝑙

𝑁
)

𝑀

𝑚=0

for k=0,1.…M-1 & l=0,1…..N-1 (2.6)

2.4.2 Fourier Transform and Convolution

The real and imaginary parts of the Fourier transform are given by the even and odd parts of the

Hartley transform, respectively

22

 𝐹 𝑤 =
𝐻 𝑤 + 𝐻 −𝑤

2
−
𝑖 𝐻 𝑤 − 𝐻 −𝑤

2
 (2.7)

There is also an analogue of the convolution theorem for the Hartley transform. If two

functions x(t) and y(t) have Hartley transforms X(ω) and Y(ω), respectively, then

their convolution z(t) = x * y has the Hartley transform:

𝑍 𝑤 = 𝐻 𝑥 ∗ 𝑦 =
 2𝑝𝑖 𝑋 𝑤 𝑌 𝑤 + 𝑌 −𝑤 + 𝑋 −𝑤 𝑌 𝑤 − 𝑌 −𝑤

2
 (2.8)

Similar to the Fourier transform, the Hartley transform of an even/odd function is even/odd,

respectively.

2.4.3 Properties:

1. The transform is a linear operator as it can be evaluated by the multiplication of the input

series by an NxN matrix. Also the inverse transform can be evaluated by simply

calculating the DHT of 𝐻𝑘 multiplied by a factor 1/N.

2. The DHT can be used to compute both convolution and DFT.

3. It is a real valued function (unlike DFT) and the memory requirement to compute both

forward and inverse DHT transforms is 50% that of the DCT.

Hence DHT is a better option for compression algorithms and is used for mapping the input

image pixels and quantization.

2.5 Performance Measures of Image Compression

Normally the performance of a data compression scheme can be measured in termsof three

parameters. These are:

1. Compression efficiency: Compression efficiency is measured through compression

ratio (CR). The compression ratio can be defined as the ratio of the data size (number

of bits) of the original data to thesize of the corresponding compressed data. After the

image has been compressed, the memory requirement for storage reduces. CR gives

the measure of this reduction in storing images.

23

2. Complexities: The complexities of a digital datacompression algorithms are measured

by a number of data operations requiredperforming both the encoding and decoding

process. The data operations includeadditions, subtractions, and multiplication,

divisions and shift operations.

3. Distortion measurement for lossy compression: In the lossy compression algorithms,

distortion measurement is used to measure the amount of information lost after

reconstructing the original signal or image data that has been recovered from the

compressed data through encoding and decoding operations. The mean square error

(MSE) is one of the distortion measurements in the reconstructed data. The

performance measurement parameter; signal to noise ratio (SNR) is also used to

measure the performance of thelossy compression algorithms.

Mean square error for a 1-D data is given by:

 𝑀𝑆𝐸 =
1

𝑁
 𝑥 𝑛 − 𝑥 ′ 𝑛 2
𝑁−1

𝑛=0

 (2.9)

where N is the number of pixels in the image, x(n) is the original data and

x'(n) is the compressed data.

Peak Signal to Noise ratio (PSNR) is given by:

 𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
2552

𝑀𝑆𝐸′
 (2.10)

Where MSE‟ is calculated for 2-D block as:

 𝑀𝑆𝐸′ =
1

𝑀𝑁
 𝑥 𝑚, 𝑛 − 𝑥 ′ 𝑚, 𝑛 2

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 (2.11)

24

Chapter 3

PROBLEM STATEMENT

FPGAs - Field Programmable Gate Arrays - are future-oriented building bricks which allow

perfect customization of the hardware at an attractive price even in low quantities. FPGA

components available today have usable sizes at an acceptable price. This makes them effective

factors for cost savings and time-to-market when making individual configurations of standard

products.A time consuming and expensive redesign of a board can often be avoided through

application-specific integration of IP cores in the FPGA - an alternative for the future, especially

for very specialized applications with only small or medium volumes.

3.1 DHT vs. DCT

Many papers have been published describing various algorithms for implementation of 2-D DHT

in hardware. Discrete Hartley Transform is the real valued transform which gives only real

transform coefficients for real input stream. It has the main advantage over DCT (Discrete

Cosine Transform, which is the most common technique now) of reducing the memory content

up to 50% since the inverse transform is identical to the forward transform. Also, it retains the

higher frequency components, which restores the detailing (such as sharp boundaries) of the

image. Since it is a real valued function unlike DFT, the computational complexities are also

lower than in DFT algorithms.

3.2 Advantages of FPGAs

FPGAs have mostly become more popular in the past three years. It is a reprogrammable logic

device and can be configured by the end-user (field programmable) to have specific circuitry

within it. The main advantages of FPGA over other design technologies are listed below:

 Fast prototyping and turnaround – Prototyping means building an actual circuit to a

theoretical design to verify that it works, and to provide a physical platform for

debugging it if it does not.Turnaround is the total time between submission of a process

and its completion. Since in FPGAs all the interconnects are already present and the

designer only has to fuse these programmable interconnects to get the desired logic

25

output, the time taken is quite less compared to ASIC or full-custom design. It is

programmed by users at their site usingprogramming hardware. Today all the leading

companies are able to launch new products every other month due to this advantage of

FPGAs only.

 NRE cost is zero- Non-recurring engineering (NRE) refers to the one-time cost of

researching, developing, designing, and testing a new product. Since FPGAs are

reprogrammable and they can be used without any loss of quality every time, the non-

recurring cost is not present. This greatly decreases the initial cost of manufacturing of

ICs since the programs can be run and tested on the FPGAs free of cost.

 High speed-Since the FPGA technology is based on look-up tables, the time taken to

execute is less than that in ASIC technology. This high speed is used in making various

multipliers today, which had traditionally been the sole reserve of DSP processors.

 Parallel processing- FPGAs especially find applications in any area or algorithm that can

make use of the massive parallelism offered by their architecture. One such area is code

breaking, in particular brute-force attack, of cryptographic algorithms. The inherent

parallelism of the logic resources on an FPGA allows for considerable computational

throughput even at a low MHz clock rates. The flexibility of the FPGA allows for even

higher performance by trading off precision and range in the number format for an

increased number of parallel arithmetic units.

 Low cost-The cost of FPGA is quite affordable and hence it makes them very designer-

friendly. Also the power requirement is less since the architecture of FPGAs is based on

LUTs.

Due to the above mentioned advantages of FPGAs in IC technology and DHT in mapping of

images, implementation of 2-D DHT in FPGA can give us a clearer idea about the advantages

and limitations of using DHT as the mapping function. It can surpass the now most common

compressed graphic image formats using DCT and can help in forming better image processing

and restoration techniques.

26

FPGA implementation of the design is done using VHDL as the synthesis tool. The package

details of the FPGA and simulator used are listed below:

1. Family: Virtex II Pro

2. Device: XC2VP30

3. Package: FF896

4. Speed grade: -7

5. Synthesis tool: XST (VHDL/Verilog)

6. Simulator: (i) Model Sim 6.2C

(ii) ISE Simulator

27

Chapter 4

DIFFERENT MODELING TECHNIQUES AND ARCHITECTURES

DEVELOPED

The DHT belongs to the family of frequencytransforms that map temporal or spatial

functionsinto frequency functions. .The DHT accomplishesthis in amanner similar to the better-

known FourierTransform. The significant difference between theDiscrete Fourier Transform

(DFT) and DHT'salternative is that the DHT usesonly real values,i.e., no complex numbers.

The DHT achieves this via the kernel or casfunction:

𝑐𝑎𝑠
2𝜋𝑛𝑘

𝑁
 = cos

2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
 (4.1)

The N-point (DHT) is given by the followingformula[8]:

𝑌𝑘 = 𝑋𝑛 cas
2𝜋𝑛𝑘

𝑁

𝑁−1

𝑛=0
for k= 0, 1… N-1 (4.2)

where, Hnk = cas(
2𝜋𝑛𝑘

𝑁
), is the transform kernel.

Two architectures have been implemented for computing DHT and their efficiencies studied

regarding FPGA implementation. They are systolic architecture and distributed arithmetic

architecture.

4.1 Baugh-Wooley algorithm for multiplication

It is an algorithm for high-speed, two‟s complement, m-bit by n-bit parallel multiplication. The

two‟s complement multiplication is converted to an equivalent parallel array addition problem in

which each partial product is the AND of a multiplier bit and a multiplicand bit, and the signs of

all the partial product bits are positive [7].

The algorithm‟s principle advantage is that the signs of all the partial products are positive,

allowing the product to be formed using array addition techniques. Therefore the product is

formed with only the AND function and the ADD function. No subtraction is necessary, nor is

the NAND function needed. For 8x8 bit multiplier, the output is a 16-bit binary number.

28

The Baugh Wooley multiplier is hence used due to its simplicity, regularity and high through-put

rate which can be achieved for any transform size and word-length of the input data. It is

implemented in VHDL using full-adders and in-built AND functions.

4.2 DHT based Systolic Architecture (SA)

4.2.1 Mathematical modeling

If the elements of the transform‟s kernel and the input vector are represented using the 2‟s

complement number representation[4], then

Hik =-hik ,n-12n-1+ hik ,l2
ln-2

l=0 (4.3)

And,

Xk=-xk,n-12n-1+ xk,m 2mn-2
m=0 (4.4)

Where 𝑕𝑖𝑘 ,𝑙 and 𝑥𝑘,𝑚 are the l-th bit of𝐻𝑖𝑘 and m-th bit of 𝑋𝑘 respectively and 𝑕𝑖𝑘 ,𝑛−1 and

𝑥𝑘,𝑛−1are sign bits, where n is the word length.

So, the transform coefficient 𝑌𝑖 can becomputed as follows:

Yi= -hik ,n-12n-1+ hik ,l2
l

n-2

l=0
 -xk,n-12n-1+ xk,m 2m

n-2

m=0

N-1

k=0

 (4.5)

From the above equation it can be seen that the computation of the matrix product depends on

the type of multiplier used. So, Baugh-Wooley multiplier algorithm is used. Hence the equation

obtained is:

Yi= 2l+m hik ,lxk,m + 22n-2

n-2

m=0

n-2

l=0

hik ,n-1xk,n-l + -2lhik ,lxk,n-1

n-2

l=0

+ -2m xk,m hik ,n-1

n-2

m=0

 2n-1

N-1

k=0

(4.6)

29

The above equation can be mapped into the architecture, as shown in the figure 4.1 for 4-point

DHT i.e. N=4.

4.2.2 Architecture

The architecture for 4-point DHT is shown in figure 4.1 . It consists of 16 identical processing

elements (PE‟s)[4].

Each PE consists of a parallel Baugh-Wooley multiplier, storage elements where the coefficients

𝑕𝑖𝑘 and 𝑥𝑘𝑗 are stored in a storage element for pipelining the partial products and a parallel adder

based on fast carry is used to add the result of the partial product by the previous one.

Figure 4.1: Systolic architecture for DHTs (N=4)

The input data elements 𝑋𝑗 are fed from the north in a parallel fashion while the kernel matrix

elements fixed in their corresponding PE cells (during the entire calculation) are fed parallel too.

30

Figure 4.2: Structure of a Processing element

The structure of each processing element is given in figure 4.2

4.3 DHT based Distributed Arithmetic design methodology (DA)

4.3.1 Mathematical modeling

This approach is based on distributed arithmetic Read Only Memory (ROM), accumulator

structure and offset binary coding (OBC) techniques. The OBC technique reduces the ROM size

by a factor of 2 to 2N-1 when using DA principles. It is a technique where all-zero corresponds to

the minimal negative value and all-one to the maximal positive value.

Suppose that {𝐻𝑖𝑘 }‟s are L-bits constants and {𝑋𝑘}‟s are written in the fractional format as

shown[4]:

Xk= - xk,n-1+ xk,n-1-m 2-m
n-1

m=1

 (4.7)

Now, rewriting equation 4.7, we get

 𝑋𝑘 =
 𝑋𝑘 − −𝑋𝑘

2
 4.8

31

or, 2/]22)()([)1(

1,

1

1

1,1,1,









   nm

mnk

n

m

mnknknkk xxxxX (4.9)

where

)1(
1

1

1,1, 22 




   nm
n

m

mnknkk xxX
 (4.10)

Now we define,

 𝑑𝑘𝑗 ,𝑚 = { 𝑥𝑘,𝑚 – 𝑥𝑘,𝑚 , 𝑓𝑜𝑟 𝑚 ≠ 𝑛 − 1 𝑎𝑛𝑑 − 𝑥𝑘,𝑛−1 – 𝑥𝑘,𝑛−1 , 𝑓𝑜𝑟 𝑚 = 𝑛 − 1)

(4.11)

And dk,m∈ -1,+1 , so equation 4.10 can be rewritten as:

Xk=
 dk,n-1-m 2-mn-1

m=0 - 2- n-1

2

 (4.12)

Now using the above equation 4.12, we calculate DHT

 Yi = Hik /2 [dk,n−1−m 2−m
n−1

m=0
− 2− n−1]

N−1

k=0

 (4.13)

 𝑌𝑖 = (
𝐻𝑖𝑘𝑑𝑘,𝑛−1−𝑚

2
)2−𝑚

𝑁−1

𝑘=0

−
 𝐻𝑖𝑘
𝑁−1
𝑘=0

2
 2 𝑛−1 (4.14)

𝑛−1

𝑚=0

Now we define,

Dim = (1/2)Hik dk,m
N-1
k=0 , 0≤m≤W-1 (4.15)

 And Diextra = -1/2 Hik

N-1

k=0

 (4.16)

.

32

Therefore 𝑌𝑖 can be computed as :

Yi= Di,n-m -12-m + Diextra 2-(n-1)n-1
m=0 (4.17)

So, for N=3 the contents of the ROM will reduce from 8 to 4 values as shown in the table. Here

𝑥1, 𝑥2, 𝑥3 are the input bit vectors and m denotes the position of the bit.

Table 4.1: The contents of ROM i

𝑥1,𝑚 𝑥2,𝑚 𝑥3,𝑚 The contents of ROMi

0 0 0
-

Hi1+Hi2+Hi3

2

0 0 1
-

Hi1+Hi2-Hi3

2

0 1 0
-

Hi1-Hi2+Hi3

2

0 1 1
-

Hi1-Hi2-Hi3

2

1 0 0
-

-Hi1+Hi2+Hi3

2

1 0 1
-

-Hi1+Hi2-Hi3

2

1 1 0
-

-Hi1-Hi2+Hi3

2

1 1 1
-

-Hi1-Hi2-Hi3

2

Since the last four rows are identical to the first four except for the first bit, they can removed

and only four ROMs can be sufficient for the calculation. So, the new contents of the ROM are

as shown in table.

33

Table 4.2 The new contents of ROM i

𝑥1,𝑚 𝑥2,𝑚 𝑥3,𝑚 The contents of ROMi

0 0 0
-

Hi1+Hi2+Hi3

2

0 0 1
-

Hi1+Hi2-Hi3

2

0 1 0
-

Hi1-Hi2+Hi3

2

0 1 1
-

Hi1-Hi2-Hi3

2

4.3.2 Architecture

The figure below shows the architecture for the computation of DHTs (N=3) using DA principles

with OBC scheme[4]. The computation starts from LSB of x i.e. m=0.

Figure 4.3: DHT based OBC using DA principles

34

First the input data enters the PISO (Parallel In Serial Out), so that the bits of the input data

vector comes out serially starting with their LSBs. The XOR gates are used for address decoding,

i.e. only 2 bits are required to locate the memory location in ROM. So 1
st
 and 2

nd
bit are XORed

with the 3
rd

 bit to get the memory location. Also the third bit is used to determine whether

addition or subtraction will take place during accumulation. PISO consists of a clock signal,

input data vector and the single bit output which gives the bits of the vector input serially. Same

PISO can be used for all the input vectors, and they should work parallel at the same time.

ROM is a memory which stores the constants used in the distributed arithmetic method from the

table 2. It consists of registers which is in the form of an array so that the contents can be exactly

located, like in the memory.The contents of each ROM are different, so for a three input (N=3),

three ROMs are required. Similarly for an N-input DHT, „N‟ ROMs will be required. The table

gives the contents of the i
th

 ROM. Each ROM will contain 2
(N-1)

constants instead of 2
N

constants due to their repeatability.

The „Shift and Accumulate‟ block gives the output after addition/subtraction of the ROM

contents. Initially the contents of the accumulator are reset. After each clock cycle, the

accumulator is shifted to the left and the ROM output is added/subtracted according to the 3
rd

input bit. Finally after the last shift, the term 𝐷𝑖𝑒𝑥𝑡𝑟𝑎 added to the accumulator. This gives the

final transformed output for the i
th

 input. For N-input DHT, N number of identical „shift-

accumulate‟ blocks are required, and the N-point DHT outputs are derived from them. For an N-

point DHT, (N+2) clock cycles are required to obtain the output.

4.4 Eight point DHT with pipelined stages with delays

4.4.1 Mathematical modeling

The DHT of a real-valued-point input vector,𝑥0𝑥1…𝑥𝑁−1, may be defined as

 𝑋𝑘 = 𝒙𝒏𝐶𝑁 𝑘, 𝑛

𝑁−1

𝑛=0

 (4.18)

Where

𝐶𝑁 𝑘, 𝑛 = 𝑐𝑎𝑠(
2𝜋𝑛𝑘

𝑁
) = cos

2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
 for k,n=0,1….N-1 (4.19)

35

Supposing N to be an even number, the sequence 𝒙𝒏 is divided into two sub-

sequences𝒙𝟏 and𝒙𝟐length N/2 each, such that 𝒙𝟏 = 𝑥0, 𝑥2 … . . 𝑥𝑁−2 contains all even −

indexed termsand 𝒙𝟐 = 𝑥1, 𝑥3 … . . 𝑥𝑁−1 contains all odd-indexed terms of the input sequence

x.

Then the DHT can be defined as[5] :

 𝑋𝑘 = 𝒙𝟏𝐶𝑁 𝑘, 2𝑛

𝑁

2
−1

𝑛=0

+ 𝒙𝟐𝐶𝑁 𝑘, 2𝑛 + 1

𝑁

2
−1

𝑛=0

 (4.20)

Let 𝑋1𝑘and𝑋2𝑘 represent the (N/2) –point DHT coefficients of sequences 𝒙𝟏 and𝒙𝟐of length

(N/2) respectively. Using the symmetry properties of sine and cosine functions, the N-point DHT

may be expressed as the following set of equations:

 𝑋𝑘 = 𝑋1𝑘 + 𝐸𝑘 (4.21)

 𝑋𝑀+𝑘 = 𝑋1𝑘 − 𝐸𝑘 (4.22)

 𝐸𝑘 = 𝑋2𝑘 cos
𝜋𝑘

𝑀
 + 𝑋2(𝑀−𝑘) 𝑠𝑖𝑛

𝜋𝑘

𝑀
 (4.23)

For k=1,2….M-1 where M=N/2.

4.4.2 Architecture

Hence for computing 8-point DHT from 4-point DHT the set of equations obtained is given by

equation 4.24[5]:

1. 𝑋0 = 𝑋10 + 𝑋20

2. 𝑋1 = 𝑋11 + (𝑋21 + 𝑋23)/ 2

3. 𝑋2 = 𝑋12 + 𝑋22

4. 𝑋3 = 𝑋13 + (𝑋21 − 𝑋23)/ 2 (4.24)

5. 𝑋4 = 𝑋10 − 𝑋20

6. 𝑋5 = 𝑋11 − (𝑋21 + 𝑋23)/ 2

7. 𝑋6 = 𝑋12 − 𝑋22

8. 𝑋7 = 𝑋13 − (𝑋21 − 𝑋23)/ 2

So, for computing 8-point DHT the multiplication with 1/ 2 can be read from a ROM, while a

block of pipelined adders perform the addition.

36

It computes DHT in 5 pipelined stages. For first two stages, it consists of two 4-pointDHT

modules that receive the odd and even indexed subsequences𝒙𝟏 and𝒙𝟐and from the input buffer.

In the third pipelined stage, multiplication with 1/ 2 is done for the required coefficients i.e.

𝑋21and𝑋23 . Next they are added and subtracted in the fourth stage. During 3
rd

 and 4
th

 stages the

rest of the coefficients are passed through a delay. Delay consists of simply registers i.e. they are

stored in different registers and passed to the next stage. Finally the fifth pipelined stage is a

parallel adder block which adds/subtracts the coefficients to give the desire output.

The block diagram of the described method is given in figure 4.4.

Figure 4.4: Flow chart of the 8-point DHT in pipelined approach with delays

37

4.5 Two-Dimensional DHT

4.5.1 Mathematical modeling

Two-dimensional DHT can be computed using the 1-D DHT blocks. Various methods have been

proposed for this architecture. The one implemented follows the algorithm given below. Let the

size of the input 2-D matrix ‘F’ be 8x8, i.e. M=N=8 [6].

1. First 1-D DHT of all the rows of matrix F are taken and stored in another 8x8 matrix ‘G’.

2. Next 1-D DHT of all the columns obtained in the matrix Gis computed and stored in

another matrix T.

The temporary outcome is of the form, which is not Hartley transform. It is given by:

T u, v = f x, y cas(

N-1

y=0

M-1

x=0

2𝜋𝑢𝑥

𝑀
)𝑐𝑎𝑠

2𝜋𝑣𝑦

𝑁
 (4.25)

3. However it can be converted to Hartley transform by using the trigonometric identity

eq(2.5),

 2𝑐𝑎𝑠 𝑎 + 𝑏 = 𝑐𝑎𝑠 𝑎 𝑐𝑎𝑠 𝑏 + 𝑐𝑎𝑠 −𝑎 𝑐𝑎𝑠 𝑏 + 𝑐𝑎𝑠 𝑎 𝑐𝑎𝑠 −𝑏 − 𝑐𝑎𝑠 −𝑎 𝑐𝑎𝑠(−𝑏).

 Hence the desired Hartley transform can be expressed as the sum of four temporary

transforms

 2𝐻 𝑢, 𝑣 = 𝑇 𝑢, 𝑣 + 𝑇 𝑀 − 𝑢, 𝑣 + 𝑇 𝑢,𝑁 − 𝑣 − 𝑇 𝑀 − 𝑢,𝑁 − 𝑣 (4.26)

here MxN is the size of the input matrix. Therefor M=N=8. So, the equation becomes:

 2𝐻 𝑢, 𝑣 = 𝑇 𝑢, 𝑣 + 𝑇 8 − 𝑢, 𝑣 + 𝑇 𝑢, 8 − 𝑣 − 𝑇 8 − 𝑢, 8 − 𝑣 (4.27)

Hence 2-D DHT of an 8x8 matrix can be computed using 8-point 1-D DHT.

4.5.2 Architecture

The figure 4.5 illustrates the design flow system to implement the architecture of the 2-D DHT.

The architecture has been implemented using the 1-D DHT blocks as components and various

shift registers to smoothly run the entire operation. The input matrix has to be fed row-wise to

the FPGA since it cannot take such a large input matrix at a time.

38

Figure 4.5: Flow diagram of 2-D DHT implemntation

39

4.5.3 Working

Implementation of 2-D DHT is done using state machines. The 8x8 matrix input is fed to the 1-D

DHT block row-wise after a certain delay for the computation of transform coefficients of each

row. The transformed coefficients are stored in various registers arrays and they are shifted after

each row transform is computed, so that finally all the transformed values can be stored and

located for further computation, i.e. it works on shift and accumulate method.

After the first DHT is applied to the rows; consisting of eight number of 8-bit input vectors; they

are transformed and are stored in eight registers of 10-bit vectors. Similarly the columns are fed

for DHT computation to obtain the temporary outcome. Another block is used for DHT

computation this time, which computes DHT of 10-bit vectors to give 12-bit vectors. The

transformed values are again shifted and stored in the array of 12-bit registers to obtain the

temporary matrix T.

Finally, the temporary outcome are added and subtracted according to the logic given in eq.

(4.27) to obtain the desired output matrix mat i.e.8x8 2-D DHT of the input 8x8 matrix. All the

steps are executed in different states like computation of DHT of the rows/columns of input

vectors, shifting of the transformed values in the register arrays and calculating the DHT from

temporary values in registers.

40

Chapter 5

RESULTS AND DISCUSSION

5.1 MATLAB Simulation Results

Matlab code was written for image compression using energy quantization technique explained

in section 2.3. The images were reconstructed and the performance parameters such as mean

square error (MSE) and peak signal to noise ratio (PSNR) were calculated. Source coding was

not implemented and the images were reconstructed from the quantized values only. The code

was then tested on two bit-map image files and the results are tabulated below.

Table 5.1: MSE and PSNR tabulated for Lena and Baboon images.

IMAGE

Threshold

value as %

of

normalized

energy

10%

20%

40%

60%

80%

100%

LENA MSE 21.4292 31.7735 45.7513 55.7382 66.5523 69.6302

PSNR 80.1777 76.2389 72.5931 70.6186 68.8454 68.3933

BABOON MSE 67.5956 101.201 140.805 165.766 184.946 204.709

PSNR 68.6898 64.6541 61.3515 59.7195 58.6246 57.6094

Original images are of size 512x512 pixels:

Figure 5.1:Lena original bitmap imageFigure 5.2: Baboon original bitmap image

41

 (a) Eth=10%En (b) Eth=20%En (c) Eth=40%En

(d)Eth=60%En (e) Eth=80%En(f) Eth=100%En

(g)Eth=10%En(h) Eth=20%En(i) Eth=40%En

(j)Eth=60%En (k) Eth=80%En(l) Eth=100%En

Figure 5.3: Reconstructed Lena Images and the error images with the threshold values given as a

percentage of normalized energy of the image.(a-f: reconstructed images; g-l: error images)

42

(a)Eth=10%En(b) Eth=20%En(c)Eth=40%En

(d)Eth=60%En (e)Eth=80%En(f)Eth=100%En

(g)Eth=10%En(h)Eth=20%En(i)Eth=40%En

(j)Eth=60%En (k)Eth=80%En(l)Eth=100%En

Figure 5.4: Reconstructed Baboon Images and the error images with the threshold values given

as percentage of normalized energy of the image(a-f: reconstructed images; g-l: error images)

43

5.2 Xilinx Simulation Results and Discussion

5.2.1 Design Summary for different Architectures

 1. Systolic Architecture for 3-point DHT

 Table 5.2: Design Summary for SA architecture for 3-point DHT

Logic

utilization

Used Available Utilization

Number of

slices

428 4656 9%

Number of

slice flip-flops

359 9312 3%

Number of 4-

input LUTs

783 9312 8%

Number of

bonded IOBs

73 232 31%

Number of

GCLKs

1 24 4%

 2. DistributedArithmeticArchitecture for 3-point DHT

 Table 5.3: Design Summary for DA architecture for 3-point DHT

Logic

utilization

Used Available Utilization

Number of

slices

121 4656 2%

Number of

slice flip-flops

143 9312 1%

Number of 4-

input LUTs

208 9312 2%

Number of

bonded IOBs

77 232 33%

Number of

GCLKs

1 24 4%

We can clearly see that hardware used for DA architecture is much less than SA architecture.

This difference will only increase as we increase the number of inputs i.e. for 8-point DHT the

silicon used in DA will be much less than that used in SA. Also the power consumption is much

lesser in DA than in SA architecture. This is due to the reason that there is no multiplication or

44

any other higher calculations involved in DA model. It comprises only of adders and shift

registers. Hence DA architectures are faster, low power and more compact than SA architectures.

 3. 8- point DHT using two 4-point modules in pipelined stages

 Table 5.4: Design Summary for architecture of 8-pt DHT using two 4-pt modules

Logic

utilization

Used Available Utilization

Number of

slices

516 13697 3%

Number of

slice flip-flops

666 27392 2%

Number of 4-

input LUTs

795 27392 2%

Number of

bonded IOBs

195 556 35%

Number of

GCLKs

1 16 6%

 4. 8- point DHT usingDA principleswithROM (Input is 8 bit vector and Output is 10 bit vector)

Table 5.5: Design Summary for architecture of 8-pt DHT by DA (8-bit to 10-bit)

Logic

utilization

Used Available Utilization

Number of

slices

349 13697 2%

Number of slice

flip-flops

307 27392 1%

Number of 4-

input LUTs

600 27392 2%

Number of

bonded IOBs

147 556 26%

Number of

GCLKs

1 16 6%

 5. 8- point DHT using DA principleswithROM (Input is 10 bit vector and Output is 12 bit

vector)

Table 5.6: Design Summary for architecture of 8-pt DHT by DA (8-bit to 10-bit)

45

Logic

utilization

Used Available Utilization

Number of

slices

432 13697 3%

Number of

slice flip-flops

355 27392 1%

Number of 4-

input LUTs

694 27392 2%

Number of

bonded IOBs

179 556 32%

Number of

GCLKs

1 16 6%

The silicon utilization in the architecture with pipelined stages is higher than in the architecture

using only DA principles with ROM. Also the computational time is more in pipelined stage

architecture due to the delays introduced in the model of the method. Hence, architecture based

on DA principles using ROM is more efficient and is used for the modeling of 2-D DHT.

Another architecture which inputs 10-bits vectors and gives 12-bit vectors is also implemented,

which also is more efficient than the pipelined stage architecture.

 6. 2-D DHT OF 8X8 INPUT MATRIX

Figure 5.5: Design Summary of the 2-D DHT design using VHDL as the synthesis tool

46

5.2.2Power Analysis

The total estimated power consumption of the 2-D DHT architecture design is 103 mW.

Table 5.7: Power analysis of the 2-D architecture

Power summary I(mA) P(mW)

Total estimated power consumption -- 103

Total Vccaux 2.50V 10 25

Total Vcco25 2.50V 1 3

Quiescent Vccint 1.50V 50 75

Quiescent Vccaux 2.50V 10 25

Quiescent Vcco25 2.50V 1 3

5.2.3Comparison between the Matlab and VHDL outputs obtained for 2-D DHT.

2-D DHT is calculated for 8x8 matrices inMatlab and Xilinx. The simulation results of both are

shown for two different inputs. The matrix mat contains the 2-D DHT for the input given to x1-

x8 registers in the Xilinx simulation results shown below. For Matlab simulation, f contains the

input matrix and h gives the output matrix.

47

Figure 5.6: Simulation result for the 1
st
 input matrix

48

Figure 5.7: Simulation result for the 2
nd

input matrix

49

We can see that the results obtained from the hardware implementation are same for the odd

numbered columns and a little error is generated in even-numbered columns. This is due to the

reason that the even-numbered columns of the kernel matrix generated from the „cas‟ function

has mixed fraction values which have been approximated. This approximation can be reduced if

we use binary representation of decimal values for calculation purposes.

Also if the input matrix contains large values then, the transformed coefficients overflow the

registers and as a result an error is generated. It can be seen in the second simulation that the first

value of the transformed matrix has quite deviated from the required value. It can be corrected if

registers of larger number of bits are used to store the transformed values.

50

Chapter 6

CONCLUSION AND FUTURE WORK

In the present work, two-dimensional Discrete Hartley Transform for an 8x8 input matrix was

implemented in FPGA using VHDL as the synthesis tool. The 1-D DHT was also calculated for

8-point input using two algorithms and their effectiveness were discussed. It is shown that the

DA approach provides better performance in terms of speed and area when is compared with the

pipelined approach. This primarily focuses on image compression with less computation and low

power. The simulation results and design summary for 2-D DHT were obtained andit was shown

that the architecture implemented is an efficient method which uses limited space and time. The

hardware utilization is quite optimum and power analysis shows that the power requirement is

also optimum.

However if the input contents are large, they tend to overflow from the registers and hence error

occurs. It can be rectified by saving the transformed coefficients in larger registers. Also due to

quantization in the contents of the ROM, even-number outputs are more deviated from the

desired results than the odd-numbered outputs. This is due to the reason that even numbered

columns of the transform kernel consist of mixed fractions which are rounded off to be store in

the ROM registers. This drawback can be removed if the decimal fractions are converted to

binary representation before being stored. Also, a lot of memory is used in this architecture. It

can be solved by using the ROM-free DA technique. These are some of the improvements that

can be done to the improvise the design.

51

REFERENCES:

[1] S.K.Pattanaik and K.K.Mahapatra,“DHT Based JPEG Image Compression Using a Novel

Energy Quantization Method”IEEE International conference on industrial technology, pp. 2827

– 2832, Dec 2006 .

[2] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Pearson Education 3rd Edition 2008.

[3] F. Vahid and T. Givargis, Embedded system design: A unified hardware/software

introduction, Wiley India (P.) Ltd, 3
rd

 edition 2009.

[4] A. Amira, “An FPGA based system for discrete hartley transforms.” IEEE publication, pp.

137-140, 2003

[5] P.K.Meher, S. Thambipillai and J.C. Patra, “Scalable and modular memory-based systolic

architectures for discrete hartley transform”IEEE Transactions on cirucits and systems-I:regular

papers, Vol53, pp. 1065-1077, May 2006

[6] RN.Bracewell, 0.Buneman, H. Hao and J. Villasenor, “Fast two-dimensional hartley

transform” Proceedings of IEEE , Vol 74, No. 9, Sept1986

[7] CR. Baugh and BA. Wooley, “A two‟s complement parallel aaray multiplication

algorithm”IEEE Transactions on computers, Vol C-22,pp. 1045-1047, Dec 1973

[8] Bracewell, Ronald N. “The Hartley transform” New York: Oxford university press 1986

[9] Ranjan Bose, Information theory coding and Cryptography, Tata McGraw-Hill 2003.

[10]C. H. Paik and M. D. Fox, “Fast Hartley transform for image processing,”IEEE Trans. Med.

Image, vol. 7, no. 6, pp. 149–153, Jun. 1988.

[11] H.S. Hou, “The fast Hartley transform algorithm,” IEEE Transactions on Computers, vol.

C-36, no. 2, pp. 147–156, Feb. 1987.

[12] L.W. Chang and S.W. Lee, “Systolic arrays for the discrete Hartleytransform,” IEEE

Transactions Signal Processing, vol. 39, no. 11, pp. 2411–2418,Nov. 1991.

52

[13] P. K. Meher and T. Srikanthan, “A scalable and multiplier-lessfully-pipelined architecture

for VLSI implementation of discreteHartley transform,” in Proc. Int. Symp. Signals, Circuits

Syst. (SCS’03), vol. 2, Jul. 10–11, 2003, pp. 393–396.

[14] N. Kihara, et al., "The Electronic Still Camera: A New Concept inPhotography," IEEE

Trans. Cons. Electron., Vol. CE-28, NO. 3, pp. 325-335, Aug. 1982.

