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ABSTRACT 

 

Digital image processing is the use of computer algorithms to perform image processing on 

digital images. The basic operation performed by a simple digital camera is, to convert the light 

energy to electrical energy, then the energy is converted to digital format and a compression 

algorithm is used to reduce memory requirement for storing the image. This compression 

algorithm is frequently called for capturing and storing the images. This leads us to develop an 

efficient compression algorithm which will give the same result as that of the existing algorithms 

with low power consumption. 

Compression is useful as it helps in reduction of the usage of expensive resources, such as 

memory (hard disks), or the transmission bandwidth required. But on the downside, compression 

techniques result in distortion (due to lossy compression schemes) and also additional 

computational resources are required for compression-decompression of the data. Reduction of 

these resources by comparing different algorithms for DHT is required.  

FPGA Implementations of different algorithms for 1-DHT using VHDL as the synthesis tool are 

carried out and their comparison gives the optimum technique for compression. Finally 2-D DHT 

is implemented using the optimum 1-D technique for 8x8 matrix input. The results obtained are 

discussed and improvements are suggested to further optimize the design. 
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Chapter 1           

INTRODUCTION 

Image compression, the art and science of reducing the amount of data required to represent an 

image, is one of the most useful and commercially successful technologies in the field of digital 

image processing. Digital image and video compression is now very essential. Internet 

teleconferencing, High Definition Television (HDTV), satellite communications and digital 

storage of movies would not be feasible unless a high degree of compression is achieved. 

Compression is useful as it helps in reduction of the usage of expensive resources, such as 

memory (hard disks), or the transmission bandwidth required. In today‟s age of competition 

where everything is reducing its size every minute, the smaller is the better. But on the downside, 

compression techniques result in distortion (due to lossy compression schemes) and also 

additional computational resources are required for compression-decompression of the data. 

1.1 Data compression 

The term data compression refers to the process of reducing the amount of data required to 

represent a given quantity of information. Because various amounts of data can be used to 

represent the same amount of information, representations that contain irrelevant or repeated 

information are said to contain redundant data. Various techniques have been proposed for 

reducing the redundancy as far as possible. 

Compression ratio is defined as the ratio of the size of compressed data to that of the 

uncompressed data. 

     So,                             𝐶 =
 𝑠𝑖𝑧𝑒  𝑜𝑓  𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑  𝑑𝑎𝑡𝑎

𝑠𝑖𝑧𝑒  𝑜𝑓 𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑  𝑑𝑎𝑡𝑎
                                         (1.1) 

 Redundancy is the reduction in size in comparison of the uncompressed size. 

   So,             R = 1 – C                                                                (1.2) 

Two-dimensional intensity arrays suffer from three principle data redundancies that can be 

identified and exploited: 

 Coding redundancy 
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 Spatial and temporal redundancy 

 Irrelevant information 

1.2 Image compression model 

In the first step of encoding process the image f(x,y) is mapped to a format to reduce spatial 

redundancy [2]. The various transforms used for mapping are 

 Discrete cosine transform 

 Discrete wavelet transform 

 Discrete Hartley transform 

Next quantization is done, where the loss of information takes place. Since it is an irreversible 

process, we can omit this step for a lossless coding technique. 

The final step is symbol coding, where various coding techniques can be used to represent the 

information in minimum possible number of bits. The various coding techniques used are 

Huffman coding, run-length coding, LZW coding, bit plane coding, block transform coding and 

many other. 

 

Figure 1.1 Functional block diagram of a general image compression system 
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1.3 DiscreteHartley Transform 

  The discrete Hartley transform is a linear, invertible function H: R→R (where R denotes the set 

of real numbers). The N real numbers𝑥0𝑥1…𝑥𝑁−1are transformed into N real numbers 

𝐻0𝐻1,….𝐻𝑁−1 according to the formula [8]: 

𝐻𝑘 =  𝑥𝑛  cos
2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
 

𝑁−1

𝑛=0
for k= 0, 1… N-1                (1.3) 

Properties: 

1. The transform is a linear operator as it can be evaluated by the multiplication of the input 

series by an NxN matrix. Also the inverse transform can be evaluated by simply 

calculating the DHT of 𝐻𝑘  multiplied by a factor 1/N. 

2. The DHT can be used to compute both convolution and DFT. 

3. It is a real valued function (unlike DFT) and the memory requirement to compute both 

forward and inverse DHT transforms is 50% that of the DCT. 

Hence DHT is a better option for compression algorithms and is used for mapping the input 

image pixels and quantization. 
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Chapter 2 

LITERATURE REVIEW 

2.1 IC technology 

Every processor must be implemented on an integrated circuit(IC). IC technology involves the 

manner in which we map a digital (gate level) implementation onto an IC.  IC technologies differ 

by how customized the IC is for a particular design [3]. They are of three different types: 

1. Full-custom/VLSI 

2. Semi-custom/ASIC 

3. Programmable logic device (FPGA) 

In full custom IC technology, all layers for a particular embedded system‟s digital 

implementation are optimized. But this design has a very high non-recurring(NRE) cost and long 

turnaround time, typically many months. It is usually used only in high-volume or extremely 

performance-critical applications like in defense, spacecraft etc. 

ASIC or Application specific integrated circuits are semi-custom ICs which can be implemented 

in two types: gate array and standard cell. In gate-array ASIC technology, the masks for the 

transistor level and gate levels are already built and in standard-cell ASIC technology, the masks 

for logic level cells such as NAND gate or AND-OR combinations are present. The designer has 

to connect the gates (routing) to implement the desired circuit. It has reduced NRE cost and 

faster time-to-market than full-custom designs. 

An FPGA consists of arrays of field programmable logic blocks connected by programmable 

interconnected blocks. It is a more flexible and modular approach to PLD design. It is basically 

consists of look-up tables and flip flops. The FPGAs need to be programmed i.e. configuring the 

logic circuits and interconnection switches to implement a desired structural circuit. Applications 

of FPGAs include digital signal processing, software-defined radio, aerospace and defense 

systems, ASIC prototyping, medical imaging, computer vision, speech recognition, 

cryptography, bioinformatics, computer hardware emulation, radio astronomy, metal detection 

and a growing range of other areas. 
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2.2 FPGA Architecture 

The FPGA is an integrated circuit that contains many large number of identical logic cells that 

can be viewed as standard components. Each logic cell can independently take on any one of a 

limited set of personalities. The individual cells are interconnected by a matrix of wires and 

programmable switches. A user's design is implemented by specifying the simple logic function 

for each cell and selectively closing the switches in the interconnect matrix. The array of logic 

cells and interconnects form a fabric of basic building blocks for logic circuits. Complex designs 

are created by combining these basic blocks to create the desired circuit. 

Conceptually it can be considered as an array ofConfigurable Logic Blocks (CLBs) that can be 

connected together through a vast interconnectionmatrix to form complex digital circuits.  

 

Figure 2.1: Basic Architecture of FPGA 

The logic cell architecture varies between different device families.Generally speaking, each 

logic cell combines a few binary inputs (typically between 3 and 10) to one or two outputs 

according to a boolean logic function specified in the user program. The cell's combinatorial 

logic may be physically implemented as a small look-up table memory (LUT) or as a set of 
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multiplexers and gates. LUT devices tend to be a bit more flexible and provide more inputs per 

cell than multiplexer cells at the expense of propagation delay.Programmable 

interconnectsprovide routing paths to connect the inputsand outputs of the logic cell and I/O 

blocks. 

2.3 Image Compression 

Image compression is minimizing the size in bytes of a graphics file without degrading the 

quality of the image to an unacceptable level. The reduction in file size allows more images to be 

stored in a given amount of disk or memory space. It also reduces the time and 

bandwidthrequired for images to be sent over the Internet or downloaded from Web pages. 

There are several different ways in which image files can be compressed. For Internet use, the 

two most common compressed graphic image formats are the JPEG format and the GIF format. 

The JPEG method is more often used for photographs, while the GIF method is commonly used 

for line art and other images in which geometric shapes are relatively simple. 

 

The steps involved in image compression are as follows: 

1. First of all the image is divided into blocks of 8x8 pixel values. These blocks are then fed 

to the encoder from where we obtain the compressed image. 

2. The next step is mapping of the pixel intensity value to another domain. The mapper 

transforms images into a (usually non-visual) format designed to reduce spatial and 

temporal redundancy. It can be done by applying various transforms to the images. Here 

discrete Hartley transform is applied to the 8x8 blocks.  

3. Quantizing the transformed coefficients results in the loss of irrelevant information for 

the specified purpose. 

4. Source coding is the process of encoding information using fewer bits (or other 

information-bearing units) than an unencoded representation would use, through use 

ofspecific encoding schemes. 
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The block diagram of the steps is given in figure 2.2 

 

Figure 2.2: Energy quantization based image compression encoder 

 

For retrieving the image back, the steps have to be reversed from the forward process. First the 

data is decoded using the decoder. Next inverse transform (IDHT) is calculated to get the 8x8 

blocks. These blocks are then connected to form the final image. From the reconstructed 

imagepixel values it is clear that some of the high frequency components are preserved.This 

indicates that the edge property of the image is preserved. 

 

Figure 2.3: Energy quantization based image compression decoder 
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Different steps in image compression are as follows[1]: 

2.3.1Transformation of image data 

It is required to convert the pixel values into another domain so that it is easier to compress. A 

transform operates on an image‟s pixel values and converts them to a set of less correlated 

transformed coefficients. Natural images (which are the most common images to be compressed) 

have a lot of spatial correlation between the pixel intensities in its neighborhood. These 

correlations can be exploited by using the transform and so the spatial and temporal redundancy 

is reduced. This operation is generally reversible and may or may not reduce the data content of 

the images. Here discrete Hartley transform (DHT) is used for generating the coefficients. 

2.3.2 Quantization 

Quantization is the process of approximating a continuous range of values (or a very large set of 

possible discrete values) by a relatively small ("finite") set of discrete symbols or values. In other 

words it means mapping a broad range of input values to a limited number of output values.It 

reduces the accuracy of the transformed coefficients in accordance with a pre-established fidelity 

criterion. The goal is to reduce the amount of irrelevant information present in the image. Since 

information is lost in this process, it is an irreversible process. In error-free techniques this step 

hence must be omitted to keep the whole information intact. 

The human eye is fairly good at seeing small differences in brightness over a relatively large 

area, but not so good at distinguishing the exact strength of a high frequency brightness 

variation. This fact allows one to get away with a greatly reduced amount of information in the 

high frequency components. This is done by simply dividing each component in the frequency 

domain by a constant for that component, and then rounding to the nearest integer. This is the 

main lossy operation in the whole process. As a result of this, it is typically the case that many of 

the higher frequency components are rounded to zero, and many of the rest become small 

positive or negative numbers. The quantization matrices are formed for different transforms 

according to their frequency distribution in the coefficient matrix.  
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Quantization matrix for DCT can be easily obtained but it is difficult for DHT since the scanning 

order is special for DHT. The scanning order for DHT is given in figure 2.4. 

 

Figure2.4: Scanning order for DHT 

Since it is difficult to design the quantization matrix, energy quantization method can be applied. 

In this method the energy content of each matrix of transformed coefficients is obtained by the 

following formula. The normalized energy is given by: 

                                  𝐸𝑛 =   𝑥(𝑚,𝑛)2
𝑁

𝑛=0
                                                                  (2.1)   

𝑀

𝑚=0
 

 

where M and N are the widths of the sample block and x(m,n) is the transformed sample. 

Next a threshold value is selected (i.e. pre-defined according to the fidelity criterion) according 

to which the transformed values will be truncated or kept intact. The threshold value is not a 

global value but determined as a percentage of the energy content of the matrix and hence varies 

for each matrix. The percentage value is only pre-decided. If the transformed co-efficient is less 

than the threshold value, it is truncated otherwise kept intact. This helps in treating the image in 

segments and sustaining the information in different regions of the images. For higher 

compression rates the threshold value is increased and for lower compression the threshold value 

is kept large (close to normalized value).  
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2.3.3 Entropy coding 

An entropy encoding is a lossless data compression scheme that is independent of the specific 

characteristics of the medium.One of the main types of entropy coding creates and assigns a 

unique prefix code to each unique symbol that occurs in the input. These entropy encoders then 

compress data by replacing each fixed-length input symbol by the corresponding variable-length 

prefix code word. The length of each code word is approximately proportional to the negative 

logarithm of the probability. Therefore, the most common symbols use the shortest codes.Two of 

the most common entropy encoding techniques are Huffman coding and arithmetic coding. 

2.3.3.1Huffman coding: it is one of the most popular techniques for removing coding 

redundancy. The term refers to the use of a variable-length code table for encoding a source 

symbol (such as a character in a file) where the variable-length code table has been derived in a 

particular way based on the estimated probability of occurrence for each possible value of the 

source symbol.A Huffman coder determines the compressed symbols by forming a data treefrom 

the original data symbols and their associated probabilities.  

The first step in Huffman coding is to create a series of source reductions by ordering the 

probabilities of the symbols under consideration and combining the lowest probability symbols 

into a single symbol that replaces them in the next source reduction. It is shown in figure 2.5 as 

an example. 

 

Figure 2.5: Huffman source reductions 
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The second step is to code each reduced source, starting with the smallest source and working 

back to the original source, as shown in figure 2.6. The minimal length binary code for a two-

symbol source is the symbols 0 and 1. 

 

Figure 2.6: Huffman code assignment procedure 

Huffman‟s procedure creates the optimal code for a set of symbols and probabilities subject to 

the constraint that the symbols can be coded one at a time. 

2.3.3.2 Run-length coding: Run-length is the number of bits for which signal remains unchanged. 

A run-length of 3 for bit 1, represents a sequence of '111'. Images with repeating intensities along 

their rows (or columns) can often be compressed by representing runs of identical intensities a 

run-length pairs, where each run length pair specifies the start of a new intensity and the number 

of consecutive pixels that have that intensity. 

2.4 Discrete Hartley Transform 

The Hartley transform is an integral transform closely related to the Fourier transform, but which 

transforms real-valued functions to real-valued functions. It was proposed as an alternative to the 

Fourier transform by R. V. L. Hartley in 1942[8]. Compared to the Fourier transform, the Hartley 

transform has the advantages of transforming real functions to real functions (as opposed to 

requiring complex numbers) and of being its own inverse.The discrete version of the transform, 

the Discrete Hartley transform, was introduced by R. N. Bracewell in 1983. 
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2.4.1 Formula 

Formally, the discrete Hartley transform is a linear, invertible function H: R→R (where R 

denotes the set of real numbers). The N real numbers𝑥0𝑥1…𝑥𝑁−1   are transformed into N real 

numbers𝐻0𝐻1…𝐻𝑁−1   according to the formula[6]: 

𝐻𝑘 =  𝑥𝑛  cos
2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
 

𝑁−1

𝑛=0
for k= 0, 1… N-1            (2.2) 

The inverse transform is given by: 

𝑥𝑛 =
1

𝑁
 𝐻𝑘  cos

2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
 

𝑁−1

𝑘=0
for n= 0, 1… N-1        (2.3) 

The casfunction is given by: 

𝑐𝑎𝑠(
2𝜋𝑛𝑘

𝑁
) = cos

2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
                                             (2.4) 

and one of the properties of cas function  is: 

2𝑐𝑎𝑠 𝑎 + 𝑏 = 𝑐𝑎𝑠 𝑎 𝑐𝑎𝑠 𝑏 + 𝑐𝑎𝑠 −𝑎 𝑐𝑎𝑠 𝑏 + 𝑐𝑎𝑠 𝑎 𝑐𝑎𝑠 −𝑏 − 𝑐𝑎𝑠 −𝑎 𝑐𝑎𝑠(−𝑏)  (2.5)    

 

2 –Dimensional DHT of an array x (m, n) of size MxN may be defined as: 

𝑋(𝑘, 𝑙) =   𝑥 𝑚,𝑛 𝑐𝑎𝑠(
𝑁

𝑛=0

2𝜋𝑚𝑘

𝑀
+

2𝜋𝑛𝑙

𝑁
  )               

𝑀

𝑚=0
 

 

for k=0,1.…M-1 & l=0,1…..N-1                                                                        (2.5)   

The inverse transform is given by the same formula along with a scaling factor of 1/MN i.e. 

𝑋 𝑘, 𝑙 =
1

𝑀𝑁
  𝑥 𝑚, 𝑛 𝑐𝑎𝑠(

𝑁

𝑛=0

2𝜋𝑚𝑘

𝑀
+

2𝜋𝑛𝑙

𝑁
  )               

𝑀

𝑚=0
 

for k=0,1.…M-1 & l=0,1…..N-1          (2.6) 

2.4.2 Fourier Transform and Convolution 

The real and imaginary parts of the Fourier transform are given by the even and odd parts of the 

Hartley transform, respectively 
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                                𝐹 𝑤 =
𝐻 𝑤 + 𝐻 −𝑤 

2
−
𝑖 𝐻 𝑤 − 𝐻 −𝑤  

2
                              (2.7)          

There is also an analogue of the convolution theorem for the Hartley transform. If two 

functions x(t) and y(t) have Hartley transforms X(ω) and Y(ω), respectively, then 

their convolution z(t) = x * y has the Hartley transform: 

𝑍 𝑤 =  𝐻 𝑥 ∗ 𝑦  =
 2𝑝𝑖  𝑋 𝑤  𝑌 𝑤 + 𝑌 −𝑤  + 𝑋 −𝑤  𝑌 𝑤 − 𝑌 −𝑤   

2
     (2.8) 

Similar to the Fourier transform, the Hartley transform of an even/odd function is even/odd, 

respectively. 

2.4.3 Properties: 

1. The transform is a linear operator as it can be evaluated by the multiplication of the input 

series by an NxN matrix. Also the inverse transform can be evaluated by simply 

calculating the DHT of 𝐻𝑘  multiplied by a factor 1/N. 

2. The DHT can be used to compute both convolution and DFT. 

3. It is a real valued function (unlike DFT) and the memory requirement to compute both 

forward and inverse DHT transforms is 50% that of the DCT. 

Hence DHT is a better option for compression algorithms and is used for mapping the input 

image pixels and quantization. 

2.5 Performance Measures of Image Compression 

Normally the performance of a data compression scheme can be measured in termsof three 

parameters. These are: 

1. Compression efficiency: Compression efficiency is measured through compression 

ratio (CR). The compression ratio can be defined as the ratio of the data size (number 

of bits) of the original data to thesize of the corresponding compressed data. After the 

image has been compressed, the memory requirement for storage reduces. CR gives 

the measure of this reduction in storing images. 
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2. Complexities: The complexities of a digital datacompression algorithms are measured 

by a number of data operations requiredperforming both the encoding and decoding 

process. The data operations includeadditions, subtractions, and multiplication, 

divisions and shift operations. 

3. Distortion measurement for lossy compression: In the lossy compression algorithms, 

distortion measurement is used to measure the amount of information lost after 

reconstructing the original signal or image data that has been recovered from the 

compressed data through encoding and decoding operations. The mean square error 

(MSE) is one of the distortion measurements in the reconstructed data. The 

performance measurement parameter; signal to noise ratio (SNR) is also used to 

measure the performance of thelossy compression algorithms. 

Mean square error for a 1-D data is given by: 

 

                                      𝑀𝑆𝐸 =
1

𝑁
  𝑥 𝑛 − 𝑥 ′ 𝑛  2
𝑁−1

𝑛=0

                                        (2.9)   

 

where N is the number of pixels in the image, x(n) is the original data and 

x'(n) is the compressed data. 

Peak Signal to Noise ratio (PSNR) is given by:  

 

                                  𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10  
2552

𝑀𝑆𝐸′
                                                 (2.10)  

 

 

Where MSE‟ is calculated for 2-D block as: 

 

                𝑀𝑆𝐸′ =
1

𝑀𝑁
   𝑥 𝑚, 𝑛 − 𝑥 ′ 𝑚, 𝑛  2

𝑁−1

𝑛=0

𝑀−1

𝑚=0

                               (2.11) 
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Chapter 3 

PROBLEM STATEMENT 

FPGAs - Field Programmable Gate Arrays - are future-oriented building bricks which allow 

perfect customization of the hardware at an attractive price even in low quantities. FPGA 

components available today have usable sizes at an acceptable price. This makes them effective 

factors for cost savings and time-to-market when making individual configurations of standard 

products.A time consuming and expensive redesign of a board can often be avoided through 

application-specific integration of IP cores in the FPGA - an alternative for the future, especially 

for very specialized applications with only small or medium volumes.  

3.1 DHT vs. DCT 

Many papers have been published describing various algorithms for implementation of 2-D DHT 

in hardware. Discrete Hartley Transform is the real valued transform which gives only real 

transform coefficients for real input stream. It has the main advantage over DCT (Discrete 

Cosine Transform, which is the most common technique now) of reducing the memory content 

up to 50% since the inverse transform is identical to the forward transform. Also, it retains the 

higher frequency components, which restores the detailing (such as sharp boundaries) of the 

image. Since it is a real valued function unlike DFT, the computational complexities are also 

lower than in DFT algorithms. 

3.2 Advantages of FPGAs 

FPGAs have mostly become more popular in the past three years. It is a reprogrammable logic 

device and can be configured by the end-user (field programmable) to have specific circuitry 

within it. The main advantages of FPGA over other design technologies are listed below: 

 Fast prototyping and turnaround – Prototyping means building an actual circuit to a 

theoretical design to verify that it works, and to provide a physical platform for 

debugging it if it does not.Turnaround is the total time between submission of a process 

and its completion. Since in FPGAs all the interconnects are already present and the 

designer only has to fuse these programmable interconnects to get the desired logic 
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output, the time taken is quite less compared to ASIC or full-custom design. It is 

programmed by users at their site usingprogramming hardware. Today all the leading 

companies are able to launch new products every other month due to this advantage of 

FPGAs only. 

 NRE cost is zero- Non-recurring engineering (NRE) refers to the one-time cost of 

researching, developing, designing, and testing a new product. Since FPGAs are 

reprogrammable and they can be used without any loss of quality every time, the non-

recurring cost is not present. This greatly decreases the initial cost of manufacturing of 

ICs since the programs can be run and tested on the FPGAs free of cost. 

 High speed-Since the FPGA technology is based on look-up tables, the time taken to 

execute is less than that in ASIC technology. This high speed is used in making various 

multipliers today, which had traditionally been the sole reserve of DSP processors. 

 Parallel processing- FPGAs especially find applications in any area or algorithm that can 

make use of the massive parallelism offered by their architecture. One such area is code 

breaking, in particular brute-force attack, of cryptographic algorithms. The inherent 

parallelism of the logic resources on an FPGA allows for considerable computational 

throughput even at a low MHz clock rates. The flexibility of the FPGA allows for even 

higher performance by trading off precision and range in the number format for an 

increased number of parallel arithmetic units. 

 Low cost-The cost of FPGA is quite affordable and hence it makes them very designer-

friendly. Also the power requirement is less since the architecture of FPGAs is based on 

LUTs. 

 

Due to the above mentioned advantages of FPGAs in IC technology and DHT in mapping of 

images, implementation of 2-D DHT in FPGA can give us a clearer idea about the advantages 

and limitations of using DHT as the mapping function. It can surpass the now most common 

compressed graphic image formats using DCT and can help in forming better image processing 

and restoration techniques. 
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FPGA implementation of the design is done using VHDL as the synthesis tool. The package 

details of the FPGA and simulator used are listed below: 

1. Family: Virtex II Pro 

2. Device: XC2VP30 

3. Package: FF896 

4. Speed grade: -7 

5. Synthesis tool: XST (VHDL/Verilog) 

6. Simulator: (i) Model Sim 6.2C 

(ii) ISE Simulator  
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Chapter 4 

DIFFERENT MODELING TECHNIQUES AND ARCHITECTURES 

DEVELOPED 

The DHT belongs to the family of frequencytransforms that map temporal or spatial 

functionsinto frequency functions. .The DHT accomplishesthis in amanner similar to the better-

known FourierTransform. The significant difference between theDiscrete Fourier Transform 

(DFT) and DHT'salternative is that the DHT usesonly real values,i.e., no complex numbers. 

The DHT achieves this via the kernel or casfunction: 

𝑐𝑎𝑠  
2𝜋𝑛𝑘

𝑁
 = cos

2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
                                 (4.1) 

The N-point (DHT) is given by the followingformula[8]: 

 

𝑌𝑘 =  𝑋𝑛  cas
2𝜋𝑛𝑘

𝑁
 

𝑁−1

𝑛=0
for k= 0, 1… N-1                      (4.2) 

 

 

where,    Hnk = cas(
2𝜋𝑛𝑘

𝑁
),  is the transform kernel. 

Two architectures have been implemented for computing DHT and their efficiencies studied 

regarding FPGA implementation. They are systolic architecture and distributed arithmetic 

architecture. 

 

4.1 Baugh-Wooley algorithm for multiplication 
 

It is an algorithm for high-speed, two‟s complement, m-bit by n-bit parallel multiplication. The 

two‟s complement multiplication is converted to an equivalent parallel array addition problem in 

which each partial product is the AND of a multiplier bit and a multiplicand bit, and the signs of 

all the partial product bits are positive [7]. 

The algorithm‟s principle advantage is that the signs of all the partial products are positive, 

allowing the product to be formed using array addition techniques. Therefore the product is 

formed with only the AND function and the ADD function. No subtraction is necessary, nor is 

the NAND function needed. For 8x8 bit multiplier, the output is a 16-bit binary number. 



28 
 

The Baugh Wooley multiplier is hence used due to its simplicity, regularity and high through-put 

rate which can be achieved for any transform size and word-length of the input data. It is 

implemented in VHDL using full-adders and in-built AND functions.  

 

4.2 DHT based Systolic Architecture (SA) 
 

4.2.1 Mathematical modeling 

If the elements of the transform‟s kernel and the input vector are represented using the  2‟s 

complement number representation[4], then 

Hik =-hik ,n-12n-1+  hik ,l2
ln-2

l=0                                                  (4.3) 

And, 

Xk=-xk,n-12n-1+  xk,m 2mn-2
m=0                                                 (4.4) 

 

Where 𝑕𝑖𝑘 ,𝑙   and  𝑥𝑘,𝑚   are the l-th bit of𝐻𝑖𝑘   and m-th bit of 𝑋𝑘  respectively and 𝑕𝑖𝑘 ,𝑛−1   and   

𝑥𝑘,𝑛−1are sign bits, where n is the word length.  

So, the transform coefficient 𝑌𝑖  can becomputed as follows: 

Yi=  -hik ,n-12n-1+ hik ,l2
l

n-2

l=0
  -xk,n-12n-1+  xk,m 2m

n-2

m=0
 

N-1

k=0

 

                     (4.5) 

From the above equation it can be seen that the computation of the matrix product depends on 

the type of multiplier used. So, Baugh-Wooley multiplier algorithm is used. Hence the equation 

obtained is: 

Yi=    2l+m hik ,lxk,m + 22n-2

n-2

m=0

n-2

l=0

hik ,n-1xk,n-l  +  -2lhik ,lxk,n-1

n-2

l=0

+  -2m xk,m hik ,n-1

n-2

m=0

 2n-1 

N-1

k=0

 

(4.6) 
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The above equation can be mapped into the architecture, as shown in the figure 4.1 for 4-point 

DHT i.e. N=4. 

4.2.2 Architecture 

The architecture for 4-point DHT is shown in figure 4.1 . It consists of 16 identical processing 

elements (PE‟s)[4]. 

Each PE consists of a parallel Baugh-Wooley multiplier, storage elements where the coefficients 

𝑕𝑖𝑘  and 𝑥𝑘𝑗  are stored in a storage element for pipelining the partial products and a parallel adder 

based on fast carry is used to add the result of the partial product by the previous one. 

 

Figure 4.1: Systolic architecture for DHTs (N=4) 

The input data elements 𝑋𝑗  are fed from the north in a parallel fashion while the kernel matrix 

elements fixed in their corresponding PE cells (during the entire calculation) are fed parallel too. 
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Figure 4.2: Structure of a Processing element 

The structure of each processing element is given in figure 4.2 

4.3 DHT based Distributed Arithmetic design methodology (DA) 

4.3.1 Mathematical modeling  

This approach is based on distributed arithmetic Read Only Memory (ROM), accumulator 

structure and offset binary coding (OBC) techniques. The OBC technique reduces the ROM size 

by a factor of 2 to 2N-1 when using DA principles. It is a technique where all-zero corresponds to 

the minimal negative value and all-one to the maximal positive value.  

Suppose that {𝐻𝑖𝑘 }‟s are L-bits constants and {𝑋𝑘}‟s are written in the fractional format as 

shown[4]: 

Xk= - xk,n-1+  xk,n-1-m 2-m
n-1

m=1
 

                                 (4.7) 

Now, rewriting equation 4.7, we get 

 

                                                                     𝑋𝑘 =
 𝑋𝑘 −  −𝑋𝑘  

2
 4.8  
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or, 2/]22)()([ )1(

1,

1

1

1,1,1,









   nm

mnk

n

m

mnknknkk xxxxX (4.9) 

where 

)1(
1

1

1,1, 22 




   nm
n

m

mnknkk xxX
                                  (4.10) 

 

Now we define, 

    𝑑𝑘𝑗 ,𝑚 = { 𝑥𝑘,𝑚  – 𝑥𝑘,𝑚    , 𝑓𝑜𝑟 𝑚 ≠ 𝑛 − 1  𝑎𝑛𝑑  −  𝑥𝑘,𝑛−1 – 𝑥𝑘,𝑛−1  , 𝑓𝑜𝑟 𝑚 = 𝑛 − 1) 

(4.11) 

And  dk,m∈    -1,+1 , so equation 4.10 can be rewritten as: 

Xk=
  dk,n-1-m 2-mn-1

m=0 - 2- n-1  

2
 

                                                (4.12) 

Now using the above equation 4.12, we calculate DHT 

 

                     Yi =   Hik /2 [ dk,n−1−m 2−m
n−1

m=0
− 2− n−1 ]

N−1

k=0

                                                (4.13) 

 

                                   𝑌𝑖 =   ( 
𝐻𝑖𝑘𝑑𝑘,𝑛−1−𝑚

2
)2−𝑚

𝑁−1

𝑘=0

−  
 𝐻𝑖𝑘
𝑁−1
𝑘=0

2
 2 𝑛−1                             (4.14)

𝑛−1

𝑚=0

 

Now we define, 

 

Dim =  (1/2)Hik dk,m
N-1
k=0                , 0≤m≤W-1                    (4.15) 

    And                                                                Diextra = -1/2 Hik

N-1

k=0

 

                              (4.16) 

. 
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Therefore 𝑌𝑖  can be computed as : 

 

Yi=  Di,n-m -12-m + Diextra 2-(n-1)n-1
m=0                                   (4.17) 

So, for N=3 the contents of the ROM will reduce from 8 to 4 values as shown in the table. Here  

𝑥1, 𝑥2, 𝑥3 are the input bit vectors and m denotes the position of the bit. 

 

Table 4.1: The contents of ROM i 

𝑥1,𝑚  𝑥2,𝑚  𝑥3,𝑚  The contents of ROMi 

0 0 0 
-

Hi1+Hi2+Hi3

2
 

0 0 1 
-

Hi1+Hi2-Hi3

2
 

0 1 0 
-

Hi1-Hi2+Hi3

2
 

0 1 1 
-

Hi1-Hi2-Hi3

2
 

1 0 0 
-

-Hi1+Hi2+Hi3

2
 

1 0 1 
-

-Hi1+Hi2-Hi3

2
 

1 1 0 
-

-Hi1-Hi2+Hi3

2
 

1 1 1 
-

-Hi1-Hi2-Hi3

2
 

 

Since the last four rows are identical to the first four except for the first bit, they can removed 

and only four ROMs can be sufficient for the calculation. So, the new contents of the ROM are 

as shown in table. 
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Table 4.2 The new contents of ROM i 

𝑥1,𝑚  𝑥2,𝑚  𝑥3,𝑚  The contents of ROMi 

0 0 0 
-

Hi1+Hi2+Hi3

2
 

0 0 1 
-

Hi1+Hi2-Hi3

2
 

0 1 0 
-

Hi1-Hi2+Hi3

2
 

0 1 1 
-

Hi1-Hi2-Hi3

2
 

 

4.3.2 Architecture  

The figure below shows the architecture for the computation of DHTs (N=3) using DA principles 

with OBC scheme[4]. The computation starts from LSB of x i.e. m=0. 

 

Figure 4.3: DHT based OBC using DA principles 
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First the input data enters the PISO (Parallel In Serial Out), so that the bits of the input data 

vector comes out serially starting with their LSBs. The XOR gates are used for address decoding, 

i.e. only 2 bits are required to locate the memory location in ROM. So 1
st
 and 2

nd
bit are XORed 

with the 3
rd

 bit to get the memory location. Also the third bit is used to determine whether 

addition or subtraction will take place during accumulation. PISO consists of a clock signal, 

input data vector and the single bit output which gives the bits of the vector input serially. Same 

PISO can be used for all the input vectors, and they should work parallel at the same time. 

ROM is a memory which stores the constants used in the distributed arithmetic method from the 

table 2. It consists of registers which is in the form of an array so that the contents can be exactly 

located, like in the memory.The contents of each ROM are different, so for a three input (N=3),  

three ROMs are required. Similarly for an N-input DHT, „N‟ ROMs will be required. The table 

gives the contents of the i
th

 ROM. Each ROM will contain 2
(N-1) 

constants instead of   2
N    

constants due to their repeatability. 

The „Shift and Accumulate‟ block gives the output after addition/subtraction of the ROM 

contents. Initially the contents of the accumulator are reset. After each clock cycle, the 

accumulator is shifted to the left and the ROM output is added/subtracted according to the 3
rd

 

input bit. Finally after the last shift, the term 𝐷𝑖𝑒𝑥𝑡𝑟𝑎  added to the accumulator. This gives the 

final transformed output for the i
th

 input. For N-input DHT, N number of identical „shift-

accumulate‟ blocks are required, and the N-point DHT outputs are derived from them. For an N-

point DHT, (N+2) clock cycles are required to obtain the output. 

4.4 Eight point DHT with pipelined stages with delays 

4.4.1 Mathematical modeling  

The DHT of a real-valued-point input vector,𝑥0𝑥1…𝑥𝑁−1, may be defined as  

 

                                                                         𝑋𝑘 =  𝒙𝒏𝐶𝑁 𝑘, 𝑛 

𝑁−1

𝑛=0

                                              (4.18) 

Where  

𝐶𝑁 𝑘, 𝑛 = 𝑐𝑎𝑠(
2𝜋𝑛𝑘

𝑁
) = cos

2𝜋𝑛𝑘

𝑁
+ sin

2𝜋𝑛𝑘

𝑁
     for k,n=0,1….N-1          (4.19) 
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Supposing N to be an even number, the sequence 𝒙𝒏 is divided into two sub-

sequences𝒙𝟏   and𝒙𝟐length N/2 each, such that 𝒙𝟏   =  𝑥0, 𝑥2 … . . 𝑥𝑁−2 contains all even −

indexed termsand 𝒙𝟐   =  𝑥1, 𝑥3 … . . 𝑥𝑁−1  contains all odd-indexed terms of the input sequence 

x. 

Then the DHT can be defined as[5] : 

                                           𝑋𝑘 =  𝒙𝟏𝐶𝑁 𝑘, 2𝑛 

𝑁

2
−1

𝑛=0

+  𝒙𝟐𝐶𝑁 𝑘, 2𝑛 + 1 

𝑁

2
−1

𝑛=0

                               (4.20) 

Let 𝑋1𝑘and𝑋2𝑘  represent the (N/2) –point DHT coefficients of sequences 𝒙𝟏   and𝒙𝟐of length 

(N/2) respectively. Using the symmetry properties of sine and cosine functions, the N-point DHT 

may be expressed as the following set of equations: 

                                                                          𝑋𝑘 = 𝑋1𝑘 + 𝐸𝑘                                                                (4.21) 

                                                                     𝑋𝑀+𝑘 =  𝑋1𝑘 − 𝐸𝑘                                                          (4.22) 

                                                 𝐸𝑘 =  𝑋2𝑘 cos  
𝜋𝑘

𝑀
 + 𝑋2(𝑀−𝑘) 𝑠𝑖𝑛  

𝜋𝑘

𝑀
                                       (4.23) 

For k=1,2….M-1 where M=N/2. 

4.4.2 Architecture 

Hence for computing 8-point DHT from 4-point DHT the set of equations obtained is given by 

equation 4.24[5]: 

1. 𝑋0 = 𝑋10 + 𝑋20  

2. 𝑋1 = 𝑋11 + (𝑋21 + 𝑋23)/ 2 

3. 𝑋2 = 𝑋12 + 𝑋22  

4. 𝑋3 = 𝑋13 + (𝑋21 − 𝑋23)/ 2                                                                                                 (4.24) 

5. 𝑋4 = 𝑋10 − 𝑋20  

6. 𝑋5 = 𝑋11 − (𝑋21 + 𝑋23)/ 2 

7. 𝑋6 = 𝑋12 − 𝑋22  

8. 𝑋7 = 𝑋13 − (𝑋21 − 𝑋23)/ 2 

So, for computing 8-point DHT the multiplication with 1/ 2 can be read from a ROM, while a 

block of pipelined adders perform the addition. 
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It computes DHT in 5 pipelined stages. For first two stages, it consists of two 4-pointDHT 

modules that receive the odd and even indexed subsequences𝒙𝟏   and𝒙𝟐and from the input buffer. 

In the third pipelined stage, multiplication with 1/ 2 is done for the required coefficients i.e. 

𝑋21and𝑋23 . Next they are added and subtracted in the fourth stage. During 3
rd

 and 4
th

 stages the 

rest of the coefficients are passed through a delay. Delay consists of simply registers i.e. they are 

stored in different registers and passed to the next stage. Finally the fifth pipelined stage is a 

parallel adder block which adds/subtracts the coefficients to give the desire output. 

The block diagram of the described method is given in figure 4.4. 

 

 

Figure 4.4: Flow chart of the 8-point DHT in pipelined approach with delays 
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4.5 Two-Dimensional DHT 

4.5.1 Mathematical modeling 

Two-dimensional DHT can be computed using the 1-D DHT blocks. Various methods have been 

proposed for this architecture. The one implemented follows the algorithm given below. Let the 

size of the input 2-D matrix ‘F’ be 8x8, i.e. M=N=8 [6]. 

1. First 1-D DHT of all the rows of matrix F are taken and stored in another 8x8 matrix ‘G’. 

2. Next 1-D DHT of all the columns obtained in the matrix Gis computed and stored in 

another matrix T. 

The temporary outcome is of the form, which is not Hartley transform. It is given by: 

 

T u, v =   f x, y cas(

N-1

y=0

M-1

x=0

2𝜋𝑢𝑥

𝑀
)𝑐𝑎𝑠  

2𝜋𝑣𝑦

𝑁
                                                 (4.25) 

3. However it can be converted to Hartley transform by using the trigonometric identity 

eq(2.5), 

        2𝑐𝑎𝑠 𝑎 + 𝑏 = 𝑐𝑎𝑠 𝑎 𝑐𝑎𝑠 𝑏 + 𝑐𝑎𝑠 −𝑎 𝑐𝑎𝑠 𝑏 + 𝑐𝑎𝑠 𝑎 𝑐𝑎𝑠 −𝑏 − 𝑐𝑎𝑠 −𝑎 𝑐𝑎𝑠(−𝑏). 

             Hence the desired Hartley transform can be expressed as the sum of four temporary 

transforms 

                         2𝐻 𝑢, 𝑣 = 𝑇 𝑢, 𝑣 + 𝑇 𝑀 − 𝑢, 𝑣 + 𝑇 𝑢,𝑁 − 𝑣 − 𝑇 𝑀 − 𝑢,𝑁 − 𝑣         (4.26) 

here MxN is the size of the input matrix. Therefor M=N=8. So, the equation becomes: 

                       2𝐻 𝑢, 𝑣 = 𝑇 𝑢, 𝑣 + 𝑇 8 − 𝑢, 𝑣 + 𝑇 𝑢, 8 − 𝑣 − 𝑇 8 − 𝑢, 8 − 𝑣                (4.27) 

Hence 2-D DHT of an 8x8 matrix can be computed using 8-point 1-D DHT. 

4.5.2 Architecture 

The figure 4.5 illustrates the design flow system to implement the architecture of the 2-D DHT. 

The architecture has been implemented using the 1-D DHT blocks as components and various 

shift registers to smoothly run the entire operation. The input matrix has to be fed row-wise to 

the FPGA since it cannot take such a large input matrix at a time. 
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Figure 4.5: Flow diagram of 2-D DHT implemntation 
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4.5.3 Working 

Implementation of 2-D DHT is done using state machines. The 8x8 matrix input is fed to the 1-D 

DHT block row-wise after a certain delay for the computation of transform coefficients of each 

row. The transformed coefficients are stored in various registers arrays and they are shifted after 

each row transform is computed, so that finally all the transformed values can be stored and 

located for further computation, i.e. it works on shift and accumulate method. 

After the first DHT is applied to the rows; consisting of eight number of 8-bit input vectors; they 

are transformed and are stored in eight registers of 10-bit vectors. Similarly the columns are fed 

for DHT computation to obtain the temporary outcome. Another block is used for DHT 

computation this time, which computes DHT of 10-bit vectors to give 12-bit vectors. The 

transformed values are again shifted and stored in the array of 12-bit registers to obtain the 

temporary matrix T. 

Finally, the temporary outcome are added and subtracted according to the logic given in eq. 

(4.27) to obtain the desired output matrix mat i.e.8x8 2-D DHT of the input 8x8 matrix. All the 

steps are executed in different states like computation of DHT of the rows/columns of input 

vectors, shifting of the transformed values in the register arrays and calculating the DHT from 

temporary values in registers. 
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Chapter 5 

RESULTS AND DISCUSSION 

5.1 MATLAB Simulation Results 

Matlab code was written for image compression using energy quantization technique explained 

in section 2.3. The images were reconstructed and the performance parameters such as mean 

square error (MSE) and peak signal to noise ratio (PSNR) were calculated. Source coding was 

not implemented and the images were reconstructed from the quantized values only. The code 

was then tested on two bit-map image files and the results are tabulated below. 

Table 5.1: MSE and PSNR tabulated for Lena and Baboon images. 

 

IMAGE 

Threshold 

value as % 

of 

normalized 

energy 

 

10% 

 

20% 

 

40% 

 

60% 

 

80% 

 

100% 

LENA MSE 21.4292 31.7735 45.7513 55.7382 66.5523 69.6302 

 
PSNR 80.1777 76.2389 72.5931 70.6186 68.8454 68.3933 

BABOON MSE 67.5956 101.201 140.805 165.766 184.946 204.709 

 
PSNR 68.6898 64.6541 61.3515 59.7195 58.6246 57.6094 

 

Original images are of size 512x512 pixels:                                                                              

 

Figure 5.1:Lena original bitmap imageFigure 5.2: Baboon original bitmap image 
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     (a) Eth=10%En       (b) Eth=20%En       (c) Eth=40%En 

 

(d)Eth=60%En                    (e) Eth=80%En(f) Eth=100%En 

 

(g)Eth=10%En(h) Eth=20%En(i) Eth=40%En 

 

(j)Eth=60%En                    (k) Eth=80%En(l) Eth=100%En 

Figure 5.3: Reconstructed Lena Images and the error images with the threshold values given as a 

percentage of normalized energy of the image.(a-f: reconstructed images; g-l: error images) 
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(a)Eth=10%En(b) Eth=20%En(c)Eth=40%En 

 

(d)Eth=60%En                    (e)Eth=80%En(f)Eth=100%En 

 

(g)Eth=10%En(h)Eth=20%En(i)Eth=40%En 

 

(j)Eth=60%En                    (k)Eth=80%En(l)Eth=100%En 

Figure 5.4: Reconstructed Baboon Images and the error images with the threshold values given 

as percentage of normalized energy of the image(a-f: reconstructed images; g-l: error images) 
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5.2 Xilinx Simulation Results and Discussion 

5.2.1 Design Summary for different Architectures 

   1. Systolic Architecture for 3-point DHT 

   Table 5.2: Design Summary for SA architecture for 3-point DHT 

Logic 

utilization 

Used Available Utilization 

Number of 

slices 

428 4656 9% 

Number of 

slice flip-flops 

359 9312 3% 

Number of 4-

input LUTs 

783 9312 8% 

Number of 

bonded IOBs 

73 232 31% 

Number of 

GCLKs 

1 24 4% 

 

   2. DistributedArithmeticArchitecture for 3-point DHT 

   Table 5.3: Design Summary for DA architecture for 3-point DHT 

Logic 

utilization 

Used Available Utilization 

Number of 

slices 

121 4656 2% 

Number of 

slice flip-flops 

143 9312 1% 

Number of 4-

input LUTs 

208 9312 2% 

Number of 

bonded IOBs 

77 232 33% 

Number of 

GCLKs 

1 24 4% 

 

We can clearly see that hardware used for DA architecture is much less than SA architecture. 

This difference will only increase as we increase the number of inputs i.e. for 8-point DHT the 

silicon used in DA will be much less than that used in SA. Also the power consumption is much 

lesser in DA than in SA architecture. This is due to the reason that there is no multiplication or 
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any other higher calculations involved in DA model. It comprises only of adders and shift 

registers. Hence DA architectures are faster, low power and more compact than SA architectures. 

 

 3. 8- point DHT using two 4-point modules in pipelined stages 

  Table 5.4: Design Summary for architecture of 8-pt DHT using two 4-pt modules 

Logic 

utilization 

Used Available Utilization 

Number of 

slices 

516 13697 3% 

Number of 

slice flip-flops 

666 27392 2% 

Number of 4-

input LUTs 

795 27392 2% 

Number of 

bonded IOBs 

195 556 35% 

Number of 

GCLKs 

1 16 6% 

 

 

 

   4. 8- point DHT usingDA principleswithROM (Input is 8 bit vector and Output is 10 bit vector) 

Table 5.5: Design Summary for architecture of 8-pt DHT by DA (8-bit to 10-bit)  

Logic 

utilization 

Used Available Utilization 

Number of 

slices 

349 13697 2% 

Number of slice 

flip-flops 

307 27392 1% 

Number of 4-

input LUTs 

600 27392 2% 

Number of 

bonded IOBs 

147 556 26% 

Number of 

GCLKs 

1 16 6% 

 

 

 

   5. 8- point DHT using DA principleswithROM  (Input is 10 bit vector and Output is 12 bit 

vector) 

  

Table 5.6: Design Summary for architecture of 8-pt DHT by DA (8-bit to 10-bit) 
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Logic 

utilization 

Used Available Utilization 

Number of 

slices 

432 13697 3% 

Number of 

slice flip-flops 

355 27392 1% 

Number of 4-

input LUTs 

694 27392 2% 

Number of 

bonded IOBs 

179 556 32% 

Number of 

GCLKs 

1 16 6% 

 

The silicon utilization in the architecture with pipelined stages is higher than in the architecture 

using only DA principles with ROM. Also the computational time is more in pipelined stage 

architecture due to the delays introduced in the model of the method. Hence, architecture based 

on DA principles using ROM is more efficient and is used for the modeling of 2-D DHT. 

Another architecture which inputs 10-bits vectors and gives 12-bit vectors is also implemented, 

which also is more efficient than the pipelined stage architecture. 

   6.  2-D DHT OF 8X8 INPUT MATRIX 

 

Figure 5.5: Design Summary of the 2-D DHT design using VHDL as the synthesis tool 
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5.2.2Power Analysis 

The total estimated power consumption of the 2-D DHT architecture design is 103 mW. 

Table 5.7: Power analysis of the 2-D architecture 

Power summary I(mA) P(mW) 

Total estimated power consumption -- 103 

Total Vccaux 2.50V 10 25 

Total Vcco25 2.50V 1 3 

Quiescent Vccint 1.50V 50 75 

Quiescent Vccaux 2.50V 10 25 

Quiescent Vcco25 2.50V 1 3 

 

 

5.2.3Comparison between the Matlab and VHDL outputs obtained for 2-D DHT. 

2-D DHT is calculated for 8x8 matrices inMatlab and Xilinx. The simulation results of both are 

shown for two different inputs. The matrix mat contains the 2-D DHT for the input given to x1-

x8 registers in the Xilinx simulation results shown below. For Matlab simulation, f contains the 

input matrix and h gives the output matrix. 
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Figure 5.6: Simulation result for the 1
st
 input matrix 
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Figure 5.7: Simulation result for the 2
nd

input matrix 
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We can see that the results obtained from the hardware implementation are same for the odd 

numbered columns and a little error is generated in even-numbered columns. This is due to the 

reason that the even-numbered columns of the kernel matrix generated from the „cas‟ function 

has mixed fraction values which have been approximated. This approximation can be reduced if 

we use binary representation of decimal values for calculation purposes. 

Also if the input matrix contains large values then, the transformed coefficients overflow the 

registers and as a result an error is generated. It can be seen in the second simulation that the first 

value of the transformed matrix has quite deviated from the required value. It can be corrected if 

registers of larger number of bits are used to store the transformed values.    
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Chapter 6 

CONCLUSION AND FUTURE WORK 

In the present work, two-dimensional Discrete Hartley Transform for an 8x8 input matrix was 

implemented in FPGA using VHDL as the synthesis tool. The 1-D DHT was also calculated for 

8-point input using two algorithms and their effectiveness were discussed. It is shown that the 

DA approach provides better performance in terms of speed and area when is compared with the 

pipelined approach. This primarily focuses on image compression with less computation and low 

power. The simulation results and design summary for 2-D DHT were obtained andit was shown 

that the architecture implemented is an efficient method which uses limited space and time. The 

hardware utilization is quite optimum and power analysis shows that the power requirement is 

also optimum. 

However if the input contents are large, they tend to overflow from the registers and hence error 

occurs. It can be rectified by saving the transformed coefficients in larger registers. Also due to 

quantization in the contents of the ROM, even-number outputs are more deviated from the 

desired results than the odd-numbered outputs. This is due to the reason that even numbered 

columns of the transform kernel consist of mixed fractions which are rounded off to be store in 

the ROM registers. This drawback can be removed if the decimal fractions are converted to 

binary representation before being stored. Also, a lot of memory is used in this architecture. It 

can be solved by using the ROM-free DA technique. These are some of the improvements that 

can be done to the improvise the design. 
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