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ABSTRACT

An efficient tool to deal with multidimensional radiative heat transfer is in strong demand to
analyse the various thermal problems combined either with other modes of heat transfer or with
combustion phenomena. Combined conduction and radiation heat transfer without heat
generation is investigated. Analysis is carried out for both steady and unsteady situations.
Two-dimensional gray Cartesian enclosure with an absorbing, emitting, and isotropically
scattering medium is considered. Enclosure boundaries are assumed at specified temperature.
The finite volume method is used to solve the energy equation and the finite volume method
is used to compute the radiative information required in the solution of energy equation. The
Implicit scheme is used to solve the transient energy equation. Transient and steady state
temperature and heat flux distributions are found for various radiative parameters.

In the last two decade, finite volume method (FVM) emerged as one of the most
attractive method for modeling steady as well as transient state radiative transfer. The finite
volume method is a method for representing and evaluating partial differential equations as
algebraic equations. Similar to the finite difference method, values are calculated at discrete
places on a meshed geometry. "Finite volume" refers to the small volume surrounding each
node point on a mesh. In the finite volume method, volume integrals in a partial differential
equation that contain a divergence term are converted to surface integral using divergence
theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume.
Because the flux entering a given volume is identical to that leaving the adjacent volume,

these methods are conservative.

In the present work the boundaries are assumed to be gray and the medium scatters
isotropically. The current study examines the finite volume method (FVM) for coupled radiative
and conductive heat transfer in square enclosures in which either a non-scattering or scattering
medium is included. Implicit Scheme has been used for solving the coupled conductive and
radiative heat transfer equation. The transient temperature distributions are studied for the
effects of various parameters like the extinction coefficient, the scattering albedo and the
conduction radiation parameter for both constant. The effect of radiative parameters on the

system to reach the steady state is also studied.



LIST OF FIGURES

Figure No.

2.1
2.2
23
24
2.5
2.6
3.1

3.2

33
3.4
5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

5.14
5.15
5.16
5.17

Title

Three successive grid points used for the Taylor-series expansion
Cells and Nodes of Control Volume

Typical Control Volume

One dimensional control volume

Two Dimensional Control Volume

Computational Domain

Typical control angle

Intensity ' in direction AQ'in the center of the elemental
Sub-solid angle Q'

Control angle orientations

Flowchart for overall solution procedure

Temperature isotherms at steady state

Variation of Heat flux at the bottom wall along X-axis
Variation of heat flux at the top cold wall along X-axis
Variation of heat flux at the side cold wall along Y-axis
Dimensionless temperature profiles for N=1

Dimensionless temperature profiles for N=0.1

Dimensionless temperature profiles for N=0.01

Dimensionless temperature profiles for N=0.001

Variation of fractional radiative heat flux for N=1

Variation of fractional radiative heat flux for N=0.1

Variation of fractional radiative heat flux for N=0.01

Variation of fractional radiative heat flux for N=0.001
Variation of the total heat flux for wall emissivity

of ¢,=1 at the bottom

Variation of total heat flux for £,=0.8, at the bottom wall, Y=0.
Variation of total heat flux for &,=0.5, at the bottom wall, Y=0
Variation of total heat flux for ¢,=0.2, at the bottom wall, Y=0.

Temperature isotherms for N=0.001 and ©=0.

vi

Page No.

10
10
11
17
23
30

30
32
34
39
40
40
41
42
42
43
43

44
45
46
47
48

48
49
49
50



LIST OF FIGURES

Figure No. Title Page No.
5.18 Temperature isotherms for N=0.001 and ©=0.5. 51
5.19 Temperature isotherms for N=0.001 and o=1. 51
5.20 Temperature isotherms for N=0.001 and =0 and &=0.5. 52
5.21 Temperature isotherms for N=0.001 and ®=0.5 and £=0.5. 52
5.22 Number of time steps = 20. 53
5.23 Number of time steps=40. 53
5.24 Number of time steps=80. 54
5.25 Temperature Variation with time 54

vil



LIST OF TABLES

Table No. Title Page No.

5.1 Variation in time period required to reach at steady state. 55

viil



dr

e

D! .,D!.

cx cy

NOMENCLATURE

Thermal conductivity
Conduction-Radiation parameter
Density of the medium

Radiative heat flux

Conductive heat flux

coefficient of discretization equation
source term in discretization equation
the speed of light

direction cosine in X , y direction respectively

incident radiation

actual intensity

total number of control angels

unit outward normal vector of the control volume face
heat flux

distance

source function
modified source function
unit direction vector
temperature

time

Non-dimensional time
coordinate direction
extinction coefficient

modified extinction coefficient

area of control volume faces

1X



Av
Ax, Ay

AQ

Subscripts
b

D

m

P

U

E W,N, S

e w, n, S
superscripts
L1

0

*

volume of control volume

x and y direction control volume width
control angle

emissivity

polar angle measured from e,
absorption coefficient

scattering coefficient
Stefan-Boltzmann’s coefficient
scattering phase function

average scattering phase function

azimuthal angle measured from é,

black body

downstream

modified

node

upstream

east, west, north, south neighbors of P

east, west, north, south direction

angular directions

value from previous iteration

non-dimensional quantities



CHAPTER 1

INTRODUCTION
AND
LITERATURE REVIEW



INTRODUCTION AND LITERATURE REVIEW

Efficiency improvements in most industrial thermal processes are achieved by
increased process temperatures. The optimum design of such processes is leading to
temperature loads near the existing material limits. In recent years, high-temperature-resistant
materials, made not only of ceramics but also of special alloys, have become available to
realize high-temperature furnaces, gas turbine combustion chambers and blades, heat
exchangers, porous volumetric solar receivers, surface and porous IR-radiant burners.
Experimental and numerical investigations are necessary in order to perform an optimum
design and to elucidate the advantages of the temperature increase of such improved
processes utilizing advanced high-temperature materials. Numerical computations of flow
with heat and mass transfer in such high-temperature appliances require a through
consideration of radiative heat transfer.

Radiation either combined with other modes of heat transfer or with combustion
phenomena in a multidimensional enclosure such as a combustion chamber, furnace and
porous medium has received much attention due to a realization of its importance in the
associated application fields. However, since an exact analytical solution to the highly non-
linear integro differential radiative transfer equation (RTE) is nearly impossible to find, an
efficient tool to deal with multidimensional radiative heat transfer is in strong demand to
analyse various thermal problems.

Analysis of combined conduction and radiation heat transfer in a radiatively
participating medium has numerous engineering applications. Examples of such applications
are in the analysis of heat transfer through high temperature energy conversion devices,
semitransparent materials, fibrous and foam insulations, porous materials, and so on. In
recent years, a good amount of work has been reported in the area of steady [1-5] and
unsteady [6-12] combined conduction-radiation problems in an absorbing, emitting, and
scattering medium. Although most of the steady state studies were associated with
temperature boundary conditions, some of the papers discussed the problems with flux
boundary conditions. Tan and Lallemand [13] examined the transient temperature distribution
in a glass plate subjected to various boundary conditions. The transient heating of an
absorbing, emitting, and scattering material with different black plate boundary conditions
was studied by Yuen and Khatami [14]. They used a semi-explicit finite-difference scheme to
generate numerical solutions. For solving the transient energy equation, Tsai and Lin [15]

used the Crank-Nicholson scheme and the radiative part was solved by the nodal



approximation technique. Tong et al. [16] analyzed transient radiation heat transfer through
semi-isotropic scattering planar porous materials. They solved the radiative part using a two-
flux model.

The transient cooling problem with isotropic scattering in a cylindrical geometry was
analyzed by Baek et al. [17]. For solving the radiative part, they used the discrete ordinate
method, and a finite difference scheme was used to solve the transient energy equation. Tsai
and Nixon [18] considered a multilayered geometry without the effect of isotropic scattering.
Hahn et al. [19] examined the transient heat transfer using a multiflux model to solve the
radiative part. They analyzed the transient state of heat transfer in a layer of ceramic powder
during laser flash measurements of thermal diffusivity. Here also the effect of scattering was
not included. The problem with the melting of a semitransparent slab by an external radiating
source was investigated by Diaz and Viskanta [20]. A similar problem was also studied by
Seki and Nishimura et al. [21] Matthews et al. [22] discussed the steady and unsteady
combined conduction-radiation heat transfer heated by a highly concentrated solar radiation.
A two-flux model was used to solve the radiative part. Transient cooling of a semitransparent
material was examined by Siegel [10]. A finite difference procedure was adopted to obtain a
highly accurate temperature distribution across the layer. Yao and Chung [11] solved a
similar type of problem using an implicit finite volume scheme. The integral equation for
radiative heat flux was solved by a singularity subtraction technique and Gaussian
quadrature. Recently, studies related to this subject have been reviewed in detail by Siegel.

Although in the past decades a variety of computational schemes have been developed
to obtain an approximate solution to RTE, each scheme has demerits as well as merits in its
application. Techniques formerly used to solve RTE include the Eddington and Schuster-
Schwarzchild [23]. Even if the Monte Carlo [24] and zone methods [25] are called exact
numerical solutions, the former consumes an excessively large computational time and the
latter is not easily applicable to analyzing a radiatively scattering medium. Furthermore, most
of the methods previously adopted to solve RTE are incompatible with the finite difference
algorithm used in solving the continuity, momentum and energy equations which are
involved in various thermal and fluid mechanical problems

Numerical computations of radiation based on conventional methods such as the
zonal method, the Monte Carlo method (MCM), etc., prove to be laborious and very time
consuming. For this reason, numerous investigations [2—4] are currently being carried out

worldwide to assess computationally efficient methods.



Numerical simulations of the high-temperature appliances mentioned above require
multi-dimensional analysis. Treatment of radiative transport in the multidimensional
geometry is difficult mainly because of the three extra independent variables namely the
polar angle, the azimuthal angle and the wavelength. Since there is no way out to get rid of
the physical dimensions of the geometry and the wavelength of radiation, all numerical
models, except the zonal method and the MCM, deal with different types of discretization
schemes to make radiation less and less dependent on angular dimensions. The various
methods differ primarily in the angular discretization schemes and the use of either the
differential form or the integral form of the radiative transfer equation. The finite element
method for the calculation of a coupled conductive and radiative heat transfer problem in
two-dimensional rectangular enclosures [26]. However it was found to be not only time
consuming, but also difficult to apply to a scattering medium.

The main objective behind the development of any method for the solution of
radiative transport problems, apart from its versatility for various geometries, complex
medium conditions, etc., is that the method should be computationally efficient.

The finite volume method (FVM) for radiation is a robust method. It has many
advantages over other numerical methods such as the PN approximation, discrete transfer
method and the discrete ordinate method.

The present study examines the FVM for a coupled conductive and radiative heat
transfer in a two-dimensional square enclosure. In this work the conductive term is
discretized using the central differencing scheme and FVM approximation is adopted to
model the term of divergence of radiative heat flux in the energy equation. The solutions will
be presented using isothermal contours, radiative and total heat fluxes and transient behavior

of temperature for easy understanding of the phenomena involved.
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2. DISCRETIZATION METHODS BY USING FVM:
2.1 THE NATURE OF NUMERICAL METHODS:

A numerical solution of a differential consists of a set of numbers from which the distribution

of the dependent variable ¢ can be constructed.
Let us suppose that we decide to represent the variation of ¢ by a polynomial in x,

— 2
¢p=a,+ax+a,x +...... +a,x @.1)

and employ a numerical method to find the finite number of coefficients a,,qa,,a,.,......a,,.

This will enable us to evaluate ¢ at any location x by substituting the value of x and the
values of the a’s into equation (2.1). This procedure is, however, somewhat inconvenient if

our ultimate interest is to obtain the value of ¢ at various locations.

Therefore, we should think for a numerical method, which treats as its basic
unknowns the values of the dependent variable at a finite number of locations (called the grid

points) in the calculation domain.
2.1.1 The Discretization Concept:

Now we have replaced the continuous information contained in the exact solution of the
differential equation with discrete values by focusing our attention on the values at the grid
points. We have thus discretized the distribution of@, and it is appropriate to refer to this class

of numerical methods as discretization methods.

The algebraic equations involving the unknown values of ¢ at chosen grid points,
which we shall now name the discretization equations, are derived from the differential
equation governingg. In this derivation, we must employ some assumption about how ¢
varies between the grid points. Although this “profile” of ¢ could be chosen such that a single
algebraic expression suffices for the whole calculation domain, it is often more practical to
use piecewise profile such that a given segment describes the variation of ¢ over only a small
region in terms of ¢ values at the grid points within and around that region. Thus, it is
common to subdivide the calculation domain into a number of sub domains or elements such

that a separate profile assumption can be associated with each sub domain.



In the discretization concept the continuum calculation domain has been discretized. It
is this systematic discretization of space and of the dependent variables that makes it possible
to replace the governing differential equation with simple algebraic equations, which can be

solved with relative ease.
2.1.2 The Structure of the Discretization Equation:

A discretization equation is an algebraic relation connecting the values of ¢ for a group of
grid points. Such an equation is derived from the differential equation governing ¢ and thus
expresses the same physical information as the differential equation. That only a few grid
points participate in a given discretization equation is a consequence of the piecewise nature
of the profiles chosen. The value of ¢ at a grid point thereby influences the distribution of ¢
only in its immediate neighborhood. As the number of grid points becomes very large, the
solution of the discretization equations is expected to approach the exact solution of the
corresponding differential equation. This follows from the consideration that, as the grid
points get closer together, the change in ¢ between neighboring grid points becomes small,

and then the actual details of the profile assumption become unimportant.

2.2 METHODS OF DERIVING THE DISCRETIZATION EQUATIONS:

For a given differential equation, the required discretization equations can be derived in many

ways and Taylor-Series formulation is one of them.
Taylor-Series Formulation:

The usual procedure for deriving finite-difference equation consists of approximating the
derivatives in the differential equation via a truncated Taylor series. Let us consider the grid

points in fig (2.1). For grid point 2, located midway between grid points 1 and 3 such that

Ax = x;- x; = x3-x2, the Taylor-series expansion around 2 gives

g nd ) L[ 42 -
¢ =0, Ax[dxzj+2(m)(dle ..................... (2.2)
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b=tel %

T anp[ 40
+ (Ax) (dﬁ l TR~ (2.3)

Truncating the series just after the third term, and adding and subtracting the two equations,

we obtain

(ﬁ) :¢3_¢1
dx ),  2Ax (2.4)

{MJ _h-20 44, 25)

), (&)

The substitution of such expression into the differential equation leads to the finite-difference

equation.

The method includes the assumption that the variation of ¢ is somewhat like a
polynomial in x, so that the higher derivatives are unimportant. This assumption, however,
leads to an undesirable formulation when, for example, exponential variations are

encountered.

1 2
O O
< AX > le AX |

Figure 2.1 Three successive grid points used for the Taylor-series expansion.
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v

X

2.3 CONTROL-VOLUME FORMULATION

The Finite Volume Method (FVM) is one of the most versatile discretization techniques used
in CFD. Based on the control volume formulation of analytical fluid dynamics, the first step
in the FVM is to divide the domain into a number of control volumes (aka cells, elements)
where the variable of interest is located at the centroid of the control volume. The next step is
to integrate the differential form of the governing equations (very similar to the control
volume approach) over each control volume. Interpolation profiles are then assumed in order
to describe the variation of the concerned variable between cell centroids. The resulting
equation is called the discretized or discretization equation. In this manner, the discretization

equation expresses the conservation principle for the variable inside the control volume.

8



The most attractive features of the control-volume formulation is that the resulting
solution would imply that the integral conservation of quantities such as mass, momentum,
and energy is exactly satisfied over any group of control volumes and over the whole

calculation domain. Even a coarse grid solution exhibits exact integral balances.
Advantages: (1) Basic FV control volume balance does not limit cell shape.
(2)Mass, Momentum, Energy conserved even on coarse grids.

(3)Efficient, iterative solvers well developed.

(4) FVM enjoys an advantage in memory use and speed for very large problems, higher

speed flows, turbulent flows, and source term dominated flows (like combustion).
2.3.1 Finite Volume: Basic Methodology
(1)Divide the domain into control volumes.

(2)Integrate the differential equation over the control volume and apply the divergence

theorem.

(3)To evaluate derivative terms, values at the control volume faces are needed: have to make

an assumption about how the value varies.

(4)Result is a set of linear algebraic equations: one for each control volume.
(5)Solve iteratively or simultaneously.

2.3.2 Cells and Nodes

(1)Using finite volume method, the solution domain is subdivided into a finite number of

small control volumes (cells) by a grid.

(2)The grid defines the boundaries of the control volumes while the computational node lies

at the center of the control volume.

(3)The advantage of FVM is that the integral conservation is satisfied exactly over the control

volume.
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Typical Control volume

Computational node

e Boundary node

4 Control volume

(1)The net flux through the control volume boundary is the sum of integrals over the four

control volume faces (six in 3D). The control volumes do not overlap.

(2)The value of the integrand is not available at the control volume faces and is determined

by interpolation.
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2.4 FINITE VOLUME METHOD FOR UNSTEADY FLOWS:

2.4.1 ONE-DIMENSIONAL UNSTEADY HEAT CONDUCTION:

Unsteady one-dimensional heat conduction is governed by the equation

or 0 oT
—=—(K—)+ S 2.6
PPN (26)
8XWP 8xPe
| |
i i
W N ; e E

e
<

A A

OXwe

Figure 2.4 One dimensional control volume

Consider the one-dimensional control volume in Figure-2.4 Integration of equation over the

control volume and over a time interval from t to t+At gives

t+At t+At a t+At

[] pc—dth— | ja(K—)dVdH [ [savar 2.7

t CV t CV t CV

This may be written as

E[T pCZ—Tdt}dV = T [(KA Z—D - (KA Zj }dr + HIAISAVa’t

(2.8)

In equation A is the face area of the control volume,AV is its volume, which is equal to AAx
where Ax is the width of the control volume and S is the average source strength.If the

temperature at a node is assumed to prevail over the whole control volume,the left hand side

can be written as
| [J’A pca—dt}dV pc(T ~T, )AV
cr 0 (2.9)

In equation (2.9) superscript ‘o’ refers to temperature at time ¢; temperatures at time level

t+At are not superscripted. The same result as (2.9) would be obtained by substituting
(TP —Tp )/At for Z—: so this term has been discretised using a first (backward) differencing

11



scheme. If we apply central differencing schemes to the diffusion terms on the right hand side

equation (2.8) may be written as

pelr, -1, v = IKKAT&;TJ ‘(KWAT}_—TWH‘” + [sara (2.10)

PE Xip z

To evaluate the right hand side of this equation we need to make an assumption about the

variation of 7,7, and 7, with time. We could use temperatures at time t or at time +A¢ to

calculate the time integral or, alternatively, a combination of temperatures at time +A¢. We
may generalize the approach by means of a weighing parameter 6 between 0 and 1 and write

the integral /, of temperature 7, with respect to time as

t+At

I, = jTsz = [HTP +(1—6’)TP"]AI (2.11)
Hence

0 0 1/2 1

I, T,°At %(TPJrTP”)At Tt

If =0 the temperature at (old) time level 7 is used; if #=1 the temperature at new time level

t+At is used; and finally if 6=1/2, the temperature at ¢ and +A¢ are equally weighed.

Using formula (2.11) for Ty and Tg in equation (2.10), and dividing by AA¢ throughout, we

have

At -

pe TP_TPO Ax =0 Ke(TE_TP) KW(TP_TW)
O p; ey

OX p Xyp

i H){KQ(TEO -1,°) k(1 —TW”)}gAx 2.12)

12



This may be re-arranged to give

{pc£+9( Lo A HT —;x( [HT +(1-o)r,°

At Xpp Oy PE

5x; [HTW +(1-0)1,° ]+

8 py Seyp

|:pc%—(l e)K ~(1-0) K, }T;+§Ax (2.13)

Now we identify the coefficients of 7y and T as ay and ar and write equation (2.13) in the

familiar standard form:

a,T, =ay|oh, +(1-0)1, |+a, o, +(1-0)7," [+ |, ~(1-0)a, (-0 1,7 +b (514

Where a, =8(a, +a,)+a,’

Ax
And a —
P = pc Al
With
aw ag b
KW K(’
Xyp OX b SAx

The exact form of the final discretised equation depends on the value of 8. When 8 is zero,
we only use temperatures T,°,T), andT,’ at the old time level ¢ on the right hand side of

equation (2.14) to evaluate Tp at the new time; the resulting scheme is called explicit. When
0<6<1 temperatures at the new time level are used on the both sides of the equation; the
resulting schemes are called implicit. The extreme case of =1 is termed fully implicit and

the case corresponding to #=1/2 is called the Crank-Nicolson scheme.
2.4.2 EXPLICIT SCHEME:

In the explicit scheme the source term is linearised as =S, +S,7,”. Now the substitution of
6=0 into (2.14) gives the explicit discretisation of the unsteady conductive heat transfer

equation:

13



a,Tp=a,T,’ +a,T," + [ap” —(ay +ay —Sp)]TP" +S, (2.15)

ap, =a,
0 Ax

ap :,OCE
_ KW

= Xy

a, = K.

: O

The right side of equation (2.15) only contains values at the old time step so the left hand side
can be calculated by forward marching in time. The scheme is based on backward

differencing and its Taylor series truncation error accuracy is first-order with respect to time.
All the coefficients need to be positive in the discretised equation. The coefficients of 7,°
may be viewed as the neighbor coefficient connecting the values at the old time level to those

at the new time level. For this coefficient to be positive we must have a,” —a,, —a,>0. For

constant K and uniform grid spacing, ox,, = d,, = Ax, this may be written as

Ax 2K )
— = " or we can write

pcAt

(Ax)

A= pe

This inequality sets a stringent maximum limit to the time step size and represents a serious
limitation for the explicit scheme. It becomes very expensive to improve spatial accuracy
because the maximum possible time step needs to be reduced as the square of Ax.

Consequently, this method is not recommended for general transient problems.
243 THE FULLY IMPLICIT SCHEME:

When the value of @ is set equal to 1 we obtain the fully implicit scheme. The discretised

equation is

a,T, =a,T, +a,T, +a,’T," +8, (2.16)

14



o
Where a, =a, +a, +a,-S,

and a,’ = pch
V= pe—
At

a, = K,

w

ox

with KWP
a, =—=

: O

Both sides of the equation contain temperatures at the new time step, and a system of
algebraic equation must be solved at each time step. The time marching procedure starts with
a given initial field of temperatures 7°. The system of equations (2.16) is solved after
selecting time step Az. Next the solution T is assigned to 7° and the procedure is repeated to

progress the solution by a further time step.

It can be seen that all the coefficients are positive, which makes the implicit scheme
unconditionally stable for any size of time step. The implicit method is recommended for

general purpose transient calculation because of its robustness and unconditional stability.
2.4.4 CRANK-NICOLSON SCHEME:

The Crank-Nicolson scheme method results from setting 6=1/2 in equation (2.14) . Now the

discretised unsteady heat conduction equation is

T, +T,° T, +T," , ,
aPTP:a{%}LaW{%}[% —%E—%W}TP +b (2.17)

1 o 1
Where aPZE(aW+aE)+aP _ESP

Ax
And a,” = pc—
P pC AL
aw ag b
K, K, S + 1 ST’
é‘xWP §XPE 2
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Since more than one unknown value of T at the new time level is present in equation (2.17)
the method is implicit and simultaneous equations for all node points need to be solved at
each time step. Although schemes with 1/2<6<1, including the Crank-Nicolson scheme, are
unconditionally stable for all values of the time step. It is more important to ensure that all the
coefficients are positive for physically realistic and bounded results. This is the case if the

coefficients of T satisfies the following condition:

a,+a
apo>{ EZ W}

Which leads to

2

At<pcAIz

This time step limitation is only slightly less restrictive than associated with the explicit
method. The Crank-Nicolson method is based on central differencing and hence it is the
second-order accurate in time. With sufficiently small time steps it is possible to achieve
considerably greater accuracy than with the explicit method. The overall accuracy of a
computation depends upon on the spatial differencing practice, so the Crank-Nicolson

scheme is normally used in conjunction with spatial central differencing.
2.5 TWO-DIMENSIONAL UNSTEADY HEAT CONDUCTION:

A portion of a two-dimensional grid is shown in fig-2.5.For the grid point P, points E and W
are its x-direction neighbors, while N and S (denoting north and south) are the y-direction
neighbors. The control volume around P is shown by dashed lines. Its thickness in z direction
is assumed to be unity. The actual location of the control volume faces in relation to the grid

points is exactly midway between the neighboring grid points.

ox ox oy Oy

ot (2.18)
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| S
Figure 2.5 Two Dimensional Control Volume

We can calculate the heat flux g. at the control-volume face between P and E. We shall
assume that qe, thus obtained, prevails over the entire face of area Ay x 1.Heat flow rates
through the other faces can be obtained in a similar fashion. In this manner, the differential

equation can be turned into the discretization equation

1+At 1+At a aT t+At a aT t+At
! ij pc—dth— j ij (K= )dVdi + j CJVE[K5J+ j ij sdVdt (2.19)

This may be written as

1= T{(s02) (o) Joe T[] o) o

t+At

+ jEAth
(2.20)

In equation A is the face area of the control volume,AV is its volume, which is equal to AAx
where Ax is the width of the control volume in x direction and in y direction AV is equal to

AAy, where Ay is the width of the control volume in y direction. S is the average source
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strength. If the temperature at a node is assumed to prevail over the whole control volume,

the left hand side can be written as
t+At aT
[ [ peZ-dilav = pelr, -1, )av (2.21)
crv t at

In equation (2.21) superscript ‘o’ refers to temperature at time #; temperatures at time level

t+At are not superscripted. The same result as (2.21) would be obtained by substituting

(TP —T )/At for Z—: so this term has been discretised using a first (backward) differencing

scheme. If we apply central differencing schemes to the diffusion terms on the right hand side

equation (2.20) may be written as

pe(r, —1,° Ay = tTtHKeAe Tgij - (KWAW Mﬂdt

X pE By

n‘'n
t PN SP

t+At t+AL
+ j HK A M]—(KSAS T%}—TsﬂdtwL SAVdt (2.22)

To evaluate the right hand side of this equation we need to make an assumption about the

variation of 7T,,T, T, ,Ty and Ts with time. We could use temperatures at time t or at time

t+At to calculate the time integral or, alternatively, a combination of temperatures at time
t+At. We may generalize the approach by means of a weighing parameter 6 between 0 and 1

and write the integral 7, of temperature 7, with respect to time as

t+At

I, = [Todi=or, +(1-0)T," i (2.23)
t

Hence

0 0 12 1

1; T, At %(TP+TP”)At T, At

If 6=0 the temperature at (old) time level ¢ is used; if =1 the temperature at new time level

t+At is used; and finally if #=1/2, the temperature at ¢ and +A¢ are equally weighed.
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Using formula for 7Ty and 7% and Ts and Ty in equation, and dividing by A¢ throughout, we

have

pC(TP ;tTPO ]A)CAy — 0|:KeAe(TE _TP) _ KWAW(TP _TW):|

&PE &WP

e 9){ K,A4(r,° —TP")_ K,4,(7,° —TW"):I

O pg Feyp

+ {KnAn(TN _TP) _ KqA\"(TP _T:S'):|
é}PN @SP

+(1—9){K”A”(@) TPO)_ KSAS(TPO _TSO)}rgAxAy (2.24)
PN SP

This may be rearranged to give

Axdy K4, K,4, K4, KSASJ K4, 1 KA, )
pc +0 + + + Tp = Ty +\1-0)T;" |+ oTy +\1-0)T,
{ At [5xPE HNyp & py Sep :I P g [ ET ( )E ] S ( W ( )W )

bl s-on J oo

PN SP

PE wP @}PN SP

{pc”ﬁy (1- e)I;A S () R () L (1—9)KSAS}TP°+§AXA;V (2.25)

a,T, =a, |01, +(1-0)T,° |+ a,|or, + (1- )T, |+ a;|oT, + 1-O)1,° |+ a, |oT, + (1-0)1, |

tlay —(1=0)ay, —(1-0)a, —(1-O)ay —(1-O)ay |1, + SAxAy

(2.26)
ap, =a,’ +0(a, +a, +ag+a,)
For implicit scheme the value of 6 is 1.The equation can be written as
aplp=apTg + awTw+anTy+ asTs+ b (2.27)
a,’ = %
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b=S.AvAy+a,’T,’
a,=a;+a, +a, +ag+a,” —S,AxAy

The product Ax Ay is the control volume.

1D 2D
AV Ax AxAy
A=A, 1 Ay
An:As - AX
aw ag as an
2D KWAW Ke‘ Ae KS AS K”l Al’l
@CWP é‘xpE @SP @}PN

2.6 Solutions of Algebraic Equations:

Direct Methods (i.e., those requiring no iteration) for solving the algebraic equations arising
in two or three-dimensional problems are much more complicated and require rather large
amounts of computer storage and time. For a linear problem, which requires the solution of
the algebraic equations only once, a direct method may be acceptable; but in nonlinear
problems, since the equations have to be solved repeatedly with updated coefficients, the use
of a direct method usually not economical. We shall, therefore exclude direct methods from

further consideration.

The alternative method then is iterative methods for the solution of algebraic
equations. These start from a guessed field of 7 (the dependent variable) and use the algebraic
equations in some manner to obtain an improved field. Successive repetitions of the
algorithm finally lead to a solution that is sufficiently close to the correct solution of the

algebraic equations. Iterative methods usually require very small additional storage in the
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computer, because only non-zero coefficients of the equations are stored in core memory. So

they are especially useful for handling nonlinearities.

There are many iterative methods for solving algebraic equations. Some of the

examples are the Jacobi and Gauss-Seidel point-by-point iteration methods.

Jacobi and Gauss-Seidel iterative methods are easy to implement in simple computer
programs, but they can be slow to converge when the system of equations is large. Hence
they are not considered suitable for rapidly solving tri-diagonal systems that is now called
Thomas algorithm or the tri-diagonal matrix algorithm (TDMA). The TDMA is actually a
direct method for one-dimensional situations, but it can be applied iteratively, in a line-by-
line fashion, to solve multi-dimensional problems. It is computationally inexpensive and has

the advantage that it requires a minimum amount of storage.
2.6.1 The Tri-diagonal Matrix Algorithm:

TDMA refers to the fact that when the matrix of the coefficients of these equations is

written, all the nonzero coefficients align themselves along three diagonals of the matrix.

Suppose the grid points were numbered 1, 2, 3, ...... , N, with points 1 and N denoting

the boundary points. The discretization equations can be written as
al, =bT, +cT_ +d, (2.28)

fori=1,2,3,........ ,N. Thus the temperature 7; is related to the neighboring temperatures 7},

and 7;.;. To account for the special form of the boundary-point equations, let us set
c1=0 and by =0,

so that the temperatures 7)) and Ty.; will not have any meaningful role to play. (When the
boundary temperatures are given, these boundary-point equations take a rather trivial form.

For example, if 7} is given, we have a,=1, b;=0, ¢,=0, and d,=the given value of 7;.)

These conditions imply that 7; is known in terms of 7,. The equation for i=2 is a
relation between 7;, T,, and T;. But, since 7; can be expressed in terms of 75, this relation
reduces to a relation between 7, and73. In other words, 7> can be expressed in terms of 75.
This process of substitution can be continued until 7y is formally expressed in terms of T+;.
But, because 7x+1 have no meaningful existence, we actually obtain the numerical value of

Tx at this stage. This enables us to begin the “back-substitution” process in which Ty.; is
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obtained from Ty, Ty from Tn.,...... ,T> from T3, and T from 7. This is the essence of
TDMA. Suppose in the forward- substitution process, we seek a relation
T=PiTi++0i (2.29)
Similarly we can also write

Ti.= PiT; +0iy (2.30)
Substitution of equation (2.30) into equation (2.28) leads to
aiTi=b;Ti+1+ci(PiiTi+ Qi) + d; (2.31)
The coefficients P; and Q; are

= a, —bcliPi_1 ’

0=
These are the recurrence relations, since they give P; and Q; in terms of P;.; and Q;.;. To start
the Recurrence process, we note that equation (2.28) for i=1 is almost of the form (2.30).

Thus the values of P, Q; are given by

b
P1—_1
a,
d
le_l
a,

Discussion: (1) The discretization equations for the grid points along a chosen line are
considered. They contain the temperature at the grid points along the neighboring lines. If
these temperatures are substituted from their latest values, the equation for the grid points
along the chosen line would look like one-dimensional equations and could be solved by the
TDMA. This procedure is carried out for all the lines in the y-direction and may be followed

by a similar treatment for the x-direction.
(2) The convergence of the line-by-line method is faster, because the boundary-condition

information from the ends of the line is transmitted at once to the interior of the domain, no

matter how many grid points lie in one line.
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2.7 Computational Domain:

300°C

300°C L 300°C

I
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Figure 2.6 Computational Domain

2.8 Flow Chart For Solving Transient Conduction:
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CHAPTER 3

RADIATIVE HEAT TRANSFER



3. RADIATIVE HEAT TRANSFER:

3.1 Mathematical Description of Radiation:

We refer as radiative energy transfer to the variation of the energy of any system due to
absorption or emission of electromagnetic waves. From a physical point of view, such
electromagnetic waves can be understood as a group of mass less particles that propagate at
the speed of light ‘c’. Each of these particles carries an amount of energy, inversely
proportional to the wavelength of its associated wave. Such particles are photons. A single
photon represents a plane wave; therefore we are forced to assume that it propagates along a
straight path. Because of this, we can think of a system loosing energy by emitting a number
of photons, or gaining energy by absorbing them.

Radiation heat transfer presents a number of unique characteristics. First of all, the
amount of radiative heat transfer does not depend on linear differences of temperature, but on
the difference of the fourth power of the temperature. This fact implies that, at high
temperatures, radiative energy transfer should be taken into account, particularly if large
differences in temperature exist. Furthermore, it is the only one form of energy transfer in
vacuum. Therefore, in vacuum applications, radiation should be taken into account, even low
temperatures. And, of course, it should be taken into account for study of devices which use
solar energy.

On the other hand, radiation can be neglected if there are no significant temperature
differences in a given system, and also if highly reflective walls are present.

As the photons propagate along straight paths, we also need to know, at every spatial
location, the number of photons propagating in a given solid angle. Under the assumption of
straight propagation, we are neglecting the wave properties of radiation.

The photon density is defined as the number of photons, with wavelength between A
and A + dA, crossing an area dA4 perpendicular to the photon direction § within a solid angle
dQ, per unit time df and per unit wavelength dA. It is more useful to consider the energy
density / instead of the photon density. The energy density is simply the number of photons
multiplied by the energy of each photon. The energy density is usually named intensity

radiation field, and its physical meaning is therefore

Energy of wavelength A through an area normal to S

1(r,s,4) = dAdQdAdt (3.1
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From this definition is clear that, for a fixed point and wavelength, the intensity radiation
field is a function defined over the unit sphere, and therefore is not a conventional scalar
field, such as the temperature. With the definition of the intensity radiation field on mind, the
total energy that crosses a surface perpendicular to a given unit vectorn, per unit time and

area, is readily obtained as

q(r, i) = Ta% [don.)1(r.5,2) (3.2)

Where [;1 ;j factor appears since / is defined as energy through the propagation directiong .

3.2 Radiative Properties of Materials:

3.2.1 Black body radiation:

Once the mathematical tools for the description of radiation energy are settled, it
would be interesting to know how much energy emits a body under different physical
conditions. This one turns out to be a complicated problem, so some simplifying hypothesis is
required. The simplest possible case is that of the black body.

The black body plays the same role as the ideal gas, in the sense that its behavior is the
same no matter of what is made. It also serves as a basis for more complicated bodies. By
definition, any body which absorbs the totality of photons is called a black body. For such a
body in thermal equilibrium with its surroundings, it has to emit as much radiation energy as
it absorbs, otherwise it will heat up or cool down. This fact is called the Kirchhoff law. The
energy emitted by a black body depends only on its temperature, and the distribution over all
wavelengths is
hc® 1
2 exp(he/, o)1

Where 4 is the Planck’s constant, ¢ is the Boltzmann constant, and c is the speed of light. The

[T, =2

(3.3)

photon emission by a black body is isotropic, that is, it does not depend on any particular
directions . Therefore, by using equation (3.2), carrying out the angular integration over an
hemisphere, we find that the energy emitted by a black body per unit area, time and

wavelength is simply £, (T, A) =, (T, 1) .

26



An important feature of a black body is the emissive power per unit area, which is readily
found by integrating equation (3.3) over all wavelengths. The result is the well known Stefan-

Boltzmann law, which relates the emissive power to the temperature of the black body:

L,(I)=—— (3.4)

3.2.2 Surface properties:

Each surface will radiate a certain amount of energy due to its temperature. Such emitted
energy, which will depend on the properties of the surface, its temperature, the radiation
wavelength, the direction of emission leads to the definition of the emissivity of a surface. As
stated before, we can use the black body as a reference to define the surface properties of real
bodies. Therefore, if the surface is at temperature 7, the emissivity is defined as

&= ]emitted (T’ ﬂ"S) (35)
1,(T,4)

As the black body is defined as the perfect radiation absorber, by the Kirchhoff law, there is
no body capable of emitting more radiation energy than a black body for any given
temperature. Therefore, the emissivity € will be between zero and one.

On the other hand, when an electromagnetic wave strikes a surface, the interaction
between this incident wave and the elements of the surface result on a fraction of the energy
of the wave being reflected, while the remaining fraction will be absorbed (or transmitted)
within the material. These fractions may very well depend on the incident angle and the

wavelength of the original wave. Specifically, we can define

Ireﬂected . _ 1 absorbed — I transmitted

p=——",;a= 3 T

incomin g incomin g incomin g

The coefficientsp,a, and 7, are the reflectivity, absorptivity, and transmissivity of the surface
respectively. As the wave is either reflected, or absorbed, or transmitted, it is clear that we
must have p+a +7 =1 if the energy is to be conserved.

An important feature of reflection should be pointed out: while the reflected wave has
the same angle (with respect to the normal of the surface) of the incident wave for perfectly
smooth surfaces, if the surface is not polished, the angle of the reflected wave could have any
value, due to multiple reflections. There is a fraction of the incoming intensity that is equally

distributed for all possible outgoing directions. Due to this, the reflectivity p is usually
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divided in a diffuse componentp,, and a specular component p;. Therefore, a fraction p; of
the incoming energy will be reflected equally over all the angles, and a fractionp, will be
reflected in an angle equal to that of the incident wave. We have of course p = p; +p.
Moreover, a surface that absorbs a fraction « of the incident energy will emit the
same amount of energy if it is at thermal equilibrium (the Kirchhoff law again). Therefore,

we could assume that (7T, 15 8) = &(T, 45 5) .

3.3 FORMULATION OF RADIATIVE TRANSFER EQUATION BY
USING FV METHOD:

We are assuming that photons propagate along straight lines, hence the most natural way to
examine the effect exerted by the medium on the number of photons (or equivalently on the
intensity radiation field) is to analyze the intensity radiation field precisely along a straight
line. In the most general case, the intensity along the direction defined by the unit vector §
will depend both on the distance s in this direction, and on time ¢. Therefore we could write

the variation of intensity with respect to s and ¢ as

dl:I(s+ds,t+dt)—[(s,t):Z—Ids+%dt (3.6)
S

Recalling that photons travel at the speed of light ¢, we have ds = cdt, and the resulting
variation of intensity per unit length along the direction § is

dl ol 10l
s + ZE (3.7)
The speed of light is very high, resulting on the fact that, for practical purposes, we can think
that the intensity radiation field instantly reacts to any changes of the physical conditions that
determine it. Therefore, the partial derivative of / with respect to time ¢ in equation, will be
ignored hereinafter.

As an electromagnetic wave propagates inside a medium, it loses energy as the charged
particles within the medium accelerate in response to the wave. These particles, in turn,
release part of its energy in form of electromagnetic waves. In the photon framework, we
think of the same process as photons being absorbed and emitted by the medium. However, if

the final state of the interacting particle is the same as the initial state, we understand that the

corresponding photon is simply redirected (and therefore has the same energy). We say that
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such a photon is scattered. It turns out that scattered photons complicate the formulation of
the radiative transfer equation (RTE), by turning a simple linear differential equation to an
integro-differential one, combining differentiation with respect one set of variables (spatial
location) and integration over another set of variables (solid angle).

The RTE accounts for the variation of the intensity radiation field, readily related to the
number of photons, on a direction given by the unit vector s . Such variation can be attributed

to different phenomena, and is usually divided in three additive terms. It is written as

% =-B(r)(r,8)+ x(r),(r,5) + %77;)4[[1(r,§')¢(§',§)d§2' (3.8)
The above equation is valid for a single wavelength. If the absorption and scattering coeffi-
cients k¥ andoy are zero, the RTE is simplified enormously. Under such conditions, we talk of
a transparent medium, and for very small domains, compared to 1/x or 1/o, this
approximation is reliable.

The first term, which is negative, accounts for the decrease of the number of photons on the
given direction, either because it is absorbed by the medium (with an absorption coefficientx)
or because it is scattered onto another direction (with a scattering coefficient o). The second
term has positive sign, therefore implying an increase of the number of photons. This term is
due to thermal emission of photons. It is zero only if the temperature is zero, or the
absorption coefficient is zero. Notice that the proportionality coefficient is the same
absorption coefficient appearing in the first term. This holds under the assumption of local
thermodynamic equilibrium.

The third term contributes only if the medium scatters radiation. We should take into account
that any photon, propagating along a direction given by $’, may be redirected to the analyzed

direction § . We define the function ¢(5',5) to be 4r times the probability of such redirection

occurring. Then we integrate to consider all possible directionss’. The function ¢(s”,§) is
known as the phase function. It has to be normalized, in a way that

[#(5.9)aq" = 4x (3.9)

This equation merely states that the incoming photon should be scattered into some other

direction. Where the extinction coefficient and source function are

p(r)=x(r)+o(r) (3.10)
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S(r,f):x(r)lb(r,§)+ﬂj 11,5, §)dQ G.11)
dr 4=

r is the position vector and § is the unit vector describing the radiation direction. Equation
(3.8) indicates the intensity depends on spatial position and angular direction. To discretize it
finite volume method is used. The control angle used here are the solid angle proposed and
used by Raithbay and coworkers[27-29]. Following the control volume spatial discretization
practice, the angular space is subdivided into Ny X N4 =M control angles in any desired

manner.

control angle

Figure 3.1Typical control angle

Figure 3.2 Intensity I’ in direction AQ)' in the center of the elemental sub-solid angle Q'
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Integrating equation (3.8) over a typical two-dimensional Av and AQ' gives

j J'—dvd Q' = j j(—ﬂ11+s’)dvd Q' (3.12)
AQ' Av AQ'"Av

where

I'=1(r,s").

Applying the divergence theorem, Eq(3.12) becomes

_[ J.I (5" 7)dAd Q' = j j(—ﬂl’ +S"dvd Q! (3.13)

AQ! A4 AQ! Av

The left side of the equation represents the inflow and outflow of radiant energy across the
four control volume faces. The right hand side denoted the attenuation and augmentation of
energy within a control volume. Following the practice of control volume approach, the
intensity is assumed constant within a control volume and a control angle. So Eq.(3.13) can

be simplified to

21 AA, j( ANdQ = (=BI" + SHAVAQ' (3.14)

AQ !

Where

(3.15)

472— r=1

In Eq. (3.15), the radiation direction varies within a control angle, whereas the magnitude of
the intensity is assumed constant. If the radiation direction is fixed at a given direction within
a control angle and the magnitude of intensity is constant, the discretization equation for the

discrete ordinates method [30] is obtained.
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Following the treatment presented by chai et al;[30] a modified extinction coefficients and a
modified source function can be written for a discrete direction / as
o S

—1'l
Bl =p- o AQ !
4

o M —1'"l
4r I'=1,I"
=1,1"'#1

With this modification, Eq. (3.14) becomes

"VAVAQ' (3.16)

m

4
> 1A, [(31A)dQ = (=1 + S
i=1

AQ !

For the typical control volume and radiation direction shown in Fig, Eq.(3.16) can be further

simplified to
N
ok
NN
LU

Figure 3.3 Control angle orientations

(L =198, D, + (1, ~1.784,D," =[~(B,)),1's +(S,),, 1AvAQ 517

To relate the boundary intensities to the nodal intensity, spatial differencing schemes are
needed. One available scheme is the step scheme which sets the downstream boundary

intensities equal to the upstream nodal intensities;
1L =r1l=1t 0 =1k 1l =1}
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From the above fig, the step scheme discretization equation can be written as

[l 71 [ 1 [l 7l
a 1l =ayly, +acle+b
m e 58 (3.18)

/ /
ay = AyDcx
as =AxD]

a!, = [axD, + ayD!, + (Bl , Avac' ]
Where ; ;
b'=(S,),AvAQ

¢2 92
A= [ [sin 6d0do
o (3.19)
¢292
D!, = I(§l.ﬁx)dQl = IIsin9c05¢sian9d¢ =-p' =D
ho (3.20)
4,0
D, = j(fl-ﬁy)dQl = J‘J‘sinﬁsin¢sin9d€d¢ =-D|,, =D,
ne (3.21)
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3.4 SOLUTION PROCEDURE:

4 N

Algorithm

L. 1l gl
Guess unknown [ fie I..1,)
I 4
dy» s, a,,b are calculated Set the current intensities as guessed value
4.‘ !
Calculate [, J

; _[aé,,]é,,+aé]é+b}

p
ap

[

If No \
L ; l
\ Take Updated / ,and I, /

Figure 3.4 Flowchart for overall solution procedure
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4. ANALYSIS
4.1 ENERGY EQUATION

The transient state energy conservation equation consisting of both conduction and radiation in
an infinitesimal control volume can be expressed as

oT
ch:KVZT—V.qR (4.1)

It is assumed that the thermal conductivity K of the medium is independent of temperature 7' of
the medium. The divergence of the radiative heat flux is given by

Vg, =x(4rd, —G) (4.2)

Where « is the absorption coefficient, 7, is the blackbody intensity and G is the incident
radiation. Substituting Eq.(4.2) into Eq(4.1), the non dimensional equation can be expressed as

00 1 99 1 826’_(1—0))|:(94 G*}

= -|- -
of 2B’ 0X? HPB2oY: N 4r (43)
6 = T o KB . G
T 3.0 =— =
ref 40_7;@]- ol ref ¥

Here in the above equation, 7. is the reference temperature, o is the Stefan-Boltzmann constant,
N is the conduction radiation parameter and 3 is the extinction coefficient of the medium.

4.2 Calculation of incident radiation and heat flux

For calculation of the divergence of radiative heat flux, incident radiation G distribution is
required. It can be calculated as

G(F) = j 17, §)dQ

2
_ A Ojezgsin 0d Ad p

(4.5)
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The radiative heat flux in x, y and z directions can be calculated as

qr.(F) = [1(F.5)(5e,)dQ

27 7w
= “'Isin 6 Ccos ¢sin Gd 6d ¢ “6)
$=0 0 '
qr, (F) = [1(7.5)5e,)d
A
2r 7w
= jj]sinesin¢sin9d9d¢ @
Y '
gy (F) = [1(F.5)(5é.)dQ
A
2r 7w
= j j]cosesin 6d &d ¢
(4.8)
$#=0 6
The total heat flux g7 is the summation of both conductive and radiative heat fluxes. In non-
dimensional form, total heat flux in any direction(e.g. x direction can be expressed as)
q7 00  dpi
= AN —— @)
O-Tref aTX GTref .

Where z, (=fx) is the optical thickness of the medium in x-direction
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CHAPTER 5

RESULTS AND DISCUSSION



In this section, the results obtained by solving the governing equation meant for coupled
conduction and radiation phenomena within an enclosure, have been delineated .In order to
sense the effect of radiative properties of the medium and surface emissivity, at first, pure
conduction phenomena has been discussed. The transient effect has also been discussed. In
the figure 5.1 the temperature distribution for steady state conduction for the computational
domain has been shown. The symmetry about X=0.5, is observed as expected. The heat flux
variations at bottom wall, top wall and side wall are shown in the fig. 5.2, fig.5.3, fig. 5.4, the

hot (bottom) wall compared to the portions nearing side walls. Where as the phenomenon is

reversed at the top cold wall. Heat flux at the bottom portion of the side walls is found to be
intensive in nature respectively. It is observed that less amount of heat gets transferred at the

central portion of the bottom wall.

22 T T T T T T T T

20 -

2 4 6 8 10 12 14 16 18 20 22

Figure 5.1 Temperature isotherms at the steady state.
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Figure 5.2 Variation of Heat flux at the bottom wall along X-axis
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Figure 5.3 Variation of heat flux at the top cold wall with X axis
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Figure 5.4 Variation of heat flux at the side cold wall with Y-axis

Before illustrating the effect of radiative properties of the participating medium on combined
conduction and radiation phenomena, the validation of the present code has been made

against the work Kim and Baek[17] (shown in the figure ).

Figures shows the temperature along the y-direction at the symmetry line X=0.5 for various
values of N. In addition ®=0 is assumed, which represents a non-scattering medium in which
the radiation is emitted and absorbed only. As N decreases, radiation plays a more significant
role than conduction. Therefore as N decreases, a steeper temperature gradient is formed at

both top and bottom walls and the medium temperature inside increases.
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Figure 5.5 Dimensionless temperature profiles for N=1
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Figure 5.6 Dimensionless temperature profiles for N=0.1
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Figure 5.7 Dimensionless temperature profiles for N=0.01

Dimensionless Temperature 0

0.9

0.8

0.7

0.6

ey

0.5

3

0.2 0.4 0.6 0.8

Dimensionless Coordinate Y

1

Present

O Kim and Baek

Figure 5.8 Dimensionless temperature profiles for N=0.001
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5.3 Effect of Conduction- radiation parameter (N)

In general the fractional radiative heat flux is seen to decrease as N increases. In the hot wall
corner region, extremely large temperature gradient produces a great deal of conductive heat
flux as N increases. For N=0.001, Q®/Q becomes nearly uniform along both end walls as
shown in the figure. In this study conduction radiation parameter N is varying, keeping &, =1,
and t=1. Figure shows how fractional radiative heat flux changes with different values of

conduction radiation parameter in bottom hot wall and cold top wall.
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Figure 5.9 Variation of fractional radiative heat flux for N=1;
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Figure 5.10 Variation of fractional radiative heat flux for N=0.1;
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Figure 5.12 Variation of fractional radiative heat flux for N=0.001;
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5.4 Effect of wall emissivities at the hot bottom wall, keeping N=0.05, t)=1and ®=0.

As the wall emissivity increases, the intensity at the hot wall becomes strong and it further
increases the radiative heat flux and the temperature of the medium inside. The temperature
gradient in the vicinity of the hot wall is thus reduced by as much. The effect of emissivity is
found to be more pronounced for a thicker medium which has a higher optical thickness. The

total heat flux decreases with decrease in ¢,.
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Figure 5.13 Variation of the total heat flux for ¢,=1 at the bottom wall, Y=0
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Figure 5.14 Variation of the total heat flux for ¢,=0.8, at the bottom wall, Y=0.
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Figure 5.15 Variation of total heat flux for &,=0.5, at the bottom wall, Y=0.
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Figure 5.16 Variation of total heat flux for £,=0.2, at the bottom wall, Y=0.

49



5.5 Temperature Isotherms for different scattering albedo and emissivity at steady
state conditions: The figures shown below are the temperature isotherms at steady state. In
all the cases the conduction-radiation parameter N=0.001 is taken, that makes the phenomena
as radiation dominant. Fig.5.17 shows the medium is non-scattering, therefore the last

isotherm is formed very close to the top cold wall.

Fig.5.18 shows the medium is absorbing and scattering. The isotherms at the lower-

left-hand corner are less steep.

Fig.5.19 shows the medium is purely scattering. It takes more time to reach at the

steady state. The isotherms are similar to the isotherms obtained for conduction, fig.(5.1).

Fig.5.20 shows the medium is non-scattering and wall emissivity of &,=0.5. As the wall
emissivity increases, the intensity at the hot wall increases and it further increases the
radiative heat flux and the temperature of the medium inside. Thus the last isotherm is very

closer to the top cold wall.

Fig.5.21 shows the medium is scattering with ©=0.5 and wall emissivity &,=0.5. The

combined effect takes more time to reach at the steady state.

Figure 5.17 Temperature isotherms for N=0.001 and »=0.
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Figure 5.18 Temperature isotherms for N=0.001 and ©=0.5.

Figure 5.19 Temperature isotherms for N=0.001 and o=1.
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Figure 5.21 Temperature isotherms for N=0.001 and ®=0.5 and ¢=0.5.
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5.6 COMPARISION OF ISOTHERMS AT DIFFERENT TIME STEPS:

Temperature isotherms at different time step for N=0.001 and ®=0.5 and ¢=0.5 are shown

below.

22

Figure 5.22 Number of time steps = 20.

Figure 5.23 No of time steps=40.
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Figure 5.24 No of time steps=80.

5.6.1 Transient Results of temperature: The figure shown below, describes the temperature
variations at different time steps, for N=0.001, ®=0.5 and ¢=0.5 at the mid plane. The

physical time required to reach at the steady state can be calculated.
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Figure 5.25 Temperature Variation with time at the mid plane
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Table 5.1 shows variation in time period required to reach at steady state

Fixed parameters Varying parameters No. of time steps
N=0.001 ® 0 117
e=1 0.5 163
=1 1 1877
e=1 N 1 1851
=1 0.1 1606
®=0 0.01 624
0.001 117
N=0.001 Ew 0.2 229
=1 0.5 148
®=0 0.8 124
1 117

Time required to reach at steady state conditions depends upon o, €, and t, all the radiative
properties and conduction-radiation parameter N. As the value of N decreases the phenomena
will be radiation dominant, thus the period of transient is small. As the emissivity of the wall
increases, the period of transient decreases. As the scattering albedo ® increases the period of

transient increases.
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CHAPTER 6

CONCLUSIONS



6.1 CONCLUSIONS

Application of the FVM was extended to the solution of the energy equation of a radiation
and Fourier heat conduction problem. The FVM was used to compute the radiative
information. Combined conduction radiation problems with mixed boundary condition
problems were studied. Results of the present work were validated against those available in
the literature. Good agreements were found. Temperature distributions in the medium were
analyzed for different values of the conduction radiation parameter. The results for the
temperature distribution and isothermal contours were illustrated. Additionally fractional
radiative heat flux and total heat flux were also introduced and discussed. The results of the
temperature distribution at different time step were illustrated. Conclusively the finite volume
method is considered to be highly integrable with other finite differenced transport equations.
Furthermore it was found that only a reasonably short computational time was required to
yield quite accurate solutions.

6.2 FUTURE SCOPE

[1] Analysis of non-Fourier conduction-radiation heat transfer in a 2-D and 3-D systems.

[2] Analysis of non-Fourier heat conduction-radiation heat transfer in cylindrical and
spherical system using FVM.

[3] CLAM scheme can be used to solve the radiative transfer equation by FVM.

[4] Convection phenomenon can be added with different boundary condition to the problem.
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