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Abstract

In digital Image Processing, removal of noise is a highly demanded area of research.

Impulsive noise is common in images which arise at the time of image acquisition

and or transmission of images. Impulsive noise can be classified into two categories,

namely Salt & Pepper Noise (SPN) and Random Valued Impulsive Noise (RVIN). Re-

moval SPN is easier as compared to RVIN due to its characteristics. The present work

concentrates on removal of RVIN from images.

Most of the nonlinear filters used in removal of impulsive noise work in two phases,

i.e. detection followed by filtering only the corrupted pixels keeping uncorrupted ones

intact. Performance of such filters is dependent on the performance of detection schemes.

In this work, thrust has been put to devise an accurate detection scheme and a novel

weighted median filtering mechanism.

The proposed detection scheme utilises double difference among the pixels in a test

window. The difference is computed along four directions namely, horizontal, vertical,

and two diagonals to capture the edge direction if any exists. This helps to identify,

whether the test pixels under consideration is an edge pixel or a noisy one. Subse-

quently, the corrupted pixels are passed through in weighted median filter, where more

weights are assigned to those pixels which lie in a minimum variance direction among

all the four. Extensive simulation has been carried out at various noise conditions and

with different standard images. Comparative analysis has been made with existing stan-

dard schemes with suitable parameters such as Peak Signal to Noise Ratio (PSNR), fault

detection and misses. It has been observed in general that the proposed schemes outper-

forms its counterparts at low and medium noise conditions and performs at par at high

noise conditions with low computational overhead. The low computational require-

ments have been substantiated with number of operations required for single window

operation and overall time required for detection and filtering operation.

In addition, every detector utilizes a threshold value which is compared with a pre-

defined computed value to decide whether the pixel under consideration is corrupted.

Fixed threshold may perform well for one image at a particular noise condition. How-
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ever, generalization is not possible for a fixed threshold. Hence, requirement for an

adaptive threshold is realised. In the later part of this thesis, we propose an impulsive

detection scheme using an adaptive threshold. The adaptive threshold is determined

from an Artificial Neural Network (ANN) using various statistical parameters of noisy

image like (µ, σ2, µ4) as inputs. The performance of this scheme is also compared with

simulation results.
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Chapter 1

Introduction

An image may be defined as a two dimensional function, f(x, y), where x and y are

spatial coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the

intensity or gray level of the image at that point. When x, y and the amplitude values of

f are all finite, discrete quantities, we call the image a digital image. The field of digital

image processing refers to processing digital images by means of a digital computer.

Image restoration is a fundamental step of digital image processing [1].

The entire process of image processing and analysis starting from the receiving of

visual information to the giving out description of the scene, may be divided into three

major stages which are also considered as major sub-areas, and are given below:

1. Discretization and representation: converting visual information into a discrete

form; suitable for computer processing; approximating visual information to save

storage space as well as time requirement in subsequent processing.

2. Processing: improving image quality by filtering etc.; compressing data to save

storage and channel capacity during transmission.

3. Analysis: extracting image features; quantifying shapes, registration and recog-

nition.

In the initial stage, the input is a scene (visual information), and the output is corre-

sponding digital image. In the secondary stage, both the input and the output are images

where the output is an improved version of the input. And, in the final stage, the input

is still an image but the output is a description of the contents of that image [2]. A
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Figure 1.1: Different stages of image processing and analysis scheme
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1.1 Image Restoration

schematics diagram of different stages is shown in Figure 1.1. The figure is taken from

the book specified in [2].

Out of the sub-branches of digital image processing, diagrammatically represented

above, this thesis deals with image restoration. To be precise, the thesis devotes on a

part of the image restoration i.e. noise removal from images. Accurately, it is about the

denoising of one particular type of noise i.e. random valued impulsive noise, stated in

the Problem Definition.

1.1 Image Restoration

Restoration attempts to reconstruct or recover an image that has been degraded by using

a priori knowledge of the degradation phenomenon. Restoration techniques are primar-

ily modelling of the degradation and applying the inverse process in order to recover the

original image. The degradation function together with an additive noise operates on

an input image f(x, y) to produce a degraded image g(x, y). Given g(x, y), some knowl-

edge about the degradation function h(x, y) and some knowledge about the additive

noise term η(x, y), the objective of restoration is to obtain an estimate of the original

image [1].

Function H

Degradation

η( x, y)

Restoration

Filter (s)

g( x, y)
Restored

Image
f ( x, y)

True

Image

Noise

( x, y)f̂

(a)

η( x, y)

Restoration

Filter (s)

g( x, y)
Restored

Image
True

Image
f ( x, y)

Noise

(b)

Figure 1.2: (a) Model of the image degradation/restoration process, (b) Model of the
Noise Removal Process.

The degraded image is given in spatial domain by

g(x, y) = f(x, y) ∗ h(x, y) + η(x, y) (1.1)
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1.2 Noise Model

In this thesis, it is assumed that the degradation function is the identity operator, and

we deal only with degradations due to noise. So the degraded image is:

g(x, y) = f(x, y) + η(x, y) (1.2)

1.2 Noise Model

Noise is a disturbance that affects a signal and that may distort the information carried

by the signal. It can be Random variations of one or more characteristics of any entity

such as voltage, current, or data. Otherwise it is a random signal of known statistical

properties of amplitude, distribution, and spectral density. Loosely, noise can be defined

as any disturbance tending to interfere with the normal operation of a device or system.

Image noise is a random, usually unwanted, variation in brightness or color infor-

mation in an image. Image noise can originate in film grain, or in electronic noise in

the input device (scanner or digital camera) sensor and circuitry, or in the unavoidable

shot noise of an ideal photon detector.

Digital images are prone to a variety of types of noise. Noise is the result of errors in

the image acquisition / transmission process that result in pixel values that do not reflect

the true intensities of the real scene. There are several ways that noise can be introduced

into an image, depending on how the image is created. For example: If the image is

scanned from a photograph made on film, the film grain is a source of noise. Noise

can also be the result of damage to the film, or be introduced by the scanner itself. If

the image is acquired directly in a digital format, the mechanism for gathering the data

(such as a CCD detector) can introduce noise. Electronic transmission of image data

can introduce noise [2].

The spatial component of noise is based on the statistical behaviour of the intensity

values. These may be considered as random variables, characterized by a probability

density function (pdf). a probability density function (pdf), or density, of a random

variable is a function which describes the density of probability at each point in the

sample space. The probability of a random variable falling within a given set is given

by the integral of its density over the set. Some commonly found noises are Gaussian

noise, Rayleigh noise, Gamma noise, Exponential noise, Impulsive noise and so on..
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1.3 Spatial Filtering

1.3 Spatial Filtering

Spatial filtering is preferred when only additive noise is present. The different classes

of filtering techniques exist in spatial domain filtering.

• Mean Filter

• Order-Statistics Filter

• Adaptive Filter

1.3.1 Mean Filter

Mean filtering is a simple, intuitive and easy to implement method of smoothing images,

i.e. reducing the amount of intensity variation between one pixel and the next. It is

often used to reduce noise in images. The idea of mean filtering is simply to replace

each pixel value in an image with the mean (‘average’) value of its neighbors, including

itself. This has the effect of eliminating pixel values which are unrepresentative of

their surroundings. Mean filtering is usually thought of as a convolution filter. Like

other convolutions it is based around a kernel, which represents the shape and size of

the neighborhood to be sampled when calculating the mean. There are various type

of mean filter i.e. arithmetic mean filter, geometric mean filter, harmonic mean filter,

contra harmonic mean filter. The arithmetic and geometric mean filters are well suited

for random noise like Gaussian or uniform noise. The contra harmonic filter is well

suited for impulsive noise [1].

1.3.2 Order-Statistics Filter

Order statistics (OS) are the characteristics of sorted data within a sliding window. The

minimum, maximum and median are special cases of order statistics. Order statistics

are extremely robust to outlier data and are used when outlier data is problematic. Order

Statistics filters are non-linear and non-stationary (shift-variant). Order -statistics filters

are spatial filters whose response is based on ordering (ranking) the pixels contained

in the image area encompassed by the filter. The response of the filter at any point is

determined by the ranking result. Median filter, Max and min filters, Midpoint filter,

6



1.4 Problem statement

Alpha-trimmed mean filter are some of the order-statistics filter. Median filter replaces

the value of a pixel by the median of the gray levels in the neighbourhood of that pixel.

Pixel value is replaced by minimum and maximum gray levels of the window respec-

tively for min and max filter. The midpoint filter simply computes the midpoint between

the maximum and minimum values in the area encompassed by the filter. Median filters

are particularly effective in the presence of impulse noise [1].

1.3.3 Adaptive Filter

Adaptive filters change its behavior based on the statistical characteristics of the image

inside the filter window. Adaptive filter performance is usually superior to non-adaptive

counterparts. But the improved performance is at the cost of added filter complexity.

Mean and variance are two important statistical measures using which adaptive filters

can be designed. For example if the local variance is high compared to the overall

image variance, the filter should return a value close to the present value. Because high

variance is usually associated with edges and edges should be preserved. Adaptive,

local noise reduction filter and adaptive median filter are the example of adaptive filter

[1].

1.4 Problem statement

Impulsive noise can be classified as salt-and-pepper noise(SPN) and random-valued im-

pulse noise(RVIN). An image containing impulsive noise can be described as follows:

x(i, j) =

⎧⎨
⎩

η(i, j) with probability p

y(i, j) with probability 1 − p
(1.3)

Where x(i, j) denotes a noisy image pixel, y(i, j) denotes a noise free image pixel

and η(i, j) denotes a noisy impulse at the location (i, j). In salt-and-pepper noise,

noisy pixels take either minimal or maximal values i.e. η(i, j) ∈ {Lmin, Lmax}, and for

random-valued impulse noise, noisy pixels take any value within the range minimal to

maximal value i.e. ηi,j ∈ [Lmin, Lmax] where Lmin and Lmax denote the lowest and the

highest pixel luminance values within the dynamic range respectively . So that it is little

7



1.5 Performance Measures

bit difficult to remove random valued impulse noise rather than salt and pepper noise [3].

The main difficulties which have to face for attenuation of noise is the preservation of

image details.

The difference between SPN and RVIN may be best described by Figure 1.3. In

the case of SPN the pixel substitute in the form of noise may be either Lmin(0) or

Lmax(255). Where as in RVIN situation it may range from Lmin to Lmax. Cleaning

such noise is far more difficult than cleaning fixed-valued impulse noise since for the

latter, the differences in gray levels between a noisy pixel and its noise-free neighbors

are significant most of the times. In this thesis, we focus only on random valued impulse

noise (RVIN) and schemes are proposed to suppress RVIN.

0 255{0,255}

(a)

0 255[0,255]

(b)

Figure 1.3: Representation of (a) Salt & Pepper Noise with Ri,j ∈ {nmin, nmax}, (b)
Random Valued Impulsive Noise with Ri,j ∈ [nmin, nmax]

1.5 Performance Measures

The metric used for performance comparison of different filters are defined below.

a. Mean Squared Error (MSE) and Peak Signal to Noise Ratio(PSNR)

In statistics, the mean squared error or MSE of an estimator is one of many ways

to quantify the amount by which an estimator differs from the true value of the

quantity being estimated. Here it is just used to calculate the difference between

a original image with a restored image.
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1.6 Literature Review

PSNR analysis uses a standard mathematical model to measure an objective dif-

ference between two images. It estimates the quality of a reconstructed image

with respect to an original image. The basic idea is to compute a single number

that reflects the quality of the reconstructed image. Reconstructed images with

higher PSNR are judged better [4].

Given an original image Y of size (M ×N) pixels and a reconstructed image Ŷ ,

the PSNR(dB) is defined as:

PSNR(dB) = 10 log10

⎛
⎜⎝ 2552

1
M×N

∑M
i=1

∑N
j=1

(
Yi,j − Ŷi,j

)2

⎞
⎟⎠ (1.4)

b Subjective or Qualitative measure

Along with the above performance measure subjective assessment is also required

to measure the image quality. In a subjective assessment measures characteristics

of human perception become paramount, and image quality is correlated with the

preference of an observer or the performance of an operator for some specific

task. However perceptual quality evaluation is not a deterministic process.

1.6 Literature Review

The one of the emerging field of image processing is removal of noise from a con-

taminated image. Many researchers have suggested a large number of algorithms and

compared their results. The main thrust on all such algorithms is to remove impul-

sive noise while preserving image details. Some schemes utilize detection of impulsive

noise followed by filtering where as others filter all the pixels irrespective of corrup-

tion. In this section an attempt has been made for a literature review for the filtering of

random-valued impulsive noise.

1.6.1 Random Valued Impulsive Noise Removal

The main challenge in research is to removal of impulsive noise as well as preserving the

image details. Some schemes utilize detection of impulsive noise followed by filtering

where as others filter without detection of noise.

9



1.6 Literature Review

In the filtering without detection, a window mask is moved across the observed

image. The mask is usually of size (2N + 1)2 , where N is a positive integer. Generally

the centre element is the pixel of interest. When the mask is moved starting from the

left-top corner of the image to the right-bottom corner, it performs some arithmetical

operations without discriminating any pixel. The disadvantage of this process is that it

filters all the pixels irrespective of corruption.

Detection followed by filtering involves two steps. In first step it identifies noisy

pixels and in second step it filters those pixels. Here also a mask is moved across the

image and some arithmetical operations is carried out to detect the noisy pixels. Then

filtering operation is performed only on those pixels which are found to be noisy in the

previous step, keeping the non-noisy intact. These filters, generally, consists of two

steps. Detection of noisy pixels is followed by filtering. Filtering mechanism is applied

only to the noisy pixels.

Removal of the random-valued impulse noise is done by two stages: detection of

noisy pixel and replacement of that pixel. Median filter is used as a backbone for

removal of impulse noise. Many filters with an impulse detector are proposed to remove

impulse noise.

• Adaptive Center-Weighted Median Filter (ACWM) [5]

It devises a novel adaptive operator, which forms estimates based on the dif-

ferences between the current pixel and the outputs of center-weighted median

(CWM) [6] filters with varied center weights. It employs the switching scheme

based on the impulse detection mechanisms. It utilizes the center-weighted me-

dian filter that have varied center weights to define a more general operator, which

realizes the impulse detection by using the differences defined between the out-

puts of CWM filters and the current pixel of concern. The ultimate output is

switched between the median and the current pixel itself.

• Multi-State Median Filter (MSM) [7]

It proposes a generalized framework of median based switching schemes, called

multi-state median (MSM) filter. By using simple thresholding logic, the out-

put of the MSM filter is adaptively switched among those of a group of center

10



1.6 Literature Review

weighted median (CWM) filters that have different center weights. The MSM

filter is equivalent to an adaptive CWM filter with a space varying center weight

which is dependent on local signal statistics.

• Tri-State Median Filter (TSM) [8]

It is proposed for preserving image details while effectively suppressing impulse

noise. It incorporates the standard median(SM) filter and the center weighted

median (CWM) filter into a noise detection framework to determine whether a

pixel is corrupted, before applying filtering unconditionally. Noise detection is

realized by an impulse detector, which takes the outputs from the SM and CWM

filters and compares them with the origin or center pixel value in order to make a

tri-state decision. The switching logic is controlled by a threshold. The threshold

affects the performance of impulse detection. An attractive merit of the TSM

filter is that it provides an adaptive decision to detect local noise simply based on

the outputs of these filters.

• Advanced Impulse Detection Based on Pixel-Wise MAD (PWMAD) [9]

It is a robust estimator of variance, MAD (median of the absolute deviations from

the median), is modified and used to efficiently separate noisy pixels from the

image details. The algorithm is free of varying parameters, requires no previous

training or optimization, and successfully removes all type of impulse noise. The

pixel-wise MAD concept is straightforward and low in complexity. The median

of the absolute deviations from the median-MAD is used to estimate the presence

of image details, thus providing their efficient separation from noisy image pix-

els. An iterative pixel-wise modification of MAD (PWMAD) provides reliable

removal of arbitrarily distributed impulse noise.

• Signal-Dependent Rank Order Mean (SDROM) Filter [10]

It is a new framework for removing impulse noise from images, in which the

nature of the filtering operation is conditioned on a state variable defined as the

output of a classifier that operates on the differences between the input pixel and

the remaining rank-ordered pixels in a sliding window. First, a simple two-state
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approach is described in which the algorithm switches between the output of an

identity filter and a rank-ordered mean (ROM) filter. The technique achieves

an excellent tradeoff between noise suppression and detail preservation with lit-

tle increase in computational complexity over the simple median filter. For a

small additional cost in memory, this simple strategy is easily generalized into a

multistate approach using weighted combinations of the identity and ROM filter

in which the weighting coefficients can be optimized using image training data.

Moreover, the method can effectively restore images corrupted with Gaussian

noise and mixed Gaussian and impulse noise.

• Directional Weighted Median Filter (DWM) [11]

Another method for removal of random-valued impulse noise is directional weighted

median filter (DWM). This filter uses a new impulse detector, which is based on

the differences between the current pixel and its neighbours aligned with four

main directions. After impulse detection, it does not simply replace noisy pixels

identified by outputs of median filter but continue to use the information of the

four directions to weight the pixels in the window in order to preserve the details

as removing noise. First it considers a 5X5 window. Now it considers the four

directions: horizontal, vertical and two diagonal. Each direction there is 5 pixel

points. It then calculates the weighted difference in each direction and takes the

minimum of them. The minimum value is compared with a threshold value and

if it is greater than the threshold value then it is a noisy pixel otherwise not. In

filtering phase, it calculates the standard deviation in four directions. Because the

standard deviation describes how tightly all the values are clustered around the

mean in the set of pixels shows that the four pixels aligned with this direction are

the closest to each other. Therefore, the center value should also be close to them.

Now it calculates the weighted median, giving extra weight on that direction in

which direction standard deviation is small and replaces the noisy pixel with this

median value. It is an iterative method. This method repeats 8 to 10 times. It

gives the good performance when noise level is high too.
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1.6.2 Simulation, Results and Discussions

Figure 1.5 shows the PSNR of DWM filter where iterations are varied from 1 to 10 for

the Lena image which is corrupted by RVIN where noise probability are 10%, 30% and

50% respectively. From these graph it is concluded that DWMF gives the best result at

iteration 8 to 10.

Lena image corrupted with RVIN (5% to 50% of noise) is subjected to the different

filtering schemes discussed above and their performance is measured using measure-

ment metrics. Table 1.1 lists the PSNR of some well known filter of RVIN. Figure 1.4

shows the graphical comparison of all the previous discussed filter .

Table 1.1: Comparative Results in PSNR (dB) of different filters for Lena image cor-
rupted with RVIN of varying strengths

Method 5% 10% 15% 20% 25% 30% 40% 50% 60%

SD-ROM 39.22 35.89 34.09 32.48 31.05 29.86 27.32 24.96 22.35
ACWM 35.72 34.47 33.41 32.44 31.35 30.40 27.86 25.66 22.51
PWMAD 36.46 34.86 32.69 30.58 28.01 25.94 22.41 19.42 17.08
DWM 36.05 35.15 34.48 33.81 33.09 32.43 30.64 29.14 26.57

1.7 Motivation

From the problem statement it can be concluded that removal of SPN is easier rather

than RVIN. Most of the reported schemes work well under the SPN but fails under

RVIN, which is more realistic when it comes to real world applications. It is also

observed the performance of any filtering scheme is dependent on the detection mech-

anism. The better is the detector; the superior is the filtering performance. Hence the

performance of a detector plays a vital role. The detector performance is solely depen-

dent on a threshold value which is compared with a pre computed numerical value. To

improve the detector performance need for an adaptive threshold is an utmost necessity

which can be automatically determined from the characteristics of an image and the

noise present on it.

In summary, the thesis objective is as follows:

• To work towards improved and efficient detectors for identifying contaminated
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Figure 1.4: Comparison of PSNR(dB) variations of Different Schemes of Lena image
corrupted with RVIN

pixels.

• To decrease the computational complexity of the filter.

• To devise adaptive thresholding techniques so that noise detection would be more

reliable.

1.8 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 proposes a new technique for denoising the random-valued impulsive

noise. The proposed filter is based on double difference. In the detection phase, ba-

sically, we use the directionwise double difference to distinguish between a noise or

a image details. Implementation and details comparison with previous filter has been

made in chapter 2.
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Figure 1.5: Number of Iteration vs PSNR(dB) of DWMF of Lena image corrupted with
different noise probability

Chapter 3, focuses on adaptive threshold. An adaptive threshold value is used to

determine the noise status of each pixel. Mean, Coefficient of Variance and Kurtosis

are used to train the neural detectors. The approach uses Multilayer Perceptron network

trained with back propagation algorithm to determine the adaptive threshold

Finally Chapter 4 presents the concluding remark, with scope for further research

work.

1.9 Summary

The fundamentals of digital image processing, sources of noise and brief discussion of

noise, impulsive noise, type of impulsive noise- SPN and RVIN, the existing filtering

schemes and their merits and demerits and the various image metrics are studied in this

chapter. To derive the benefits of this paradigm, investigation has been made in this

thesis to develop some novel schemes in the area of image denoising.
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Chapter 2

Impulsive Noise Removal Scheme
Using Double Difference

The main challenge in impulse noise removal is to suppress the noise as well as to

preserve the details (edges). Removal of the random-valued impulse noise is done by

two stages: detection of noisy pixel and replacement of that pixel. Median filter is used

as a backbone for removal of impulse noise. Many filters with an impulse detector are

proposed to remove impulse noise; some of them are described in the previous chapter.

Here we suggest a new approach for removal of random-valued impulsive noise

from images. The scheme works in two phases, namely a novel detection of contam-

inated pixels followed by the filtering of only those pixels keeping others intact. The

detection scheme utilizes second order difference of pixels in a test window and the

filtering scheme is a variation median filter based on the edge information.

2.1 Double Difference or Second Order Difference

The derivatives of a digital function are defined in term of differences. So here the term

derivative or differences are used for same meaning. There are various ways to define

these differences. However any definition uses for a first derivative

• must be zero in flat segments (areas of constant gray-level values)

• must be nonzero at the onset of a gray-level step or ramp and

• must be nonzero along ramps.

Similarly any definition of a second derivative
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2.1 Double Difference or Second Order Difference

Figure 2.1: (a) A simple gray level image. (b) 1-D horizontal gray level profile along
the center of the image and including the isolated noise point. (c) Simplified profile (the
points are joined by dashed lines to simplify interpretation.

18



2.1 Double Difference or Second Order Difference

• must be zero in flat areas

• must be nonzero at the onset and end of gray-level step or ramp and

• must be zero along ramps of constant slope.

A basic definition of the first order difference of a one dimensional function f(x) is

the difference
∂f

∂x
= f(x + 1) − f(x) (2.1)

Similarly, second-order difference may be defined as:

∂2f

∂x2
= f(x + 1) + f(x − 1) − 2f(x) (2.2)

Figure 2.1 above describes the significance of first and second order difference for

detecting flat region, detecting edges and discriminating noise from images. Compar-

ing the response between first and second order derivatives, we arrive at the following

conclusions. (1) First-order derivatives generally produce thicker edges in an image.

(2) Second-order derivatives have stronger response to fine detail, such as thin lines and

isolated points. (3) First order derivatives generally have a stronger response to gray

level step. (4) Second order derivatives produce a double response at step changes in

gray level. It is also noted for second-order derivatives that, for similar changes in gray-

level values in an image, their response is stronger to a line than to a step and to a point

than to a line.

This behaviour of second difference is exploited in the proposed schemes to deter-

mine the sanctity of a pixel. An impulse is nothing but change in gray level profile of

an image. The second difference of an impulse will result in a spike. Also there will be

a spike for an edge. In order to differentiate between these two spikes a second order

difference based impulse detection mechanism is employed at location of the test pixel.

Once a test pixel is identified as an impulse it is immediately filtered by replacing it

with the weighted median of the surrounding pixels. This filtered pixel also takes part

in the noise detection phase of the next test pixel and subsequent filtering, if needed [1].
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2.2 Proposed Impulse Detector

The proposed detection algorithm is based on the second order difference (SOD) among

pixels in a test window to determine the noise status of the centre pixel. The SODs

have a stronger response to fine details, such as thin lines and isolated points. For an

isolated noise point, the SOD yields a value of larger magnitude. This property has

been exploited in the proposed impulse detctor.

Consider a 3 × 3 window W symmetrically surrounding the test pixel x(i, j) as

W = {x(i + s, j + t)| − 1 ≤ s, t ≤ 1} (2.3)

Edges aligned with four main directions are captured by computing the SODs as in

(2.4).

dk = |x(i + u, j + v) + x(i − u, j − v) − 2x(i, j)| (2.4)

where, (k, u, v) = {(1, 1, 1), (2, 0, 1), (3,−1, 1), (4,−1, 0)}

Then, the minimum of these four second-order-differences are used for impulse detec-

tion, which can be denoted as

d = min {dk : 1 ≤ k ≤ 4} (2.5)

Depending on the value of d, the following three decisions are made—

1. when the value of d is small, the test pixel is a noise-free flat region pixel as all

the four direction differences are small.

2. a test pixel when falls on an edge shall yield smallest SOD along the edge result-

ing in a smaller value of d. Hence, the test pixel is noise-free.

3. a large value of d implies that the test pixel is noisy as it has all large SODs.

The above analysis infers that the impulse can be identified by applying a hard limiting

operation on d by suitably choosing a threshold T .
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2.3 Proposed Filter

Once the coordinate of an impulse is located the noisy pixel is replaced with an ap-

propriate intensity value. This substitution is computed using a weighted median filter

supported with four directional information. Let Sk(i, j) denotes the gray level differ-

ence between the two neighbouring pixels of x(i, j) in the kth direction (1 ≤ k ≤ 4).

Sk(i, j) = |x(i + u, j + v) − x(i − u, j − v)| (2.6)

where, (k, u, v) = {(1, 1, 1), (2, 0, 1), (3,−1, 1), (4,−1, 0)}

These four values of Sk signifies the closeness of the neighbouring pixels. Let Dk be

the direction of minimum Sk, (1 ≤ k ≤ 4). This shows that the pixels aligned along

Dk are closest to each other and the center value should be close to them. Thus, these

pixels are assigned with extra weight (w) while restoring the noisy pixels. If the test

pixel x(i, j) is found to be noisy, it is replaced with r(i, j) that can be expressed as

r(i, j) = median{W, w�xDk
} (2.7)

where, W is the window surrounding the test pixel as defined in (2.3), and xDk
denotes

the two neighbouring pixels of x(i, j) along the direction Dk. The symbol � is used

as the repetition operator. This filtered pixel takes part in the noise detection process of

subsequent windows making it a recursive process.

High accuracy of the proposed filter is ensured by recursively and iteratively apply-

ing the proposed scheme. Subsequent iterations use smaller threshold T as compared

to the previous iterations in order to capture more noise. It has been observed from the

simulations conducted on a variety of standard images that the following set of thresh-

old values yields satisfactory results.

[T1 T2 T3] = [35 25 18] (2.8)

2.4 Simulation Results and Discussions

For the proposed scheme, it is decided it performs well for 3 iterations. The experimen-

tal results shown in the Figure 2.3 support the schemes also.Next, the first threshold
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Figure 2.2: Graphical Representation of PSNR(dB) value for Proposed scheme at Dif-
ferent Threshold value for 20%,30% and 40% corrupted image respestively for (a) Lena
image, (b) Bridge image,
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Figure 2.3: Graphical Representation of PSNR(dB) value for Proposed scheme at Dif-
ferent number of Iterations for (a) Lena image, (b) Bridge image,

value is taken as 35. The Figure 2.2 shows the graph between PSNR value with respect

to different Threshold value. From the observations it is concluded that threshold value

is not fixed for all noise probability. But for taking a fixed threshold value it is better to

take the average threshold which is 35.

To validate the proposed scheme, simulation has been carried out on standard im-

ages like Lena, Boat, and Bridge etc. The existing schemes are also simulated with

the same set of images in the same environment. Both objective as well as subjective

studies are performed by accumulating the results obtained from various schemes. The

performance measures in terms of PSNR (dB) for Lena and Bridge images are shown in
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2.4 Simulation Results and Discussions

Table 2.1 and Table 2.2 respectively. Table 2.3 lists the comparative performance anal-

ysis in terms number of false detections and miss detection among various schemes.

It may be observed from Table 2.1 and 2.2 that the proposed filter outperforms

its counterparts except the recently reported scheme DWM filter which shows a slightly

superior performance as compared to the proposed scheme beyond 40% noise densities.

To measure the subjective performance, the restored images by various filtering

schemes are shown in Figure 2.4and 2.5 at 30% noise density. A closer look at the

feathers and iris of the enlarged Lena image (Figure 2.5) justifies that the proposed

scheme is good at detail preservation. The graphical representation of proposed filter

and some existing scheme are shown in Figure 2.6.

Table 2.1: Comparison of PSNR (dB) for Lena Image
Method 10% 20% 30% 40% 50% 60%

SD-ROM 35.89 32.48 29.86 27.32 24.96 22.35
ACWM 34.47 32.44 30.40 27.86 25.66 22.51
PWMAD 34.86 30.58 25.94 22.41 19.42 17.08
DWM 35.15 33.81 32.43 30.64 29.14 26.57
Proposed 36.89 34.35 32.53 30.90 28.22 24.84

Table 2.2: Comparison of PSNR (dB) for Bridge Image
Method 10% 20% 30% 40% 50% 60%

SD-ROM 26.62 26.35 24.89 23.03 21.18 19.21
ACWM 25.89 25.14 23.99 22.61 20.88 19.09
PWMAD 25.98 25.22 22.91 20.27 17.86 15.77
DWM 26.02 26.50 24.87 24.09 23.08 21.41
Proposed 27.80 27.20 24.91 23.73 22.14 20.02

Table 2.3: Comparison of Miss and False Hit for Lena Image at Various Noise Condi-
tions

Method
20% 30% 40% 50%

miss false miss false miss false

SD-ROM 8815 557 15223 625 32535 1115 32535 1115
ACWM 4140 15684 6533 16021 13370 17900 13370 17900
PWMAD 6061 17616 13816 13992 44320 9143 44320 9143
DWM 5545 7570 8611 7366 11738 7435 15445 7488
Proposed 4947 6118 7741 8523 10746 12021 14087 16187
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.4: Restored results of Bridge image corrupted with 30% of RVIN (a) True
image, (b) Noisy image, (c) ACWMF, (d) PWMAD, (e) SDROM, (f) DWMF, (g) Pro-
posed.

2.4.1 Comparison of DWM and Propose filter

By observing Table 2.1, we can conclude that our proposed filter provides the better

result in PSNR for all other filter except DWM filter. DWM filter only gives the better

result in PSNR value when the noise is near about or greater than 40%. Proposed filter

give the better result than DWM filter up to 40% of noise. One thing we have to consider

that we have to perform 10 iterations to get the better result in DWM filter, where as

Proposed filter only needs 3 iterations. To save the time of approximately 7 iterations
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.5: Restored results of enlarged Lena image corrupted with 30% of RVIN (a)
True image, (b) Noisy image, (c) ACWMF, (d) PWMAD, (e) SDROM, (f) DWMF, (g)
Proposed.

by compromising little bit with PSNR value is not negligible. Table 2.4 compares the

result of Proposed filter to DWM filter in details.

In order to compare the result subjectively, we give some restored images in Fig-

ure 2.4 & Figure 2.5. There are a lot of noise patches in the images restored by the

others, but by the Proposed & DWM filter, noticeable noises are too little. It is easy

to see that excellent restoration results are obtained first by DWM filter and then by

Proposed filter. Both of them can remove most noise while preserving details very well,

even thin lines.
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Figure 2.6: Graphical comparison of Some RVIN filters with Proposed Filter

Number of computations needed per single window detection as well as filtering

between the proposed and DWM filter are shown in Table 2.5. This clearly reveals that

there exists a remarkable difference in computational overhead.

Here we try to compare the time complexity of DWM filter and proposed filter. In

DWM filter we consider a 5X5 window size. There are four directions and calculate the

weighted differences in those four directions. In each, direction there are 5 pixel points,

so there need four subtractions and then each differences are multiplied by a predefined

weight according to the distance of the middle point (i.e. 1 or 2), so there are at least

2 multiplications. Then there are addition of these four numbers, i.e. there are 3 addi-

tions. To calculate each weighted difference in one direction, it needs 4 subtractions, 3

additions and 2 multiplications. Then for four directions, there are 16 subtractions, 12

additions and 8 multiplications are needed.

But for proposed filter, we consider 3X3 window size. We also consider the four

directions, but in each direction there are only 3 points. Then we use second order

difference in each direction. So, we need 1 addition, 1 subtraction and 1 multiplication
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2.4 Simulation Results and Discussions

for each direction. Overall we need 4 additions, 4 subtractions and 4 multiplications for

all of the four directions.

Next the time taken by the remaining portion of the Propose filter and DWM filter

are more or less same, except at one stage. Whenever it is needed to calculate the

standard deviation in each direction, DWM filter has to calculate for 4 points whereas

Propose filter has to do it for 2 points. So by the above discussion we just say that for

each pixel point and for each iteration, DWM needs 12 subtractions, 8 additions and 4

multiplications more than proposed filter. One more thing is also that DWM filter has

to repeat the same procedure 8 to 10 time for getting best output, where as proposed

filter needs only 3 iterations.

From the simulation result we can say that proposed filter gives the better PSNR

value than DWM filter when noise is less than 40% and whenever the noise is equal

to or greater than 40% the DWM gives the better result only. Figure 2.7 shows the

graphical comparison between DWM filter and Proposed filter. Table 2.6 shows the

comparison of time taken to execute by proposed filter and DWM filter. This is veri-

fied by simulating the schemes in Matlab 7.0, Microsoft Windows XP (SP2) Operating

System and Intel Pentium(R) 4 CPU 3.00 GHz with 1.99 GB of RAM

Table 2.4: Comparison of PSNR & noise detection results of Proposed & DWM filter
for Lena Image at Various Noise Conditions

Noise in %
Proposed Filter DWM Filter

PSNR Miss Fault PSNR Miss fault

5 38.25 1180 4404 36.05 1334 7951
10 36.89 2397 4726 35.15 2677 7827
15 35.56 3709 5356 34.48 4172 7608
20 34.35 4947 6118 33.81 5545 7570
25 33.26 6358 7113 33.09 6957 7421
30 32.35 7741 8523 32.43 8611 7366
40 30.90 10746 12021 30.64 11738 7435
50 28.22 14087 16187 29.14 15445 7488
60 24.84 18252 20652 26.57 19506 8310
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Table 2.5: Computational Overhead Between the Proposed and the DWM filter

Filter
Impulse Detection Phase Filtering Phase

Window Additions Multiplications Additions Multiplications Exponentiation

DWM 5 × 5 28 08 48 07 One square root
Proposed 3 × 3 08 04 42 01 00

Table 2.6: Time comparison of Proposed and DWM filter
Noise in % Time taken by DDM filter Time taken by DDM filter

5 8.70 34.93
10 10.11 38.26
15 11.60 42.37
20 13.10 45.45
25 14.51 49.37
30 16.15 53.39
40 19.45 60.59
50 23.31 68.93
60 27.03 78.75

2.5 Summary

This chapter proposes a new scheme to removal the RVIN from images. The proposed

filter is an Impulsive noise removal scheme using double difference based detection

and weighted median filter. In the detection phase, we introduce the direction wise

double difference concept to detect a random-valued impulsive noise; basically it can

distinguish a noise and an edge point nicely. Then contaminated pixel point is replaced

by weighted median filter. Implementation of this scheme and comparison of result

with previous scheme has been made thoroughly.
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Figure 2.7: Graphical comparison of DWM & Proposed filter
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Chapter 3

Adaptive Threshold

Threshold plays a important role in performance of a filter. If a predefined parameter

of a test pixel exceeds the threshold value, it is termed as contaminated. Although, the

denoising techniques from images depends very much on the type of image character-

istics and density of noise, but there cannot be one threshold value, which is applicable

to all situation. A constant threshold value may not provide satisfactory performance

for all circumstances.

From the following experiment, it is observed that a single threshold value does not

serve the purpose as well as in different noise conditions. The steps are described as

follows:

a. An image (say Lena) is corrupted with impulsive noise of densities 5%, 10%,

15%, 20%, 25%, 30%, 40% and 50%.

b. The first noisy image Lena5 (the subscript is for 5% of noise) is subjected to

the proposed algorithm outlined in Chapter 2 by varying the threshold value Θ

between 0 and 1

c. Corresponding to each Θ one mean squared error (MSE) is obtained. The mini-

mum among those MSEs is recorded asMSEmin.Also the corresponding thresh-

old value is recorded as optimal threshold value Θopt. Figure 3.1 shows that

the image achieves minimum MSE for 20% noise, denoted as MSE 20
min at Θ =

0.2118 and let this threshold be denoted as Θ20
opt.

d. Steps (b) and (c) are repeated for other noisy Lena, i.e. Lenai,i ∈ {5 10 15 25 30 40 50}.
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Figure 3.1: Variation of MSE at different threshold values for 20% RVIN for Lena
image

e. The relationship between optimum thresholds versus the noise densities is shown

in Figure 3.2. This clearly reveals that threshold needs to be different at different

noise densities to minimize the error and hence to maximize the PSNR in restored

images.

f. The overall relationship between MSE and its corresponding optimum threshold

for different noise conditions for Lena image is shown in Figure 3.3. The Figure

3.4and Figure 3.5 also shows the same diagram for Boat and Bridge image.

It is, in general, observed that there exists an optimum threshold for every image

and for a particular noise density. Even these values differ from image to image for

the same noise density. In addition, the plot reveals clearly that there exists nonlinear

relationship between optimum threshold and noise density as well as MSE.This is true

for all other images. In a practical situation, the use of MSE or noise ratio to predict the

threshold is ruled out as they need knowledge of the original image for computation.

However, to alleviate this problem analysis have been made as follows. The minimum
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Figure 3.2: Variation of Optimal threshold at different noise percentage for Lena image.
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Figure 3.3: Variation of Minimum MSE at different Threshold values for Lena image
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Figure 3.4: Variation of Minimum MSE at different Threshold values for Boat image

0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

M
in

im
u

m
 M

S
E

 X
 1

0
0

0

Optimal Threshold 

5

10

15

20

25

30

35

40

45

50

Figure 3.5: Variation of Minimum MSE at different Threshold values for Bridge image
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MSE is inversely proportional to optimal threshold value,i.e.

MSEmin ∝ 1

Θopt
(3.1)

also the noise percentage is inversely proportional to optimal threshold value, given

as:

η ∝ 1

Θopt
(3.2)

where, η is the noise percentage. Also it is known that:

η ∝ σ2 (3.3)

and

η ∝ µ (3.4)

Where, µ and σ2 are the mean and variance of the noisy image respectively.

The experimental results give a direction that if an optimum threshold can be derived

adaptively from a given noisy image, the noise detection becomes efficient. Here in

Table.3.1 compare the result of proposed filter, discussed in chapter 2, which applies on

contaminated Lena image one with Adaptive Threshold at different noise and another

is fixed threshold value.

In practical image processing applications, parameters like noise percentage or MSE

will not be helpful to predict the threshold because both need the knowledge of original

image which is not available. Hence, parameter which can be derived from the given

noisy image will be of great help to handle real life situations. For the purpose , statis-

tical parameters like Coefficient of Variance and 4th order Moment (Kurtosis) for noisy

image is used to determine the adaptive threshold.

Statistical parameter called Coefficient of Variance for a noisy image is defined as :

CV ∝ σ

µ
(3.5)

Where,σ and µ are the standard deviation and mean of the noisy image respec-

tively. To further extend the CV s for all noisy image of Lena are computed i.e. CV i ∈
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3.1 Adaptive Thresholding Using MLP:

{5, 10, 15, 20, 25, 30, 35, 40, 45, 50} . The relation between CV s and the optimal thresh-

old is shown in Figure 3.6. This figure also gives the additional information regarding

the existence of a non linear relationship between these two parameter.

Table 3.1: Details Comparison of Proposed Filter with Fixed threshold and variable
Threshold applied on Lena image

Noise in %
Fixed Threshold Variable Threshold

Threshold PSNR Miss Fault Threshold PSNR Miss fault

5 35 38.25 1180 4404 74 41.16 2177 351
10 35 36.89 2397 4726 66 38.34 4069 694
15 35 35.56 3709 5356 56 36.42 5508 1595
20 35 34.35 4947 6118 54 34.96 7218 2136
25 35 33.26 6358 7113 48 33.56 8284 3606
30 35 32.35 7741 8523 42 32.50 9102 6169
40 35 30.90 10746 12021 32 30.98 9860 13928
50 35 28.22 14087 16187 20 28.76 8188 29831
60 35 24.84 18252 20652 11 25.12 6092 47893

Statistical parameter called 4th order Moment or Kurtosis for a noisy image is de-

fined as :

µ4 =
1

N

∑
i,j

(x(i, j) − µ)4 (3.6)

Where x(i, j) is the noisy image, µ is the mean of the image,N = iXj is the size

of the image. To further extend the Kurtosis for all noisy image of Lena are computed

i.e. (i)
4 ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} . The relation between Kurtosis and the

optimal threshold is shown in Figure 3.7.

3.1 Adaptive Thresholding Using MLP:

An artificial neural network (ANN), usually called ”neural network” (NN), is a mathe-

matical model or computational model based on biological neural networks. It consists

of an interconnected group of artificial neurons and processes information using a con-

nectionist approach to computation. In most cases an ANN is an adaptive system that

changes its structure based on external or internal information that flows through the

network during the learning phase. The utility of artificial neural network models lies

in the fact that they can be used to infer a function from observations. This is particu-
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3.1 Adaptive Thresholding Using MLP:
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Figure 3.6: Variation of Optimal threshold with CV at different noise density for Lena
image

larly useful in applications where the complexity of the data or task makes the design

of such a function by hand impractical [12].

Artificial Neural Network (ANN) is a massively parallel distributed processor. It has

a natural tendency to store knowledge and make them available for further use. ANN

serves as a potential tool in numerous applications. The ANN based signal detection

and filtering schemes are robust, accurate and work well under nonlinear situations.

An artificial neuron receives inputs from a number of other neurons or from external

stimulus. A weighted sum of these inputs constitutes the arguments to a nonlinear

activation function. The resulting value of the activation function is the output of the

neuron. This output gets distributed along weighted connections to other neurons. The

actual manner in which these connections are made defines the flow of information in

the network and called architecture of the ANN. The method used to adjust the weights

is the process of training the network is called the learning rule. The learning may

be supervised or unsupervised [13]. Genuine neural networks are those with at least
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3.1 Adaptive Thresholding Using MLP:

3 4 5 6 7 8

x 10
−3

0.05

0.1

0.15

0.2

0.25

0.3

4th order Moment (Kurtosis)

O
p

tim
a

l T
h

re
sh

o
ld

 

5

10

15
20

25

30

35

40

45 50

Figure 3.7: Variation of Optimal threshold with Kurtosis at different noise density for
Lena image.

two layers of neurons – a hidden layer and an output layer. The hidden layer neurons

should have nonlinear and differentiable activation functions. The nonlinear activation

functions enable a neural network to be a universal approximator. The problem of

representation is solved by the nonlinear activation functions [12].

Here in this section a simple 3-4-3-1 ANN (Figure 3.8) is used to adapt the image

environment and to provide an optimal threshold value for impulsive noise detection.

Both the noisy image characteristics (Section 3.2) mean (µ), variance (σ2) and kurtosis

(µ4) of Lena, Boat and Bridge images are obtained. These three parameters along with

corresponding Θopt of these three images are used here to train the suggested neural

network using the conventional Back propagation algorithm. µ, σ2 and µ4 of the noisy

image are the three inputs to the network and Θopt is the target output of the network.

The training convergence characteristics of the network is obtained and shown in Figure

3.9

The neural networks with trained weights are used to obtained threshold subse-
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3.1 Adaptive Thresholding Using MLP:

Figure 3.8: Multi-Layer Perceptron Structure of Threshold Estimator.
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3.2 Summary
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Figure 3.9: Convergence Characteristics of Multilayer Perceptron Network

quently. It is seen that the network predicts near to accurate threshold for images that

are not used for training as well.

3.2 Summary

Detector utilises a threshold value to compare with a predefined parameter. Fixed

threshold is not suitable and do not work well under different noise conditions as well

as for different images. In this chapter, we have proposed adaptive threshold determi-

nation strategies based on given noisy image statistics. Various statistical parameters

i.e. (µ, σ2, µ4) are also used to predict the threshold value. We utilise neural network

model i.e. MLP for detection of adaptive threshold.
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Chapter 4

Conclusion and Future Work

This thesis deals with the removal of Random-Valued Impulsive Noise (RVIN). Impul-

sive noise being contaminated in some pixels based on probability densities. Basically

Impulsive noises are basically two types- Salt & Pepper Noise (SPN) and Random-

Valued Impulsive Noise. In chapter we first try to distinguish between SPN and RVIN.

Some previous schemes are most suitable to remove RVIN. Mostly performance of se-

lective filtering scheme dependent on a impulse noise detector to decide where the pixel

under study is noisy or not.

Next chapter we propose a new scheme to removal the RVIN from images. The

proposed filter is an Impulsive noise removal scheme using double difference based

detection and weighted median filter. In the detection phase, we introduce the direction

wise double difference concept to detect a random-valued impulsive noise, basically

it can distinguish a noise and an edge point nicely. Then contaminated pixel point is

replaced by weighted median filter.

In addition detector utilises a threshold value to compare with a predefined parame-

ter. Fixed threshold is not suitable and do not work well under different noise conditions

as well as for different images. In this investigation, we have proposed adaptive thresh-

old determination strategies based on given noisy image statistics. Various statistical

parameters i.e. (µ, σ2, µ4) are also used to predict the threshold value. We utilise neural

network model i.e. MLP for detection of adaptive threshold.

All the proposed schemes have been simulated using Matlab along with the well

known previous filters. Standard images like Lena, Boat, Bridge etc. are chosen for

simulation under similar condition for all schemes. Quantitative performance measure-
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ments like PSNR (dB) have been used to compare the schemes in restored images.

Subjective performance has been used and shown with respect to restored images. It

has been observed that the proposed scheme outperforms the existing schemes both in

terms of noise rejection and retention of original image properties.

The proposed scheme has been performing well under images up to 40% noise

densities. Further investigation can be made to study at high noise conditions. Further

work can be extended to utilise other neural network model such as FLANN, RBFN for

detection of adaptive threshold. Future work can be extended to reduce the false and

miss detection count to improve the detector capability. To apply the proposed scheme

in practical applications, parallel implementations of these schemes may be thrust upon.
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