
Dynamic Approach for Web Services Selection

and

Analysis of Security Protocols

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering

Specialization:Information Security

by

Abhishek Pandey

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Orissa, 769 008, India

May 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dynamic Approach for Web Services Selection

and

Analysis of Security Protocols

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering

Specialization:Information Security

by

Abhishek Pandey

under the guidance of

Prof.Sanjay Kumar Jena

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Orissa, India

May 2009

To my parents

&

loving daughter

Aryana

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Orissa, India.

Certificate

This is to certify that the work in the thesis entitled Dynamic Approach for

Web Services Selection and Analysis of Security Protocols submitted by

Mr.Abhishek Pandey in partial fulfillment of the requirements for the award of

the degree of Master of Technology in Computer Science and Engineering during

the session 2008–2009 in the department of Computer Science and Engineering,

National Institute of Technology Rourkela is an authentic work carried out by him

under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not

been submitted to any other University/Institute for the award of any Degree

or Diploma.

Dr. Sanjay Kumar Jena
Professor

Dept. of Computer Science & Engineering
Place: NIT Rourkela National Institute of Technology
Date: 12 May 2009 Rourkela-769008 Orissa (India)

Acknowledgment

Many people have contributed, directly or indirectly, to the successful comple-

tion of this thesis. They will all be remembered in my heart. First, I would like to

thank my advisor, Professor (Dr.) SanjayKumar Jena for his guidance from

conducting the research to writing the thesis and support that he has extended to

me.

I am extremely grateful to Professor (Dr.) B. Majhi, Head of the De-

partment, Computer Science and Engineering, for being a great source of ad-

vice. I would also like to thank Prof.S.K.Rath,Prof A.K.Turuk, Prof.B.Sahoo and

Prof.Pankaj Sa for their support.

My special gratitude is due to my parents for their loving support. I owe my

loving thanks to my wife and daughter.

I would also like to extend my sincere thanks to Dr.Jayendra Narang for

his motivation and continious help.

I would like to thank all the faculty members, Department of Computer Science

and Engineering who gave all possible help to bring my thesis work to the present

shape and also like to thank Mr. Pushpendra Kumar Chandra for his kind support

in completing the documentation of this thesis.

Abhishek Pandey

ii

Abstract

In the domain of Web Services, it is not uncommon to find redundant services

that provide functionalities to the clients. Services with the same functionality

can be clustered into a group of redundant services. Respectively, if a service

offers different functionalities, it belongs to more than one group. Having various

Web Services that are able to handle the client’s request suggests the necessity of

a mechanism that selects the most appropriate Web Service at a given moment of

time. This thesis presents an approach, Repository Based Web Services Selection,

for dynamic service selection based on virtualization on the server side. It helps

managing redundant services in a transparent manner as well as allows adding

services to the system at run-time. In addition, the model assures a level of

security since the consumers do not have direct access to the Web Services.

This work describes different security aspects of Web Services and technologies

they use and a framework to introduce a message level security to SOAP (Simple

Object Access Protocol). The purpose of the session protocol is explained along

with the approach to authenticate two Web Services with each other and how to

establish a shared secret session key with which they can encrypt their messages

to ensure confidentiality. Various security issues that became relevant during the

design of the system and at the time of setting up the SOAP session are being

addressed in this work. The analysis of the session setup process proves that an

adversary cannot break the protocol by interception, alteration or by resending of

messages.

iii

Contents

Certificate i

Acknowledgement ii

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 2

1.1 Introduction . 2

1.1.1 Web Services Selection Process 3

1.1.2 State of the art review . 5

1.1.3 Publishing and Finding Web Services 11

1.1.4 Using Web Services . 12

1.2 Web Services Security . 14

1.3 Problem Definition . 16

2 Literature Survey 20

2.1 Introduction . 20

2.2 Web Services Security Protocols . 22

2.3 Signature Creation/Verification Process 27

2.4 Conclusion . 29

3 Proposed Approach: Web Services Selection 32

3.1 Introduction . 32

3.2 Repository Based Web Services Selection (RBWSS) 33

3.2.1 Algorithm: Selection of Service 34

iv

3.2.2 Design of the Proposed Architecture 35

3.2.3 AnyLogic Enterprise Library 36

3.2.4 Evaluation . 36

3.3 Results . 37

3.4 Conclusion . 39

4 SOAP Level Security: Implementation and Analysis 41

4.1 Setting Up The Session . 42

4.2 Analysis of SOAP session . 45

4.3 Web Services Development Kit (WSDK) 48

4.4 Performance Analysis . 49

4.5 Conclusion . 53

5 Conclusion and Future Work 56

5.1 Conclusion . 56

5.2 Future Work . 57

Bibliography 58

Dissemination of Work 61

v

List of Figures

1.1 Web Service Structure . 3

1.2 Web Service Design Paradigm . 4

1.3 Web Service Invocation . 5

1.4 XML Document and Data Representation 8

1.5 Anatomy of SOAP Envelope . 11

1.6 Invoking a Web Service . 13

1.7 Client to select from Similar Services 17

1.8 Redundant Web Services . 18

2.1 Model proposed by Liu, Ngu, and Zeng 21

2.2 Model proposed by Maximilien and Singh 21

3.1 Repository based Web Service Selection 34

3.2 Selection Process . 35

3.3 Load Generator . 36

3.4 Selection Process . 37

4.1 Architecture of Web Service Setup 42

4.2 Setting up the Session . 43

4.3 Establishing SOAP session . 45

4.4 WSDK Process Model . 48

4.5 SOAP envelope and payload . 50

4.6 Response time v/s Payload-I . 51

4.7 Response time v/s Payload-II . 52

vi

List of Tables

2.1 Comparison of Approaches for Web Service Selection. 22

2.2 Threats addressed by Web Services Standards 29

3.1 Simulation results . 38

4.1 SOAP Analysis without Encryption 50

4.2 SOAP Analysis with Encryption . 51

vii

Introduction

Introduction

Web Services Security

Problem Definition

Chapter 1

Introduction

1.1 Introduction

Web Services is an integrated solution for realizing the vision of the
next generation of the Web

Web Service is a software component invoked over the Web via an XML [1]

message that follows the SOAP [2] Simple Object Access Protocol: is a sim-

ple XML based protocol to let applications exchange information over HTTP to

transport it using open protocols) standard and also it is a communication pro-

tocol. Web Services are based on distributed technology and provide standard

means of interoperating between different software applications across and within

organizational boundaries with the use of XML. The basic Web Service platform

is combination of HTTP and XML. The HTTP protocol is the most used Internet

protocol. XML provides a language which can be used between different platforms

and programming languages.

Each SOAP message is presented as an envelope with two sections - a header

and a body. The header contains information about the message itself, and the

body consists of data that has to be transferred to the recipient. These standards

make the Web Services independent of any programming language, hardware and

software platform.

Web services use XML to code and to decode data, and SOAP. Web Services

are web applications whose interfaces are exposed over protocols like HTML and

XML [3] .Web Services are described by Web Service Definition Language (WSDL)

in XML format. WSDL [1] is a major language that provides a model and an

2

1.1 Introduction

XML format to describe the syntax about Web services. It acts as a vocabulary,

associated with UDDI.

Figure 1.1: Web Service Structure

1.1.1 Web Services Selection Process

The Web Service description hides the implementation details, but at the same

time, gives enough information that is necessary for the service interaction Figure

1.2 shows the web service design paradigm.

SOAP, UDDI and WSDL are used in different phases, called publishing, find-

ing, and binding, in the Web Services development cycle. The Web Service Design

paradigm is shown in Figure 1.2.The model begins with the publish phase, when

an organization decides to offer a Web Service (1). The Web Service can be an

existing application with a new Web Service front end, or it can be a totally new

application. Once an enterprise has developed the application and made it avail-

able as a Web Service, the enterprise describes the interface to the application so

that potential users interested in subscribing to it can understand how to access

it. This description can be oral, in some human language such as English, or it

3

1.1 Introduction

Figure 1.2: Web Service Design Paradigm

can be in a form, such as WSDL, that can be understood by Web Services devel-

opment tools. To facilitate automated lookups, the service provider advertises the

existence of the service by publishing it in a registry (2).

The next step of the model is the find phase. Once the service is advertised

in a UDDI registry, potential subscribers can search for possible providers (3 and

4) and implement applications that utilize the service (5). Potential subscribers

use the entries in the registry to learn about the company offering the service, the

service being offered, and the interface to the service. The final phase of the model

is the bind phase. When a subscriber decides to use a published service, it must

implement the service interface, also called binding to the service, and negotiate

with the service provider for the use of the service. When the application has been

implemented and the business relationships resolved, the Web Service is utilized

operationally. The only participants at this point are the service subscriber, who

requests the service (6), and the service provider, who delivers the service (7).

WSDL and UDDI [4] registries are generally only used during the initial discovery

of the service and the design of the application.

Web Services can encapsulate a specific task or can be designed as a compo-

sition of other services, representing a complex aggregation. The Web Services

conceptual model describes the process of discovery, request and response, as in

4

1.1 Introduction

figure1.3.Discovery is the process of finding the service that provides the function-

ality that is required. A request provides the input to the service. The response

yields the output from the service. Service providers describe their Web Services

and advertise them in a universal registry called UDDI. This enables service re-

questors to search the registry and find services. UDDI allows for the creation of

registries that are accessible over the web.

Figure 1.3: Web Service Invocation

IBM, Microsoft, and Oracle all have public UDDI servers running for commer-

cial purposes. There are also many organizations developing third party servers

for users to establish their private UDDI servers. The UDDI client offers two

approaches to access the UDDI server: either through a standalone application

providing an easy-to-use interface for developers; or through a software library

working with the WS consumer or provider [5]. UDDI Browser is an open-source

UDDI client following the first approach. A developer can use the application to

browse, search, and even change information in the UDDI server. The WS con-

sumer sends a SOAP request to the WS provider through an HTTP connection.

The provider processes the request and returns a SOAP message as the reply to

the consumer. Then, the provider closes the HTTP connection to finalize the

invocation.

1.1.2 State of the art review

This section introduces Web service technologies and explains how to invoke, pub-

lish and provide Web services in a distributed environment. Section 2.7 also gives a

5

1.1 Introduction

short overview of trust-related projects and their significance for the development

of behavior aware computer systems.

• The Notion of the Web Service

In [3] the definition of a Web service is given as: ”any process that can be

integrated into external systems through valid XML documents over Internet

protocols”. This definition outlines the general idea Web services are built for

Unlike services in general, Web services are based on specifications for data

transfer, method invocation and publishing. This is often misunderstood

and when a Web service is mentioned it sometimes refers to a general service

provided on the Web, like the weather forecast on a Web page for example.

The weather forecast is a service and provides its functionality for a variety

of users but unless it comprises an interface to communicate with other

applications via SOAP, it is not a Web service by definition. Web services

can be seen as software components with an interface to communicate with

other software components. They have certain functionality that is available

through a special kind of Remote Procedure Call. In fact they even evolved

from traditional Remote Procedure Calls. The difference lies in the interface

and the method for transportation. Furthermore Web services cannot be

viewed or used with an ordinary browser. They require a unified form of

messaging embedded in a XML document. This communication architecture

contains three subcomponents.

– Consumer: This denotes the entity utilizing the Web service. This is

another application in most cases.

– Transport: It defines the means for the communication the Consumer

uses while interacting with a service.

– Provider: The service provider.

In order to keep the whole system truly platform-independent, transport in

both direction uses XML. This includes the description of an operation to

6

1.1 Introduction

execute and the data payload as well. Although transportation is not re-

stricted to a specific protocol or method, HTTP became the most popular

way to pass on XML documents between Web services. The following sec-

tion will start with the first step in our course to understand Web services:

Transportation.

• HTTP

Found everywhere on the Internet, HTTP (Hyper Text Transfer Protocol)

is a ubiquitous protocol for data connections between Web browsers and

servers. This protocol is the current standard for transferring HTML doc-

uments, although it is designed to be extensible to almost any document

format like XML for example. HTTP Version 1.1 is documented in RFC

2068 [6]. It operates over TCP connections, usually to port 80, though any

other port can be used. After a successful connection, the client transmits

a request message to the server, which sends a reply message back. The

simplest HTTP message is ”GET url”, to which the server replies by send-

ing the named document. If the document doesn’t exist, the server may

send an HTML-encoded message stating this. This form of communication

represents a typical request/response mechanism. A client sends a request

for a specific document to the server and waits for a response. If the server

does not respond with the requested document it is up to the client to wait

for the timeout and request the same document again. This loosely coupled

type of communication is very common in client-server architectures.

In addition to GET requests, clients can also send HEAD and POST re-

quests, of which POSTs are the most important. POSTs are used for HTML

forms and other operations that require the client to transmit a block of data

to the server. After sending the header and the blank line, the client trans-

mits the data. This way Web services utilize the HTTP protocol to transmit

both Data payload and service request to a Web service. Now it is time to

explain how the transmitted data looks like.

7

1.1 Introduction

• XML

XML is an abbreviation for Extensible Markup Language [6] .It is designed

to describe data and improve the functionality of the Web by providing

more flexible and adaptable ways of information representation. It is called

extensible because its format is not fixed like HTML. Instead, XML is a meta

language which lets you design your own customized markup languages. A

markup is a mechanism to specify structures within a document, whereas

the way to add markup to a document is defined by the XML specification.

But unlike HTML, XML does not specify semantics or a set of tags. There

is no prescribed method for rendering XML documents, so semantics will be

defined by the application using it or by style sheets. The following example

will show the structure of an XML document and how data is represented:

Figure 1.4: XML Document and Data Representation

This basic XML document starts with the XML declaration in the first line.

It defines the XML version and the used character encoding. In this case

the document conforms to the 1.0 specification of XML and uses the ISO-

8859-1 (Latin-1/West European) character set. It is important to specify

the character set to avoid misinterpretation of the provided data.

The next line describes the root element of the document. Elements are

one way to store data in an XML document. The following 4 lines describe

8

1.1 Introduction

the child elements of root (to, from, heading and body). By looking at the

elements it is easy to see that the XML document represents a message. The

last line finally describes the end of the root element, completing the note

from Al to Bob. Along with the root element in the second line comes an

attribute called noteID. Attributes are another way to store data and used

to provide additional information about elements, also called meta-data. In

this case it may be used to count the messages sent from Al to Bob. A list

of legal elements that defines the document structure is the Document Type

Definition (DTD). A document with correct XML syntax is called ”Well

Formed” while a ”Valid” XML document also conforms to a DTD. More

and more applications make use of XML to store information because of its

benefits. Some of them are:

– The structure is well-defined and can be passed between different com-

puter systems which would otherwise be unable to communicate.

– Data payload is encapsulated in tags and therefore readable by human

viewers.

– Due to their textual nature, XML-Files are platform-independent.

These advantages made XML the perfect format to communicate between

Web services. To ensure a platform and language independent use for every

Web service, SOAP was developed. It is an XML application with defined

elements and a redefined structure. The following section will treat SOAP

in detail.

• SOAP

SOAP, the Simple Object Access Protocol was developed to enable a commu-

nication between Web services. It was designed as a lightweight protocol for

exchange of information in a decentralized, distributed environment. SOAP

is an extensible, text-based framework for enabling communication between

diverse parties that have no prior knowledge of each other. This is the re-

quirement a transport protocol for Web services has to fulfill. SOAP specifies

9

1.1 Introduction

a mechanism to perform remote procedure calls and therefore removes the

requirement that two systems must run on the same platform or be written

in the same programming language. SOAP also defines data encoding rules,

called base level encodings or Section 5 encodings. It is important to note

that these Section 5 encodings are not mandatory in any way, so clients and

servers are free to use different conventions for encoding data as long as they

agree on format. All this is done in the context of a standardized message

format. The primary part of this message has a MIME type of text/xml and

contains the SOAP envelope which is an XML document.

The envelope consists of a an optional header which may target the nodes

that perform intermediate processing, and a mandatory body which is in-

tended for the final recipient of the message. This way a firewall can be

adjusted to filter SOAP Messages with an inappropriate header for exam-

ple. The Header may also hold digital signatures for a request contained in

the body. The body contains the serialized payload. For a request this is

the method argument where the surrounding XML tag must have the same

name as the called method. The response body contains the return value if

it exists. Data types are not delineated in the SOAP envelope explicitly so

the type of a result parameter cannot be discovered just by looking at the

SOAP message.The anatomy of a SOAP Envelope is shown in fig 1.5.

In this example, the header contains some additional information enclosed

by the Transaction-ID tag. This ID can be processed by any node before the

final service node to ensure the request’s correctness for example. The body

contains but one method call in the request. The called method’s name is

RemoteFunction whereas the methods parameter Parameter1 is 123.

The parameters type may be of integer type but could be a String as well.

The client application must decide how to handle it. SOAP messages are

fundamentally one-way transmissions from a sender to a receiver, but they

are often combined to implement a request/response mechanism. Summing

up, SOAP is an XML-based protocol for sending messages and making re-

10

1.1 Introduction

Figure 1.5: Anatomy of SOAP Envelope

mote procedure calls in a distributed environment. Using SOAP, data can

be serialized without regard to any transport protocol, although HTTP is

typically the protocol of choice.

1.1.3 Publishing and Finding Web Services

With SOAP, a communication between Web services is possible and structured and

each participant knows how to send or receive the corresponding SOAP Message.

The final step to complete the communication architecture of Web services is to

define how to access a service once it is implemented. This is where the Web

Service Description Language (WSDL, [4]) steps in. WSDL describes services

as collections of network endpoints, or ports. Again it is an XML document

with a defined grammar where the abstract definition of endpoints and messages

is separated from their concrete network deployment or data format bindings.

WSDL documents use the following elements to describe a Web service:

11

1.1 Introduction

• Types: A container for data type definitions

• Message: A definition of the data being passed in a single RPC.

• Operation: A description of an action (method) supported by the service.

• Port Type:A set of operations supported by one or more endpoints.

• Binding: A concrete data format specification for a particular port type.

• Port: A single endpoint defined as a combination of a binding and the

network address where it can be found.

• Service: A collection of related endpoints.

Now that a Web service can be described completely, the only remaining problem

is how a potential user can find the corresponding description (WSDL document).

The following section deals with this last problem.

1.1.4 Using Web Services

To finally use a Web service, several steps have to be performed. Figure 1.6 shows

the order of the events, followed by a description of how to execute each step.

1. Locating the Web service: This can either be done by browsing a public

UDDI registry or by means of an existing WSDL document. It is possible

to build a private UDDI registry as well. Private registries are easier to

maintain due to their size but it can be hard to discover the UDDI reg-

istry’s position. Sometimes, a company’s main Web page is linked to WSDL

documents, too.

2. Creating the SOAP Message: This is done by the development tool

in most cases. Tools like Weblogic Workshop from BEA or Web service

Development Kit from Microsoft will create valid SOAP messages for the

methods described in the WSDL document or UDDI registry.

12

1.1 Introduction

Figure 1.6: Invoking a Web Service

3. Transmission: Another advantage of message transport via HTTP is the

service providers firewall setting. If the firewall permits Port 80 (HTTP

POST/GET) connections, a SOAP message is able to pass through as well.

If the firewall is unable to filter and process SOAP requests on the other

hand, it leaves the system vulnerable to attackers who use the Web service’s

functionality for a potential attack.

4. Parsing the SOAP message : This is done by the provider’s Application

Server. The parser decides if the request is valid and decides which procedure

13

1.2 Web Services Security

to call.

5. Processing: The service provider calls all necessary procedures, or even

other Web services, to complete the requested task.

6. Return the result: The result is wrapped in a SOAP reply and returned

to the requestor where the client application can parse the message and

evaluate the included data.

1.2 Web Services Security

The security requirements of Web Services are similar to that of any other In-

ternet based application. This report mainly deals with issues in providing basic

security services, authentication, authorization, confidentiality, integrity and non-

repudiation, to Web Services. Web Services enable the exchange of data and

the remote invocation of application logic using XML messaging to move data

through firewalls and between heterogeneous systems, after all the primary pur-

pose of the Web Services is to enable many different applications to share data

across a heterogeneous environment. Web Services are expressly targeted at dis-

tributed applications that cross-corporate boundaries, and consequently are likely

to have challenging security requirements.

• Authentication

To maintain a secure Web Service you need to know the identities of the

parties who are establishing a Web Service connection. Authentication is

a security requirement that ensures each entity involved in the usage of a

Web Service- the requestor, the provider, and the broker (if there is one) are

who they actually claim to be. Authentication is usually implemented using

passwords, digital signatures etc. These authentication techniques work well

for point-to-point authentication like client-server architecture. Web Service

request and response need to go through many intermediaries before the

14

1.2 Web Services Security

request is processed. The design of Web Services requires support for end-

to-end authentication. SSL does not support end-to-end authentication of

chains of entities moreover SSL works at the Transport Layer to authenticate

the incoming requests whereas Web Services require authentication at the

Application layer. Let us consider the following example as shown in Figure

1, where a browser sends a request to the web site which forwards to a web

service. The identity of the initiator or the sender which is the browser

is not known to the web service as it sees only the web site which is an

intermediary.

• Confidentiality

Confidentiality in Web Services can be either Session-level or end-to-end.

Session-level confidentiality ensures the consumer and provider that their

communications cannot be overheard but Web service application topolo-

gies include all sorts of devices, PCs, proxies, demilitarized zones, gateways

etc. Consequently, many intermediaries come between two communicating

parties. SSL/TLS may secure the path between any two, but not from one

end to the other.

SSL can provide confidentiality between client and the website and between

website and web service, but not between client and Web Service. The user

credentials are encrypted and sent from browser to website in a secured

channel. The web server then needs to decrypt the message and re-encrypt

and send it to the web service. During this gap, the information could be

inspected or modified. End to end confidentiality cannot be achieved using

SSL. XML encryption facilitates encryption of SOAP message in part or as

a whole to ensure end-to-end confidentiality. This technique is discussed in

detail in next section.

• Integrity

Integrity is the assurance that information can only be modified by autho-

15

1.3 Problem Definition

rized entities. Integrity can be achieved using hash functions and Message

Authentication Codes (MAC). Session-level integrity can be provided by SSL

whereas Web Services need end-to-end integrity. SSL may ensure integrity

between any two points in the web service application topology but not from

one end to the other. This is because at each intermediary point there is

a possibility of message getting modified. End-to-end integrity can be pro-

vided using digital signatures. A digital signature is an application of XML

signature, which is developed by W3C/IEFT XML Signature working group.

• Non-Repudiation

Non-repudiation provides the capability to prove to a third party that a par-

ticular transaction occurred. Presently SSL is the most widely used protocol

that provides non-repudiation in client-server architecture. Since Web Ser-

vices involves passing of messages over a chain of entities where each entity

both decrypts and re-encrypts the message using a protocol like SSL can

provide non-repudiation between any two entities but not over the chain.

XML encryption, XML Signature, and SAML are new technologies address-

ing this requirement. A detailed description of these technologies is provided

later.

1.3 Problem Definition

Web Service Selection: The purpose of web service selection is to select optimal

web service for a particular task.

When dynamic discovery is used in Web Services, it is common that the result

of the discovery contains more than one provider. Unlike the file sharing P2P

system in which a file download can be split into many small tasks running in

multiple peers, a service invocation occurs between a provider and a consumer.

As shown in Figure 1.7, the WS consumer must pick only one from all candidate

providers to perform the invocation. Even for a composite Web Service consisting

of many atomic Web Services, the selection issue still needs to be addressed when

there are multiple providers available for an atomic service.

16

1.3 Problem Definition

Figure 1.7: Client to select from Similar Services

In order to make a distinction between the services which provide the same

functionality, selection criteria should be used. They help evaluate the Web Ser-

vices within a group and choose the component that matches the needs and

the preferences of the consumers, while taking into account the abilities of the

providers.

Web Services can be ranked by the Quality of Service (QoS) they offer. QoS is

a means to enable selection and filter out unqualified providers. QoS can be seen as

an aggregated measure of generic criteria such as availability, reliability , failure

rate, trust and reputation, response time, price, and network load and domain

specific features .The reasoning mechanism is responsible for the selection of a

Web Service at a particular moment of time. In order to distinguish one service

from another using the specified criteria, this unit requires a set of instructions that

help evaluate each component and choose the most appropriate one respectively.

A set of instructions can be seen as a selection technique.XML Web services enable

the exchange of data and the remote invocation of application logic using XML

messaging to move data through firewalls and between heterogeneous systems.

17

1.3 Problem Definition

Figure 1.8: Redundant Web Services

Although remote access of data and application logic is not a new concept, but

doing so in a loosely coupled fashion is. Hence it poses new challenges. In Web

Services, the interface hides the implementation details of the service, allowing it

to be used independently of the hardware and software platform on which it is

implemented and also of the programming language in which it is written. This

allows and encourages Web Services based applications to be loosely coupled,

component oriented, cross technology implementations.

Security is the single biggest concern to deploy Web Services, SSL provides

good point to point security, but fails to provide end - to - end security, which is

needed to provide security for the transaction in the Web Services. The purpose of

this work is to develop an approach for dynamic and transparent service selection

and to evaluate the proposed architecture in terms of what selection techniques

should be applied.

This work also aims at describing the concerns related to Web Service security

and analyzing a few tools and techniques, which could be used to secure Web Ser-

vices. The remainder of the thesis is organized as follows: Chapter 2 is an overview

of the literature survey. Chapter 3 is the proposed approach and the evaluation

of the model is discussed. The comparison between the various technologies and

protocols, which could be used to address security concerns of Web Services are

presented in chapter 4 and the implementation of encryption of SOAP messages

are also discussed in chapter 4. Chapter 5 presents the conclusions of the thesis

and some potential future directions.

18

Literature Survey

Introduction

Web Services Security Protocols

Signature creation and verification process

Conclusion

Chapter 2

Literature Survey

2.1 Introduction

Researchers have proposed various approaches for dynamic web service selection.

Maximilien and Singh [7] propose a multi-agent based architecture to select the

best service according to the consumers’ preferences. Maximilien and Singh de-

scribe a system in which proxy agents gather information on services, and also

interact with other proxy agents to maximize their information and the concep-

tual model they use to interact with the services is detailed elsewhere [8]. The

proxy agents lie between the service consumer and the service providers. The

agents contact a service broker, which contains information about all known ser-

vices, as well as ratings about its observed QoS. From there, the information is

combined with its own historical usage, and the combined knowledge is used to

select a service, though the authors do not detail how. The agencies contain data

about the interactions between the clients and the services which is used during

the Web Services selection process.

In his work, trust and reputation are taken into account during the decision

process. Their approach divide the QoS attributes into objective and subjective.

The former include QoS features such as availability, reliability, and response

time. Their approach is shown in figure 2.1. Liu, Ngu, and Zeng [9] consider

these features in their proposed approach as well but their major selection criteria

is based on the QoS based service selection. They have considered three quality

criteria namely execution time, execution duration and reputation for the selection.

20

2.1 Introduction

In addition, execution price, duration, transactions support, compensation and

penalty rate are the other criteria. The authors of [9] suggest an open, fair, and

dynamic framework that evaluates the QoS of the available Web Services by using

clients’ feedback and monitoring.

Figure 2.1: Model proposed by Liu, Ngu, and Zeng

Figure 2.2: Model proposed by Maximilien and Singh

The reasoning mechanism is responsible for the selection of a Web Service at a

particular moment of time. In order to distinguish one service from another using

the specified criteria, this unit requires a set of instructions that help evaluate each

component and choose the most appropriate one respectively. A set of instruc-

tions can be seen as a selection technique. The major components of a reasoning

mechanism are criteria, model, and selection technique. The model collects infor-

mation about the participants of the client-server interaction as well as represents

21

2.2 Web Services Security Protocols

Run-
Time
Selec-
tion

Reasoning
Mechanism

Transpa-
rency
during
selec-
tion

Clients
Involved
in Web
Service
Selec-
tion

Clients
Feed-
back

Maximilien
and Singh

Yes Agents Yes No No

Liu, Ngu,
and Zeng

Yes QoS compu-
tation
QoS Rank-
ing

No No Yes

Table 2.1: Comparison of Approaches for Web Service Selection.

it as aggregated measures. Different selection techniques can implement various

business logics in order to make a decision.

The reasoning mechanism in the approach proposed by Liu, Ngu, and Zeng

[9] computes the QoS of the Web Services, ranks them, and selects the most

appropriate one. To perform the selection, the QoS registry in their system takes

in data collected from the clients, stores it in a matrix of web service data in which

each row represents a web service and each column a QoS parameter [10] , and then

performs a number of computations on the data, such as normalization. Clients

can then access the registry, and are given a service based on the parameters

that the client prefers. The bottleneck of the approach is the dependency on

the consumers to give regular feedback about their past experience with the Web

Services. An overview of their approach is shown in figure 2.2.The Success of

this model is based on the clients or the end users and their will to provide the

necessary feedback on QoS.

2.2 Web Services Security Protocols

• XML Encryption

Encryption provides confidentiality. It does this by preventing the data from

being understood except by the intended recipient. The XML Encryption

22

2.2 Web Services Security Protocols

Syntax and processing standard defines a process for encrypting digital data

and how the resulting encrypted data should be represented in XML. The

smallest unit of information that can be encrypted is an element [11].

– To encrypt XML elements:

1. Select the encryption algorithm and parameters.

2. Obtain the key. If the key is going to be identified, construct

a KeyInfo element. Encrypt the key, if it will be sent with the

encrypted data, and construct an EncryptedKey element. Place it

in KeyInfo or in some other portion of the document.

3. Encrypt the data. For XML data, this can involve a transformation

to UTF-8 encoding and serialization. The result is an octet string.

4. Build the EncryptedType structure. Where the encrypted data is

actually stored in the structure, instead of being referenced, the

encrypted data must be base64 encoded.

5. Replace the unencrypted element in the XML document with the

EncryptedType structure .

– To decrypt XML elements:

1. Process the element. Unspecified parameters must be supplied by

the application.

2. Obtain the decryption key. This may require using a private key to

decrypt a symmetric key or to retrieve the key from a local store.

3. Decrypt the data in CipherData.

4. Process the decrypted data. This requires that the application re-

store the decrypted data, which is in UTF-8, to its original form. It

must be able to replace the CipherData structure in the XML doc-

ument with the results of the decryption. In some cases, additional

processing is required.

23

2.2 Web Services Security Protocols

– Issues

The primary issues with using XML Encryption for Web Services are:

Out-of-band agreements between the sender and the receiver:

XML Encryption is very flexible and allows many parameters to be

omitted from the CipherData structure. For instance, KeyInfo is op-

tional. For the most part, we consider this flexibility a positive feature.

If the data is decrypted immediately and does not have to persist, this

is not a problem. However, if the encrypted data must be stored to

protect confidentiality or if signatures have been applied to encrypted

data and it is important to preserve a record of the signatures, leav-

ing information out of the structure can lead to decryption problems

at a later time. In general, including the encryption parameters in the

structure is preferable. Choice of algorithms and key lengths:XML

Encryption does not mandate the use of particular algorithms or key

lengths. It is the user’s responsibility to ensure that the right choices

are made. The system implementer should carefully consider how long

the encrypted data must be retained, how much use the keys will have,

and the preferred algorithm, and then decide on the appropriate key

length. Application in SOAP: XML Encryption specifies encryption

for XML documents. It does not describe how XML Encryption data

and structures are implemented within the SOAP message structure.

• XML Signature

The XML Signature recommendation [11] defines how digital data is signed

and how the resulting signature should be represented in XML. While the

data to be signed is intended to be more general than XML, XML data is

the principal application for XML Signature. With XML Signature, all or

selected portions of an XML document can be signed.

The recommendation defines the process for creating and representing an

XML signature and then verifying the signature. It relies on existing algo-

rithms for the signature, message digests, and message authentication codes.

24

2.2 Web Services Security Protocols

It offers several established alternatives for certificates, including X.509. It

can also be used without certificates. This represents a departure from es-

tablished thinking about public key cryptosystems, but it can be justified

under certain circumstances. The recommendation references other stan-

dards for transformation such as canonicalization, rendering the data in a

standard way that eliminates inconsequential differences in representation,

and encoding/ decoding.

Digital signatures are much more complex to implement than encryption.

Because signatures are tied to the representation of the data being signed,

caution must be exercised to ensure that the representation of the signed

data and the verified data are consistent. Signature processing is much

more subtle than encryption and is very sensitive to changes in data repre-

sentation and processing order. Even if the signature was valid at the time

it was created, it may not be verifiable because of changes that occurred as

the message was routed.

Format/Structure An XML signature consists of two required elements,

SignedInfo and SignatureValue. There are also two optional elements, Key-

Info and Object. SignedInfo. This includes the CanonicalizationMethod,

which is discussed in the next section, for the SignedInfo element itself, the

algorithms (usually a digest algorithm and a signature algorithm) used to

produce the signature, and one or more references to the data being signed.

Each Reference element includes a URI identifying the data being signed,

the transforms that process the data (we will describe some transforms in

the next section), an identifier of the digest algorithm used with the refer-

enced data, and the value of the message digest.

SignatureValue: This is the value of the digital signature. It is base64

encoded.

KeyInfo: This provides the information needed by the receiving applica-

tion to validate the signature. If it is omitted, the receiving application is

expected to know how to validate the signature. For instance, two business

25

2.2 Web Services Security Protocols

partners may have previously exchanged public keys through some other

means, thereby eliminating the need to include the public key as a child

element of KeyInfo. If this hasn’t been done, KeyInfo can contain a key

identifier, the signer’s public key, a reference to where the public key is

available, or the signer’s public key certificate. Several public key certificate

formats are supported.

Object: This is a structure that carries any other information needed to

support the signature.

• WS Security Tokens

The WS-Security specification specifies an abstract message security model

in terms of security tokens [12] combined with digital signatures as proof of

possession of the security token referred to as a key. Security tokens assert

claims, and signatures provide a mechanism for authenticating the sender’s

knowledge of the key. This signature can also be used to bind with the claims

in the security token. This assumes that the token is trusted. It may be

interesting to note that we do not specify a particular method for authenti-

cation. The specification only indicates that security tokens may be bound

to messages. This is where the power and extensibility of WS-Security lies.

• HTTP Authentication

HTTP basic authentication is orthogonal to the security support provided by

WS-Security or HTTP Secure Sockets Layer (SSL) configuration. A simple

way to provide authentication data for the service client is to authenticate

to the protected service endpoint using HTTP basic authentication. The

basic authentication is encoded in the HTTP request that carries the SOAP

message. When the application server receives the HTTP request, the user

name and password are retrieved and verified using the authentication mech-

anism specific to the server. Although the basic authentication data is send

26

2.3 Signature Creation/Verification Process

over HTTP, which is recommended. The integrity and confidentiality of the

data can be protected by the SSL protocol.

2.3 Signature Creation/Verification Process

To create a digital signature:

1. Apply the transform or transforms to the data object to be signed. Trans-

forms are applied in the order they are specified.

2. Calculate the message digest of the output of the transforms.

3. Create a reference element that includes the URI of the data object (op-

tional),the transforms used, the digest algorithm, and the digest value. As

many reference elements as needed may be created. This occurs if one sig-

nature covers several nodes of the document.

4. Create the SignedInfo element. Include the SignatureMethod, the Canonicalization-

Method, and the references previously generated.

5. Apply this method to SignedInfo.

6. Use the algorithms specified by SignatureMethod to create the signature.

This usually means applying a message digest algorithm to the canonicalized

SignedInfo and then signing the resulting digest.

7. Create the Signature element that contains the SignedInfo, the SignatureValue,KeyInfo

(if needed), and Object (if needed).

8. Note that a different canonicalization algorithm or message digest algorithm

can be applied to each referenced element.

To verify a signature:

1. Process the SignedInfo element according to the SignatureMethod specified

in SignedInfo.

27

2.3 Signature Creation/Verification Process

2. For each reference element, obtain the data object referenced.

3. Process each data object according to the specified transforms.

4. Digest the result according to the digest algorithm specified for the refer-

enced element. Compare the result with the value stored in the correspond-

ing reference element. If the two are not equal, the verification fails.

5. Obtain the necessary keying information. It may be available in KeyInfo, or

it may have been preplaced.

6. Apply the signature method using the previously obtained key to confirm

the SignatureValue over the canonicalized SignedInfo element.

Issues: There are several topics for consideration when implementing a digital

signature system for Web Services.

Signature syntax vs. semantics: The XML Signature Recommendation

deals with the syntax and technical process for creating an XML digital signature.

Signatures have a meaning from a legal and business point of view. It is important

to consider what need the signature meets and then ensure that the signature is

being applied to the appropriate parts of the document to satisfy the need.

Out-of-band agreements between the signer and the verifier: The

XML Signature Recommendation is very flexible and allows many parameters to

be omitted from the signature. For instance, KeyInfo is optional. For the most

part, we consider this flexibility a positive feature. However, leaving information

out of the signature means that there can be problems with signature verification

at a later time or if the verifier changes. In general, including signature parameters

in the signature element is preferable.

Choice of algorithms and key lengths: XML Signature does not mandate

the use of particular algorithms or key lengths. It is the user’s responsibility to

ensure that the right choices are made. The system implementer should carefully

consider how long the signature must be retained and the preferred algorithm,

and then decide on the appropriate key length.

28

2.4 Conclusion

Message
Alter-
ation

Loss of
Confi-
dential-
ity

Spoofing Man in
the mid-
dle

Replay
of Mes-
sage

XML En-
cryption

X X X

XML Signa-
ture

X X

WS-
Security
Tokens

X

HTTP Au-
thentication

X

Table 2.2: Threats addressed by Web Services Standards

Application in SOAP: XML Signature specifies encryption for XML docu-

ments. It does not describe how XML Signature data and structures are imple-

mented within the SOAP message structure.

Comparison: The table 2.2 shows the comparison of various Web Services

Security protocols with respect to various threats addressed by Web Services stan-

dards.

2.4 Conclusion

In this chapter, we have seen the approaches for Web Services Selection and made

a comparison between the existing models. We have also seen the various cryp-

tographic techniques used to protect XML and SOAP messages. We have also

viewed the process of encrypting and decrypting XML documents and how to sign

and verify signatures on XML data. We also went over supporting techniques

such as XPath, and Canonicalization, and security-related issues that must be

addressed when using these techniques.

We have also seen the various Web Services security protocols and their ap-

29

2.4 Conclusion

plications in SOAP. We have addressed to issues like key length of the message

and Out-of-band agreements between the signer and the verifier. Along with these

the signing and verifying process has been discussed A comparison between the

various Web Services Security protocols with respect to various threats addressed

by Web Services standards.

30

Proposed Approach: Web Services Selection

Repository Based Web Services Selection(RBWSS)

Results

Conclusion

Chapter 3

Proposed Approach: Web
Services Selection

3.1 Introduction

In the domain of Web Services, it is not uncommon to find redundant services

that provide functionalities to the clients. According to the Web Services con-

ceptual model (discussed in chapter 1), the client receives a list of services from

the UDDI, selects one, and starts an interaction with the service to process the

request .As seen in chapter 2, service selection is an important process and various

techniques have been proposed. In this chapter, another approach for dynamic

service selection and invocation is introduced, which has the following advantages

in comparison with previous approaches:

• It provides location and replication transparency of the Web Services;

• It hides the system’s complexity from the clients;

• It provides a transparent service selection from the client’s point of view;

• It assures a level of security, since the clients do not have direct access to

the Web Services.

The development of the proposed model in a real-world application and the

evaluation of such a system is a complex procedure. It requires resources in terms

of machines that run a set of experiments and time that should be devoted to

each experiment setup, run, and analysis. In addition, it is very likely that the

32

3.2 Repository Based Web Services Selection (RBWSS)

results of the experiments depend on the particular machine specifications and en-

vironment settings, such as web server, communication style (for example, Tomcat

and Axis framework, if the system is implemented in Java). Fluctuations, due to

network, memory, CPU, caching, and garbage collection, might appear as well.

All this could reflect on the correct analysis of the obtained data and the validity

of the conclusions. Furthermore, such an implementation is based on particular

standards, protocols, and programming languages.

3.2 Repository Based Web Services Selection (RB-

WSS)

We propose a technique for dynamic selection of Web Services which will also

handle the problem of redundant Web Services. In this work, we introduce a model

with a Web Service repository, as shown in figure 3.1 will act as an independent

unit possessing a definite functionality. This repository will be used to redirect the

client’s request. This will also provide a level of security since it will not be allowed

to invoke directly by the clients. This technique will prevent unauthorized access

to the real services. This provision will also help to hide the systems complexity

from the clients.

The repository will perform three functions namely, storing, collecting and

reasoning. In storing operation a QoS feedback report is generated by the client

and is saved in the repository. The QoS feedback report provides a historical

reference for the consumer to assess the provider. Each provider only keeps the

feedback information relevant to it. The collecting operation retrieves all necessary

data from providers for the reasoning operation. The reasoning operation manages

to select the best service provider for the consumer according to the collected data.

Consider an example where clients needs the services (S1,S2) as in fig.3.1, it sends

a request .The collecting, storing and reasoning mechanism interacts with the web

services to find the most appropriate of the services and the results are stored in

the repository for future reference. Web Services here interacts with the reasoning

mechanism to find out the appropriate services. Once the service is selected, the

33

3.2 Repository Based Web Services Selection (RBWSS)

Figure 3.1: Repository based Web Service Selection

request is forwarded to it. Finally, when the result is generated, it is passed to

the repository which sends it back to the client.

3.2.1 Algorithm: Selection of Service

This algorithm shows the necessary steps to choose a service and get the maximum

quality results.

1. For finding a service for a specified task, perform a search on service descrip-

tions.

2. Arrange all discovered services by their signature parameter and discard all

other services.

3. Get the desired Service Parameters.

4. Collect the services result and order by their utility.

5. If no results are found, let the client reconsider the constraints, go to step 2.

34

3.2 Repository Based Web Services Selection (RBWSS)

Figure 3.2: Selection Process

This algorithm provides an approach for selecting a specified service. Services, not

matching the profile are discarded on the fly .It also helps in taking an alternative

services.

3.2.2 Design of the Proposed Architecture

This section provides an overview of the design of the simulation model that is used

to evaluate the RBWSS(Repository Based Web Services Selection) approach. The

architecture, proposed here consists of three main components - Clients, Reposi-

tory Layer, and Web Services, forming the key compound objects of the high-level

view of the simulation design. Object LG (load generator) generates clients’ re-

quests (entities); object represents the behavior of the model, and each object WS

corresponds to a Web Service. Object LS (load sink) is used as the end point of

the entity flow. It accepts the incoming from the RBWSS entities and disposes of

them.

The simulation design of the model is presented in figure 3.4. Component

Manager is not included, since the settings of the reasoning mechanism are defined

before the simulation runs. There is a Virtual Web Service corresponding to

each group of redundant services with particular functionality. The reasoning

35

3.2 Repository Based Web Services Selection (RBWSS)

mechanism is presented by a queue and a server.

3.2.3 AnyLogic Enterprise Library

AnyLogic provides libraries for simulating systems in various domains. The enter-

prise Library can be applied in discrete systems, such as manufacturing, services,

business processes, etc. [13]. It is able to ”create flexible models, collect basic and

advanced statistics, and effectively visualize the process”, in order to represent the

system. At the same time, it ”provides a higher-level interface for fast creation of

discrete event models in the style of flowcharts”, using objects like source, sink,

queue, and delay server, and others, in a drag-and-drop manner [14] .Entity is a

basic concept in the Enterprise Library. The entities represent individual units

that are evaluated in the simulation. They can enter and leave objects through one

directional port. The connections between the ports are established by connectors.

3.2.4 Evaluation

This section describes the evaluation of the proposed Repository Based Web Ser-

vice Selection (RBWSS) approach. Firstly, a feasibility check is done to determine

whether it is possible to build such architecture. Secondly, the behavior of the Web

Services is observed and analyzed in different environments. Finally, to observe

the behavior of the prototype with different selection techniques, the simulation

method is used, since the study of the optimal strategies is difficult in a real

environment where there are many uncontrollable parameters.

Figure 3.3: Load Generator

36

3.3 Results

Figure 3.4: Selection Process

The evaluation process carried out by analyzing the RBWSS prototype in or-

der to test whether or not the architecture is a feasible technique for managing

redundant Web Services on the server side in a dynamic and transparent manner.

A simplified prototype of the proposed architecture is developed, in order to ob-

serve if the model is an applicable approach for dynamic selection of redundant

Web Services. The dynamic service selection is realized by reflection that allows

us to obtain information at run-time about methods, constructors, and instance

fields of classes, as well as to invoke them dynamically [15], [16].

The reasoning mechanism is based on a random selection technique that does

not require any information about the services. Since the decision is done in a

random manner, there is no need for selection criteria, neither the data about

the services must be collected and aggregated by the model. The model of the

reasoning mechanism contains only the WSDL descriptions of the redundant Web

Services.

3.3 Results

The results of the developed framework are as follows:

• The model has a feasible technique for dynamic service selection on the server

side. The layer is able to manage the redundant services in a transparent

manner. All the necessary information, which should be available to the

37

3.3 Results

Processed Requests by the Web Services
Total
Request
Pro-
cessed

Execution
Time (in
Millisec-
onds)

WS1 WS2 WS3 WS4

60 72.5 15 15 15 15
120 144.5 30 30 30 30
60 100.5 10 18 15 17
120 158.5 20 36 30 34

Table 3.1: Simulation results

client, is the service description (WSDL) of the Web Services. The model

hides the reasoning details during the decision-making process. From the

consumer’s point of view, the prototype is the real Web Service that handles

the request.

• The scalability of the system that implements the described layer is expected

to be the same as the scalability of a system that does not consist of redun-

dant components. The decentralization of the Web Services assures that

there is no single point of control and respectively of failure. There is a

separate component that represents and manages each group of services and

does not influence the proper work of the whole system.

• The architecture can be used as a layer that assures a level of security. The

Web Services are called by the virtual layer and are never invoked directly

by the clients. This technique can prevent unauthorized users from having

access to the real services.

• It is possible for the response time of the proposed architecture to increase

due to the reasoning mechanism. This is an expected result since the deci-

sion is taken at run-time. Furthermore, it implies a trade-off between the

appropriate service selection and the execution time of the system.

The obtained data shows that the execution times of the simulation runs are

higher for the load balancing technique compared to the fastest service selection

38

3.4 Conclusion

but lower compared to the random selection technique. In terms of Web Services

overloading, both the fastest and the load balancing techniques present similar

results.

3.4 Conclusion

We propose an approach for dynamic service selection and, which has the following

advantages in comparison with previous approaches:

• It hides the system’s complexity from the clients.

• It provides a transparent service selection from the client’s point of view.

• It assures a level of security, since the clients do not have direct access to

the Web Services.

In future, other technology that can be applied in the Repository based system is

Semantic Web technology. By describing the data in a machine-understandable

manner and creating semantics of QoS criteria, the decision-making process would

be based on more features as well as their relationships would be represented in a

better and more flexible way. This chapter also describes the simulation environ-

ment AnyLogic and presents the design of the simulation that corresponds to the

proposed Virtual Web Services Layer architecture. The clients are represented by

object Load Generator; the behavior of the model is simulated by object RBWSS;

and the Web Services are represented by objects WS.

39

SOAP Level Security:
Implementation and Analysis

Setting up the session

Analysis of SOAP session

Web Services Development Kit (WSDK)

Performance Analysis

Conclusion

Chapter 4

SOAP Level Security:
Implementation and Analysis

The preliminary security papers by Microsoft and IBM [17] proposes various ar-

chitectures for deploying a security service or token service which provides the

necessary tokens in the network of Web Services to manage access and authen-

tication. In the architecture shown in figure 4.1.Each web service in the system

have a public and a private key. Of course, the private key is kept secret. The

public key of each web service is stored in the Security web service. Also, every

web service that provides a service to others has a list of the public keys of the web

services that have access to it. Whenever the list of a web service in the Security

web service is updated by the administrator, the SWS contacts the web service by

establishing a session with it and updates its list. This is done by encoding the

latest list inside the body of the SOAP envelope.

The web services that make requests to other web services do not contact the

Security Web Service (SWS). This architecture has been chosen for scalability and

availability reasons: when a lot of web services in the network need to communicate

with each other, the SWS may be coded with requests for security tokens. In this

architecture, the web services only need to be updated when something changes

in the setup of the web services or in the way they communicate with each other.

41

4.1 Setting Up The Session

Figure 4.1: Architecture of Web Service Setup

4.1 Setting Up The Session

The latest version of SOAP [7] version 1.2, the working draft from the W3C, does

not have a notion of a session context, or a security context for that matter. This

means that each and every SOAP message must have an elaborate < Security

> element to address all the security issues at the message level. The problem

of making SOAP messaging confidential between two computer systems can be

addressed by Transport Level Security (TLS) for example Secure Sockets Layer

(SSL). SSL appends Message Authentication Codes (MAC’s) to the transmitted

messages to ensure message integrity, which would preserve the integrity of the

SOAP messages transmitted with SSL as well [18].

However, when various intermediaries or adversaries have to read the SOAP

message [19] to determine who’s next in the communication chain, message in-

tegrity and confidentiality must be preserved. SSL does not provide for non-

repudiation to start with. You only have hop-to-hop security when you are using

SSL to encrypt communications instead of end-to-end security; because it is pos-

sible that security has been breached on one of the web services along the way.

Also, the idea behind SOAP messaging is to provide loosely coupled systems with

a way that they can communicate with each other in a connectionless way.

For example, there could be a message queue that a receiver has to process

first. This way the sender of a message must wait for the receiver to finish the

42

4.1 Setting Up The Session

queue; here SSL is not a good solution to this problem.

The following code here elaborates the how the response message is sent for

setting up a session.

Figure 4.2: Setting up the Session

Now it is clear how the SOAP messages are constructed, the entire session

is a sequence of three SOAP messages sent back and forth. The purpose of this

session is to ensure that the two web services are indeed communicating with each

other and that no adversary can compromise security. The following diagram is a

schematic representation of the SOAP messages that are exchanged between web

services and it illustrate which SOAP messages are sent and in which order. The

session protocol initiates the session as shown in figure 4.2.between Web Services

α and β . After a complete run of this protocol, both and agree upon the session

id and they know how many messages each web service has sent (now and in

the future). Using this session setup they can call each other’s operations and

43

4.1 Setting Up The Session

exchange information securely, meaning no adversary can come in between them,

at least in theory. In practice there might always be implementation errors or

other factors involved that can compromise security. Any web service can end a

session by sending a SOAP envelope back in which a < SessionEnd > element is

the last element of the < Continue > element.

If the Serving Web Service (sws) agreed upon the security methods, it generates

a session key to be used with a symmetric cipher (for example 3DES or AES) and

encrypts this session key using the public key of the Client Web Service (cws) .

This encrypted key is added to the subelement <Encryption > of the < Continue

> element, inside the < EncryptedKey >element which is specified in [20] . The

first element of the < Continue > element is the identity of the sws. The second

element is the < Nonce > element as explained before, followed by the < Session

> element and the < Nr > elements. The < Encryption > element contains the

session key which the sws used to encrypt the body of the SOAP envelope. The

session key is put in a < EncryptedKey > element with an ”Id” attribute linking

the session key to the session.

This works as follows: the cws first sends a SOAP message with a digital

signature. The < Continue > element contains a < Nonce > element and empty

< Session > and < Nr > elements. In this case another element, the < Encryption

> element, is added that indicates it wants to communicate with encrypted content

and to establish a session key. Upon receiving this SOAP message, the serving web

service (sws) determines if it agrees with the way communication will take place.

It determines if it agrees using the same canonicalization method, the signature

method, the transform algorithm and the digest method. If it does, it remembers

these methods and adopts them. If the sws do not agree on these methods, it

sends a SOAP message back using its own preferences. For simplicity reasons, the

cws must then conform to the preferences set by the sws, otherwise the session is

aborted. The session key is encoded and sent back to the cws.

44

4.2 Analysis of SOAP session

Figure 4.3: Establishing SOAP session

4.2 Analysis of SOAP session

There is always been a possibility that due to flaws in the security protocols an

intruder can attack it.

Msg α 1 A�B : Header , { Body , Continue , Nonce , Session , Nr α (1),

Encryption} Signed {PrivateKey α}
Msg β 1 A�B : Header , { Body , Continue , Nonce , Session (γ) , Nr β (1),Nr

β (1),{SessionKey γ } PublicKey α} Signed PrivateKey β

45

4.2 Analysis of SOAP session

Msg α 2 A�B : Header ,{ Body ,Continue ,{Operation}SessionKeyγ , Continue

, Nr α (2). Session(γ)} Signed PrivateKey α

The purpose of the session protocol as explained in previous sections is to au-

thenticate two web services to each other and to establish a shared secret session

key with which they can encrypt their messages to ensure confidentiality. The

validity of the protocols can be verified using Casper [21] , which is a compiler

for analysis of security protocols. The security model can be made using Casper

and this will be helpful in verifying it. Casper converts the modeled protocol into

CSP [22] and FDR [23] is used as a model checker for CSP which in turn is helpful

in verifying the security properties. These security properties can be statements

such as ”authenticated correctly” or ”shared session key is secret”. If there is a

reachable state (while executing the protocol) where such a statement is not true,

FDR will find a trace. If there is a trace, then there is an attack upon on the

protocol. The setup of a session can be modeled as follows. This first example

was the first attempt of finding a working protocol. After modeling it in Casper,

the resulting Casper script is below

Msg α 1 A �I : Header , { Body , Continue , Nonce , Encryption} Signed Pri-

vateKey α

Msg α 1 IA �B : Header , { Body , Continue , Nonce , Encryption} Signed

PrivateKey α

Msg β 1 B �IA : Header , { Body , Continue , Nonce , Session (γ), Nrβ(1)

{SessionKey γ} PublicKey α } Signed PrivateKey β

Msg β 1 I�A : Header , { Body , Continue , Nonce , Session (γ), Nrβ(1)

{SessionKey γ} PublicKey α } Signed PrivateKey β

Msg α 2 A �I : Header , { Body , {Operation} SessionKey γ , Continue,

Session(γ)} Signed PrivateKey α

Msg α 2 IA�B : Header, {Body, {Operation} SessionKey γ , Continue, Session(γ)}
Signed PrivateKey α

46

4.2 Analysis of SOAP session

The assertions that had to be verified were, whether or not web service and

were correctly authenticated to each other and whether or not they agreed upon

the session id and the session key. The session key also had to be a shared secret

between the two web services. Unfortunately, running the protocol through Casper

resulted in an attack upon the protocol itself, where the intruder acts as if it was

alpha. This is a very common attack to a security protocol. The following trace

consists of three actors where ”I” stands for the intruder and the subscript to the

intruder means that it is posing as another actor.

The trace found by Casper means that after a complete run of the proto-

col,thinks it has established a session with the intruder, however the intruder

establishes a session with and thinks it has established a session with .This was

just one trace that Casper found during the design of a session. After thorough

analysis of the protocol, the correct definition of the protocol in Casper is

Msg α 1 : A�B : Header , { Body , Continue , Nonce , Session , Nr α (1),

Encryption} Signed {PrivateKey α}
Msg β 1 A�B : Header , { Body , Continue ,B, Nonce , Session (γ) , Nr β (1),

Nr β (1),{SessionKey γ } PublicKey α} Signed PrivateKey β

Msg α 2 A �B : Header , { Body , Continue , {Operation} SessionKey γ , Con-

tinue , Nr α (2) Session(γ)} Signed PrivateKey α

Casper did not find an attack to this protocol. The difference here is that can

determine the identity of, because in the message is receives back from either or the

intruder, it is stated that the identity of the sender of the second message must be

. The question is though whether or not this is a good representation of a session

setup with SOAP. It must be certain that all properties of the SOAP session are

modeled in Casper. This means that every aspect of SOAP, relevant to the session

setup, must be modeled in Casper. For instance, the fact that headers may always

be removed by intermediaries may influence the level of security achieved. It is

47

4.3 Web Services Development Kit (WSDK)

the task of the application to make sure that digital signatures are always verified

and abnormalities dealt with.

4.3 Web Services Development Kit (WSDK)

WSDK exposes two programming models, Low-level API for direct access, higher-

level integration with ASP.NET, exposed through ASMX. WSDK currently sup-

ports WS-Security, WS-Routing, WS-Referral, DIME, and WS-Attachments .WSDK

currently does not support WS-Inspection, WS-Coordination, or WS-Transaction.

Figure 4.4: WSDK Process Model

The WSDK [24] is an engine for applying advanced Web service protocols to

SOAP messages. This entails writing headers to outbound SOAP messages and

reading headers from inbound SOAP messages. It may also require transforming

the SOAP message body; for instance, encrypting an outbound message’s body

and decrypting an inbound message’s body, as defined by the WS-Security specifi-

cation. This functionality is encapsulated by two sets of filters: one for outbound

messages and one for inbound messages.

All messages leaving a process request messages from a client or response mes-

sages from server are processed using the outbound message filters. All messages

arriving in a process request messages to a server or response messages to a client

48

4.4 Performance Analysis

are processed using the inbound message filters. SOAP messages are processed as

they cross application boundaries utilizing a pipeline of filters.

Filters are responsible for processing SOAP headers. WSDK has the ability

to help secure XML Web services across platforms and trust domains, including

digital signing and encryption of SOAP messages that are compliant with the WS-

Security specification. It has the ability to route an XML Web service through

intermediaries using the WS-Routing specification, which describes how to place

message addresses in the SOAP message header and enables SOAP messages to

travel serially to multiple destinations along a message path. The route a SOAP

message takes to an XML Web service can be transparently delegated among Web

servers. The core features included in the technology preview of the Microsoft

WSDK include:

1. The ability to help secure XML Web services across platforms and trust

domains, including digital signing and encryption of SOAP messages those

are compliant with the WS-Security specification;

2. The ability to route an XML Web service through intermediaries using the

WS-Routing specification;

3. Communication between XML Web services can contain attachments that

are not serialized into XML.

4.4 Performance Analysis

The aim here is to find out how performance is affected by introducing cryptog-

raphy in SOAP messages. We conducted the experiments on a low performance

host. This was the case because generally the servers or hosts of Web Services

are targets of many requests. We calculated the response times before introducing

cryptography into SOAP messages. SOAP payload may be XML document or

any other content such as image, audio or video data.

The first part contains a SOAP message which includes the Header block cre-

ated by the Message Handler. The second and subsequent parts contain payload(s)

49

4.4 Performance Analysis

Figure 4.5: SOAP envelope and payload

which may be XML documents or any other content type such as image, audio or

video data. The SOAP manifest header can contain elements that reference the

separate parts using their content identifiers. This may be achieved using XLink

references as shown in the following example. The XLink role attribute may be

used to further qualify the type of data contained within the payload [25].

The results obtained after encapsulating cryptographic techniques with the

SOAP messages and without cryptographic techniques are shown in table 4.1 and

4.2

Payload (in
KB)

Response
time
(in Millisec-
onds)

0 0
1 380
78 410
156 580
312 700

Table 4.1: SOAP Analysis without Encryption

50

4.4 Performance Analysis

Payload (in
KB)

Response
time
(in Millisec-
onds)

0 0
1 450
78 550
156 700
312 930

Table 4.2: SOAP Analysis with Encryption

The graph plotted shows the behavior of response time as the Payload of SOAP

body increases after encapsulating cryptographic techniques.

Figure 4.6: Response time v/s Payload-I

The test conducted includes a client encrypting the SOAP message with a

symmetric algorithm (Triple DES). The service at the other end would decrypt

the message using the same key. To have the same key at both sides for experiment,

we are inputting the same number of key bytes at both sides for the generation of

the key. Once the message is decrypted, the service performs the operation and

then encrypts the response with the same key. The client decrypts the message

and uses the response.

The analysis was conducted using Microsoft’s WSDK (Web Services Devel-

opment Kit) preview kit. The response time is measured in milliseconds. The

51

4.4 Performance Analysis

Figure 4.7: Response time v/s Payload-II

sequence of operations performed at the client side is depicted in the following

figure. As we have seen from the graphs, the time taken for the asymmetric cryp-

tography is very high affecting the overall performance. Here we can use both

symmetric key cryptography and Asymmetric Key cryptography. The approach

mentioned i.e. signing of the whole SOAP body message is of no use as this would

be very much similar to having an SSL connection. As the previous sections dealt

with problems in SSL, this mechanism of signing has the same problems.

We need to be able to encrypt parts of SOAP body. This is well documented

in the standards of XML encryption. By observing the Graphs 1 and 2, we can

conclude that there is little overhead in the response time using symmetric key

cryptography. So we can asymmetrically encrypt a secret key, which was used to

partially encrypt and send it to the other party in the tag <Encrypted Key>.The

other party would decrypt the encrypted key and start decrypting the parts of

messages encrypted using this key. Interestingly the overhead would be very little.

Assuming that asymmetric algorithm RSA is used, the key size is 1024 bits which

is equivalent to 1KB. The time for encryption and decryption on a heavily loaded

server would be approximately equal to 45 seconds. Also the parsing time could

affect the performance. But almost every day we are getting faster parsers. So

this should not be a problem.

52

4.5 Conclusion

4.5 Conclusion

It is not uncommon for the security protocols to have flaws so that an intruder

can attack it. The purpose of the session protocol as explained in this chapter is

to authenticate two web services to each other and to establish a shared secret

session key with which they can encrypt their messages to ensure confidentiality.

Web Services require end-to-end security since the requests might have to tra-

verse over a chain of entities. The most popular protocol now in use, SSL, works

well for point-to-point security services. SSL does not completely address the se-

curity issues of Web Services. By itself, WS-Security does not ensure security nor

does it provide a complete security solution. WS-Security is a building block that

is used in conjunction with other Web service specific protocols which include,

XML encryption, XML signatures etc. to accommodate a wide variety of security

models and encryption technologies to address the security concerns.

Partial encryption, signing and super encryption are a few of the proposed

techniques which could be used to ensure end-to-end security. But the discussed

techniques come with an overhead which is due to parsing large SOAP documents,

among other things. As there are not many standard implementations for these

protocols it is difficult to estimate the overhead. So the effect of these techniques

on performance of Web Services transactions could not be assessed. Unless Web

Services can be made can be made to work with reasonable response time, it is

difficult to see them together solving the problem.

The communication between the service requestor and provider is not very hard

to setup, but while using extensions to SOAP, it show that the implementations

of the extensions is difficult. While building a network of secure web services that

used the proposed security extensions is also hard. However, it was possible to

implement the setup of SOAP session as explained in this chapter.

Digitally signing and encrypting SOAP elements consume resources. The main

idea behind SOAP messaging is to provide a loosely coupled system with a way

that they can communicate with each other in a connectionless way. We have

addressed to the security issues that became relevant during the design of the

53

4.5 Conclusion

system and at the time of setting up the SOAP session. The research involved

the analysis of available standards and ways to use and develop them to create

such a session by only using parts of those standards. The analysis of the session

setup process proves that an adversary cannot break the protocol by interception,

alteration or by resending of messages.

54

Conclusion and Future Work

Conclusion

Future Work

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The first part of the research focuses on the communication between the service

requestor and the service provider. Here we proposed a model for the dynamic

selection of the web services which will facilitate the clients with the more appro-

priate solution in selecting the Web Services. The evaluation of the repository

based prototype shows that such architecture can be built using a set of standard

programming languages and protocols. However, in order to avoid fluctuations of

the experimental results due to particular machine specifications, programming

languages, and protocols, as well as to observe a large range of system parame-

ters, the layer can be evaluated using an existing simulation tool. The accuracy

of the predicted QoS criteria has a big impact on the selected Web Service. The

repository helps improve the dependability of the system when a low level of Web

Services availability is observed.

The second part of the research involved a thorough analysis of SOAP and the

way it binds to the transport layer protocols. An important part of the research

was to analyse SOAP and to setup a secure SOAP session. This can be done by

using the proposed security extensions to SOAP. The research involved the analysis

of the standards and ways to use and develop them to create such a session, by

using the parts of those standards. The result of the research is a definition of a

security protocol that has been analyzed using WSDK. More information on how a

security context can be setup is reflected in this work. The analysis of the session

56

5.2 Future Work

setup proves that an adversary cannot break the protocol by the interception,

alteration or the (re-)sending of messages.

However, implementation faults and the in-security of the servers running the

web services, faults in the security considerations of each specification or the level

of security might be compromised. Furthermore, security is most of all a social

problem as well as a technical one.

5.2 Future Work

Firstly, there is still some more implementation work to be done. As explained,

there are parts of the design document that have not been implemented. There

are also beta versions or newer implementations of for example the SOAP D-Sig

specification that are improvements upon the already implemented one.

Furthermore, there are a lot of specifications still under development that add

extensions to SOAP and try to tackle the security issues mentioned in this thesis

from another way. There is a lot of work to be done still in the area of securing

web services and it might be very well possible that there are already specifications

under development that try to setup a SOAP session and try to achieve message

level security with web services. The stated solution in this thesis is just one of

the ways to do this.

57

Bibliography

[1] C.M. Sperberg-McQueen Eve Maler Tim Bray, Jean Paoli and Fran

cois Yergeau. Extensible markup language (xml) 1.0 (third edition).

http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[2] Nilo Mitra. Soap version 1.2 part 0: Primer. http://www.w3.org/TR/soap12-

part0/, 2003.

[3] H. Kreger. Web services conceptual architecture,wsca 1.0.

http://www.cs.uoi.gr/zarras/mdw-ws/webServicesConceptualArchitectu2.pdf.

[4] UDDI Browser. http://www.uddibrowser.org.

[5] Greg Meredith Erik Christensen, Francisco Curbera and San-

jiva Weerawarana. Web services description language (wsdl)

1.1.http://www.w3.org/tr/wsdl.

[6] http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html.

[7] E. Maximilien and M. Singh. Framework and ontology for dynamic web

services selection. IEEE Internet Computing, pages 84–93, 2004.

[8] E.M. Maximilien and M.P Singh. Reputation and endorsement for web ser-

vices. SIGecom Exch, 3.1:24–31, 2001.

[9] A. H. H. Ngu Y. Liu and L. Zeng. Qos computation and policing in dynamic

web service selection. In Proceedings of the International World Wide Web

Conference, pages 66–73, September 2004.

[10] Daniel A. Menasce. Composing web services–a qos view. IEEE Internet

Computing, 8:88–90, November 2004.

58

Bibliography

[11] Marlon Dumas-Jayant Kalagnanam Liangzhao Zeng, Boualem Benatallah

and Quan Z. Sheng. Quality driven web services composition. In proceedings

of the 12th International conference on World Wide Web (WWW), November

2003.

[12] March Hadley Martin Gudgin and Tony Rogers. Web services addressing 1.0

- core. http://www.w3.org/TR/soap12-part1, June 2002.

[13] XJ Technologies Company Ltd. Anylogic enterprise library tutorial.

http://www.xjtek.com/files/docs/en/EnterpriseLibraryTutorial.pdf.

[14] XJ Technologies Company Ltd. Anylogic enterprise library tutorial.

http://www.xjtek.com/files/docs/en/EnterpriseLibraryReferenceguide.pdf.

[15] Sun Microsystems. Trail The Reflection API.

[16] Dale Green. Trail The Reflection API.

[17] Giovanni Della-Libera Brandon Dixon and Joel. Securing

web services world : A proposed architecture and roadmap.

http://msdn.microsoft.com/library/enus/html/securitywhitepaper.asp.

[18] Traverso P. Dustdar S.-Leymann F. Papazoglou, M. Service- oriented comput-

ing: A research roadmap. International Journal of Cooperative Information

Systems, 17:1–33, July 2008.

[19] Gombotz R Dustdar, S. Discovering web service workflows using web services

interaction mining. International Journal of Business Process Integration and

Management (IJBPIM), 1:255–266, April 2006.

[20] Takeshi Imamura and Hiroshi Maruyama. Transform from xml signature.

http://www.w3.org/TR/xmlenc-decrypt, December 2002.

[21] Philipa Broadfoot Gavin Lowe and Mei Lin Hui.

Casper, a compiler for the analysis of security protocols.

http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Security/Casper/, De-

cember 2001.

59

Bibliography

[22] C.A.R. Hoare. Communicating sequential processes. 1985.

[23] Formal systems (Europe) Ltd. Failures-divergence refinement - fdr 2 user

manual. http://www.formal.demon.co.uk/FDR2.html, 1997.

[24] http://www.xml.coverpages.org/MicrosoftWSDK200208.html.

[25] T. Nadalin. Web services security: Soap message security 1.0 (ws-security-

2005) oasis web services security tc, oasis standard 200401. March 2005.

60

Dissemination of Work

Published

Abhishek Pandey and S.K.Jena ̏Dynamic Approach for Web Services Selec-

tion.˝, In proceedings of the International MultiConference of Engineers and Com-

puter Scientists 2009(IMECS), pages 960-962, 18-20 March 2009, Hong Kong,

China.

Communicated

Abhishek Pandey and S.K.Jena ̏Web Services: Analysis and Implementation

of Security Protocols ˝, Fourth International Conference on Risks and Security of

Internet and Systems (CRiSIS 2009), August 2009,France.

61

