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ABSTRACT 

 

Independent Component Analysis (ICA) is a statistical signal processing technique having 

emerging new practical application areas, such as blind signal separation such as mixed voices or 

images, analysis of several types of data or feature extraction. Fast independent component 

analysis (Fast ICA )  is one of the most efficient ICA technique. Fast ICA algorithm separates the 

independent sources from their mixtures by measuring non-gaussian. Fast ICA is  a common 

method to identify aircrafts and interference from their mixtures such as electroencephalogram 

(EEG), magnetoencephalography (MEG), and electrocardiogram (ECG). Therefore, it is valuable 

to implement Fast ICA for  real-time signal processing. In this thesis, the Fast ICA algorithm is 

implemented by hand coding HDL code. In addition, in order to increase the number of 

precision, the floating point (FP) arithmetic units are also implemented by HDL coding.To verify 

the algorithm, MATLAB simulations are also performed for both off line signal rocessing and 

real-time signal processing.    
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1.1 MOTIVATION 

This thesis addresses the problem of blind signal separation (BSS) using Fast independent 

component analysis (Fast ICA). In blind signal separation, signals from multiple sources arrive 

simultaneously at the receiver array, so that each receiver array output contains a mixture of 

source signals. Sets of receiver outputs are processed to recover the source signals or to identify 

the mixing system. The term blind refers to the fact that no explicit knowledge of source signals 

or mixing system is available. Independent component analysis approach uses statistical 

independence of the source signals to solve the blind signal separation problems. Application 

domains include communications, biomedical, audio, image, and sensor array signal processing.  

Fast ICA algorithm improves the efficiency of independent component analysis. However, most 

of the publication focused on offline signal processing using Fast ICA algorithm. It can not be 

applied to real-time applications such as speech signal enhancement and EEG/MEG essential 

features extraction for brain computer interface (BCI). In order to realize the real- time signal 

processing, the Fast ICA algorithm can be implemented on a field-programmable gate array 

(FPGA) to speed up the computations involved.   

1.2 SCOPE OF THE THESIS 

For real-time signal processing, the Fast ICA algorithm can be implemented on a field 

programmable gate array (FPGA).The focus of this project is to implement the hardware Fast 

ICA by hand coding HDL code. Though there is software that translates the high- level languages 

such as C code, MATLAB, and even Simulink into HDL code, hand coding gives the 

implementation not only better performance but also less consumption of gate array in the 



 

3 
 

FPGA. In addition, the numbers precision in hardware Fast ICA is increased by implementing 

the hardware floating point (FP) arithmetic by hand coding HDL code. The  FP arithmetic allows 

numbers to be represented in a wider range than fixed point arithmetic. The hardware of 

implementation is partitioned into modules to simplify the implementation.  

1.3 THESIS ORGANIZATION 

This thesis is organized as follows: 

In chapter 2, the basic principle behind the independent component analysis (ICA) technique is 

discussed. Various contrast functions available for ICA are described. Different existing 

algorithms for ICA are briefly illustrated. Finally the application domain of ICA technique is 

presented. 

 

In chapter 3, background of Fast ICA algorithm is described. Different normalization 

approaches of Fast ICA algorithm are  discussed. Finally the properties of Fast ICA algorithm 

are presented in this chapter. 

 

In chapter 4, implementation of FP arithmetic is presented.  

 
In chapter 5, implementation of Fast ICA algorithm is presented.  

 
In chapter 6, simulation results are given. The results include simulations done in both 

MATLAB and VHDL. Comparative  performance in terms of CPU time for deflation approach 

and symmetric approach of Fast ICA algorithm is also given in this chapter.  

 
Finally we conclude in chapter 7. 
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2.1 Introduction 
 

Independent component analysis (ICA) is a well-known method of finding latent structure in 

data. ICA is a statistical method that expresses a set of multidimensional observations as a 

combination of unknown latent variables. These underlying latent variables are called sources or 

independent components and they are assumed to be statistically independent of each other. The 

ICA model is 

                                                     x = f (θ, s)                                                  (2.1) 

where x = (x1, . . . , xm) is an observed vector and f is a general unknown function with 

parameters θ that operates on statistically independent latent variables listed in the vector  

s = (s1, . . . , sn ).A special case of (2.1) is obtained when the function is linear, and we can write  

 

                                                      x = As                                                       (2.2) 

 

where A is an unknown m×n mixing matrix. In Formulae (2.1) and (2.2) we consider x and s as 

random vectors. When a sample of observations X = (x1, . . . , xN) becomes available, we write  

X = AS where the matrix X has observations x as its columns and similarly the matrix S has 

latent variable vectors s as its columns. The mixing matrix A is constant for all observations. 

 

 If both the original sources S and the way the sources were mixed are all unkown, and only 

mixed signals or mixtures X can be measured and observed, then the estimation of A and S is 

known as blind source separation (BSS) problem. 
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                                                       Fig.1. BSS using ICA algorithm 

The linear model (2.2) is identifiable under the following fundamental restrictions :  the sources 

(i.e. the components of  S ) are statistically independent, at most one of the independent 

components sj may be Gaussian, and the mixing matrix A must be of full column rank. The 

identifiability of the model is proved in the case n = m and for those source densities whose 

variance is defined.  

ICA  Definition : “Independent Component Analysis (ICA) is a method for finding underlying 

factors or components from multivariate (multi-dimensional) statistical data. What distinguishes 

ICA from other methods is that it looks for components that are both statistically independent 

and non-Gaussian.” 

2.2 Statistical Independence  

 
Statistical independence is the key foundation of independent component analysis. For the case 

of two different random variables x and y , x is independent of  the value of  y if knowing the 

value of  y does not give any information on the value of  x . Statistical independence is defined 

mathematically in terms of the probability densities as: the random variables and are said to be 

independent if and only if 

 

                                                 )()(),(
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where  ),(
,

yxP yx
 is the joint density of x  and y , )(xPx

and  )(yPy
 are  marginal probability 

densities of  x and y respectively. Marginal probability density function of  x is defined as 

 

                                               dyyxx PP yxx
),()(

,                           (2.4) 

 

Considering a  random vector   s = [ s1, s2,…….. ,sN]
T   

with multivariate density P(s), has statistically  

independent components if the density can be factorized as  

 

                                                 sP i

N

i
i

sP 



1

)(                                         (2.5)     

                                                        

Otherway stated, the density of  s1 is unaffected by s2 ,when two variables s1 and  s 2are independent. 

Statistical independence is a much stronger property than uncorrelatedness which takes into account 

the second order statistics only. If the variables are independent, they are uncorrelated but the 

converse is not true.  

2.3 Central Limit Theorem  

 
The central limit theorem is the most popular theorem in statistical theory and plays an important  

role in ICA. According to it let 

 

                                                    



k

i
ik zx

1

               (2.6)  
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be a partial sum of sequence  {Zi } of independent and identically distributed random variables Zi. 

Since the mean and variance of   Xk  can grow without bound as  k , consider the 

standardized variables Yk instead of  Xk,  

 

                                                   

 X

X

k

k
mX

Y
k

k


                            (2.7)  

 

where  mX k

 and   X k

are mean and variance of Xk .The distribution of   Yk converges to a 

Gaussian distribution with zero mean and unit variance when K . 

  

This theorem has a very crucial role  in ICA and BSS. A typical mixture or component of the 

data vector x is of the form  

                                                    sax j

N

j
iji 




1

                            (2.8) 

 

where a ij
, j = 1,2,….N are constant mixing coefficients and s j

,  j = 1,2,…N are the  N 

unknown source signals. The central limit theorem can be stated as ―the sum of even two 

independent identically distributed random variables is more Gaussian than the original random 

variables‖. This implies that independent random variables are more non-gaussian than their 

mixtures. Hence non-gaussianity is independence.  
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2.4 Contrast Functions for ICA  

 
The data model for independent component analysis is estimated by formulating an objective 

function and then minimizing or maximizing it. Such a function is often called a contrast 

function or cost function or objective function. The optimization of the contrast function enables 

the estimation of the independent components. The ICA method combines the choice of an 

objective function and an optimization algorithm. The statistical properties like consistency, 

asymptotic variance, and robustness of the ICA technique depend on the choice of the objective 

function and the algorithmic properties like convergence speed, memory requirements, and 

numerical stability depend on the optimization algorithm. The contrast function in some way or 

other is a measure of independence. In this section different measures of independence is 

discussed which is frequently used as contrast functions for ICA.  

 

2.4.1 Measuring Nongaussianity 

        1. Kurtosis: 

                    According to the Central limit theorem, nongaussianity is a strong measure of 

independence. Traditional higher order statistics uses kurtosis or the named fourth-order 

cumulant to measure non-gaussianity. The kurtosis of a zero-mean random variable v is defined 

by 

 

                                                   
    vEvEvkurt 23)(

24


                   (2.9)
 

  

                      Where      E{v4} =  fourh moment of v 
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                                      E{v2} =  second moment of v 

 

For a gaussian random variable v, the E{v4} equals 3(E{v2})2, so that the kurtosis is zero for a 

gaussian random variable. If v is a non-gaussian random variable, its kurtosis is either positive or 

negative.  Particularly when kurtosis value is positive the random variables are called 

supergaussian or leptokurtic and when negative called subgaussian or platykurtic. Supergaussian 

random variables have a ‗spiky‗ probability density function with heavy tails and subgaussian 

random variables have a flat probability density function. Thereore, non-gaussianity is measured 

by the absolute value of kurtosis.  

 

  2. Negentropy:  

A second very important measure of nongaussianity is given by negentropy. Negentropy is based 

on the information-theoretic quantity of (differential) entropy. The entropy of a random variable 

can be interpreted as the degree of information that the observation of the variable gives. The 

more random, i.e. unpredictable and unstructured the variable is, the larger its entropy. A 

fundamental result of information theory is that a gaussian variable has the largest entropy 

among all random variables of equal variance. This means that entropy could be used as a 

measure of nongaussianity. In fact, this shows that the gaussian distribution is the ―most random‖ 

or the least structured of all distributions. The differential entropy H of a random variable v  with 

a density of f(v) is given by 

 

                                         dvvfvfvH )(log)()(                         (2.10) 
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To obtain a measure of nongaussianity that is zero for a gaussian variable and always 

nonnegative, one often uses a slightly modified version of the definition of differential entropy, 

called negentropy. Negentropy J is defined as follows 

 

                                                    )()()( vHHvJ vGauss
              (2.11) 

 

where vGauss is a Gaussian random variable of the same covariance matrix as v. Negentropy is 

always non-negative, and it is zero if and only if y has a Gaussian distribution. 

 

The advantage of using negentropy as a measure of nongaussianity is that it is well justified by 

statistical theory. In fact, negentropy is in some sense the optimal estimator of nongaussianity, as 

far as statistical properties are concerned. The problem in using negentropy is, however, that it is 

computationally very difficult.  

 

 Approximations of negentropy 

The estimation of negentropy is very difficult. In practice, some approximation have to be used.  

These approximation were based on the maximum-entropy principle. In general we obtain the 

following approximation: 

 

                                           vGEyGE
i

KyH 
2

)(                     (2.11) 

 

where K is some positive constants, and v is a Gaussian variable of zero mean and unit variance. 
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The variable y is assumed to be of zero mean and unit variance, and the functions G is some 

nonquadratic functions. 

choosing G wisely, one obtains approximations of negentropy that are much better. If G is 

choosen such that it does not grow too fast,  one obtains more robust estimators. The following 

choices of G have proved very useful: 

                                    vv a
a

G 1

1

1
coshlog

1
)(                          (2.12) 
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exp

1
)(

2

2

2

2

va
a

G v                             (2.13) 

                                                 vG v
4

3 4

1
)(                                                         (2.14) 

                          Where a1
 and a2

are some suitable constants. 

 

2.4.2 Minimization of Mutual Information 

 
 

Another approach for ICA estimation, inspired by information theory, is minimization of mutual 

information.  

Mutual Information: 

Mutual information is a natural measure of dependency between random variables, i.e. it is a 

measure of the information that member of a set of random variables have on the other random 

variable in the set. It is always non-negative, and zero if and only if the variables are statistically 

independent.  

If y is a  n-dimensional random variable and  f(y) its probability density function then vector  y 

has mutually independent components if and only if 
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                                                )(....)()()(
21

yyy
n

fffyf                         (2.16) 

 

A natural way of checking whether  y has ICs is to measure a distance between both sides of 

above equation  

                                              ))(),(())(( y
i

fyfyfI                  (2.17) 

 

Average mutual information of  y is given by  

 

                                             dy
yf

yf
yfyfI   















)(

)(
log)())((                     (2.18) 

 

Average mutual information vanishes if and only if the variables are mutually independent and 

strictly positive otherwise. In terms of negentropy mutual information is written as  

  

                                         )()(),...,,(
1

21




m

i
im

yyyy HyHI          ( 2.19) 

 

But the contrast functions based on mutual information discussed above require the estimation of 

the density function and this has severely restricted the use of these contrast functions.  
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2.5 Data preprocessing for ICA 

It is often beneficial to reduce the dimensionality of the data before performing ICA. It might  be 

well  that there are only a few latent components in the high-dimensional observed data, and the 

structure of the data can be presented in a compressed format. Estimating ICA in the original, 

high-dimensional space may lead to poor results. For example, several of the original dimensions 

may contain only noise. Also, over learning is likely to take place in ICA if the number of the 

model parameters (i.e., the size of the mixing matrix) is large compared to the number of 

observed data points. Care must be taken, though, so that only the redundant dimensions are 

removed and the structure of the data is not flattened as the data are projected to a lower 

dimensional space. In this section two methods of dimensionality reduction are discussed: 

principal component analysis and random projection.  

 

In addition to dimensionality reduction, another often used preprocessing step in ICA is to make 

the observed signals zero mean and decorrelate them. The decorrelation removes  the second-

order dependencies between the observed signals. It is often accomplished by principal 

component analysis which will be briefly described next.  

2.5.1 Principal component analysis 

In principal component analysis (PCA) , an observed vector x is first centered by removing its 

mean (in practice, the mean is estimated as the average value of the vector in a sample). Then the 

vector is transformed by a linear transformation into a new vector, possibly of lower dimension, 

whose elements are uncorrelated with each other. The linear  transformation is found by 

computing the eigenvalue decomposition of the covariance matrix. For a zero-mean vector x, 

with n elements, the covariance matrix  Cx is given by:  
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                                                           Cx = E{xxT} = EDET                            (2.20) 

                        

             Where E = (e1,e2,….,en) =orthogonal matrix of eigenvectors o Cx 

                               D = diag(1
, ,

2 …, n
) = diagonal matrix of eigenvalue of Cx 

 

Whitening or sphering can be described as 

                                                           z = Px                                (2.21) 

 where P is the whitening matrix and z is a new matrix that is white.  

                                     P is defined as 

                                                         P = D-1/2
ET                            (2.22)  

 

Subsequent ICA estimation is done on z instead of x. For whitened data it is enough to find an 

orthogonal demixing matrix if the independent components are also assumed white.  

Dimensionality reduction can also be accomplished by methods other than PCA. These methods 

include local PCA and random projection. 

 

2.6 Algorithms for ICA  
 

 
Some of the ICA algorithms require a preprocessing of  observed data and some may not. 

Algorithms those need no preprocessing (centering and whitening), often converge better with 

whitened data. However in certain cases if it is necessary then sphered data is used otherwise no 

mention of sphering is done for cases where whitened is not required.  
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2.6.1 Nonlinear PCA Algorithm 

  
An approach to ICA that is related to PCA is the so called non-linear representation is sought for 

the input data that minimizes a least mean square error criterion. For linear case principal 

components are obtained and in some cases the nonlinear PCA approach gives independent 

components instead. A hierarchical PCA learning rule is given by 

                                                    

where  g is a suitable non- linear scalar function. The introduction of non- linearities means that 

the learning rule uses higher order information in the learning. It is proven that for well chosen 

non- linearities, the learning rule in above equation does indeed perform ICA, if the data is 

whitened.  

2.6.2 Non-linear cross correlation based Algorithm:  
 

 
Principle of cancellation of non- linear cross correlation is used to estimate independent 

components. Non-linear cross correlations are of the form E{ g1(yi), g2(yj)} where  g1 and g2 are 

some suitably chosen nonlinearities. If  i and j are independent, then these cross correlations are 

zero for  yi and  yj having symmetric densities. The objective function in such cases is formulated 

implicitly and exact objective function may not even exist. Jutten and Herault  used this principle 

to update the nondiagonal terms of the matrix according to  

 

                                              

 

(2.23)_ 

(2.24)_ 
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Here yi are computed at every iteration as Y = ( I + W )-1 and the diagonal terms Wii are set to 

zero. After convergence yi give the estimates of the independent components. However the 

algorithm converges only under severe restrictions. 

 

 

2.6.3 Nonlinear Decorrelation Algorithm  
 

 

To reduce the computational overhead by avoiding matrix inversions in Jutten- Herault algorithm 

and improve stability some algorithm has been proposed. In those the following algorithm has 

been proposed 

                                               

where ,  y = W x, the nonlinearities g1(.)  and  g2(.)  are applied separately on every component of 

the vector y, and the identity matrix can be replaced by any positive definite diagonal matrix. 

According to EASI algorithm,  

                                                 

The choice of the nonlinearities used in above rules is generally provided by the maximum 

likelihood (or infomax) approach. 

Other ICA algorithms that are available are :  Tensor based ICA Algorithm, One-unit neural 

learning rules, Infomax Estimation or Maximum Likelihood Algorithm, Algebraic ICA 

Algorithm, Evolutionary ICA Algorithm,and Fast ICA Algorithm.The Fast ICA algorithm is 

described in detail in the following chapter.  

 

 

 

(2.24)_ 

 (2.25)_ 
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2.7 Applications of ICA 

ICA being a blind statistical signal processing technique finds application in many application 

areas such as blind separation of mixed voices or images, analysis of several types of data , 

feature extraction , speech and image recognition, data communication ,sensor signal processing,  

system identification, biomedical signal processing  and several others .  

Biomedical signals such as electroencephalogram (EEG), magnetoencephalography 

(MEG), and electrocardiogram (ECG) are generally measured from clinical sensors or 

instruments; however measured signals are polluted by the aircrafts and other unknown noise 

signals, such as eye movements, muscle noise, and power noise from instruments. This problem 

can be solved by independent component analysis(ICA) algorithm, which identifies aircrafts 

from the measured signals. 

Another application area of great potential is telecommunications. An example of a real-

world communications application where blind separation techniques are useful is the separation 

of the user‘s own signal from the interfering other users‘ signals in CDMA (Code-Division 

Multiple Access) mobile communications. This problem is semi-blind in the sense that certain 

additional prior information is available on the CDMA data model. But the number of parameters 

to be estimated is often so high that suitable blind source separation techniques taking into account 

the available prior knowledge provide a clear performance improvement over more traditional 

estimation techniques. 

ICA is successfully used for face recognition. The goal in face recognition is to train a 

system that can recognize and classify familiar faces given a different image of the trained face. The 

test images may show the faces in a different pose or under different lighting conditions. Trad itional 

methods for face recognition have employed PCA-like methods. The rows of the face images 
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constitute the data matrix x. Performing ICA, a transformation W is learned so that u (u = Wx) 

represent the independent face images.  

A sensor network is a very recent, widely applicable and challenging field of research. 

Multi-sensor data often presents complementary information about the region surveyed and data 

fusion provides an effective method to enable comparison, interpretation and analysis of such data . 

Image and video fusion in a sub area of the more general topic of data fusion dealing with image and 

video data. ICA is also used for robust automatic speech recognition. Applications of ICA also 

include feature extraction in images and finding hidden factors in financial data.  

There are two thoughts with respect to what actually is the aim in estimating the  

independent components in the data. First, one may regard the data being generated by a  

combination of some existing but unknown independent source signals sj, and the task is to 

estimate them. This viewpoint is chosen in the so called blind source separation (BSS)  

framework — there are some sources which have been mixed, and the mixing process is 

completely unknown to us (hence the word ―blind‖). The application areas of ICA listed  above 

mostly fall into the BSS category.  

Another point of view is to regard ICA as a method of presenting the data in a more  

comprehensible way by revealing the hidden structure in the data and often reducing the  

dimensionality of the representation. According to this latter school of thought, it might well be 

that there are no ―true‖ source signals generating the data — it still pays to represent the data as a 

combination of a few latent factors that are statistically as independent as possible. This view can 

be called a data mining approach of the problem 
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3.1 Inroduction 

 
In the previous chapter, different measures of nongaussianity are introduced, i.e. objective 

functions for ICA estimation. In practice, one also needs an algorithm for maximizing the 

contrast function. In this section, we introduce a very efficient method of maximization suited for 

this task.  

 
3.2 Fast ICA for One Independent Component 

 

 Assume that we have collected a sample of  the sphere (or prewhitened) random vector x,which 

is in case of  blind source separation is a collection of linear mixture of independent source 

signals. The basic method of  Fast ICA  algorithm is as follows:  

    

1. Take a random initial vector w(0) and divide it by its norm. Let k = 1 . 

2. Let w(k) = E{Z[ZTw(k-1)] 3}- 3w(k-1)                                   (3.1) 

3. Divide w(k) by its norm . 

4. If  |w T  (k)w(k-1)| is not close enough to 1, let k = k+1, and go back to step 2.Otherwise    

the algorithm is convergent and outputs w(k) .   

The final vector w(k) given by the algorithm equals one of the columns of the (orthogonal) 

demixing matrix B. In case of  blind source separation, this means that w(k) separates one of the 

non-Gaussian source signals in the sense that  w(k)Tx(t), t = 1,2,…….  equals one of the source 

signals. 
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3.3 Fast ICA for Several Independent Components 

To estimate n independent components, run these algorithm n times. To ensure that we estimate 

each time a different independent component, we only need to add a simple orthogonalizing 

projection inside the loop. The column of the demixing matrix B is orthonormal because of the 

sphering. Thus we can estimate the independent components one by one by projecting the 

current solution w(k) on the space orthogonal to the columns of the  demixing matrix B 

previously found. Define the matrix B as the matrix whose columns are the previously found 

columns of B. 

Then adding the projection operation in the beginning of step 3.  

3.                                              (3.2) 

   Divide w(k) by its norm. 

Also the initial random vector should be projected this way before starting the iterations. 

To prevent estimation error in    from deteriorating the estimate w(k), this projection step can  be 

omitted after the first few iterations: once the solution w(k) has entered the basin of attraction of  

one of the fixed points, it will stay there and converge to that fixed point.  

In addition to the hierarchical (or sequential) orthogonalization described above, any 

other method of orthogonalizing the weight vectors could also be used. I n some applications, a 

symmetric orthogonalization might be useful. This means that the fixed point step is first 

performed for all the n weight vectors, and then the  matrix W(k) = ( w1(k),….. wn(k)) of the 

weight vector is orthogonalized, e.g., using the well known formula: 

  

                                 W(k) =  W(k) ( W(k)T W(k))1/2                            (3.3)                   

 

www BB
T


B
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Where ( W(k)T W(k))1/2  is obtained from the eigenvalue decomposition of  W(k)T W(k) = EDET  

as     ( W(k)T W(k))  1/2  = E D1/2 ET . 

 

3.4 A Semi-Adaptive Version 

A disadvantage of  many batch algorithms is  that large amount of  data must be stored 

simultaneously in working memory. The fixed point algorithm however, can be used in a semi-

adaptive manner so as to avoid this problem. This can simply be accomplished by computing the 

expectation E{x(w(k-1) Tx) 3 } by an on- line algorithm for N consecutive sample points, keeping 

w(k-1) fixed, and updating the vector w(k) after the average over all the N sample points has 

been computed. 

This semi-adaptive version also makes adaptation to non-stationary data possible. Thus the 

semi-adaptive algorithm combines many of the advantages usually attributed to either on- line or 

batch algorithms.  

 

3.5 Orthonormalization of Fast ICA Algorithm  

 
The Fast ICA algorithm is an iterative method to find the local maximum of a cost function 

defined by  

                                                       



n

I

T

iG
ZGE wJ

1

)(                       (3.4) 

With G an even symmetrical function. The symbol E stands for expectation, which in practice 

would be estimated by sample mean over the whitened vectors z . A widely used cost function is 

the fourth-order cumulant or kurtosis, defined for any random variable v as 
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                                                  vEvEvkurt 23)(
24

                    (3.5) 

With the constraint that the argument yw i

T

i
z  has unit variance the cost function becomes 
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kurt

G zwJ T
i

E
1

4

                         (3.6) 

For the one-unit case, in which only one of the rows of  W  is considered and orthogonalization 

is reduced to just normalization of the vector to unit length after each iteration step, the fastICA 

algorithm for the general cost function (1), the updating step is 

   

                                             wwww i

T

i

T

ii
zgEzzgE )()(                (3.7) 

With function g the derivative of G and g' the derivative of g. For the kurtosis cost function, the 

corresponding updating step is 

                                             wzww ii

T
i

zE 






 3

3

                      (3.8)                     
 

To obtain the full matrix W, we need to run the one-unit algorithm n times and the vector wi

must be reorthonormalized after the update because they lose their orthonormality in the 

updating step.  

The orthonormalization can be accomplished basically in two ways:  

1. Deflationary orthonormalization 

2. Symmetrical orthonormalization 
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3.5.1 Deflationary Orthonormalization 

The estimated components are obtained one by one in the FastICA algorithm with deflation 

orthonormalization. Deflationary orthonormalization is given by 

          

                                      wwwww jj

p

j

T

ppp
)(

1

1








                         (3.9)

 

                  With p the previously estimated vectors number. 

 

3.5.2 Symmetric Orthonormalization 

In certain applications, it may be desirable to use a symmetric decorrelation, in which no 

vectors are "privileged" over others; This means that the vectors wi
are not estimated one by one; 

instead, they are estimated in parallel. One motivation for this is that the deflationary method has 

the drawback that estimation errors in the first vectors are cumulated in the subsequent ones by 

the orthonormalization. Another one is that the symmetric orthonormalization methods enable 

parallel computation of independent components. 

 

Symmetric orthonormalization is given by 

                                            WTW WW
2/1

                                     (3.10) 

Where W  is the matrix with rows w i

T

. This means that the updating step is first performed for 

all the n weight vectors, and then the matrix W is orthogonalized using (3.10). 
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Symmetric orthonormalization is done by first doing the iterative step of the one-unit algorithm 

on every vector wi
 in parallel, and afterwards orthogonalizing all the wi

  by special symmetric 

methods. In other words: 

1) Initialize the wi
, i = 1,2,…..n(sample length) 

2) Do an iteration of a one-unit algorithm on every wi
 in parallel. 

3) Do a symmetric orthogonalization of the matrix W.  

4) If not converged, go back to step 3.  

 

3.6 Properties of  Fast ICA Algorithm 
 
 

The Fast ICA algorithm and the underlying contrast functions have a number of desirable 

properties when compared with existing methods for ICA. 

 

1.  The convergence is cubic (or at least quadratic), under the assumption of the ICA data 

model    This is in contrast to ordinary ICA algorithms based on (stochastic) gradient 

descent methods, where the convergence is only linear. This means a very fast 

convergence 

2.  Contrary to gradient-based algorithms, there are no step size parameters to choose. This 

means that the algorithm is easy to use. 

3. The algorithm finds directly independent components of (practically) any non-Gaussian 

distribution using any nonlinearity g. This is in contrast to many algorithms, where some 

estimate of the probability distribution function has to be first available, and the 

nonlinearity must be chosen accordingly.  
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4. The performance of the method can be optimized by choosing a suitable nonlinearity g. 

In particular, one can obtain algorithms that are robust and/or of minimum variance.  

5.  The independent components can be estimated one by one, which is roughly equivalent 

to doing projection pursuit. This is  useful in exploratory data analysis, and decreases the 

computational load of the method in cases where only some of the independent 

components need to be estimated. 

6.  The Fast ICA has most of the advantages of neural algorithms: It is parallel, distributed, 

computationally simple, and requires little memory space. Stochastic gradient methods 

seem to be preferable only if fast adaptively in a changing environment is required.  
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4.1 Introduction 

 
Many scientific problems require FP arithmetic with high precision in their calculations. 

Moreover a large dynamic range of numbers is necessary for signal processing.FP arithmetic has 

the ability to automatically scale numbers and allows numbers to be represented in a wider range 

than fixed-point arithmetic. Nevertheless, FP algorithm is difficult to implement on the FPGA, 

because the algorithm is so complex that the area (logic elements) of FPGA leads to excessive 

consumption when implemented. A simplified 32-bit FP implementation includes adder, 

subtractor, multiplier, divider, and square rooter.  

 

4.2 Floating Point Representation 

  The format of IEEE 745 standrd 32-bit FP number is given in Fig 4.1: 

 

               

    

          1 bit            8 bit                                   23 bits 
 

 
Fig. 4.1   IEEE 745 single precision FP format 

 

In it , s is th sign bit used to specify the sign of the FP number, e is the 8-bit quantity called the 

exponent field, and f has 23 bits used to store the binary representation of the FP number. The 

leading one in the mantisa 1.f does not appear in the representation; therefore, the leading one is 

implicit. The FP value of fp is computed by 

                                                  
)127(2).1()1( es ffp                 (4.1)      

s           e                         f 

Sign       Bias Exponent                                Fraction 
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4.3 Floating Point Adder/Subtractor  

 

 

 

 

 

         

 

 

Fig 4.2 Floating point Adder/Subtractor 

 

The block diagram of the FP adder is shown in Fig.4.2 ,which adds FP number fpA to fpB. The 

adder has three stages. The main work of stage 1 is to compare fpA with fpB. If  fpA is less than fpB, 

swap fpA and fpB Stage 2 processes the operations of 1. fA and 1. fB. If sA equals sB, add 1. fA to 1. 

fB, else subtract 1. fB from 1. fA. Stage 3 normalizes the result of stage 2 and then adjusts eY . 

Finally, packs sY, eY, and fY  to the output format, and output the adder result fpY. 

Basic Algorithm: 
 

 Subtract exponent(d = eA- eB). 

 Align significands. 

  shift right d positions the significand of the operand  with   the smallest exponent.   

Stage 1

(unpack)

Stage 3

(pack)

Stage 2

(operate)

fpA

fpB

fA

shift

fB fY

Exponent(e)

Sign(s)

fpY

add_sub
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  select as the exponent of the result the largest exponent.  

 Add(subtract) significands and produce sign of result.  

 Normalization of result and adjust the exponent.  

 Determine exception flags and special values.  

 

4.4 Floating Point Multiplier 

 

   

      
         

 
 

 
 
 

 
 

 
 

 

 
 

 
 

Basic Algorithm: 
 
 
 Multiply the significands. 

 Add the exponents. 

 Determine the sign of the result.  

 Normalization of result.  

Stage 1

(unpack)

Stage 3

(pack)

Stage 2

(operate)

fpA

fpB

fA

fB

fY

Exponent(e)

Sign(s)

fpY

     Fig .4.3   Floating point Multiplier 
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 Round. 

 Determine the exception flags and special values.  

 
 

4.5 Floating Point Divider 

 

 

 

 

 

 

 

 

                                                      

 

 

FP divider is more complex than FP adder, subtractor, and multiplier.The block diagram of the 

FP divider is given in Fig 4.4 Stage 1 unpacks fpi to si, ei, fi , and then subtracts exponents eB 

from eA. Stage 2 uses the nonrestoring division algorithm to implement the method of 1.fA 

divided by 1.fB . Stage 3, packs sY, eY, and fY  to the output format, and output the divider result 

fpY. 

 

 

 

Stage 1

(unpack)

Stage 3

(pack)

Stage 2

(operate)

fpA

fpB

fA

fB

fY

Exponent(e)

Sign(s)

fpY

Fig. 4.4  Floating point Divider 
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Basic Algorithm: 

 Divide significands. 

  Digit Recurrence Algorithm. 

          -   Restoring Division 

          -   Non-Restoring Division 

          -   SRT Division (Sweeney, Robertson, and Tocher) 

 Subtract exponent. 

 Normalization of result.  

 Round. 

 Determine exeption flags and special values.  

4.6 Floating point Square Rooter 

The block diagram of the FP square rooter is presented in Fig 4.5. Stage 1 unpacks fpA to sA, eA, 

fA, and then divides exponent eA by 2. Stages 2 implement the square rooting of  fA. Stage 3, packs 

sY, eY, and fY  to the output format, and output the square root result fpY. 

 

                    

                                                    Fig. 4.5 Floating point Square Rooter 
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Basic Algorithm: 

 Obtain the square root of the significand . 

  Radix-2 sqare root with carry-save adder. 

 produce the exponent of the result.  

 Normalize the result and update exponent.  

 Round. 

 Determine exception flags and special values 
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5.1 Introduction 

For real-time applications such as speech signal enhancement, and EEG/MEG essential 

features extraction for brain computer interface (BCI), the Fast ICA algorithm can be 

implemented  on a field-programmable gate array (FPGA) to speed up the operation. VLSI 

implementation offers many features such as high processing speed, which is extremely desired 

in Fast ICA implementations. The complex computation of Fast ICA is one of the main 

barricades in hardware implementation, especially in synthesis procedure. Therefore, hierarchy 

and modularity techniques in VLSI design are very much essential. The hierarchy involves 

dividing an ICA process into subprocessing modules until the complexity of the bottom level 

submodules becomes manageable. These submodules are independently developed, then 

integrated together . 

5.2 Implementation of Centering 

The process of centering is to subtract the mixed signal means μ1 and μ2 from x1 and x2, 

respectively. First the mixed signal elements are accumulated one by one. After getting the 

summation of x, μ is obtained by dividing the summation by the sample length. In order to speed 

up the processing, multiplication operation (multiply by 1/sample length) is used instead of the 

division. Second, the mean is subtracted from the mixed signal data for achieving centering. The 

operation is formulated as: 

 

                           )/1()()()(
1

thsamplelengixixix
thsampleleng

j














 



               (5.1) 

 

                              Where i = 1, 2,…..,sample length 
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5.3 Implementation of Whitening 

The first step of whitening is to find the whitening matrix P.  P is given by : 

                     

                                                P  =  ED
T


 2/1

                      (5.2)
 

Where      D = diag(  21
, ) = diagonal matrix of the covariance matrix CX‘s eigenvalues.  

                E =  (e1,e2) =  Orthogonal matrix of CX‘s eigenvectors.  

                CX = E{XXT} is a 22 matrix. 

 

It takes three multipliers to implement the calculation of  XXT . Multiplier-1 is used for  x1  x1 
. 

Multiplier-2 is used for x1  x2, and multiplier-3 is used for x2  x2, where  
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Fig 5.1 Block diagram of implementation of Centering 
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Because x1   x2 
equals x2  x1, it only needs to implement one of them. CX thus can be derived 

by multiplying summation by 1/sample length. This operation can be formulated as  
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                            (5.5) 

 

Once the covariance matrix is calculated, the next step is to determine the orthogonal matrix of 

eigenvectors of Cx (E) and the diagonal matrix of eigenvalues of Cx (D). 
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                                           CTS                                                      (5.9) 
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                                           D =  ET
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E ]                                    (5.11) 

 

                                       If  D = 
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                                         where        




1

2/1

1

1



     and      




2

2/1

2

1



 

       The whitening matrix P is thus obtained by multiplying D-1/2 by ET        

                                                                               

                                                          P = D-1/2 ET                           (5.13) 

Finally, the white data Z is obtained after multiplying P by X. 

 

                                                           Z = PX                              (5.14)  

 The implementation block diagram is presented in Fig 5.2.  
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5.4 Norm Calculation   

Initial random vector  w = 








w
w

2

1  is taken and norm of  w is determined. 

                                                wwwwwnorm
2211

_                    (5.15) 

 Dividing  w1
and w2

by its norm 
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Fig. 5.2 Block diagram of Implementation of Whitening 
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                                               w = 
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                         Fig.5.3 Block diagram of norm calculation 

 

5.5 Implementation of Kurtosis 

The equation for the calculation of separating vector w is expressed as 

   

                            )1(3)( )1(
3








  kwTEkw kwZZ              (5.17) 

 

The calculation of  )1(
3

 kwZ
TZ is first implemented and the concept is presented 

in Fig 5.4.  
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The operation can be formulated as 
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Where pre_w is the calculation result of 

(5.18) 
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W(k-1) Pre_w(k) 

Fig.5.4 Block diagram of  Implementation of  pre_w(k) 
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The implementation block of      )1(3)( )1(
3








  kwTZEkw kwZ  is presented in 

Fig.5 .5, where    )(_),(_)(_
21

3

)1( kprekprekwpreTZ wwkwZ  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

The normalized value w_new is compared with the old value w_old and if the values do not 

match then w_new fed back to the input of the block and also stored as w_old in a register for the 

purpose of comparison. When w_new = w_old then this value is given to the output as the 

converged vector w which gives one independent component. For finding the other independent 

component a new random vector w is assumed and it is decorrelated with the earlier w and is 

again put to the iteration process for getting an optimized converged value  

 For i=1 and 2 (for two mixed signals) 

Fig. 5.5 Block diagram of Implementation of w(k) 
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_1  are the new random vectors for second independent component 

                                 B = Bi   w                          (5.19) 

                                 w = w – B                           (5.20)  

     Norm of w is again determined. 

 

 

 

 

  

 

                                    

 

  

 

 

 

 

 

B1 For the first independent component 

For the second independent component B2 
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CHAPTER  

6 
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6.1 Simulation of Fast ICA (Using MATLAB) 

 
Simulation 1: 

 

In the simulation, sine and triangular waves generated from MATLAB source are taken as the 

source signals. Then, the mixed signals are produced by multiplying random mixing matrix and 

source signals. The sample length of mixed signal X and estimated independent components 

S_est are both 1000 in the simulation.  Fig 6.1(a) and 6.1(b) are the source signals: sine and 

triangular waves. Fig 6.1(c) and 6.1(d) shows the mixed signals. The demixing matrix B is found 

by the Fast ICA algorithm and the estimated independent component signals, shown in Fig 6.1(e) 

and 6.1(f), are derived by multiplying the demixing matrix B and mixed signals.  
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Fig. 6.1(a) Sine Wave (Source signal) 

Fig. 6.1(b) Sawtooth Wave (Source signal) 
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Fig. 6.1(c) Mixed signal 1 
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          Fig. 6.1(e) Estimated Sine wave  

Fig. 6.1(f) Estimated Saw tooth wave  
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Simulation 2: (Using Real-World Sound)  

 

In this simulation siren signal and speech signal are taken as the source signals. Fig 6.2(a), and 

6.2(b) shows the source signals: siren signal and speech signal respectively. The mixed signals 

shown in Fig 6.2(c) and 6.2(d), are generated by multiplying the randomly generated mixing 

matrix and the source signals. The estimated independent signals are shown in Fig 6.2(e), and 

6.2(f) respectively. Performance comparision, in terms of CPU time , of  deflation approach and 

symmetric approach of the Fast ICA algorithm is carried out taking this example. Table 6.1 

shows the comparative result of CPU time for both the approaches.  
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Fig. 6.2(a) Siren signal (source) 

Fig. 6.2(b) Speech signal (source) 
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Fig. 6.2(c) Mixed signal 1 

Fig. 6.2(d) Mixed signal 2 
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Fig. 6.2(e) Esimated siren signal  

Fig. 6.2(f) Esimated speech signal 
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FASTICA  APPROACH CPU TIME (in sec) 

Deflation approach                 146.60 

Symmetric approach                129.072 

 

              Table 6.1 Comparative result of CPU time by simulating Example 2 

6.2      VHDL simulation of Floating point arithmetic 

Floating point Adder/Subtractor: 

Operation of a floating point adder/subractor block has already been described in previous 

chapter. Input to this block are two floating point numbers, fpA and fpB and the output  fpY is 

either the sum or difference of these two numbers depending on the sign bit of the smaller 

number.  Here  for addition the two floating point numbers taken are  

 fpA = 2 = 0 10000000 00000000000000000000000    

 fpB = 5 = 0 10000001 01000000000000000000000 

                   and the output obtained is  fpY  = 7 = 0 10000001 11000000000000000000000 

                 

                   Timing diagram of  floating point adder is shown in Fig 6.3  
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For subtraction the two floating point inputs taken are   

 fpA = 5 = 0 10000001 01000000000000000000000    

 fpB = -2 = 1 10000000 00000000000000000000000 

                   and the output obtained is  fpY  = 3 = 0 10000000 10000000000000000000000 

 

                   Timing diagram of floating point adder is shown in Fig 6.4 

 

 

  

Fig 6.3 Timing diagram of Floating point Adder 

Fig 6.4 Timing diagram of Floating point Subtractor 
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Floating point Multiplier: 

   Inputs given to the FP Multiplier block are   

   fpA = 2 =  0 10000000 00000000000000000000000  

   fpB = 5 =  0 10000001 01000000000000000000000 

   and the output obtained is  prdt_f =  10 = 0 10000010 01000000000000000000000 

   Fig 6.5 shows the timing diagram of FP multiplication.  

 

 

 

 

 

   

 

 

 

 

 

 

Fig 6.5 Timing diagram of Floating point Multiplication 



 

57 
 

 

Floating point Division: 

 

 SRT division algorithm is used here to implement the method of 1.fpA divided by 1.fpB. 

 The inputs given to the FP division block are 

 

 fpA = 8 = 0 10000010 00000000000000000000000  

fpB = 2 = 0 10000000 00000000000000000000000 

and the output obtained is qout = 4 = 0 10000001 00000000000000000000000 

Timing diagram of FP division block is shown in Fig 6.6 

 

 

 

 

 

 

 

Fig 6.6 Timing diagram of FP division 
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Floating point Square-Rooter: 

 

 Input given to the FP Square-rooter block is fp =625 = 0 10001000 00111000100000000000000 

and  the output of this block i.e. the sruare root of fp obtained is  

qout = 25 = 0 10000001 10010000000000000000000 

  Timing diagram of FP square-rooter is shown in Fig 6.7 

  

 

 

 

 

 

 

 

 

Fig 6.7 Timing diagram of FP Square-rooter 



 

59 
 

6.3 VHDL Simulation of  Different Modules of Fast  ICA 

Algorithm 

 

Centering and Whitening: 

 
Block diagram of implementation of centering and whitening has already been shown in the 

previous chapter. Input to this block are the mixed signal (X) components and output of  this 

block are the components of  the whitened signal  (Z),which is produced by multiplying the  

whitening matrix and the centered mixed signal. Timing diagram of centering and whitening 

operation is shown in Fig 6.8. 

 

 

 

 

Fig 6.8 Timing diagram of centering and whitening module 
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Calculation of pre_w (k): 

 Initially some randomly generated value of w1(0) and w2(0) are given as input to this 

block. These two values operate with the whitened signal components which are given as vector 

input (z1 and z2) to this block and finally gives pre_w1(1) and pre_w2(1) as its output. These two 

value of pre_w are again given as input to another block shown in Fig. 5(e) to produce 

w(k).Then the corresponding values of w(k) are  given as input to this block to get the 

corresponding pre_w1(k) and pre_w2(k).Timing diagram of this module is shown in Fig 6.9. 

                               

 

 

 

 

 

 

Fig 6.9 Timing diagram of  Pre_w calculation Module 
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Calculation of w (k): 

Once the calculation of pre_w(k) is over, the next step is to determine the new value of 

w(k). Block diagram of implementation of this operation has already been shown in the previous 

chapter. Fig 6.10 shows the timing diagram of this block. Input to this block are pre_w1(k) and 

pre_w2(k) which have  already been determined in the previous module and the output of this 

block are the new values of w1(k) and w2(k) which are  then normalized. 

 

 

 

 

 

 

 

 

 

 

Fig 6.10 Timing diagram of w(k) calculation Module 
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7.1 CONCLUSION 

Ways needed in fast ICA algorithm for decorrelation of the separating matrix can be 

deflationary or symmetric orthogonalization. In some applications, it may be preferable to use 

the fast ICA algorithm with symmetric orthonormalization, in which every vector is impartially 

treated and the parallel computation of independent components is enabled. Extensive simulation 

studies reveal that  symmetric approach has a better performance as compared to  deflation 

approach, in terms of CPU time. The 32 bit floating-point (FP) arithmetic is implemented by 

hand coding HDL code to provide better  precision and higher dynamic performance. VLSI 

implementation of Fast ICA algorithm offers many features such as high processing speed, 

which is extremely desired in many applications. In order to reduce the complexity, the Fast ICA  

block is divided into several sub modules and each of the sub modules are developed by HDL 

coding. 
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7.2 SCOPE FOR FUTURE WORK 

The proposed research can be extended in following dimensions. 

A pipeline architecture of the Fast ICA algorithm can be developed for real-time sequential 

mixed signal processing. An extended implementation of Fast ICA algorithm based on the 

proposed modules can be done for higher dimension (more than two souces and mixtures).VLSI 

implementation of different ICA technique can be carried out.  
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