
FAST ICA FOR BLIND SOURCE

SEPARATION AND ITS IMPLEMENTATION

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF TECHNOLOGY

IN

VLSI DESIGN AND EMBEDDED SYSTEM

BY

SASMITA KUMARI BEHERA

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela-769008

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FAST ICA FOR BLIND SOURCE

SEPARATION AND ITS IMPLEMENTATION

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF TECHNOLOGY

IN

VLSI DESIGN AND EMBEDDED SYSTEM

BY

SASMITA KUMARI BEHERA

Under the guidance of

Prof. Ganapati Panda

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela-769008

2009

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Fast ICA for Blind Source Separation and its

Implementation” submitted by Miss Sasmita Kumari Behera in partial fulfillment of the

requirements for the award of Master of Technology Degree in Electronics and

Communication Engineering with specialization in “VLSI Design and Embedded System”

during 2008-2009 at the National Institute of Technology, Rourkela (Deemed University) is an

authentic work carried out by her under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University/ Institute for the award of any degree or diploma.

Date: 15/05/09 Prof. G. Panda (FNAE, FNASc)

Dept. of Electronics & comm. Engineering

National Institute of Technology, Rourkela

Rourkela - 769008

 Orissa, India

ACKNOWLEDGEMENTS

First of all, I would like to express my deep sense of respect and gratitude towards my

advisor and guide Prof. Ganapati Panda, who has been the guiding force behind this work. I

am greatly indebted to him for his constant encouragement, invaluable advice and for propelling

me further in every aspect of my academic life. His presence and optimism have provided an

invaluable influence on my career and outlook for the future. I consider it my good fortune to

have got an opportunity to work with such a wonderful person.

Next, I want to express my respects to Prof. S.K. Patra, Prof. K.K.Mohapatra,

Prof. G. S. Rath, Prof. D.P.Acharya , Prof. S.K.Behera, and Dr. S. Meher for teaching me

and also helping me how to learn. They have been great sources of inspiration to me and I thank

them from the bottom of my heart.

I would like to thank all faculty members and staff of the Department of Electronics and

Communication Engineering, N.I.T. Rourkela for their generous help in various ways for the

completion of this thesis.

I would also like to mention the name of Jitendra Kumar Das for helping me a lot

during the thesis period.

I would like to thank all my friends and especially my classmates for all the thoughtful

and mind stimulating discussions we had, which prompted us to think beyond the obvious. I’ve

enjoyed their companionship so much during my stay at NIT, Rourkela.

I am especially indebted to my parents for their love, sacrifice, and support.

Sasmita Kumari Behera

 Roll No: 207EC210

I

CONTENTS

ABSTRACT IV

LIST OF FIGURES AND TABLE V

CHAPTER 1

INTRODUCTION 1

 1.1 MOTIVATION 2

 1.2 SCOPE OF THE THESIS 2

 1.3 THESIS ORGANIZATION 3

CHAPTER 2

 INDEPENDENT COMPONENT ANALYSIS 4

 2.1 INRODUCTION 5

 2.2 STATISTICAL INDEPENDENCE 6

 2.3 CENTRAL LIMIT THEOREM 7

 2.4 CONTRAST FUNCTION FOR ICA 9

 2.4.1 MEASURING NON-GAUSSIANITY 9

 2.4.2 MINIMIZATION OF MUTUAL INFORMATION 12

 2.5 DATA PREPROCESSING FOR ICA 14

 2.5.1 PRINCIPAL COMPONENT ANALYSIS 14

 2.6 ALGORITHMS FOR ICA 15

 2.6.1 NONLINEAR PCA ALGORITHM 16

 2.6.2 NONLINEAR CROSS-CORRELATION ALGORITHM 16

 2.6.3 NONLINEAR DECORRELATION ALGORITHM 17

 2.7 APPLICATION OF ICA 18

II

CHAPTER 3

FAST ICA ALGORITHM 20

 3.1 INTRODUCTION 21

 3.2 FAST ICA FOR ONE INDEPENDENT COMPONENT 21

 3.3 FAST ICA FOR SEVERAL INDEPENDENT COMPONENT 22

 3.4 A SEMI-ADAPTIVE VERSION 23

 3.5 ORTHONORMALIZATION OF FASTICA ALGORITHM 23

 3.5.1 DEFLATIONARY APPROACH 25

 3.5.2 SYMMETRIC APPROACH 25

 3.6 PROPERTIES OF FAST ICA ALGORITHM 26

CHAPTER 4

IMPLEMENTATION OF FLOATING POINT ARITHMETIC 28

 4.1 INTRODUCTION 29

 4.2 FLOATING POINT REPRESENTATION 29

 4.3 FLOATING POINT ADDER/SUBTRACTOR 30

 4.4 FLOATING POINT MULTIPLIER 31

 4.5 FLOATING POINT DIVIDER 32

 4.6 FLOATING POINT SQUARE ROOTER 33

CHAPTER 5

IMPLEMENTATION OF FAST ICA ALGORITHM 35

 5.1 INTRODUCTION 36

 5.2 IMPLEMENTATION OF CENTERING 36

 5.3 IMPLEMENTATION OF WHITENING 37

III

 5.4 NORM CALCULATION 40

 5.5 IMPLEMENTATION OF KURTOSIS 41

CHAPTER 6

RESULT AND DISCUSSION 45

 6.1 SIMULATION OF FAST ICA ALGORITHM (USING MATLAB) 46

 6.2 VHDL SIMULATION OF FLOATING POINT ARITHMETIC 54

 6.3 VHDL SIMULATION OF DIFFERENT MODULES OF FAST ICA ALGORITHM 59

CHAPTER 7

CONCLUSION 62

7.1 CONCLUSION 63

7.2 SCOPE FOR FUTURE WORK 64

REFERENCES 65

IV

ABSTRACT

Independent Component Analysis (ICA) is a statistical signal processing technique having

emerging new practical application areas, such as blind signal separation such as mixed voices or

images, analysis of several types of data or feature extraction. Fast independent component

analysis (Fast ICA) is one of the most efficient ICA technique. Fast ICA algorithm separates the

independent sources from their mixtures by measuring non-gaussian. Fast ICA is a common

method to identify aircrafts and interference from their mixtures such as electroencephalogram

(EEG), magnetoencephalography (MEG), and electrocardiogram (ECG). Therefore, it is valuable

to implement Fast ICA for real-time signal processing. In this thesis, the Fast ICA algorithm is

implemented by hand coding HDL code. In addition, in order to increase the number of

precision, the floating point (FP) arithmetic units are also implemented by HDL coding.To verify

the algorithm, MATLAB simulations are also performed for both off line signal rocessing and

real-time signal processing.

V

LIST OF FIGURES/TABLE

Figure no. Figure Title Page no.

Figure 1 BSS using ICA algorithm 6

Figure 4.1 IEEE 745 single precission FP format 29

Figure 4.2 Floating point Adder/Subtractor 30

Figure 4.3 Floating point Multiplier 31

Figure 4.4 Floating point Divider 32

Figure 4.5 Floating point Square Rooter 33

Figure 5.1 Block diagram of implementation of Centering 37

Figure 5.2 Block diagram of Implementation of Whitening 40

Figure 5.3 Block diagram of norm calculation 41

Figure 5.4 Block diagram of Implementation of pre_w(k) 42

Figure 5.5 Block diagram of Implementation of w(k) 43

Figure 6.1(a) Sine Wave (Source signal) 47

Figure 6.1(b) Sawtooth Wave (Source signal) 47

Figure 6.1(c) Mixed signal 1 48

Figure 6.1(d) Mixed signal 2 48

Figure 6.1(e) Estimated Sine wave 49

VI

Figure 6.1(f) Estimated Sawtooth wave 49

Figure 6.2(a) Siren signal (source) 51

Figure 6.2(b) Speech signal (source) 51

Figure 6.2(c) Mixed signal 1 52

Figure 6.2(d) Mixed signal 2 52

Figure 6.2(e) Esimated siren signal 53

Figure 6.2(f) Esimated speech signal 53

Figure 6.3 Timimg diagram of Floating point Adder 55

Figure 6.4 Timing diagram of Floating point Subtractor 55

Figure 6.5 Timing diagram of Floating point Multiplication 56

Figure 6.6 Timing diagram of FP division 57

Figure 6.7 Timing diagram of FP Square-rooter 58

Figure 6.8 Timing diagram of centering and whitening module 59

Figure 6.9 Timing diagram of Pre_w calculation Module 60

Figure 6.10 Timing diagram of w(k) calculation Module 61

Table 6.1 Comparative result of CPU time by simulating Example 2 54

1

CHAPTER

1

INTRODUCTION

2

1.1 MOTIVATION

This thesis addresses the problem of blind signal separation (BSS) using Fast independent

component analysis (Fast ICA). In blind signal separation, signals from multiple sources arrive

simultaneously at the receiver array, so that each receiver array output contains a mixture of

source signals. Sets of receiver outputs are processed to recover the source signals or to identify

the mixing system. The term blind refers to the fact that no explicit knowledge of source signals

or mixing system is available. Independent component analysis approach uses statistical

independence of the source signals to solve the blind signal separation problems. Application

domains include communications, biomedical, audio, image, and sensor array signal processing.

Fast ICA algorithm improves the efficiency of independent component analysis. However, most

of the publication focused on offline signal processing using Fast ICA algorithm. It can not be

applied to real-time applications such as speech signal enhancement and EEG/MEG essential

features extraction for brain computer interface (BCI). In order to realize the real- time signal

processing, the Fast ICA algorithm can be implemented on a field-programmable gate array

(FPGA) to speed up the computations involved.

1.2 SCOPE OF THE THESIS

For real-time signal processing, the Fast ICA algorithm can be implemented on a field

programmable gate array (FPGA).The focus of this project is to implement the hardware Fast

ICA by hand coding HDL code. Though there is software that translates the high- level languages

such as C code, MATLAB, and even Simulink into HDL code, hand coding gives the

implementation not only better performance but also less consumption of gate array in the

3

FPGA. In addition, the numbers precision in hardware Fast ICA is increased by implementing

the hardware floating point (FP) arithmetic by hand coding HDL code. The FP arithmetic allows

numbers to be represented in a wider range than fixed point arithmetic. The hardware of

implementation is partitioned into modules to simplify the implementation.

1.3 THESIS ORGANIZATION

This thesis is organized as follows:

In chapter 2, the basic principle behind the independent component analysis (ICA) technique is

discussed. Various contrast functions available for ICA are described. Different existing

algorithms for ICA are briefly illustrated. Finally the application domain of ICA technique is

presented.

In chapter 3, background of Fast ICA algorithm is described. Different normalization

approaches of Fast ICA algorithm are discussed. Finally the properties of Fast ICA algorithm

are presented in this chapter.

In chapter 4, implementation of FP arithmetic is presented.

In chapter 5, implementation of Fast ICA algorithm is presented.

In chapter 6, simulation results are given. The results include simulations done in both

MATLAB and VHDL. Comparative performance in terms of CPU time for deflation approach

and symmetric approach of Fast ICA algorithm is also given in this chapter.

Finally we conclude in chapter 7.

4

CHAPTER

 2

INDEPENDENT

COMPONENT ANALYSIS

5

2.1 Introduction

Independent component analysis (ICA) is a well-known method of finding latent structure in

data. ICA is a statistical method that expresses a set of multidimensional observations as a

combination of unknown latent variables. These underlying latent variables are called sources or

independent components and they are assumed to be statistically independent of each other. The

ICA model is

 x = f (θ, s) (2.1)

where x = (x1, . . . , xm) is an observed vector and f is a general unknown function with

parameters θ that operates on statistically independent latent variables listed in the vector

s = (s1, . . . , sn).A special case of (2.1) is obtained when the function is linear, and we can write

 x = As (2.2)

where A is an unknown m×n mixing matrix. In Formulae (2.1) and (2.2) we consider x and s as

random vectors. When a sample of observations X = (x1, . . . , xN) becomes available, we write

X = AS where the matrix X has observations x as its columns and similarly the matrix S has

latent variable vectors s as its columns. The mixing matrix A is constant for all observations.

 If both the original sources S and the way the sources were mixed are all unkown, and only

mixed signals or mixtures X can be measured and observed, then the estimation of A and S is

known as blind source separation (BSS) problem.

6

 Fig.1. BSS using ICA algorithm

The linear model (2.2) is identifiable under the following fundamental restrictions : the sources

(i.e. the components of S) are statistically independent, at most one of the independent

components sj may be Gaussian, and the mixing matrix A must be of full column rank. The

identifiability of the model is proved in the case n = m and for those source densities whose

variance is defined.

ICA Definition : “Independent Component Analysis (ICA) is a method for finding underlying

factors or components from multivariate (multi-dimensional) statistical data. What distinguishes

ICA from other methods is that it looks for components that are both statistically independent

and non-Gaussian.”

2.2 Statistical Independence

Statistical independence is the key foundation of independent component analysis. For the case

of two different random variables x and y , x is independent of the value of y if knowing the

value of y does not give any information on the value of x . Statistical independence is defined

mathematically in terms of the probability densities as: the random variables and are said to be

independent if and only if

)()(),(
,

yxyx PPP Yxyx
 (2.3)

Unknown

Source

Signal

Unknown

Mixing

Matrix

Unknown

Source

Signal

S X

 S

B

 S

A

 S

S_est S

7

where),(
,

yxP yx
 is the joint density of x and y ,)(xPx

and)(yPy
 are marginal probability

densities of x and y respectively. Marginal probability density function of x is defined as

 dyyxx PP yxx
),()(

, (2.4)

Considering a random vector s = [s1, s2,…….. ,sN]
T

with multivariate density P(s), has statistically

independent components if the density can be factorized as

 sP i

N

i
i

sP

1

)((2.5)

Otherway stated, the density of s1 is unaffected by s2 ,when two variables s1 and s 2are independent.

Statistical independence is a much stronger property than uncorrelatedness which takes into account

the second order statistics only. If the variables are independent, they are uncorrelated but the

converse is not true.

2.3 Central Limit Theorem

The central limit theorem is the most popular theorem in statistical theory and plays an important

role in ICA. According to it let

k

i
ik zx

1

 (2.6)

8

be a partial sum of sequence {Zi } of independent and identically distributed random variables Zi.

Since the mean and variance of Xk can grow without bound as k , consider the

standardized variables Yk instead of Xk,

 X

X

k

k
mX

Y
k

k

 (2.7)

where mX k

 and X k

are mean and variance of Xk .The distribution of Yk converges to a

Gaussian distribution with zero mean and unit variance when K .

This theorem has a very crucial role in ICA and BSS. A typical mixture or component of the

data vector x is of the form

 sax j

N

j
iji

1

 (2.8)

where a ij
, j = 1,2,….N are constant mixing coefficients and s j

, j = 1,2,…N are the N

unknown source signals. The central limit theorem can be stated as ―the sum of even two

independent identically distributed random variables is more Gaussian than the original random

variables‖. This implies that independent random variables are more non-gaussian than their

mixtures. Hence non-gaussianity is independence.

9

2.4 Contrast Functions for ICA

The data model for independent component analysis is estimated by formulating an objective

function and then minimizing or maximizing it. Such a function is often called a contrast

function or cost function or objective function. The optimization of the contrast function enables

the estimation of the independent components. The ICA method combines the choice of an

objective function and an optimization algorithm. The statistical properties like consistency,

asymptotic variance, and robustness of the ICA technique depend on the choice of the objective

function and the algorithmic properties like convergence speed, memory requirements, and

numerical stability depend on the optimization algorithm. The contrast function in some way or

other is a measure of independence. In this section different measures of independence is

discussed which is frequently used as contrast functions for ICA.

2.4.1 Measuring Nongaussianity

 1. Kurtosis:

 According to the Central limit theorem, nongaussianity is a strong measure of

independence. Traditional higher order statistics uses kurtosis or the named fourth-order

cumulant to measure non-gaussianity. The kurtosis of a zero-mean random variable v is defined

by

 vEvEvkurt 23)(

24

 (2.9)

 Where E{v4} = fourh moment of v

10

 E{v2} = second moment of v

For a gaussian random variable v, the E{v4} equals 3(E{v2})2, so that the kurtosis is zero for a

gaussian random variable. If v is a non-gaussian random variable, its kurtosis is either positive or

negative. Particularly when kurtosis value is positive the random variables are called

supergaussian or leptokurtic and when negative called subgaussian or platykurtic. Supergaussian

random variables have a ‗spiky‗ probability density function with heavy tails and subgaussian

random variables have a flat probability density function. Thereore, non-gaussianity is measured

by the absolute value of kurtosis.

 2. Negentropy:

A second very important measure of nongaussianity is given by negentropy. Negentropy is based

on the information-theoretic quantity of (differential) entropy. The entropy of a random variable

can be interpreted as the degree of information that the observation of the variable gives. The

more random, i.e. unpredictable and unstructured the variable is, the larger its entropy. A

fundamental result of information theory is that a gaussian variable has the largest entropy

among all random variables of equal variance. This means that entropy could be used as a

measure of nongaussianity. In fact, this shows that the gaussian distribution is the ―most random‖

or the least structured of all distributions. The differential entropy H of a random variable v with

a density of f(v) is given by

 dvvfvfvH)(log)()((2.10)

11

To obtain a measure of nongaussianity that is zero for a gaussian variable and always

nonnegative, one often uses a slightly modified version of the definition of differential entropy,

called negentropy. Negentropy J is defined as follows

)()()(vHHvJ vGauss
 (2.11)

where vGauss is a Gaussian random variable of the same covariance matrix as v. Negentropy is

always non-negative, and it is zero if and only if y has a Gaussian distribution.

The advantage of using negentropy as a measure of nongaussianity is that it is well justified by

statistical theory. In fact, negentropy is in some sense the optimal estimator of nongaussianity, as

far as statistical properties are concerned. The problem in using negentropy is, however, that it is

computationally very difficult.

 Approximations of negentropy

The estimation of negentropy is very difficult. In practice, some approximation have to be used.

These approximation were based on the maximum-entropy principle. In general we obtain the

following approximation:

 vGEyGE
i

KyH
2

)((2.11)

where K is some positive constants, and v is a Gaussian variable of zero mean and unit variance.

12

The variable y is assumed to be of zero mean and unit variance, and the functions G is some

nonquadratic functions.

choosing G wisely, one obtains approximations of negentropy that are much better. If G is

choosen such that it does not grow too fast, one obtains more robust estimators. The following

choices of G have proved very useful:

 vv a
a

G 1

1

1
coshlog

1
)((2.12)

2
exp

1
)(

2

2

2

2

va
a

G v (2.13)

 vG v
4

3 4

1
)((2.14)

 Where a1
 and a2

are some suitable constants.

2.4.2 Minimization of Mutual Information

Another approach for ICA estimation, inspired by information theory, is minimization of mutual

information.

Mutual Information:

Mutual information is a natural measure of dependency between random variables, i.e. it is a

measure of the information that member of a set of random variables have on the other random

variable in the set. It is always non-negative, and zero if and only if the variables are statistically

independent.

If y is a n-dimensional random variable and f(y) its probability density function then vector y

has mutually independent components if and only if

13

)(....)()()(
21

yyy
n

fffyf (2.16)

A natural way of checking whether y has ICs is to measure a distance between both sides of

above equation

))(),(())((y
i

fyfyfI (2.17)

Average mutual information of y is given by

 dy
yf

yf
yfyfI

)(

)(
log)())(((2.18)

Average mutual information vanishes if and only if the variables are mutually independent and

strictly positive otherwise. In terms of negentropy mutual information is written as

)()(),...,,(
1

21

m

i
im

yyyy HyHI (2.19)

But the contrast functions based on mutual information discussed above require the estimation of

the density function and this has severely restricted the use of these contrast functions.

14

2.5 Data preprocessing for ICA

It is often beneficial to reduce the dimensionality of the data before performing ICA. It might be

well that there are only a few latent components in the high-dimensional observed data, and the

structure of the data can be presented in a compressed format. Estimating ICA in the original,

high-dimensional space may lead to poor results. For example, several of the original dimensions

may contain only noise. Also, over learning is likely to take place in ICA if the number of the

model parameters (i.e., the size of the mixing matrix) is large compared to the number of

observed data points. Care must be taken, though, so that only the redundant dimensions are

removed and the structure of the data is not flattened as the data are projected to a lower

dimensional space. In this section two methods of dimensionality reduction are discussed:

principal component analysis and random projection.

In addition to dimensionality reduction, another often used preprocessing step in ICA is to make

the observed signals zero mean and decorrelate them. The decorrelation removes the second-

order dependencies between the observed signals. It is often accomplished by principal

component analysis which will be briefly described next.

2.5.1 Principal component analysis

In principal component analysis (PCA) , an observed vector x is first centered by removing its

mean (in practice, the mean is estimated as the average value of the vector in a sample). Then the

vector is transformed by a linear transformation into a new vector, possibly of lower dimension,

whose elements are uncorrelated with each other. The linear transformation is found by

computing the eigenvalue decomposition of the covariance matrix. For a zero-mean vector x,

with n elements, the covariance matrix Cx is given by:

15

 Cx = E{xxT} = EDET (2.20)

 Where E = (e1,e2,….,en) =orthogonal matrix of eigenvectors o Cx

 D = diag(1
, ,

2 …, n
) = diagonal matrix of eigenvalue of Cx

Whitening or sphering can be described as

 z = Px (2.21)

 where P is the whitening matrix and z is a new matrix that is white.

 P is defined as

 P = D-1/2
ET (2.22)

Subsequent ICA estimation is done on z instead of x. For whitened data it is enough to find an

orthogonal demixing matrix if the independent components are also assumed white.

Dimensionality reduction can also be accomplished by methods other than PCA. These methods

include local PCA and random projection.

2.6 Algorithms for ICA

Some of the ICA algorithms require a preprocessing of observed data and some may not.

Algorithms those need no preprocessing (centering and whitening), often converge better with

whitened data. However in certain cases if it is necessary then sphered data is used otherwise no

mention of sphering is done for cases where whitened is not required.

16

2.6.1 Nonlinear PCA Algorithm

An approach to ICA that is related to PCA is the so called non-linear representation is sought for

the input data that minimizes a least mean square error criterion. For linear case principal

components are obtained and in some cases the nonlinear PCA approach gives independent

components instead. A hierarchical PCA learning rule is given by

where g is a suitable non- linear scalar function. The introduction of non- linearities means that

the learning rule uses higher order information in the learning. It is proven that for well chosen

non- linearities, the learning rule in above equation does indeed perform ICA, if the data is

whitened.

2.6.2 Non-linear cross correlation based Algorithm:

Principle of cancellation of non- linear cross correlation is used to estimate independent

components. Non-linear cross correlations are of the form E{ g1(yi), g2(yj)} where g1 and g2 are

some suitably chosen nonlinearities. If i and j are independent, then these cross correlations are

zero for yi and yj having symmetric densities. The objective function in such cases is formulated

implicitly and exact objective function may not even exist. Jutten and Herault used this principle

to update the nondiagonal terms of the matrix according to

(2.23)_

(2.24)_

17

Here yi are computed at every iteration as Y = (I + W)-1 and the diagonal terms Wii are set to

zero. After convergence yi give the estimates of the independent components. However the

algorithm converges only under severe restrictions.

2.6.3 Nonlinear Decorrelation Algorithm

To reduce the computational overhead by avoiding matrix inversions in Jutten- Herault algorithm

and improve stability some algorithm has been proposed. In those the following algorithm has

been proposed

where , y = W x, the nonlinearities g1(.) and g2(.) are applied separately on every component of

the vector y, and the identity matrix can be replaced by any positive definite diagonal matrix.

According to EASI algorithm,

The choice of the nonlinearities used in above rules is generally provided by the maximum

likelihood (or infomax) approach.

Other ICA algorithms that are available are : Tensor based ICA Algorithm, One-unit neural

learning rules, Infomax Estimation or Maximum Likelihood Algorithm, Algebraic ICA

Algorithm, Evolutionary ICA Algorithm,and Fast ICA Algorithm.The Fast ICA algorithm is

described in detail in the following chapter.

(2.24)_

 (2.25)_

18

2.7 Applications of ICA

ICA being a blind statistical signal processing technique finds application in many application

areas such as blind separation of mixed voices or images, analysis of several types of data ,

feature extraction , speech and image recognition, data communication ,sensor signal processing,

system identification, biomedical signal processing and several others .

Biomedical signals such as electroencephalogram (EEG), magnetoencephalography

(MEG), and electrocardiogram (ECG) are generally measured from clinical sensors or

instruments; however measured signals are polluted by the aircrafts and other unknown noise

signals, such as eye movements, muscle noise, and power noise from instruments. This problem

can be solved by independent component analysis(ICA) algorithm, which identifies aircrafts

from the measured signals.

Another application area of great potential is telecommunications. An example of a real-

world communications application where blind separation techniques are useful is the separation

of the user‘s own signal from the interfering other users‘ signals in CDMA (Code-Division

Multiple Access) mobile communications. This problem is semi-blind in the sense that certain

additional prior information is available on the CDMA data model. But the number of parameters

to be estimated is often so high that suitable blind source separation techniques taking into account

the available prior knowledge provide a clear performance improvement over more traditional

estimation techniques.

ICA is successfully used for face recognition. The goal in face recognition is to train a

system that can recognize and classify familiar faces given a different image of the trained face. The

test images may show the faces in a different pose or under different lighting conditions. Trad itional

methods for face recognition have employed PCA-like methods. The rows of the face images

19

constitute the data matrix x. Performing ICA, a transformation W is learned so that u (u = Wx)

represent the independent face images.

A sensor network is a very recent, widely applicable and challenging field of research.

Multi-sensor data often presents complementary information about the region surveyed and data

fusion provides an effective method to enable comparison, interpretation and analysis of such data .

Image and video fusion in a sub area of the more general topic of data fusion dealing with image and

video data. ICA is also used for robust automatic speech recognition. Applications of ICA also

include feature extraction in images and finding hidden factors in financial data.

There are two thoughts with respect to what actually is the aim in estimating the

independent components in the data. First, one may regard the data being generated by a

combination of some existing but unknown independent source signals sj, and the task is to

estimate them. This viewpoint is chosen in the so called blind source separation (BSS)

framework — there are some sources which have been mixed, and the mixing process is

completely unknown to us (hence the word ―blind‖). The application areas of ICA listed above

mostly fall into the BSS category.

Another point of view is to regard ICA as a method of presenting the data in a more

comprehensible way by revealing the hidden structure in the data and often reducing the

dimensionality of the representation. According to this latter school of thought, it might well be

that there are no ―true‖ source signals generating the data — it still pays to represent the data as a

combination of a few latent factors that are statistically as independent as possible. This view can

be called a data mining approach of the problem

20

CHAPTER

3
 FAST ICA

ALGORITHM

21

3.1 Inroduction

In the previous chapter, different measures of nongaussianity are introduced, i.e. objective

functions for ICA estimation. In practice, one also needs an algorithm for maximizing the

contrast function. In this section, we introduce a very efficient method of maximization suited for

this task.

3.2 Fast ICA for One Independent Component

 Assume that we have collected a sample of the sphere (or prewhitened) random vector x,which

is in case of blind source separation is a collection of linear mixture of independent source

signals. The basic method of Fast ICA algorithm is as follows:

1. Take a random initial vector w(0) and divide it by its norm. Let k = 1 .

2. Let w(k) = E{Z[ZTw(k-1)] 3}- 3w(k-1) (3.1)

3. Divide w(k) by its norm .

4. If |w T (k)w(k-1)| is not close enough to 1, let k = k+1, and go back to step 2.Otherwise

the algorithm is convergent and outputs w(k) .

The final vector w(k) given by the algorithm equals one of the columns of the (orthogonal)

demixing matrix B. In case of blind source separation, this means that w(k) separates one of the

non-Gaussian source signals in the sense that w(k)Tx(t), t = 1,2,……. equals one of the source

signals.

22

3.3 Fast ICA for Several Independent Components

To estimate n independent components, run these algorithm n times. To ensure that we estimate

each time a different independent component, we only need to add a simple orthogonalizing

projection inside the loop. The column of the demixing matrix B is orthonormal because of the

sphering. Thus we can estimate the independent components one by one by projecting the

current solution w(k) on the space orthogonal to the columns of the demixing matrix B

previously found. Define the matrix B as the matrix whose columns are the previously found

columns of B.

Then adding the projection operation in the beginning of step 3.

3. (3.2)

 Divide w(k) by its norm.

Also the initial random vector should be projected this way before starting the iterations.

To prevent estimation error in from deteriorating the estimate w(k), this projection step can be

omitted after the first few iterations: once the solution w(k) has entered the basin of attraction of

one of the fixed points, it will stay there and converge to that fixed point.

In addition to the hierarchical (or sequential) orthogonalization described above, any

other method of orthogonalizing the weight vectors could also be used. I n some applications, a

symmetric orthogonalization might be useful. This means that the fixed point step is first

performed for all the n weight vectors, and then the matrix W(k) = (w1(k),….. wn(k)) of the

weight vector is orthogonalized, e.g., using the well known formula:

 W(k) = W(k) (W(k)T W(k))1/2 (3.3)

www BB
T

B

23

Where (W(k)T W(k))1/2 is obtained from the eigenvalue decomposition of W(k)T W(k) = EDET

as (W(k)T W(k)) 1/2 = E D1/2 ET .

3.4 A Semi-Adaptive Version

A disadvantage of many batch algorithms is that large amount of data must be stored

simultaneously in working memory. The fixed point algorithm however, can be used in a semi-

adaptive manner so as to avoid this problem. This can simply be accomplished by computing the

expectation E{x(w(k-1) Tx) 3 } by an on- line algorithm for N consecutive sample points, keeping

w(k-1) fixed, and updating the vector w(k) after the average over all the N sample points has

been computed.

This semi-adaptive version also makes adaptation to non-stationary data possible. Thus the

semi-adaptive algorithm combines many of the advantages usually attributed to either on- line or

batch algorithms.

3.5 Orthonormalization of Fast ICA Algorithm

The Fast ICA algorithm is an iterative method to find the local maximum of a cost function

defined by

n

I

T

iG
ZGE wJ

1

)((3.4)

With G an even symmetrical function. The symbol E stands for expectation, which in practice

would be estimated by sample mean over the whitened vectors z . A widely used cost function is

the fourth-order cumulant or kurtosis, defined for any random variable v as

24

 vEvEvkurt 23)(
24

 (3.5)

With the constraint that the argument yw i

T

i
z has unit variance the cost function becomes

n

i

kurt

G zwJ T
i

E
1

4

 (3.6)

For the one-unit case, in which only one of the rows of W is considered and orthogonalization

is reduced to just normalization of the vector to unit length after each iteration step, the fastICA

algorithm for the general cost function (1), the updating step is

 wwww i

T

i

T

ii
zgEzzgE)()((3.7)

With function g the derivative of G and g' the derivative of g. For the kurtosis cost function, the

corresponding updating step is

 wzww ii

T
i

zE

 3

3

 (3.8)

To obtain the full matrix W, we need to run the one-unit algorithm n times and the vector wi

must be reorthonormalized after the update because they lose their orthonormality in the

updating step.

The orthonormalization can be accomplished basically in two ways:

1. Deflationary orthonormalization

2. Symmetrical orthonormalization

25

3.5.1 Deflationary Orthonormalization

The estimated components are obtained one by one in the FastICA algorithm with deflation

orthonormalization. Deflationary orthonormalization is given by

 wwwww jj

p

j

T

ppp
)(

1

1

 (3.9)

 With p the previously estimated vectors number.

3.5.2 Symmetric Orthonormalization

In certain applications, it may be desirable to use a symmetric decorrelation, in which no

vectors are "privileged" over others; This means that the vectors wi
are not estimated one by one;

instead, they are estimated in parallel. One motivation for this is that the deflationary method has

the drawback that estimation errors in the first vectors are cumulated in the subsequent ones by

the orthonormalization. Another one is that the symmetric orthonormalization methods enable

parallel computation of independent components.

Symmetric orthonormalization is given by

 WTW WW
2/1

 (3.10)

Where W is the matrix with rows w i

T

. This means that the updating step is first performed for

all the n weight vectors, and then the matrix W is orthogonalized using (3.10).

26

Symmetric orthonormalization is done by first doing the iterative step of the one-unit algorithm

on every vector wi
 in parallel, and afterwards orthogonalizing all the wi

 by special symmetric

methods. In other words:

1) Initialize the wi
, i = 1,2,…..n(sample length)

2) Do an iteration of a one-unit algorithm on every wi
 in parallel.

3) Do a symmetric orthogonalization of the matrix W.

4) If not converged, go back to step 3.

3.6 Properties of Fast ICA Algorithm

The Fast ICA algorithm and the underlying contrast functions have a number of desirable

properties when compared with existing methods for ICA.

1. The convergence is cubic (or at least quadratic), under the assumption of the ICA data

model This is in contrast to ordinary ICA algorithms based on (stochastic) gradient

descent methods, where the convergence is only linear. This means a very fast

convergence

2. Contrary to gradient-based algorithms, there are no step size parameters to choose. This

means that the algorithm is easy to use.

3. The algorithm finds directly independent components of (practically) any non-Gaussian

distribution using any nonlinearity g. This is in contrast to many algorithms, where some

estimate of the probability distribution function has to be first available, and the

nonlinearity must be chosen accordingly.

27

4. The performance of the method can be optimized by choosing a suitable nonlinearity g.

In particular, one can obtain algorithms that are robust and/or of minimum variance.

5. The independent components can be estimated one by one, which is roughly equivalent

to doing projection pursuit. This is useful in exploratory data analysis, and decreases the

computational load of the method in cases where only some of the independent

components need to be estimated.

6. The Fast ICA has most of the advantages of neural algorithms: It is parallel, distributed,

computationally simple, and requires little memory space. Stochastic gradient methods

seem to be preferable only if fast adaptively in a changing environment is required.

28

CHAPTER

 4

IMPLEMENTATION OF

FLOATING POINT

ARITHMETIC

29

4.1 Introduction

Many scientific problems require FP arithmetic with high precision in their calculations.

Moreover a large dynamic range of numbers is necessary for signal processing.FP arithmetic has

the ability to automatically scale numbers and allows numbers to be represented in a wider range

than fixed-point arithmetic. Nevertheless, FP algorithm is difficult to implement on the FPGA,

because the algorithm is so complex that the area (logic elements) of FPGA leads to excessive

consumption when implemented. A simplified 32-bit FP implementation includes adder,

subtractor, multiplier, divider, and square rooter.

4.2 Floating Point Representation

 The format of IEEE 745 standrd 32-bit FP number is given in Fig 4.1:

 1 bit 8 bit 23 bits

Fig. 4.1 IEEE 745 single precision FP format

In it , s is th sign bit used to specify the sign of the FP number, e is the 8-bit quantity called the

exponent field, and f has 23 bits used to store the binary representation of the FP number. The

leading one in the mantisa 1.f does not appear in the representation; therefore, the leading one is

implicit. The FP value of fp is computed by

)127(2).1()1(es ffp (4.1)

s e f

Sign Bias Exponent Fraction

30

4.3 Floating Point Adder/Subtractor

Fig 4.2 Floating point Adder/Subtractor

The block diagram of the FP adder is shown in Fig.4.2 ,which adds FP number fpA to fpB. The

adder has three stages. The main work of stage 1 is to compare fpA with fpB. If fpA is less than fpB,

swap fpA and fpB Stage 2 processes the operations of 1. fA and 1. fB. If sA equals sB, add 1. fA to 1.

fB, else subtract 1. fB from 1. fA. Stage 3 normalizes the result of stage 2 and then adjusts eY .

Finally, packs sY, eY, and fY to the output format, and output the adder result fpY.

Basic Algorithm:

 Subtract exponent(d = eA- eB).

 Align significands.

 shift right d positions the significand of the operand with the smallest exponent.

Stage 1

(unpack)

Stage 3

(pack)

Stage 2

(operate)

fpA

fpB

fA

shift

fB fY

Exponent(e)

Sign(s)

fpY

add_sub

31

 select as the exponent of the result the largest exponent.

 Add(subtract) significands and produce sign of result.

 Normalization of result and adjust the exponent.

 Determine exception flags and special values.

4.4 Floating Point Multiplier

Basic Algorithm:

 Multiply the significands.

 Add the exponents.

 Determine the sign of the result.

 Normalization of result.

Stage 1

(unpack)

Stage 3

(pack)

Stage 2

(operate)

fpA

fpB

fA

fB

fY

Exponent(e)

Sign(s)

fpY

 Fig .4.3 Floating point Multiplier

32

 Round.

 Determine the exception flags and special values.

4.5 Floating Point Divider

FP divider is more complex than FP adder, subtractor, and multiplier.The block diagram of the

FP divider is given in Fig 4.4 Stage 1 unpacks fpi to si, ei, fi , and then subtracts exponents eB

from eA. Stage 2 uses the nonrestoring division algorithm to implement the method of 1.fA

divided by 1.fB . Stage 3, packs sY, eY, and fY to the output format, and output the divider result

fpY.

Stage 1

(unpack)

Stage 3

(pack)

Stage 2

(operate)

fpA

fpB

fA

fB

fY

Exponent(e)

Sign(s)

fpY

Fig. 4.4 Floating point Divider

33

Basic Algorithm:

 Divide significands.

 Digit Recurrence Algorithm.

 - Restoring Division

 - Non-Restoring Division

 - SRT Division (Sweeney, Robertson, and Tocher)

 Subtract exponent.

 Normalization of result.

 Round.

 Determine exeption flags and special values.

4.6 Floating point Square Rooter

The block diagram of the FP square rooter is presented in Fig 4.5. Stage 1 unpacks fpA to sA, eA,

fA, and then divides exponent eA by 2. Stages 2 implement the square rooting of fA. Stage 3, packs

sY, eY, and fY to the output format, and output the square root result fpY.

 Fig. 4.5 Floating point Square Rooter

34

Basic Algorithm:

 Obtain the square root of the significand .

 Radix-2 sqare root with carry-save adder.

 produce the exponent of the result.

 Normalize the result and update exponent.

 Round.

 Determine exception flags and special values

35

CHAPTER

5
IMPLEMENTATION OF

FAST ICA ALGORITHM

36

5.1 Introduction

For real-time applications such as speech signal enhancement, and EEG/MEG essential

features extraction for brain computer interface (BCI), the Fast ICA algorithm can be

implemented on a field-programmable gate array (FPGA) to speed up the operation. VLSI

implementation offers many features such as high processing speed, which is extremely desired

in Fast ICA implementations. The complex computation of Fast ICA is one of the main

barricades in hardware implementation, especially in synthesis procedure. Therefore, hierarchy

and modularity techniques in VLSI design are very much essential. The hierarchy involves

dividing an ICA process into subprocessing modules until the complexity of the bottom level

submodules becomes manageable. These submodules are independently developed, then

integrated together .

5.2 Implementation of Centering

The process of centering is to subtract the mixed signal means μ1 and μ2 from x1 and x2,

respectively. First the mixed signal elements are accumulated one by one. After getting the

summation of x, μ is obtained by dividing the summation by the sample length. In order to speed

up the processing, multiplication operation (multiply by 1/sample length) is used instead of the

division. Second, the mean is subtracted from the mixed signal data for achieving centering. The

operation is formulated as:

)/1()()()(
1

thsamplelengixixix
thsampleleng

j

 (5.1)

 Where i = 1, 2,…..,sample length

37

5.3 Implementation of Whitening

The first step of whitening is to find the whitening matrix P. P is given by :

 P = ED
T

 2/1

 (5.2)

Where D = diag(21
,) = diagonal matrix of the covariance matrix CX‘s eigenvalues.

 E = (e1,e2) = Orthogonal matrix of CX‘s eigenvectors.

 CX = E{XXT} is a 22 matrix.

It takes three multipliers to implement the calculation of XXT . Multiplier-1 is used for x1 x1
.

Multiplier-2 is used for x1 x2, and multiplier-3 is used for x2 x2, where

)(),....,2(),1(

)(),....,2(),1(

222

111

2

1

thsampleleng

thsampleleng
X

xxx

xxx
x
x

Cent_X

Mean

Calculation

Mixed Signal

X=[x1,x2]

Fig 5.1 Block diagram of implementation of Centering

38

Because x1 x2
equals x2 x1, it only needs to implement one of them. CX thus can be derived

by multiplying summation by 1/sample length. This operation can be formulated as

cc
cc

C
xx

xx

X

11_10_

01_00_

)/1()()(
1

1100_
thsamplelengjj

thsampleleng

j
x xxc

 (5.3)

)/1()()(
1

2110_01_
thsamplelengjj

thsampleleng

j
xx xxcc

 (5.4)

)/1()()(
1

2211_
thsamplelengjj

thsampleleng

j
x xxc

 (5.5)

Once the covariance matrix is calculated, the next step is to determine the orthogonal matrix of

eigenvectors of Cx (E) and the diagonal matrix of eigenvalues of Cx (D).

c

cc

x

xx

12_

11_22_

2

 (5.6)

1abs

sign
T (5.7)

 TT

C

1

1
 (5.8)

39

 CTS (5.9)

 E

CS

SC
 (5.10)

 D = ET
[CX

E] (5.11)

 If D =

2

1

0

0
 then D-1/2 =

2/1

2

2/1

1

0

0
 (5.12)

 where

1

2/1

1

1

 and

2

2/1

2

1

 The whitening matrix P is thus obtained by multiplying D-1/2 by ET

 P = D-1/2 ET (5.13)

Finally, the white data Z is obtained after multiplying P by X.

 Z = PX (5.14)

 The implementation block diagram is presented in Fig 5.2.

40

5.4 Norm Calculation

Initial random vector w =

w
w

2

1 is taken and norm of w is determined.

 wwwwwnorm
2211

_ (5.15)

 Dividing w1
and w2

by its norm

Memory

-

Mean

Calculation

Eigenvalue

Calculation

Eigenvector

Calculation

(√) -1 X

() T

X MemoryCovariance

Calculation

E

ET

D-1/2

D

X

μSample

mean

X
Z

V

Mixed

signalMixed

signal

Z

Cx

P

Fig. 5.2 Block diagram of Implementation of Whitening

41

 w =

wnorm

wnorm

w

w

_

_

2

1

 (5.16)

 Fig.5.3 Block diagram of norm calculation

5.5 Implementation of Kurtosis

The equation for the calculation of separating vector w is expressed as

)1(3)()1(
3

 kwTEkw kwZZ (5.17)

The calculation of)1(
3

 kwZ
TZ is first implemented and the concept is presented

in Fig 5.4.

X

X

+

w1

w2

wnorm _

42

The operation can be formulated as

thsampleleng

j

kwjzjzkwpre
1

3

)1()()()(_

)1(

3

 kwZ
TZ

Where pre_w is the calculation result of

(5.18)

Memory

1

Memory

2

X X+

X

X X + Latch

X
Latch+

Z1 Z2

w1(K-1)

w2(K-1)

Pre_w1(K-1)

Pre_w2(K-1)

W(k-1) Pre_w(k)

Fig.5.4 Block diagram of Implementation of pre_w(k)

43

The implementation block of)1(3)()1(
3

 kwTZEkw kwZ is presented in

Fig.5 .5, where)(_),(_)(_
21

3

)1(kprekprekwpreTZ wwkwZ .

The normalized value w_new is compared with the old value w_old and if the values do not

match then w_new fed back to the input of the block and also stored as w_old in a register for the

purpose of comparison. When w_new = w_old then this value is given to the output as the

converged vector w which gives one independent component. For finding the other independent

component a new random vector w is assumed and it is decorrelated with the earlier w and is

again put to the iteration process for getting an optimized converged value

 For i=1 and 2 (for two mixed signals)

Fig. 5.5 Block diagram of Implementation of w(k)

 X

 3

 w1(k-1)

 w2(k-1) X

 Pre_w1(k)

 Pre_w2(k)

 Normalization

 w1(k)

 w2(k)

 3

44

0

0

2

1

w
w

ww
ww

new

new

_22

_11

 Where

w
w

new

new

_2

_1 are the new random vectors for second independent component

 B = Bi w (5.19)

 w = w – B (5.20)

 Norm of w is again determined.

B1 For the first independent component

For the second independent component B2

45

CHAPTER

6
RESULT AND DISCUSSION

46

6.1 Simulation of Fast ICA (Using MATLAB)

Simulation 1:

In the simulation, sine and triangular waves generated from MATLAB source are taken as the

source signals. Then, the mixed signals are produced by multiplying random mixing matrix and

source signals. The sample length of mixed signal X and estimated independent components

S_est are both 1000 in the simulation. Fig 6.1(a) and 6.1(b) are the source signals: sine and

triangular waves. Fig 6.1(c) and 6.1(d) shows the mixed signals. The demixing matrix B is found

by the Fast ICA algorithm and the estimated independent component signals, shown in Fig 6.1(e)

and 6.1(f), are derived by multiplying the demixing matrix B and mixed signals.

47

0 200 400 600 800 1000 1200
-1.5

-1

-0.5

0

0.5

1

1.5

plot of source signal(sin)

sample length

a
m

p
li
tu

d
e

0 200 400 600 800 1000 1200
-1.5

-1

-0.5

0

0.5

1

1.5

plot of source signal(sawtooth)

sample length

a
m

p
li
tu

d
e

Fig. 6.1(a) Sine Wave (Source signal)

Fig. 6.1(b) Sawtooth Wave (Source signal)

48

0 200 400 600 800 1000 1200
-4

-3

-2

-1

0

1

2

3

4

5

6

plot of sin mixed signal

sample length

a
m

p
lit

u
d
e

0 200 400 600 800 1000 1200
-6

-4

-2

0

2

4

6

8

plot of sawtooth mixed signal

sample length

a
m

p
li
tu

d
e

Fig. 6.1(c) Mixed signal 1

Fig. 6.1(d) Mixed signal 2

49

0 200 400 600 800 1000 1200
-1.5

-1

-0.5

0

0.5

1

1.5

Sample length

Am
pl

itu
de

Estimated sine wave

0 200 400 600 800 1000 1200
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample length

Am
pl

itu
de

Estimated Sawtooth wave

 Fig. 6.1(e) Estimated Sine wave

Fig. 6.1(f) Estimated Saw tooth wave

50

Simulation 2: (Using Real-World Sound)

In this simulation siren signal and speech signal are taken as the source signals. Fig 6.2(a), and

6.2(b) shows the source signals: siren signal and speech signal respectively. The mixed signals

shown in Fig 6.2(c) and 6.2(d), are generated by multiplying the randomly generated mixing

matrix and the source signals. The estimated independent signals are shown in Fig 6.2(e), and

6.2(f) respectively. Performance comparision, in terms of CPU time , of deflation approach and

symmetric approach of the Fast ICA algorithm is carried out taking this example. Table 6.1

shows the comparative result of CPU time for both the approaches.

51

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample length

A
m

pl
itu

de

Siren signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample length

A
m

pl
itu

de

Speech signal

Fig. 6.2(a) Siren signal (source)

Fig. 6.2(b) Speech signal (source)

52

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-1

-0.5

0

0.5

1

1.5

Sample length

A
m

pl
itu

de

Mixed signal 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample length

A
m

pl
itu

de

Mixed signal 2

Fig. 6.2(c) Mixed signal 1

Fig. 6.2(d) Mixed signal 2

53

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-5

-4

-3

-2

-1

0

1

2

3

4

5

Sample length

A
m

pl
itu

de

Estimated siren signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-10

-5

0

5

10

15

Sample length

A
m

pl
itu

de

Esimated speech signal

Fig. 6.2(e) Esimated siren signal

Fig. 6.2(f) Esimated speech signal

54

FASTICA APPROACH CPU TIME (in sec)

Deflation approach 146.60

Symmetric approach 129.072

 Table 6.1 Comparative result of CPU time by simulating Example 2

6.2 VHDL simulation of Floating point arithmetic

Floating point Adder/Subtractor:

Operation of a floating point adder/subractor block has already been described in previous

chapter. Input to this block are two floating point numbers, fpA and fpB and the output fpY is

either the sum or difference of these two numbers depending on the sign bit of the smaller

number. Here for addition the two floating point numbers taken are

 fpA = 2 = 0 10000000 00000000000000000000000

 fpB = 5 = 0 10000001 01000000000000000000000

 and the output obtained is fpY = 7 = 0 10000001 11000000000000000000000

 Timing diagram of floating point adder is shown in Fig 6.3

55

For subtraction the two floating point inputs taken are

 fpA = 5 = 0 10000001 01000000000000000000000

 fpB = -2 = 1 10000000 00000000000000000000000

 and the output obtained is fpY = 3 = 0 10000000 10000000000000000000000

 Timing diagram of floating point adder is shown in Fig 6.4

Fig 6.3 Timing diagram of Floating point Adder

Fig 6.4 Timing diagram of Floating point Subtractor

56

Floating point Multiplier:

 Inputs given to the FP Multiplier block are

 fpA = 2 = 0 10000000 00000000000000000000000

 fpB = 5 = 0 10000001 01000000000000000000000

 and the output obtained is prdt_f = 10 = 0 10000010 01000000000000000000000

 Fig 6.5 shows the timing diagram of FP multiplication.

Fig 6.5 Timing diagram of Floating point Multiplication

57

Floating point Division:

 SRT division algorithm is used here to implement the method of 1.fpA divided by 1.fpB.

 The inputs given to the FP division block are

 fpA = 8 = 0 10000010 00000000000000000000000

fpB = 2 = 0 10000000 00000000000000000000000

and the output obtained is qout = 4 = 0 10000001 00000000000000000000000

Timing diagram of FP division block is shown in Fig 6.6

Fig 6.6 Timing diagram of FP division

58

Floating point Square-Rooter:

 Input given to the FP Square-rooter block is fp =625 = 0 10001000 00111000100000000000000

and the output of this block i.e. the sruare root of fp obtained is

qout = 25 = 0 10000001 10010000000000000000000

 Timing diagram of FP square-rooter is shown in Fig 6.7

Fig 6.7 Timing diagram of FP Square-rooter

59

6.3 VHDL Simulation of Different Modules of Fast ICA

Algorithm

Centering and Whitening:

Block diagram of implementation of centering and whitening has already been shown in the

previous chapter. Input to this block are the mixed signal (X) components and output of this

block are the components of the whitened signal (Z),which is produced by multiplying the

whitening matrix and the centered mixed signal. Timing diagram of centering and whitening

operation is shown in Fig 6.8.

Fig 6.8 Timing diagram of centering and whitening module

60

Calculation of pre_w (k):

 Initially some randomly generated value of w1(0) and w2(0) are given as input to this

block. These two values operate with the whitened signal components which are given as vector

input (z1 and z2) to this block and finally gives pre_w1(1) and pre_w2(1) as its output. These two

value of pre_w are again given as input to another block shown in Fig. 5(e) to produce

w(k).Then the corresponding values of w(k) are given as input to this block to get the

corresponding pre_w1(k) and pre_w2(k).Timing diagram of this module is shown in Fig 6.9.

Fig 6.9 Timing diagram of Pre_w calculation Module

61

Calculation of w (k):

Once the calculation of pre_w(k) is over, the next step is to determine the new value of

w(k). Block diagram of implementation of this operation has already been shown in the previous

chapter. Fig 6.10 shows the timing diagram of this block. Input to this block are pre_w1(k) and

pre_w2(k) which have already been determined in the previous module and the output of this

block are the new values of w1(k) and w2(k) which are then normalized.

Fig 6.10 Timing diagram of w(k) calculation Module

62

CHAPTER

7
CONCLUSION

63

7.1 CONCLUSION

Ways needed in fast ICA algorithm for decorrelation of the separating matrix can be

deflationary or symmetric orthogonalization. In some applications, it may be preferable to use

the fast ICA algorithm with symmetric orthonormalization, in which every vector is impartially

treated and the parallel computation of independent components is enabled. Extensive simulation

studies reveal that symmetric approach has a better performance as compared to deflation

approach, in terms of CPU time. The 32 bit floating-point (FP) arithmetic is implemented by

hand coding HDL code to provide better precision and higher dynamic performance. VLSI

implementation of Fast ICA algorithm offers many features such as high processing speed,

which is extremely desired in many applications. In order to reduce the complexity, the Fast ICA

block is divided into several sub modules and each of the sub modules are developed by HDL

coding.

64

7.2 SCOPE FOR FUTURE WORK

The proposed research can be extended in following dimensions.

A pipeline architecture of the Fast ICA algorithm can be developed for real-time sequential

mixed signal processing. An extended implementation of Fast ICA algorithm based on the

proposed modules can be done for higher dimension (more than two souces and mixtures).VLSI

implementation of different ICA technique can be carried out.

65

REFERENCES

[1]. Kuo-Kai Shyu,Ming-Huan Lee, Yu-Te Wu, Po-Lei Lee ― Implementation of

pipelined FastICA on FPGA for Real- time Blind source separation‖. IEEE Trans. Neural

Netw.,vol.19,no.6,June 2008.

[2]. J.T. Chien and B.C. Chen, ― A new independent component analysis for speech

recognition and separation,‖ IEEE Trans. Speech Audio Process.,vol.14,no.4,pp.1245-

1254,July 2006.

[3]. C. M. Kim, H. M. Park, Y. K. Choi, and S. Y. Lee, ―FPGA implementation of

ICA algorithm for blind source separation and adaptive noise cancelling,‖ IEEE, Trans,

Neural Netw.,vol.14,no.5,pp.1038-1046,Sep.2003.

[4]. A. Hyvarinen, J. Karhunen, and E. Oja, ― Independent component analysis:

Algorithms and applications,‖ Neural Netw.,vol.13.,pp.411-430,May 2000.

[5]. Changyuan Fan, Baoqiang Wang,Hui Ju,―A new FastICA algorithm with

symmetric orthogonalization‖ Communications, circuits and system

proceedings,vol.3,pp.2058-2061, June 2006.

[6]. P. Comon, ―Independent Component Analysis-A new concept?‖ Signal

Processing, vol-36, pp.287-314, 1994.

[7]. J.F.Cardoso, ―Blind Signal Separation: Statistical Principles‖, Proc. of IEEE, vol-9,

No.10, pp. 2009-2025, 1998.

66

[8]. Scott C. Douglas―A statistical convergence analysis of the fastica algorithm for

two-source mixtures”, IEEE Trans. Neural Netw., vol. 14, pp. 943-949,July 2003.

[9]. Abdullah Celik, Milutin Stanacevic and Gert Cauwenberghs―Mixed-signal real-

time adaptive blind source separation‖,Circuits and systems,2004.ISCAS ‗04.Proceedings

of the 2004 Inteernational symposium on Volume 5, 23-26 May 2004 Page(s):V-760 -

V-763 Vol.5

[10]. HongLi, Yunlian Sun, ―The study and test of ICA algorithms ‖Wireless

Communications,Networking and mobile computing,2005. Volume 1, 23-26 Sept. 2005

Page(s):602 – 605.

[11]. E.Oja, ―Nonlinear PCA criterion and maximum likelihood in independent

component analysis‖, Proc. Int. Workshop on Independent Component Analysis and

Signal separation (ICA‘99), pp.143-148, Aussois, France, 1999.

[12]. A. Hyvarinen, J. Karhunen and E. Oja, ― Independent Component Analysis‖. John

Wiley & Sons, Inc., New York, 2001.

[13]. A. K. Nandi and F. Herrmann, ―Fourth-order cumulant based estimator for

independent component analysis‖, Electronic Letters, 37(7), pp.469–470, 2001.

[14]. A.Hyvarinen, ― Fast and robust fixed-point algorithms for independent component

analysis‖. IEEE Trans. Neural Netw.,vol.10,no.3,pp.624-634,May 1999.

[15]. A. Hyvarinen and E. Oja, ―A Fast Fixed-Point Algorithm for Independent

Component Analysis,‖ Neural Computation, vol. 9, pp.1483-1492, 1997.

67

[16]. H.Du,H.Qi and X.Wang, ―Comparative Study of VLSI Solutions to Independent

Component Analysis‖, IEEE Trans. Industrial Electronics, vol.54, No.1, 2007.

[17]. Patel, J.N.,Abid Z., Wang W,―VLSI implementation of a floating-point

divider‖,Microelectronics,2004.ICM.2004 proceedings.

[18]. R.P.Brent and F.T.Luk, ―The solution of singular-value and symmetric eigen-

value problems on multiprocessor arrays‖, SIAM J. Scientific and Statistical Computing,

6, pp.69-84, 1985.

[19]. H.Du,H.Qi and X.Wang, ―Comparative Study of VLSI Solutions to Independent

Component Analysis‖, IEEE Trans. Industrial Electronics, vol.54, No.1, 2007.

[20]. N. Shirazi, A. Walters and P. Athanas, ―Quantitative analysis of floating point

arithmetic on FPGA based custom computing machines,‖ in Proc. IEEE Symposium on

FPGAs for Custom Computing Machines, 1995, pp. 155-162.

[21]. Yamin Li and Wanming Chu ―A New Non-Restoring Square Root Algorithm and

Its VLSI Implementations‖

