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         Cracks in vibrating component can initiate catastrophic failures. The presences of 

cracks change the physical characteristics of a structure which in turn alter its dynamic 

response characteristics. Therefore there is need to understand dynamics of cracked 

structures. Crack depth and location are the main parameters for the vibration analysis. So it 

becomes very important to monitor the changes in the response parameters of the structure 

to access structural integrity, performance and safety.  To examine the effect of the crack to 

the natural frequency of beams.  

         In the present study, vibration analysis is carried out on a cantilever beam with two 

open transverse cracks, to study the response characteristics. In first phase local compliance 

matrices of different degree of freedom have been used model transverse cracks in beam on 

available expression of stress intensity factors and the associated expressions for strain 

energy release rates. Suitable boundary condition are used to find out natural frequency and 

mode shapes. The results obtained numerically are validated with the results obtained from 

the simulation. The simulations have done with the help of ANSYS software. 

        A neural network for the cracked structure is trained to approximate the response of the 

structure by the data set prepared for various crack sizes and locations. Feed-forward multi-

layer neural networks trained by back-propagation are used to learn the input (the location 

and depth of a crack)-output (the structural eigenfrequencies) relation of the structural 

system. With this trained neural network minimizing the difference from the measured 

frequencies. 

It is verified from both computational and simulation analysis that the presence of crack 

decreases the natural frequency of vibration. The mode shapes also changes considerably 

due to the presence of crack.  
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1. INTRODUCTION 

            It is required that structures must safely work during its service life. But, damages 

initiate a breakdown period on the structures. Cracks are among the most encountered 

damage types in the structures. Cracks in a structure may be hazardous due to static or 

dynamic loadings, so that crack detection plays an important role for structural health 

monitoring applications. Beam type structures are being commonly used in steel 

construction and machinery industries. In the literature, several studies deal with the 

structural safety of beams, especially, crack detection by structural health monitoring. 

Studies based on structural health monitoring for crack detection deal with change in natural 

frequencies and mode shapes of the beam.  

           The most common structural defect is the existence of a crack. Cracks are present in 

structures due to various reasons. The presence of a crack could not only cause a local 

variation in the stiffness but it could affect the mechanical behavior of the entire structure to 

a considerable extent. Cracks may be caused by fatigue under service conditions as a result 

of the limited fatigue strength. They may also occur due to mechanical defects. Another 

group of cracks are initiated during the manufacturing processes. Generally they are small in 

sizes. Such small cracks are known to propagate due to fluctuating stress conditions. If these 

propagating cracks remain undetected and reach their critical size, then a sudden structural 

failure may occur. Hence it is possible to use natural frequency measurements to detect 

cracks.             

           In the present investigation a number of literatures published so far have been 

surveyed, reviewed and analysed. Most of researchers studied the effect of single crack on 

the dynamics of structures. However in actual practice structural members such as beams are 

highly susceptible to transverse cross-sectional cracks due to fatigue. Therefore to attempt 

has been made to investigate the dynamic behavior of basic structures with crack 

systematically. 

           The objective is to carry out vibration analysis on a cantilever beam with and without 

crack. The results obtained analytically are validated with the simulation results.  In first 

phase of the work two transverse surface cracks are included in developing the analytical 

expressions in dynamic characteristics of structures. These cracks introduce new boundary 
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conditions for the structures at the crack locations. These boundary conditions are derived 

from strain energy equation using castiligiano’s theorem. Presence of crack also reduces 

stiffness of the structures which has been derived from stiffness matrix. The detailed 

analyses of crack modeling and stiffness matrices are presented in subsequent sections. 

            Euler-Bernoulli beam theory is used for dynamic characteristics of beams with 

transverse cracks. Modified boundary conditions due to presence of crack have been used to 

find out the theoretical expressions for natural frequencies and mode shape for the beams.             

                  The use of neural networks in detecting the damage has been developed for several 

years, because of their ability to cope with the analysis of the structural damage without the 

necessity for intensive computation. Recently, neural networks are expected to be a 

necessity for intensive computation. Recently, neural networks are expected to be a potential 

approach to detect the damage of the structure. In this study feed-forward multi-layer neural 

networks trained by back-propagation are used to learn the input (the location and depth of a 

crack)-output (the structural eigenfrequencies) relation of the structural system. A neural 

network for the cracked structure is trained to approximate the response of the structure by 

the data set prepared for various crack sizes and locations. 
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2. LITERATURE REVIEW  
 

            When a structure suffers from damages, its dynamic properties can change, 

especially, crack damage can cause a stiffness reduction, with an inherent reduction in 

natural frequencies, an increase in modal damping, and a change of the mode shapes. For 

vibration analysis of cracked beams and possible crack detection, the fracture mechanics 

procedure is generally preferred. According to this procedure the crack occurring in a beam 

would reduce the local stiffness at the location of crack. In using the fracture mechanics 

model, the local stiffness at the crack section is calculated using Castigliano’s second 

theorem as applicable to fracture mechanics formulations. The calculated local stiffness is 

then modeled by a flexural spring for the bending vibration of a cracked beam. To establish 

the vibration equations, the cracked is represented by two structures connected by flexural 

spring.  

Orhan Sadettin [1] has studied the free and forced vibration analysis of a cracked beam was 

performed in order to identify the crack in a cantilever beam. Single- and two-edge cracks 

were evaluated. Dynamic response of the forced vibration better describes changes in crack 

depth and location than the free vibration in which the difference between natural 

frequencies corresponding to a change in crack depth and location only is a minor effect. 

 

Chasalevris and Papadopoulos [2] have studied the dynamic behaviour of a cracked beam 

with two transverse surface cracks. Each crack is characterised by its depth, position and 

relative angle. A local compliance matrix of two degrees of freedom, bending in the 

horizontal and the vertical planes is used to model the rotating transverse crack in the shaft 

and is calculated based on the available expressions of the stress intensity factors and the 

associated expressions for the strain energy release rates.  

 

Nahvi and Jabbari [3] have developed an analytical, as well as experimental approach to the 

crack detection in cantilever beams by vibration analysis. An experimental setup is designed 

in which a cracked cantilever beam is excited by a hammer and the response is obtained 

using an accelerometer attached to the beam. To avoid non-linearity, it is assumed that the 



 
 
 

4 
 

crack is always open. To identify the crack, contours of the normalized frequency in terms 

of the normalized crack depth and location are plotted. 

 

Yang et al.[4] have developed an energy-based numerical model is to investigate the 

influence of cracks on structural dynamic characteristics during the vibration of a beam with 

open crack. Upon the determination of strain energy in the cracked beam, the equivalent 

bending stiffness over the beam length is computed.  

 

Dharmaraju et al.[5] have used Euler–Bernoulli beam element in the finite element 

modeling. The transverse surface crack is considered to remain open. The crack has been 

modeled by a local compliance matrix of four degrees of freedom. This compliance matrix 

contains diagonal and off-diagonal terms. A harmonic force of known amplitude and 

frequency is used to dynamically excite the beam. The present identification algorithms have 

been illustrated through numerical examples. 

 

Ruotolo et al.[6] has investigated forced response of a cantilever beam with a crack that 

fully opens or closes, to determine depth and location of the crack. In their study, left end of 

the beam is cantilevered and right end is free. The harmonic sine force was applied on the 

free end of the beam. Vibration amplitude of the free end of the beam was taken into 

consideration. It was shown that vibration amplitude changes, when depth and location of 

the crack change.  

 

Patil and Maiti [7,8] have utilized a method for prediction of location and size of multiple 

cracks based on measurement of natural frequencies has been verified experimentally for 

slender cantilever beams with two and three normal edge cracks. The analysis is based on 

energy method and representation of a crack by a rotational spring. For theoretical prediction 

the beam is divided into a number of segments and each segment is considered to be associated 

with a damage index. The damage index is an indicator of the extent of strain energy stored in 

the rotational spring. The crack size is computed using a standard relation between stiffness and 

crack size. Number of measured frequencies equal to twice the number of cracks is adequate for 

the prediction of location and size of all the cracks. 
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Kisa et al.[9,10] Presents a novel numerical technique applicable to analyse the free vibration 

analysis of uniform and stepped cracked beams with circular cross section. In this approach in 

which the finite element and component mode synthesis methods are used together, the beam is 

detached into parts from the crack section. These substructures are joined by using the 

flexibility matrices taking into account the interaction forces derived by virtue of fracture 

mechanics theory as the inverse of the compliance matrix found with the appropriate stress 

intensity factors and strain energy release rate expressions. To reveal the accuracy and 

effectiveness of the offered method, a number of numerical examples are given for free 

vibration analysis of beams with transverse non-propagating open cracks. Numerical results 

showing good agreement with the results of other available studies, address the effects of the 

location and depth of the cracks on the natural frequencies and mode shapes of the cracked 

beams. Modal characteristics of a cracked beam can be employed in the crack recognition 

process. 

 

 Loutridis et al.[11] present a new method for crack detection in beams based on instantaneous 

frequency and empirical mode decomposition is proposed. The dynamic behaviour of a 

cantilever beam with a breathing crack under harmonic excitation is investigated both 

theoretically and experimentally. 

Darpe et al.[12] have studied Sa simple Jeffcott rotor with two transverse surface cracks. The 

stiffness of such a rotor is derived based on the concepts of fracture mechanics. Subsequently, 

the effect of the interaction of the two cracks on the breathing behavior and on the unbalance 

response of the rotor is studied. 

 

Ertuğrul et al.[13] have studied to obtain information about the location and depth of cracks in 

cracked beams. For this purpose, the vibrations as a result of impact shocks were analyzed. The 

signals obtained in defect-free and cracked beams were compared in the frequency domain. The 

results of the study suggest to determine the location and depth of cracks by analyzing the from 

vibration signals. Experimental results and simulations obtained by the software ANSYS are in 

good agreement. 
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Fang et al.[14] have research, explore the structural damage detection using frequency response 

functions (FRFs) as input data to the back-propagation neural network (BPNN). Such method is 

non-model based and thus could have advantage in many practical applications. Neural network 

based damage detection generally consists of a training phase and a recognition phase. Error 

back-propagation algorithm incorporating gradient method can be applied to train the neural 

network, whereas the training efficiency heavily depends on the learning rate. 

 

Suh et al. [15] has been established that a crack has an important effect on the dynamic behavior 

of a structure. This effect depends mainly on the location and depth of the crack. To identify the 

location and depth of a crack on a structure, a method is presented in this paper which uses 

hybrid neuro-genetic technique. Feed-forward multi-layer neural networks trained by back-

propagation are used to learn the input  and output relation of the structural system. With this 

trained neural network, genetic algorithm is used to identify the crack location and depth 

minimizing the difference from the measured frequencies. 

 

Chondros et al. [16] has analyzed the lateral vibration of cracked Euler-Bernoulli beams with 

single or double edge cracks. Their analysis can be used for the prediction of the dynamic 

response of a simply supported beam with open surface cracks.  

 

Rizos, et al. [17] has determined the crack location and its depth in a cantilever beam from the 

vibration modes. They achieved this by measuring the flexural vibrations of a cantilever beam 

with rectangular cross-section with a transverse surface crack. Analytical results are used to 

relate the measured vibration modes to the crack location and depth. From the measured 

amplitudes at two points of the structure vibrating at one of its natural modes, the respective 

vibration frequency and an analytical solution of the dynamic response, the crack location can 

be found and depth can be estimated with satisfactory accuracy.  

 

Baris Binici [18] has proposed a new method is to obtain the Eigen frequencies and mode 

shapes of beams containing multiple cracks and subjected to axial force. Cracks are assumed to 

introduce local flexibility changes and are modeled as rotational springs. The method uses one 

set of end conditions as initial parameters for determining the mode shape functions. Satisfying 
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the continuity and jump conditions at crack locations, mode shape functions of the remaining 

parts are determined. Other set of boundary conditions yields a second-order determinant that 

needs to be solved for its roots. As the static case is approached, the roots of the characteristic 

equation give the buckling load of the structure.  

 

Sekhar [19,20] applied the theory of model based identification in a rotor system with two 

cracks. In this work the crack induced change of the rotor system is taken into account by 

equivalent loads in the mathematical model.  They have analysed the detection and monitoring 

of slant crack in the rotor system using mechanical impedance. The paper also synthesizes 

several works of the authors on cracked rotors to compare the two types of shaft cracks while 

studying flexural vibration characteristics. Eigenvalue analysis; steady state and transient 

response; crack detection based on changes in mechanical impedance and wavelet techniques 

have been discussed in order to compare slant crack with transverse crack. 

 Suresh et al.[21] have studied the flexural vibration in a cantilever beam having a transverse 

surface crack is considered. The modal frequency parameters are analytically computed for 

various crack locations and depths using a fracture mechanics based crack model. These 

computed modal frequencies are used to train a neural network to identify both the crack 

location and depth. The sensitivity of the modal frequencies to a crack increases when the crack 

is near the root and decreases as the crack moves to the free end of the cantilever beam. 

Because of the sensitive nature of this problem, a modular neural network approach is used. 

 

Tsai and Wang [22] have investigated diagnostic method of determining the position and size of 

a transverse open crack on a stationary shaft without disengaging it from the machine system. 

The crack is modelled as a joint of a local spring. To obtain the dynamic characteristics of a 

stepped shaft and a multidisc shaft the transfer matrix method is employed on the basis of 

Timoshenko beam theory. 

 

Zheng and Kessissoglou [23] have studied the natural frequencies and mode shapes of a cracked 

beam are obtained using the finite element method. An overall additional flexibility matrix, 

instead of the local additional flexibility matrix is added to the flexibility matrix of the 
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corresponding intact beam element to obtain the total flexibility matrix, and therefore the 

stiffness matrix. Compared with analytical results, the new stiffness matrix obtained using the 

overall additional flexibility matrix can give more accurate natural frequencies than those 

resulted from using the local additional flexibility matrix. 

 

Hwang and Kim [24] have presents methods to identify the locations and severity of damage in 

structures using frequency response function data. Basic methods detect the location and 

severity of structural damage by minimizing the difference between test and analytic FRFs, 

which is a type of model updating or optimization method. 

 

Fernandez-saez et al. [25] have presents simplified method of evaluating the fundamental 

frequency for the bending vibrations of cracked Euler–Bernouilli beams. The method is based 

on the well-known approach of representing the crack in a beam through a hinge and an elastic 

spring, but here the transverse deflection of the cracked beam is constructed by adding 

polynomial functions to that of the uncracked beam. With this new admissible function, which 

satisfies the boundary and the kinematic conditions, and by using the Rayleigh method, the 

fundamental frequency is obtained. This approach is applied to simply supported beams with a 

cracked section in any location of the span. 

 

Chandra Kishen, et al. [26] have studied the fracture behavior of cracked beams and columns 

using finite element analysis. Assuming that failure occurs due to crack propagation when the 

mode I stress intensity factor reaches the fracture toughness of the material, the failure load of 

cracked columns are determined for different crack depths and slenderness ratios. 

  

Sahin M. et al.[27] presents a damage detection algorithm using a combination of global 

(changes in natural frequencies) and local (curvature mode shapes) vibration-based analysis 

data as input in artificial neural networks (ANNs) for location and severity prediction of 

damage in beam-like structures. A finite element analysis tool has been used to obtain the 

dynamic characteristics of intact and damaged cantilever steel beams for the first three natural 

modes. Different damage scenarios have been introduced by reducing the local thickness of the 

selected elements at different locations along finite element model (FEM) of the beam structure. 
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 Douka E.et al.[28] have investigated the influence of two transverse open cracks on the 

antiresonances of a double cracked cantilever beam both analytically and experimentally. It is 

shown that there is a shift in the antiresonances of the cracked beam depending on the location 

and size of the cracks. These antiresonance changes, complementary with natural frequency 

changes, can be used as additional information carrier for crack identification in double cracked 

beams. 

 

Yoona Han-Ik et al.[29] have investigated the influence of two open cracks on the dynamic 

behavior of a double cracked simply supported beam both analytically and experimentally. The 

equation of motion is derived by using the Hamilton’s principle and analyzed by numerical 

method. The simply supported beam is modeled by the Euler-Bernoulli beam theory. 

 

Papadopoulos et al.[30] have used a method is applied in rotating cracked shafts to identify the 

depth and the location of a transverse surface crack. A local compliance matrix of different 

degrees of freedom is used to model the transverse crack in a shaft of circular cross section, 

based on available expressions of the stress intensity factors and the associated expressions for 

the strain energy release rates. 

 

Behera [31] in his research work has developed the theoretical expressions to find out the 

natural frequencies and mode shapes for the cantilever beam with two transverse cracks. 

Experiments have been conducted to prove the authenticity of the theory developed 
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                                   3. CRACK THEORY  
 

3.1 Physical parameters affecting Dynamic characteristics of cracked structures:  

Usually the physical dimensions, boundary conditions, the material properties of the 

structure play important role for the determination of its dynamic response. Their vibrations 

cause changes in dynamic characteristics of structures. In addition to this presence of a crack 

in structures modifies its dynamic behavior. The following aspects of the crack greatly 

influence the dynamic response of the structure.  

(i) The position of crack  

(ii) The depth of crack  

(iii) The orientation of crack  

(iv) The number of cracks  

 

3.2 Classification of cracks  
Based on their geometries, cracks can be broadly classified as follows:  

• Cracks perpendicular to the beam axis are known as “transverse cracks”. These are 

the most common and most serious as they reduce the cross-section and thereby 

weaken the beam. They introduce a local flexibility in the stiffness of the beam due 

to strain energy concentration in the vicinity of the crack tip.  

   • Cracks parallel to the beam axis are known as “longitudinal cracks”. They are not 

that common but they pose danger when the tensile load is applied is at right angles 

to the crack direction i.e. perpendicular to beam axis or the perpendicular to crack.  

   • “Slant cracks” (cracks at an angle to the beam axis) are also encountered, but are not 

very common. These influence the torsion behavior of the beam. Their effect on 

lateral vibrations is less than that of transverse cracks of comparable severity.  

      • Cracks that open when the affected part of the material is subjected to tensile stresses   

and close when the stress is reversed are known as “breathing cracks”. The stiffness 

of the component is most influenced when under tension. The breathing of the crack 

results in non-linearity’s in the vibration behavior of the beam. Cracks breathe when 

crack sizes are small, running speeds are low and radial forces are large .Most 
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theoretical research efforts are concentrated on “transverse breathing” cracks due to 

their direct practical relevance.  

 • Cracks that always remain open are known as “gaping cracks”. They are more correctly 

called “notches”. Gaping cracks are easy to mimic in a laboratory environment and 

hence most experimental work is focused on this particular crack type.  

• Cracks that open on the surface are called “surface cracks”. They can normally be 

detected by techniques such as dye-penetrates or visual inspection.  

• Cracks that do not show on the surface are called “subsurface cracks”. Special 

techniques such as ultrasonic, magnetic particle, radiography or shaft voltage drop 

are needed to detect them. Surface cracks have a greater effect than subsurface 

cracks on the vibration behavior of shafts.  

 

3.3 Modes of Fracture: -The three basic types of loading that a crack experiences are  

• Mode I corresponds to the opening mode in which the crack faces separates in a 

direction normal to the plane of the crack and the corresponding displacements of 

crack walls are symmetric with respect to the crack front. Loading is normal to the 

crack plane, and tends to open the crack. Mode I is generally considered the most 

dangerous loading situation.  

• Mode II corresponds to in-plane shear loading and tends to slide one crack face with 

respect to the other (shearing mode). The stress is parallel to the crack growth 

direction.  

• Mode III corresponds to out-of-plane shear, or tearing. In which the crack faces are 

sheared parallel to the crack front.  
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Fig.3.1. Three basic mode of fracture. 

 

3.4 Stress Intensity Factor (SIF), K: - It is defined as a measure of the stress field 

intensity near the tip of an ideal crack in a linear elastic solid when the crack surfaces are 

displaced in the opening mode (Mode I). (SIFs) are used to define the magnitude of the 

singular stress and displacement fields (local stresses and displacements near the crack tip). 

The SIF depends on the loading, the crack size, the crack shape, and the geometric 

boundaries of the specimen. The recommended units for K are MPa√m. it is customary to 

write the general formula in the form K=Yσ πa  where σ is the applied stress, a is crack 

depth, Y is dimensionless shape factor.  
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                                   4. THEORITICAL ANALYSIS 
 
           The beam with a two transverse edge cracks is clamped at left end, free at right end 

and it has a uniform structure with a constant rectangular cross-section. The Euler–Bernoulli 

beam model was assumed. The damping has not been considered in this study. A cantilever 

beam of length L, of uniform rectangular cross-section B×W  with cracks located at positions 

1L and 2L  is considered in fig.(4.1). The cracks are assumed to be an open crack and have 

uniform depths 1a  and 2a respectively. In the present analysis the axial and bending 

vibration are considered. 

 

 

 

   

   
a1  a2 da W

B X

P1 

P2 L1 

L2 
L

Z 

Y

 

                    Fig.4.1. Geometry of cantilever beam with two transverse cracks. 

 

Local flexibility of cracked beam under bending and axial loading 

      The present of crack of depth 1a  introduces a local flexibility matrix. The dimension of 

the local flexibility matrix ( 2 2× ), as each side has two degree of freedom where off 

diagonal elements of the matrix are considered as coupling elements in the flexibility matrix. 

 The elastic strain energy release rate J can be expressed as follows, 

2
1 2'

1J(a)= (KI +KI )                                                                               (4.1)
E  
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Where  
' 2E =E/1-υ  for plain strain.  

The stress intensity factors from elementary fracture mechanics are given as 
1

1 1
PKI = πa{F (a/W)}                                                                    (4.2)

BW
 

 

{ }2
2 22

6PKI = πa F (a/W)                                                                  (4.3)
BW

 

 
Where B and W are the cross-section dimensions and a  is crack depth as shown in fig.4.2. 
 
 1KI  and 2KI  are the stress intensity factors of Mode I(opening of the crack) for axial force 

1P  and bending moment 2P  respectively. To guarantee the open crack mode the beam is 

assumed to be preloaded by its own weight. The amplitude of vibration is assumed to be 

well below the crack opening due to preloading.  

The function 1F  and 2F are dependent on the crack depth and approximated as [32] 

( )30.5

1

0.5 4

2

0.752+2.02(a/W)+0.37 1-sin(πa/2W)a 2WF = tan(πa/2W)
W πa cos(πa/2W)

a 2W 0.923+0.199(1-sin(πa/2W))F = tan(πa/2W)
W πa cos(πa/2W)

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎩ ⎭

 

In addition crack produces a local additional displacement iu between the right and left 

sections of the crack, in similar way as equivalent spring. These displacement iu  in the i 

direction under the action of force Pi are be given as castiliagno’s theorem [33]. 

1a

i
i 0

u = J(a)da                                                                       (4.4)    
P
⎡ ⎤∂
⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
∫  

                                                                        

a a1

B

W

                        
 Fig.4.2.Geometry of cracked section of cantilever beam 
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Finally the additional flexibility introduced due to crack is obtained by combining relation 

(4.3) and (4.4) and definition of compliance [33]. 
1a2

i
ij

j i j 0

uC = = J(a)da                                                                   (4.5)
P P P
∂ ∂
∂ ∂ ∂ ∫  

The final flexibility matrix can be formed by integrating over the breadth B of beam. 
1a+B/22

i
ij

j i j -B/2 0

uC = = J(a)dadz                                                            (4.6)
P P P
∂ ∂
∂ ∂ ∂ ∫ ∫  

Putting the value of strain energy release rate equation (4.6) can be modified,  
1a2

2
ij 1 2'

i j 0

BC = (KI +KI ) da                                                            (4.7)
E P P

∂
∂ ∂ ∫  

Writing ξ = a/W are obtains dξ = da/W 

We get da = Wdξ  and When a=0, ξ=0 and When a = 1a , ξ = 1a /W = 1ξ  

From above condition equation (4.7) becomes 
1ξ2

2
ij 1 2'

i j 0

BWC = (KI +KI ) dξ                                                          (4.8)
E P P

∂
∂ ∂ ∫  

From equation (4.8) local axial, coupled axial and bending and bending compliance can be 

calculated as 

( )
1ξ

2
11 1' 2 2

0

BW πaC = 2 F (ξ) dξ
E B W∫  

( )
1ξ

2
11 1'

0

2πC = ξ F (ξ) dξ                                                                       (4.9)
BE ∫  

1ξ

12 21 1 2'
0

12πC = C = ξ F (ξ)F (ξ)dξ                                                      (4.10)
BWE ∫  

1ξ

22 2 2' 2
0

72πC = ξ F (ξ)F (ξ)dξ                                                             (4.11)
E BW ∫  

In dimensionless form the above equation (4.9) to (4.11) can be written as 
'

11 11

'

12 12 21

BEC = C                                                                                       (4.12)
2π
E BWC = C = C                                                                           
12π

(4.13)
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' 2

22 22
E BWC = C                                                                                  (4.14)

72π  
The local stiffness matrix can be obtained by taking inverse of compliance matrix. 

-1
11 12 11 12

21 22 21 22

k k c c
K= =

k k c c
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

The stiffness matrix of first crack 
-1

11 12'

21 22

-1
22 23''

32 33

c' c'
K =

c' c'
The stiffness matrix of Second crack

c'' c''
K =

c'' c''

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦  

 

4.1. Governing equation of free vibration 
Fig.4.3 shows a double-cracked cantilever beam with longitudinal and transverse vibrations. 

Here, U1(x,t), U2(x,t) and U3(x,t) are longitudinal vibrations for the section before and after 

the cracks. Moreover, Y1(x,t), Y2(x,t) and Y3(x,t) are bending vibrations for the same 

section(fig.4.3). 

 

  L1 

L2

L

U1  U2 U3

Y1  Y2 Y3
                                      

                                    Fig.4.3. Beam Model with cracks. 

 The normal functions for the system can be defined as  

1 1 u 2 uu (x)=A cos(k x)+A sin(k x)                                                              (4.15)  
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2 3 u 4 u

3 5 u 6 u

1 7

u (x)=A cos(k x)+A sin(k x)                                                            (4.16)

u (x)=A cos(k x)+A sin(k x)                                                            (4.17)

y (x)=A cosh(k y 8 y 9 y 10 yx)+A sinh(k x)+A cos(k x)+A sin(k x)               (4.18)
 

2 11 y 12 y 13 y 14 y

3 15 y 16 y 17 y 18 y

y (x)=A cosh(k x)+A sinh(k x)+A cos(k x)+A sin(k x)            (4.19)

y (x)=A cosh(k x)+A sinh(k x)+A cos(k x)+A sin(k x)            (4.20)
 

1 2

where

x=x/L, u=u/L, y=y/L, t=t/T, β=L /L, γ=L /L
 

( )1/2 2 1/2 1/2
u u u y y yk =ωL/C , C = E/ρ , k =(ωL /C ) , C =(EI/μ) ,μ=Aρ  

, ( 1,18)iA i =  are the constants to be determined by the boundary conditions. 

The associated boundary conditions for the cracked cantilever beam under consideration are: 

1

1

u (0)=0                                                                                              (4.21)

y (0)=0                                                                                     

1

'

'
3

         (4.22)

y (0)=0                                                                                              (4.23)

u (1)=0                                                                   
''
3
'''
3

                           (4.24)

y (1)=0                                                                                              (4.25)

y (1)=0                                                                                              (4.26)

 

At the cracked section, we have: 

1

1

' '
2

2

u (β)=u (β)                                                                                        (4.27)

y (β)=y (β)                                                                                 

1

'' ''
2

       (4.28)

y (β)=y (β)                                                                                        (4.29)

 

''' '''
1 2
' '
2 3

y (β)=y (β)                                                                                      (4.30)

u (γ)=u (γ)                                                                                         (4.31)
 

2 3

'' ''
2 3

y (γ)=y (γ)                                                                                         (4.32)

y (γ)=y (γ)                                                                              
''' '''

2 3

         (4.33)

y (γ)=y (γ)                                                                                       (4.34)

 

Also at the cracked section, we have: 

1 1 2 1 1 1
11 2 1 1 1 12

du (L ) dy (L ) dy (L )AE =k' (u (L )-u (L ))+k' -
dx dx dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Multiplying both sides by ' '
11 12AE/Lk k  and simplifying we get 
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1 1

' ' ' '
1 2 2 2 1 2 1m m u (β) = m (u (β)-u (β))+m (y (β)- y (β))                                     (4.35)  

Similarly, 
2

' '1 1 2 1 1 1
21 2 1 1 1 222

d y (L ) dy (L ) dy (L )EI = k (u (L )- u (L ))+k -
dx dx dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Multiplying both sides 2 ' '
22 21EI/L k k and simplifying we get, 

1 1

'' ' '
3 4 4 2 3 2 1m m y (β) = m (y (β)-y (β))+ m (u (β)- u (β))                                        (4.36)  

Similarly for the position of second crack from the fixed end we have 
' ' '

5 6 2 6 3 2 5 3 2m m u (γ) = m (u (γ)- u (γ))+ m (y (γ)- y (γ))                                         (4.37)  
'' ' '

7 8 2 8 3 2 7 3 2m m y (γ) = m (y (γ)- y (γ))+ m (u (γ)- u (γ))                                       (4.38)  

Where 2
1 11 2 12 3 22 4 21m =AE/(Lk' ), m =AE/k' , m =EI/(Lk' ), m =EI/(L k' )  

2
5 22 6 23 7 33 8 32m =AE/(Lk' ), m =AE/k'' , m =EI/(Lk'' ), m =EI/(L k'' )  

The natural frequency of the cracked beam can be evaluated using the crack model and 

boundary conditions. The stiffness matrices and equation (4.21)-(4.38) define these relations 

as set of 18 homogeneous linear equations. These equations can be written in compact form 

as 

[Q]{A}= {0}                                                                                                          (4.39) 
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Where [Q] is the coefficient matrix defined in terms of the cracked beam parameters & 

given as:  

[ ]

1 2

3 4 7 8

4 3 8 7

6 5 6 5

1 2 5 6 1 2 5 6

1 2 5 6 1 2 5 6

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -T T
0 0 0 0 0 0 0 0 G G -G -G 0 0 0 0 0 0
0 0 0 0 0 0 0 0 G G G -G 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -T T T -T 0 0

G G G G -G -G -G -G 0 0 0 0 0 0 0 0 0 0
G G -G -G -G -G G G 0 0

Q =
2 1 6 5 2 1 6 5

4 3 4 3

9 10 11 12 9 10 11 12

9 10 11 12 9 10 11 12

10 9 12 11 10 9 12 11

3 4 5 6 3 4 5 6 1 2

0 0 0 0 0 0 0 0
G G G -G -G -G -G G 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -T T T -T
0 0 0 0 G G G G -G -G -G -G 0 0 0 0 0 0
0 0 0 0 G G -G -G -G -G G G 0 0 0 0 0 0
0 0 0 0 G G G -G -G -G -G G 0 0 0 0 0 0

-S -S S -S S S -S S 0 0 0 0 S -S T5 6

7 8 9 10 11 12 13 14 15 16 15 16

3 4 5 6 3 4 5 6 1 2 3 4

7 8 9 10 11 12 13 14 15 16 15 16

T 0 0
S S -S -S -S -S S -S 0 0 0 0 S S -S -S 0 0
0 0 0 0 V V -V V -V -V V -V 0 0 V V -T -T
0 0 0 0 V V -V -V -V -V V -V 0 0 V V -V -V

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

Where, 1T = usink , 2 uT =cosk , 3T = ucos(k γ) , 4T = usin(k γ) , 5T = ucos(k β) , 6T = usin(k β) , 

1G = ycosh(k β) , 2G = ysinh(k β) , 3G  = ycosh(k ) , 4G = ysinh(k )  5G = ycos(k β) , 6G = ysin(k β),   

7G = ycos(k ) , 8G = ysin(k ) , 9G = y cosh(k γ) , 10G  = y sinh(k γ) , 11G = ycos(k γ) , 12G = ysin(k γ) , 

2
1 11 2 12 3 22 4 21m =AE/(Lk' ), m =AE/k' , m =EI/(Lk' ), m =EI/(L k' ) , 12 1 2 34 3 4m =m /m , m =m /m ,   

, 1 5 1 u 6 2 6 1 u 5 3 12 11 3 12 12 5 12 13 6 12 14

2 2 2 2
7 3 y 1 11 8 3 y 2 12 9 3 y 5 13 10 3 y 6 14

11 y 2 12 y 1 13 y 6 14 y 5 15 34 5

S =T - m k T S = T + m k T , S = m S , S = m S , S = m S , S = m S

S = m k G +S , S = m k G +S , S = m k G +S , S = m k G - S ,

S = k G , S = k G , S = k G , S = k G , S = m T ,  16 34 6S = m T

 

'' '' '' ''
5 22 6 23 7 33 8 32 56 5 6

78 7 8 1 3 5 u 4 2 4 5 u 3 3 56 11 4 56 12

m = AE/(Lk ), m =AE/k , m = EI/(Lk ), m = EI/(Lk ), m = m /m ,

m = m /m , V T m k T , V T m k T , V m V , V m V ,= − = + = =
 

2 2
5 56 13 6 56 14 7 7 y 9 11 8 7 y 10 12

2 2
9 7 y 11 13 10 7 y 12 14 11 y 10 12 y 9 13 y 12

14 y 11 15 78 3 16 78 4

V m V ,V m V ,V m k G V ,V m k G V ,

V m k G V ,V m k G V ,V k G ,V k G ,V k G ,

V k G ,V m T ,V m T

= = = + = +

= + = − = = =

= = =
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 The vector {A}= [A1,...,A18]T contains the coefficients used in equations (4.15-4.20). For 

non trivial values for the vector {A}, equation (4.39) leads to the following characteristic 

equation: 

Q =0         .........(21)                                                                                    

Given all the cracked beam parameters, the only unknown in equation (4.40) is the value of 

the natural frequency ω. The root of the characteristic equation Q  gives the values of 

natural frequencies. The frequency of identical uncracked beam is obtained by modifying 

equation (4.40), where crack relations are removed and only equations describing the 

boundary conditions are applied resulting in a 6 6× characteristic matrix. The mode shapes 

for the transverse & axial vibration are determined by evaluating the vector {A}= 

[A1,...,A18]T.  This done by setting the value of A5 to 1,then solving for the rest of the 

elements using equation (4.39) after the required modifications. 

 

4.2. Governing equations of forced vibration 
If the cantilever beam with transverse cracks is excited at its free end by harmonic excitation  

(Y= 0Y sinωt), the non dimensional amplitude at the free end may be expressed 

3 0 0y (1) = y /L = y , therefore the boundary condition for beam remain the same as before 

except in the case of the case of expression equation(4.26), which is change to as 3 0y (1)=y .  

The constants iA (i=1,18) are computed from the algebraic condition 1 1Q D=B , where Q is 

(18 18)× matrix obtained from the constants, & 1B  is a column matrix whose transpose is 

given by  

T
1 0B =[0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]  
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                                  5. NEURAL NETWORK 
 
              Studies on neural networks have been motivated to imitate the way that the brain 

operates. A network is described in terms of the individual neurons, the network 

connectivity, the weights associated with various interconnections between neurons, and the 

activation function for each neuron. The network maps an input vector from one space to 

another. The mapping is not specified, but is learned. The network is presented with a given 

set of inputs and their associated outputs. The learning process is used to determine proper 

interconnection weights and the network is trained to make proper associations between the 

inputs and their corresponding outputs. Once trained, the network provides rapid mapping of 

a given input into the desired output quantities. This, in turn, can be used to enhance the 

efficiency of the design process. 

 

5.1 NEURON STRUCTURE 
           The perceptron is a single level connection of McCulloch-Pitts neurons sometimes 

called single-layer feed-forward networks. The network is capable of linearly separating the 

input vectors into pattern of classes by a hyper plane. A linear associative memory is an 

example of a single-layer neural network. In such an application, the network associates an 

output pattern (vector) with an input pattern (vector), and information is stored in the 

network by virtue of modifications made to the synaptic weights of the network.  

 

 

 

 

 

 

 

 
Fig 5.1 Neuron Structure 

 

The structure of a single neuron is presented in Fig. 5.1. An artificial neuron involves the 

computation of the weighted sum of inputs and threshold [33]. The resultant signal is then 

  f (.) 

x1 

x2 

xN 

. 

. 

. 

.

b(n)

y(n) 
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passed through a non-linear activation function. The output of the neuron may be 

represented as,  

                                                   ∑                  (5.1) 

where, b(n) = threshold to the neuron is called as bias, wj(n) = weight associated with the jth 

input, and N = no. of inputs to the neuron. 

 

5.1.1. Activation Functions and Bias:  

 

          The perceptron internal sum of the inputs is passed through an activation function, 

which can be any monotonic function. Linear functions can be used but these will not 

contribute to a non-linear transformation within a layered structure, which defeats the 

purpose of using a neural filter implementation. A function that limits the amplitude range 

and limits the output strength of each perceptron of a layered network to a defined range in a 

non-linear manner will contribute to a nonlinear transformation. There are many forms of 

activation functions, which are selected according to the specific problem. All the neural 

network architectures employ the activation function [34] which defines as the output of a 

neuron in terms of the activity level at its input (ranges from -1 to 1 or 0 to 1). Table 5.1 

summarizes the basic types of activation functions. The most practical activation functions 

are the sigmoid and the hyperbolic tangent functions. This is because they are differentiable.  

       The bias gives the network an extra variable and the networks with bias are more 

powerful than those of without bias. The neuron without a bias always gives a net input of 

zero to the activation function when the network inputs are zero. This may not be desirable 

and can be avoided by the use of a bias.  
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   Table 5.1 Types of Activation Functions 

 
NAME 
 

 
MATHEMATICAL REPRESENTATION 

 
Linear 

 
 

 

 
Step 

 
,
,  

 
 
Sigmoid 

 
1

1 , 0 

 
Hyperbolic Tangent 

 
1
1 , 0 

 
Gaussian 

 
1

√2
 

                

5.1.2 Learning Technique:  

 

The property that is of primary significance for a neural network is that the ability of the 

network to learn from its environment, and to improve its performance through learning. 

The improvement in performance takes place over time in accordance with some prescribed 

measure. A neural network learns about its environment through an interactive process of 

adjustments applied to its synaptic weights and bias levels. Ideally, the network becomes 

more knowledgeable about its environment after each iteration of learning process. Hence 

we define learning as:  

“It is a process by which the free parameters of a neural network are adapted through a 

process of stimulation by the environment in which the network is embedded.”  

The processes used are classified into two categories as described in:  

(i) Supervised Learning (Learning With a Teacher)  

(ii) Unsupervised Learning (Learning Without a Teacher)  
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(i) Supervised Learning:  

We may think of the teacher as having knowledge of the environment, with that knowledge 

being represented by a set of input-output examples. The environment is, however unknown 

to neural network of interest. Suppose now the teacher and the neural network are both 

exposed to a training vector, by virtue of built-in knowledge, the teacher is able to provide 

the neural network with a desired response for that training vector. Hence the desired 

response represents the optimum action to be performed by the neural network. The network 

parameters such as the weights and the thresholds are chosen arbitrarily and are updated 

during the training procedure to minimize the difference between the desired and the 

estimated signal. This updation is carried out iteratively in a step-by-step procedure with the 

aim of eventually making the neural network emulate the teacher. In this way knowledge of 

the environment available to the teacher is transferred to the neural network. When this 

condition is reached, we may then dispense with the teacher and let the neural network deal 

with the environment completely by itself. This is the form of supervised learning.  

By applying this type of learning technique, the weights of neural network are updated by 

using LMS algorithm. The update equations for weights are derived as LMS[33,34]:  

                                                         1   ∆                                      (5.2) 

 

(ii) Unsupervised Learning:  

In unsupervised learning or self-supervised learning there is no teacher to over-see the 

learning process, rather provision is made for a task independent measure of the quantity of 

representation that the network is required to learn, and the free parameters of the network 

are optimized with respect to that measure. Once the network has become turned to the 

statistical regularities of the input data, it develops the ability to form the internal 

representations for encoding features of the input and thereby to create new classes 

automatically. In this learning the weights and biases are updated in response to network 

input only. There are no desired outputs available. Most of these algorithms perform some 

kind of clustering operation. They learn to categorize the input patterns into some classes.  
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5.2. MULTILAYER   PERCEPTRON 

 
      In the multilayer neural network or multilayer perceptron (MLP), the input signal 

propagates through the network in a forward direction, on a layer-by-layer basis. This 

network has been applied successfully to solve some difficult and diverse problems by 

training in a supervised manner with a highly popular algorithm known as the error back-

propagation algorithm [33]. The scheme of MLP using four layers is shown in Fig.5.2.   

represents the input to the network,  and   represent the output of the two hidden layers 

and  represents the output of the final layer of the neural network. The connecting 

weights between the input to the first hidden layer, first to second hidden layer and the 

second hidden layer to the output layers are represented by respectively. 
                                               +1 
                                                                                                       +1 
 wik 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
          

 

 
 

Fig 5.2 Structure of Multilayer Perceptron 

Input 
signal 
xi(n) 

…
…

…
…
…

…
…

+1 

wij 
wkl

Output 
signal 
yi(n) 

Input 
Layer 
(Layer-1) 

First 
Hidden 
Layer 
(Layer-2)

Output 
Layer 
(Layer-4) Second 

Hidden 
Layer 
(Layer-3)



 
 
 

26 
 

If P1 is the number of neurons in the first hidden layer, each element of the output vector of 

first hidden layer may be calculated as,  

                          ∑    , 1,2, … , 1,2, …       (5.3) 

where bj is the threshold to the neurons of the first hidden layer, N is the no. of inputs and  

is the nonlinear activation function in the first hidden layer chosen from the Table 5.1. The 

time index n has been dropped to make the equations simpler. Let P2 be the number of 

neurons in the second hidden layer. The output of this layer is represented as, fk and may be 

written as  

                                                 ∑   , 1,2, … .                     (5.4) 

where, bk is the threshold to the neurons of the second hidden layer. The output of the final 

output layer can be calculated as  

                                                 ∑   , 1,2, …          (5.5) 

where, bl  is the threshold to the neuron of the final layer and P3 is the no. of neurons in the 

output layer. The output of the MLP may be expressed as  

      ∑ ∑ ∑         (5.6)   

5.2.1 Back propagation Algorithm 

 
 
 
 
 
 
 
 

 

 
Fig 5.3 Neural Network with Back Propagation Algorithm 
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      An MLP network with 2-3-2-1 neurons (2, 3, 2 and 1 denote the number of neurons in 

the input layer, the first hidden layer, the second hidden layer and the output layer 

respectively) with the back-propagation (BP) learning algorithm, is depicted in Fig.5.3. The 

parameters of the neural network can be updated in both sequential and batch mode of 

operation. In BP algorithm, initially the weights and the thresholds are initialized as very 

small random values. The intermediate and the final outputs of the MLP are calculated by 

using (5.3), (5.4), and (5.5) respectively.  

The final output  at the output of neuron l, is compared with the desired output 

 and the resulting error signal  is obtained as  

                                                                                                              (5.7) 

The instantaneous value of the total error energy is obtained by summing all error signals 

over all neurons in the output layer, that is  

                                                                      ∑                                             (5.8) 

where P3  is the no. of neurons in the output layer.  

This error signal is used to update the weights and thresholds of the hidden layers as well as 

the output layer. The reflected error components at each of the hidden layers is computed 

using the errors of the last layer and the connecting weights between the hidden and the last 

layer and error obtained at this stage is used to update the weights between the input and the 

hidden layer. The thresholds are also updated in a similar manner as that of the 

corresponding connecting weights. The weights and the thresholds are updated in an 

iterative method until the error signal become minimum. For measuring the degree of 

matching, squared error cannot be considered as the network may have multiple outputs and 

Root Mean Square Error (RMSE) cause over fitting of the model and the weights may not 

converge. So the Mean Square Error (MSE) is taken as a performance measurement. 

The weights are using the following formulas,  

                                              1   ∆                                         (5.9) 
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                                             1   ∆                                          (5.10) 

                                               1   ∆                                         (5.11) 

                                    ∆  2     

                                         ′ ∑  2
1                            (5.12) 

Where, µ is the convergence coefficient (0<µ<1). Similarly ∆    and ∆   the can 

be computed. 

The thresholds of each layer can be updated in a similar manner, i.e.  

                                                               1   ∆                                 (5.13) 

                                                               1   ∆                                (5.14) 

                                                               1   ∆                                  (5.15)                           

where, ∆  , ∆  and ∆   are the change in thresholds of the output, hidden and 

input layer respectively. The change in threshold is represented as,  

                                                         ∆  2  =  

                                                      ′ ∑  2
1             (5.16) 

From the structural point of MLP, it is very complex and it there are more than two hidden 

layers the structure becomes more complex. As more number of weights are present when 

implemented in DSP or FPGA memory requirements are considered and during updation of 

weights in Back Propagation it becomes very complex thereby causing over burden on the 

processor used. So a very simple and powerful structure is required and thus FLANN is 

considered. 

         In this study, we use the back-propagation network, that is, a multi-layer feed-forward 

neural network topology with one hidden-layer as shown in Figure 5.4. The feed forward 

back propagation (BP) network is a very popular model in neural networks. In multilayer 

feed forward networks, the processing elements are arranged in layers and only the elements 
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in adjacent layers are connected. It has minimum three layers of elements (i) the input layer 

(ii) the middle or hidden layer and (iii) the output layer. The name back propagation derives 

from the fact that computations are passed forward from the input to output layer, following 

which calculated errors are propagated back in the other direction to change the weights to 

obtain better performance. Back-propagation networks can be learned when presented with 

input-target output pairs. 
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                       Fig.5.4  Three-layer neural network utilized in this study.                          

                                    
5.3 NEURAL NETWORK TRAINING 
 
            The clamped-free beam of Figure 4.1 has a length of L=0.8 m, width of the beam = 

0.05 m, depth of the beam = 0.006 m, the material properties are E = 0.724x10
11 

N/m2, 

Poisson’s ratio = 0.334, ρ= 2713 kg/m3. For the preparation of the learning data, 10 sets of a 

crack depths a1=a2=0.0003,...., 0.003m (step size=0.0003m) are introduced at the 17 

different crack locations L1=0.04,...., 0.68m (step size=0.04m) and L2=0.08,...,0.72m (step 

size=0.04m). Totally 170 cases or patterns (10 different crack depths and 17different crack 
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locations) are solved for the first three frequencies. The patterns which consist of 170 sets of 

data are used to train the neural network of Figure5.5. 

              Because of the nature of the sigmoid activation function, i.e., saturation function, 

the output variables should be scaled by the user, to be within the most active range of the 

sigmoid function. Scaling rule that minimum and maximum values are set to 0.1 and 0.9 is 

usually suggested. Through some trials, a network with neuron arrangement (input-hidden-

output) of 4-13-3 trained with 8 iteration for the 170 patterns are concluded to be the best for 

our application. 

             Mean-square error (MSE) is employed as a measurement of modelling performance. 

The mathematical expression can be described as follows: 

                                   
N 2
i =1 i(e )

MSE =                                                                    (5.17)
N

∑  

Where ei denotes an error at pattern i and N is the total number of patterns.                                         
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 Figure 5.5.Three-layer neural network with neuron arrangement of 4-13-3. 
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                           6. RESULTS AND DISCUSSION 
 

6.1 NUMERICAL RESULTS 

PROBLEM DEFINITION  

The problem involves calculation of natural frequencies and mode shapes for 

cantilever beam without a crack and with two cracks of different crack depths. The results 

calculated analytically are validated with the results obtained by simulation analysis. 

The method described has been applied to a cracked Bernoulli-Euler beam. Aluminum has 

taken the beam.  

Properties:  
Width of the beam = 0.05 m  

Depth of the beam = 0.006 m  

Length of the beam = 0.8 m  

Elastic modulus of the beam = 0.724x10
11 

N/m
2
 

Poisson’s Ratio = 0.334 

Density = 2713 kg/m
3 

 

End condition of the beam = One end fixed and other end free (Cantilever beam). 
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              Fig.6.1. First mode of transverse vibration, 

  a1/w=0.1667, a2 /w=0.1667, L1/L=0.125, L2/L=0.25 
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Fig.6.2. Second mode of transverse vibration, 
a1/w= 0.1667, a2 /w=0.1667, L1/L=0.125, L2/L=0.25 

      Fig.6.3. Third mode of transverse vibration, 
      a1/w= 0.1667, a2 /w=0.1667, L1/L=0.125, L2/L=0.25 
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Fig.6.4. First mode of transverse vibration, 
a1/w=0.334, a2 /w=0.334, L1/L=0.125, L2/L=0.25 

 

        Fig.6.5. Second mode of transverse vibration, 
        a1/w=0.334, a2 /w=0.334, L1/L=0.125, L2/L=0.25 
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   Fig.6.6. Third mode of transverse vibration, 
   a1/w=0.334, a2 /w=0.334, L1/L=0.125, L2/L=0.25 

Fig.6.7. First mode of transverse vibration, 
a1/w=0.5, a2 /w=0.5, L1/L=0.125, L2/L=0.25 
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Fig.6.8. Second mode of transverse vibration, 
a1/w=0.5, a2 /w=0.5, L1/L=0.125, L2/L=0.25 

 

Fig.6.9. Third mode of transverse vibration, 
a1/w=0.5, a2 /w=0.5,L1/L=0.125, L2/L=0.25 

 



 
 
 

36 
 

                        

 
        
                            

 
                                     
 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

A
m
pl
itu

de

Beam Position

cracked
uncracked

‐1.5

‐1

‐0.5

0

0.5

1

1.5

0 20 40 60 80 100A
m
pl
itu

de

Beam Position

cracked
uncracked

Fig.6.10. First mode of longitudinal vibration, 
a1/w=0.1667, a2 /w=0.1667, L1/L=0.125, L2/L=0.25 

Fig.6.11. Second mode of longitudinal vibration, 
a1/w= 0.1667, a2 /w=0.1667, L1/L=0.125, L2/L=0.25 
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Fig.6.12. Third  mode of longitudinal vibration, 
a1/w= 0.1667, a2 /w=0.1667, L1/L=0.125, L2/L=0.25 

Fig.6.13. First mode of longitudinal vibration, 
             a1/w= 0.334, a2 /w=0.334, L1/L=0.125, L2/L=0.25 
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Fig.6.14. Second mode of longitudinal vibration, 
a1/w=0.334, a2 /w=0.334, L1/L=0.125, L2/L=0.25  

 

  Fig.6.15. Third mode of longitudinal vibration, 
  a1/w=0.334, a2 /w=0.334, L1/L=0.125, L2/L=0.25  
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6.2. SIMULATION RESULTS     
6.2.1   MODAL ANALYSIS 

Following steps show the guidelines for carrying out Modal analysis.  

Define Materials  

1. Set preferences. (Structural)  

2.   Define constant material properties.  

Model the Geometry  

3. Follow bottom up modeling and create the geometry  

Generate Mesh  

4. Define element type.  

5. Mesh the area.  

Apply Boundary Conditions  

6. Apply constraints to the model.  

Obtain Solution  

7. Specify analysis types and options.  

8. Solve.  

 6.2.2   Finite element modeling 

          The ANSYS 10.0 finite element program was used for free vibration of the 

cracked beams. For this purpose, the key points were first created and then line segments 

were formed. The lines were combined to create an area. Finally, this area was extruded and 

a three-dimensional V-shaped edge cracked beam model was obtained. We modeled the 

crack with a 0.5mm width on the top surface of the beam and a crack going through the 

depth of the beam. A 20-node three-dimensional structural solid element under SOLID 95 

was selected to model the beam. The beam was discretized into 1045 elements with 2318 

nodes. Cantilever boundary conditions can also be modeled by constraining all degrees of 

freedoms of the nodes located on the left end of the beam. The subspace mode extraction 

method was used to calculate the natural frequencies of the beam. The subspace mode 

extraction method was used to calculate the natural frequencies of the beam.  
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         Fig.6.21. First mode of vibration, a1/w=0.1667, a2/w=0.1667, L1/L=0.125, L2/L=0.25. 

 

 
       Fig.6.22. Second mode of vibration, a1/w=0.1667, a2/w=0.1667, L1/L=0.125, L2/L=0.25. 
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         Fig.6.23. Third mode of vibration, a1/w=0.1667, a2/w=0.1667, L1/L=0.125, L2/L=0.25. 

 

 
      Fig.6.24. First mode of vibration, a1/w=0.334, a2/w=0.334, L1/L=0.125, L2/L=0.25. 
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        Fig.6.25. Second mode of vibration, a1/w=0.334, a2/w=0.334, L1/L=0.125, L2/L=0.25. 

 
         Fig.6.26. Third mode of vibration, a1/w=0.334, a2/w=0.334, L1/L=0.125, L2/L=0.25. 
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        Fig.6.27. First mode of vibration, a1/w=0.5, a2/w=0.5, L1/L=0.125, L2/L=0.25. 

 

 
       Fig.6.28. Second mode of vibration,a1/w=0.5, a2/w=0.5, L1/L=0.125, L2/L=0.25. 
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       Fig. 6.29.Third mode of vibration, a1/w=0.5, a2/w=0.5, L1/L=0.125, L2/L=0.25. 
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Table 6.1. Variation of frequencies at different Relative crack depths when Relative Crack 

location at L1/L=0.125, L2/L=0.25. 

 

Relative 
crack depth 

Frequency 
first mode 
 
HZ 

Frequency 
Found    
in  ANSYS 
HZ 

Frequency 
second 
mode 
HZ 

Frequency 
Found  
in ANSYS 
HZ 

Frequency 
Third   
mode 
HZ 

Frequency 
Found    
in  ANSYS 
 HZ 

0.08335 7.754 7.844 49.220 49.263 137.812 137.902 

0.1667 7.684 7.773 49.119 49.191 137.452 137.543 

0.250 7.588 7.631 48.950 49.045 136.651 136.744 

0.334 7.463 7.502 48.825 48.891 135.980 136.111 

0.5 7.285 7.307 48.573 48.655 134.931 135.125 

0.667 6.988 7.059 48.266 48.346 133.050 133.225 

0.8 6.553 6.642 47.719 47.791 131.216 131.398 
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 6.3 Neural Network Training 

 Table 6.3. Neural Network Training Data (170Patterns) 
Sr. 
No. 

Crack  depth   
 (a1 = a2) m 

      L1 
        m       

        L2  
          m           

      f1 
      Hz

       f2  
         Hz 

      f3  
         Hz

1  
 
 
 
 
 
 
 
         0.0003 

0.04 0.08 7.8668 49.293 138.04 
2 0.08 0.12 7.8678 49.302 138.06 
3 0.12 0.16 7.8683 49.306 138.06 
4 0.16 0.2 7.8682 49.305 138.05 
5 0.2 0.24 7.8671 49.296 138.02 
6 0.24 0.28 7.8694 49.306 138.05 
7 0.28 0.32 7.8686 49.297 138.03 
8 0.32 0.36 7.8697 49.300 138.06 
9 0.36 0.4 7.8889 49.292 138.05 
10 0.4 0.44 7.8702 49.298 138.06 
11 0.44 0.48 7.8699 49.296 138.05 
12 0.48 0.52 7.8702 49.298 138.04 
13 0.52 0.56 7.8706 49.301 138.04 
14 0.56 0.6 7.8699 49.299 138.02 
15 0.6 0.64 7.8701 49.301 138.03 
16 0.64 0.68 7.8697 49.300 138.03 
17 0.68 0.72 7.8697 49.301 138.04 
 
 
 
Sr. 
No. 

Crack  depth        
(a1 = a2) m  

    L1  
     m

      L2 
        m

         f1  
         Hz

        f2  
       Hz 

       f3 
          Hz

1  
 
 
 
 
 
 
           0.0006 

0.04 0.08 7.8591 49.269 138.01 
2 0.08 0.12 7.8594 49.284 138.04 
3 0.12 0.16 7.8602 49.292 138.02 
4 0.16 0.2 7.8635 49.306 138.01 
5 0.2 0.24 7.8644 49.303 137.97 
6 0.24 0.28 7.8646 49.287 137.95 
7 0.28 0.32 7.8665 49.282 137.99 
8 0.32 0.36 7.8679 49.276 138.03 
9 0.36 0.4 7.8683 49.266 138.05 
10 0.4 0.44 7.8683 49.259 138.04 
11 0.44 0.48 7.8690 49.261 138.01 
12 0.48 0.52 7.8689 49.265 137.96 
13 0.52 0.56 7.8690 49.272 137.92 
14 0.56 0.6 7.8692 49.278 137.91 
15 0.6 0.64 7.8706 49.295 137.95 
16 0.64 0.68 7.8703 49.298 137.98 
17 0.68 0.72 7.8702 49.301 138.02 
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Sr. 
No. 

Crack  depth 
  (a1 = a2) m  

  L1  
  m 

   L2 
     m 

    f1 
    Hz 

     f2 
      Hz 

      f3  
       Hz 

1  
 
 
 
 
 
 
        0.0009 

0.04 0.08 7.8443 49.215 137.92 
2 0.08 0.12 7.8458 49.256 137.01 
3 0.12 0.16 7.8497 49.287 137.99 
4 0.16 0.2 7.8545 49.302 137.93 
5 0.2 0.24 7.8577 49.296 137.86 
6 0.24 0.28 7.8595 49.274 137.83 
7 0.28 0.32 7.8617 49.250 137.89 
8 0.32 0.36 7.8636 49.228 137.97 
9 0.36 0.4 7.8656 49.215 137.03 
10 0.4 0.44 7.8651 49.196 138.00 
11 0.44 0.48 7.8685 49.214 137.97 
12 0.48 0.52 7.8678 49.218 137.84 
13 0.52 0.56 7.8701 49.242 137.78 
14 0.56 0.6 7.8704 49.262 137.77 
15 0.6 0.64 7.8706 49.279 137.82 
16 0.64 0.68 7.8697 49.286 137.89 
17 0.68 0.72 7.8697 49.294 137.97 
 
 
 
Sr. 
No. 

Crack  depth  
(a1 = a2) m 

       L1  
         m 

      L2  
       m 

      f1  
       Hz  

     f2  
     Hz 

      f3  
       Hz 

1  
 
 
 
 
 
 
 
          0.0012 

0.04 0.08 7.8268 49.159 137.85 
2 0.08 0.12 7.8307 49.233 138.01 
3 0.12 0.16 7.8383 49.291 137.99 
4 0.16 0.2 7.8431 49.303 137.84 
5 0.2 0.24 7.8499 49.293 137.74 
6 0.24 0.28 7.8520 49.251 137.67 
7 0.28 0.32 7.8546 49.202 137.74 
8 0.32 0.36 7.8593 49.176 137.91 
9 0.36 0.4 7.8618 49.145 137.01 
10 0.4 0.44 7.8655 49.139 137.03 
11 0.44 0.48 7.8667 49.144 137.90 
12 0.48 0.52 7.8681 49.165 137.72 
13 0.52 0.56 7.8699 49.194 137.57 
14 0.56 0.6 7.8702 49.229 137.55 
15 0.6 0.64 7.8702 49.257 137.63 
16 0.64 0.68 7.8693 49.273 137.76 
17 0.68 0.72 7.8700 49.291 137.92 
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Sr. 
No. 

Crack  depth 
(a1 = a2) m 

     L1  
      m 

   L2  
     m 

     f1 
     Hz 

     f2  
      Hz 

    f3  
     Hz 

1  
 
 
 
 
 
 
         0.0015 

0.04 0.08 7.7981 49.062 137.71 
2 0.08 0.12 7.8079 49.201 138.01 
3 0.12 0.16 7.8181 49.272 137.92 
4 0.16 0.2 7.8276 49.296 137.70 
5 0.2 0.24 7.8351 49.278 137.49 
6 0.24 0.28 7.8425 49.223 137.46 
7 0.28 0.32 7.8497 49.166 137.63 
8 0.32 0.36 7.8536 49.094 137.84 
9 0.36 0.4 7.8587 49.058 138.02 
10 0.4 0.44 7.8620 49.036 138.00 
11 0.44 0.48 7.8652 49.054 137.81 
12 0.48 0.52 7.8667 49.080 137.52 
13 0.52 0.56 7.8690 49.132 137.30 
14 0.56 0.6 7.8701 49.183 137.24 
15 0.6 0.64 7.8699 49.227 137.37 
16 0.64 0.68 7.8718 49.275 137.66 
17 0.68 0.72 7.8721 49.299 137.89 
 
 
 
Sr. 
No. 

Crack  depth 
(a1 = a2) m 

     L1 
       m 

  L2  
    m 

    f1  
     Hz 

       f2  
        Hz 

     f3  
      Hz 

1          
 
 
 
 
 
 
 
          0.0018 

0.04 0.08 7.7674 48.959 137.56 
2 0.08 0.12 7.7809 49.155 137.99 
3 0.12 0.16 7.7944 49.268 137.90 
4 0.16 0.2 7.8087 489.296 137.55 
5 0.2 0.24 7.8205 49.264 137.25 
6 0.24 0.28 7.8306 49.188 137.20 
7 0.28 0.32 7.8388 49.093 137.40 
8 0.32 0.36 7.8469 49.010 137.75 
9 0.36 0.4 7.8528 48.943 137.99 
10 0.4 0.44 7.8574 48.900 137.96 
11 0.44 0.48 7.8610 48.924 137.67 
12 0.48 0.52 7.8653 48.969 137.25 
13 0.52 0.56 7.88681 49.049 137.95 
14 0.56 0.6 7.8700 49.132 137.90 
15 0.6 0.64 7.8704 49.200 137.10 
16 0.64 0.68 7.8718 49.257 137.45 
17 0.68 0.72 7.8710 49.284 137.78 
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Sr. 
No. 

Crack  depth 
(a1 = a2) m 

    L1  
     m 

    L2  
     m 

     f1  
     Hz 

    f2  
    Hz 

     f3  
      Hz 

1        
 
 
 
 
 
 
 
         0.0021 

0.04 0.08 7.7269 48.826 137.37 
2 0.08 0.12 7.7500 49.103 137.96 
3 0.12 0.16 7.7668 49.257 137.83 
4 0.16 0.2 7.7844 49.293 137.90 
5 0.2 0.24 7.7997 49.247 136.92 
6 0.24 0.28 7.8138 49.138 136.84 
7 0.28 0.32 7.8254 49.00 137.13 
8 0.32 0.36 7.8375 48.886 137.63 
9 0.36 0.4 7.8463 48.806 137.96 
10 0.4 0.44 7.8524 48.752 137.93 
11 0.44 0.48 7.8604 48.768 137.53 
12 0.48 0.52 7.8613 48.820 136.89 
13 0.52 0.56 7.8667 48.939 136.49 
14 0.56 0.6 7.8691 49.059 136.43 
15 0.6 0.64 7.8696 49.150 136.67 
16 0.64 0.68 7.8717 49.235 137.20 
17 0.68 0.72 7.8725 49.285 137.69 
  
 
 
Sr. 
No. 

Crack  depth 
(a1 = a2) m 

     L1  
      m 

   L2 
    m 

     f1  
      Hz 

     f2 
      Hz 

    f3  
     Hz 

1  
 
 
 
 
 
 
          0.0024 

0.04 0.08 7.6730 48.650 137.12 
2 0.08 0.12 7.7055 49.030 137.92 
3 0.12 0.16 7.7321 49.231 137.73 
4 0.16 0.2 7.7564 49.293 137.11 
5 0.2 0.24 7.7777 49.232 136.57 
6 0.24 0.28 7.7932 49.076 136.40 
7 0.28 0.32 7.8102 48.897 136.81 
8 0.32 0.36 7.8251 48.736 137.46 
9 0.36 0.4 7.8361 48.596 137.92 
10 0.4 0.44 7.8468 48.554 137.90 
11 0.44 0.48 7.8554 48.605 137.36 
12 0.48 0.52 7.8600 48.686 136.58 
13 0.52 0.56 7.8644 48.802 135.92 
14 0.56 0.6 7.8683 48.959 135.78 
15 0.6 0.64 7.8702 49.104 136.21 
16 0.64 0.68 7.8712 49.206 136.89 
17 0.68 0.72 7.8720 49.272 137.55 
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Sr. 
No. 

Crack  depth 
(a1 = a2) m 

   L1  
    m 

   L2  
     m 

  f1 
 Hz 

  f2  
  Hz 

  f3  
  Hz 

1           
 
 
 
 
 
 
        0.0027 

0.04 0.08 7.6200 48.479 136.891 
2 0.08 0.12 7.6534 48.943 137.86 
3 0.12 0.16 7.6849 48.202 137.62 
4 0.16 0.2 7.7176 48.283 136.76 
5 0.2 0.24 7.7454 48.206 136.05 
6 0.24 0.28 7.7688 49.00 135.89 
7 0.28 0.32 7.7907 48.762 136.42 
8 0.32 0.36 7.8112 48.562 137.28 
9 0.36 0.4 7.8246 48.372 137.86 
10 0.4 0.44 7.8365 48.294 137.79 
11 0.44 0.48 7.8501 48.367 137.12 
12 0.48 0.52 7.8564 48.477 136.11 
13 0.52 0.56 7.8634 48.652 135.30 
14 0.56 0.6 7.8666 48.827 134.90 
15 0.6 0.64 7.8687 48.029 135.60 
16 0.64 0.68 7.8723 48.182 136.54 
17 0.68 0.72 7.8724 48.262 137.39 
 
 
 
Sr. 
No. 

Crack  depth 
(a1 = a2) m 

  L1 
   m 

  L2  
   m 

   f1  
   Hz 

  f2  
  Hz 

  f3  
  Hz 

1  
 
 
 
 
 
 
          0.003 

0.04 0.08 7.5523 48.270 136.59 
2 0.08 0.12 7.5899 48.844 137.80 
3 0.12 0.16 7.6353 49.189 137.51 
4 0.16 0.2 7.6737 49.273 136.39 
5 0.2 0.24 7.7025 49.156 135.35 
6 0.24 0.28 7.7414 48.916 135.32 
7 0.28 0.32 7.7680 48.607 135.97 
8 0.32 0.36 7.7928 49.323 137.06 
9 0.36 0.4 7.8129 48.118 137.83 
10 0.4 0.44 7.8288 48.031 137.75 
11 0.44 0.48 7.8418 48.042 136.80 
12 0.48 0.52 7.8630 48.737 136.30 
13 0.52 0.56 7.8610 48.460 134.56 
14 0.56 0.6 7.8658 48.717 134.29 
15 0.6 0.64 7.8697 48.955 134.88 
16 0.64 0.68 7.8724 49.140 136.03 
17 0.68 0.72 7.8715 49.242 137.16 
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Fig.6.3.1. Comparison of the first estimated eigenfrequencies from the neural network to  
target values: 
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 Fig.6.3.2. Comparison of the Second estimated eigenfrequencies from the neural network to 
target values: 
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 Fig.6.3.3.Comparison of the third estimated eigenfrequencies from the neural network to 
target values: 
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                                                      Fig.6.3.4. Neural network output. 
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6.4 DISCUSSION  

The first, second and third natural frequencies corresponding to various crack 

locations and depths are calculated. The fundamental mode shapes for transverse vibration 

of cracked and uncracked beams are plotted and compared. The results obtained from the 

numerical analysis are presented in graphical form. Results show that there is an appreciable 

variation between natural frequency of cracked and uncracked cantilever beam. With 

increase in mode of vibration this difference increases.  

            The transverse vibration mode shapes for two crack aluminium beam are shown in 

fig.6.1-6.9.In these figures different combinations of crack depths (a1/w=a2/w=0.1667,0.334, 

0.5) are considered. The relative crack locations are chosen at 0.125 and 0.25. For moderate 

cracks appreciable changes in mode shapes are noticed and for deep cracks the changes in 

mode shapes are quite substantial. However remarkable changes are observed in 

longitudinal mode shapes at the crack positions. The longitudinal mode shapes for two 

cracks as shown in fig.6.10-6.15. The numerical results indicate that the deviation between 

the fundamental mode shapes of the cracked and uncracked beam is always sharply changed 

at the crack location. The simulation results obtained by ANSYS software are shown in 

Figs. 6.21-6.26. 

            The three-layer neural network having an input layer (I) with four input nodes, a 

hidden layer (H) with thirteen neurons and an output layer (O) with four output node 

employed for this work is shown in Fig.5.5.The estimated eigenfrequencies from the 

network are compared to the target values as shown in Figure 6.3.1-6.3.4. The target values 

are f1*, f2* and f3* in Figure 5.5 which are the reference data or training data to have trained 

the neural network. One hundred and seventy patterns are arranged in 10 separate curves 

base on the value of a as shown in the Figure. In Fig.6.3.1 shows the first eigenfrequency f1 

is monotonously increasing as the crack location moves from the clamped end to the free 

end when the crack depth a1=a2 is kept constant. On the other hand, the second and the third 

eigenfrequencies oscillate under the same situation as shown in Fig.6.3.2 and 6.3.3.  

            Mean-square error (MSE) is employed as a measurement of modelling performance. 

As shown in figure 6.3.4 the first MSE is 0.001769, second MSE is 0.002936 and third MSE 

is 0.004345.           
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            7. CONCLUSION AND SCOPE FOR FUTURE WORK 

 

The presence of crack in structure member introduces local flexibilities which can be 

computed and used in structural analysis. Analytical computational method can be used for 

solving the frequency of equation of elastic beam with cracks. It is shown that the natural 

frequency changes substantially due to the presence of cracks. The changes depending upon 

the location and size of cracks. The position of the cracks can be predicted from the 

deviation of the fundamental modes between the cracked and uncracked beam.  

The frequency of the cracked cantilever beam decreases with increase in the crack 

depth for the all modes of vibration. For moderate cracks (a1/w=a2/w=0.1667) appreciable 

changes in mode shapes are noticed and for deep cracks (a1/w=a2/w=0.5) the change in 

mode shapes are quite substantial.   

            Feed-forward multi-layer neural networks trained by back-propagation are used to learn 

the input (the location and depth of a crack)-output (the structural eigenfrequencies) relation 

of the structural system. From neural network training, the first eigenfrequency f1 is 

monotonously increasing as the crack location moves from the clamped end to the free end 

when the crack depth a1=a2 is kept constant. On the other hand, the second and the third 

eigenfrequencies oscillate under the same situation. The first MSE is 0.001769, second MSE 

is 0.002936 and third MSE is 0.004345. A neural network for the cracked structure is trained 

to approximate the response of the structure by the data set prepared for various crack sizes 

and locations. Training data to train the neural network are properly prepared. 

 

FUTURE WORK  

 • The cracked cantilever can be analyzed under the influence of external forces.  

 • The dynamic response of the cracked beams can be analyzed for different crack 

    orientations.      

 • Stability study of the cracked beams can be done. 

• Use hybrid neuro genetic technique for crack detection.  

                      



                                                                                CHAPTER 8 

 
 
 
 
 

             
                                                                                                  
                                                                                               
                                                                                                    
 
                                                                                                     REFERENCES 



 
 
 

58 
 

                                       8. REFERENCES   
 

1. Orhan Sadettin, Analysis of free and forced vibration of a cracked cantilever beam, NDT 

and E International 40, (2007), pp.43-450.  

2. Chasalevris Athanasios C. and Papadopoulos Chris A., Identification of multiple cracks 

in beams under bending, Mechanical Systems and Signal Processing 20, (2006), 

pp.1631-1673. 

3.  Nahvi H.  and Jabbari M., Crack detection in beams using experimental modal data and 

finite element model, International Journal of Mechanical Sciences 47, (2005), pp.1477–

1497. 

4. Yang X. F., Swamidas A. S. J. and Seshadri R., Crack Identification in vibrating beams 

using the Energy Method, Journal of Sound and vibration 244(2), (2001), pp.339-357. 

5. Dharmaraju N., Tiwari R.  and Talukdar S., Identification of an open crack model in a 

beam based on force–response measurements, Computers and Structures 82, (2004), 

pp.167–179. 

6. Ruotolo R, et al. Harmonic analysis of the vibrations of a cantilevered beam with a 

closing crack, Comput Struct, 61(6), (1996), pp.1057–1074. 

7.   Patil D.P., Maiti S.K., Experimental verification of a method of detection of multiple cracks 

in beams based on frequency measurements, Journal of Sound and Vibration 281,(2005),             

pp.439–451. 

8.  Patil D.P., Maiti S.K, Detection of multiple cracks using frequency measurements, 

Engineering Fracture Mechanics 70, (2003), pp.1553–1572. 

9. Kisa Murat and Gurel M. Arif, Free vibration analysis of uniform and stepped cracked 

beams with circular cross sections, International Journal of Engineering Science 45, 

(2007), pp.364–380. 

10. Kisa M.  and Brandon J., The Effects of closure of cracks on the dynamics of a cracked 

cantilever beam, Journal of Sound and Vibration, 238(1), (2000) pp.1-18 

11. Loutridis S., Douka E. and Hadjileontiadis L.J., Forced vibration behaviour and crack    

detection of cracked beams using instantaneous frequency, NDT&E International, 38(5), 

(2005), pp. 411-419.  

 



 
 
 

59 
 

12.  Darpe A.K.,Gupta K., Chawla A., Dynamics of a two-crack rotor, Journal of Sound and  

      Vibration, 259 (3), (2003), pp.649–675.                                                                             

13. Ertuğrul Çam, Orhan Sadettin and Lüy Murat , An analysis of cracked beam structure    

using impact echo method, NDT and E International 38, (2005), pp.368–373. 

14. Fang X., Luo H. and Tang J., Structural damage detection using neural network with 

learning rate improvement, Computers and Structures 83 (2005), pp. 2150–2161. 

15. Suh M.W., Shim M. B. and Kim M. Y. Crack Identification using hybrid neuro – genetic 

technique, Journal of Sound and vibration 238(4), (2000), pp.617-635. 

16. Chondros T.G, Dimarogonas A.D and Yao, J. A. continuos cracked beam vibration   

      theory, Journal of Sound and Vibration, 215, (1998), pp.17-34. 

17. Rizos P.F., Aspragathos N., and Dimarogonas A.D., Identification of cracked location    

and magnitude in a cantilever beam from the vibrational modes, Journal of Sound and 

Vibration, 138 (3), (1989), pp.381 – 388. 

18. Baris Binici, Vibration of beams with multiple open cracks subjected to axial force, 

Journal of Sound and Vibration 287, (2005), pp.277–295. 

19. Sekhar A.S., Mohanty A.R. and Prabhakar S., Vibrations of cracked rotor system: 

transverse crack versus slant crack, Journal of Sound and Vibration 279, (2005), pp. 

1203–1217. 

20.  Sekhar A.S., Model based identification of two cracks in a rotor system, Mechanical      

       Systems and Signal Processing, 18, (2004), pp.977–983. 

21. Suresh S, Omkar S. N., Ganguli Ranjan and  Mani V, Identification of crack location 

and depth in a cantilever beam using a modular neural network approach, Smart 

Materials and Structures, 13, (2004) pp.907-915.   

22. Tsai T. C. and Wang Y. Z., Vibration Analysis and diagnosis of a cracked beam, Journal 

of Sound  and Vibration,192(3), (1996)pp.607-620. 

23. Zheng D.Y., Kessissoglou N.J., Free vibration analysis of a cracked beam by finite 

element method, Journal of Sound and Vibration 273, (2004) pp.457–475. 

   24. Hwang H.Y.,Kim C., Damage detection in structures using a few frequency response,                        

Journal of Sound and Vibration 270, (2004), pp. 1–14. 



 
 
 

60 
 

  25. Fernandez-saez J., Rubio L. and Navarro C., Approximate calculation of the 

fundamental frequency for bending vibrations of cracked beams. Journal of Sound and 

Vibration 225 (2), (2002), pp. 345-352. 

  26. Chandra Kishen, J.M., and Kumar, A., Finite element analysis for fracture  behavior of 

cracked beam-columns, Finite Elements in Analysis and Design, 40,(2004), pp.1773 –

1789.  

  27.  Sahin M , Shenoi R.A., Quantification and localisation of damage in beam-like 

structures by using artificial neural networks with experimental validation, Engineering 

Structures, 25, (2003), pp.1785–1802. 

  28.  Douka E., Bamnios G., Trochidis A., A method for determining the location and depth     

of cracks in double-cracked beams, Applied Acoustics, 65, (2004), pp. 997–1008. 

  29. Han-Ik Yoona, In-Soo Sona, Sung-Jin Ahn, Free Vibration Analysis of Euler-Bernoulli  

beam with double Cracks, Journal of Mechanical Science and Technology, 21, (2007), 

pp. 476-485. 

 30. Gounaris George, Papadopoulos Chris A. Crack identification in rotating shafts by           

coupled response measurements Engineering Fracture Mechanics, 69, (2002), pp.339-

352. 

  31.  Behera R.K., Vibration Analysis of multi cracked structure, PhD Thesis. 

  32. Tada H, Paris P.C. and Irwin G.R, The stress analysis of cracks Handbook, Third             

edition- ASME PRESS, 2000. 

  33. Stephan H.C., Norman C.D. and Thoms J.L. An Introduction of mechanics of solids,    

McGraw Hill book company, Second edition, 1978. 

34.   Rajsekaran S, Vijayalakshmi Pai G. A., Neural network, fuzzy logic & genetic                                      

algorithm synthesis and application, Pentice Hall. 

35. Haykin S. “Neural Networks: A comprehensive Foundation”, Pearson Edition Asia, 

2002. 

  36. Madenci Erdogan, Guven Ibrahim, The Finite Element Method Application in Engg. by 

using ANSYS, (Springer)2007. 

  37.  Inman Daniel J., Engineering vibration Third edition, Pearson Pentice Hall (2007). 

  38.  Singiresu S. Rao, Mechanical vibrations, Pearson education (2007). 

  39.  Bavikatti S., Finite Element Analysis, New Age International (p) Ltd. 




