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Abstract 

Over the years damage detection in structures is being given prior attention. For this 

purpose different newer techniques are being used so far. In this investigation defect 

in cantilever beam in the form of a transverse crack is being investigated using smart 

Technique like Fuzzy Logic. Gaussian membership functions are used for the Fuzzy 

Controller. The input parameters to the Fuzzy Controller are relative divergence of 

first three natural frequencies and the output parameters of the Fuzzy Controller are 

relative crack depth and relative crack location in dimensionless forms. For deriving 

the fuzzy rules for the controller; theoretical expressions have been developed 

considering three parameters such as; natural frequencies, crack depths and crack 

locations. Strain energy release rate has been used for calculating the local stiffnesses 

of the beam. The local stiffnesses of the beam are dependent on the crack depth. 

Different boundary conditions are being outlined which take into account the crack 

location. Several fuzzy rules are derived and the Fuzzy controller has been designed 

accordingly. Experimental setup has been developed for verifying the robustness of 

the developed fuzzy controller. Finite Element Analysis is performed on the single 

and double cracked cantilever beam to obtain the modal natural frequencies. The 

proposed approach is verified by comparing the results obtained from the numerical 

analysis and the developed experimental set-up. And it was observed that the Fuzzy 

Controller can predict the location and depth of the crack in a close proximity as par 

with the actual results. 
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 1. Introduction  

1.1 Background 

Mechanical structures in real service life are subjected to combined or separate 

effects of the dynamic load, temperature and corrosive medium, due to the consequent 

growth of fatigue cracks, cracks due to corrosion and other type damages. The interest in 

the ability to monitor a structure and detect damage at the earliest possible stage is 

pervasive throughout the Civil, Mechanical and Aerospace Engineering communities. 

Damage is basically defined as changes introduced into a system, either intentional or 

unintentional, which adversely affect the current or future performance of that system. 

The immediate visual detection of damage is difficult or impossible in most of the cases 

and use of local non-destructive testing (NDT) methods of damage detection requires 

time and financial expense and is frequently inefficient. This has motivated the 

development of alternative methods. In this connection, the use of vibration-based 

methods of damage/crack diagnostics is promising. These methods are based on the 

vibration characteristics of structures such as natural frequencies and mode shapes. The 

vibration-based methods can help to determine the location and size of crack from the 

vibration signatures of the structures.   

It is required that structures must safely work during its service life. But, damages 

initiate a breakdown period on the structures. Cracks are among the most encountered 

damage types in the structures. Cracks in a structure may be hazardous due to static or 

dynamic loadings, so that crack detection plays an important role for structural health 

monitoring applications.  

It has been observed that the presence of cracks in structures or in machine members 

lead to operational problem as well as premature failure. A number of researchers 

throughout the world are working on structural dynamics and particularly on dynamic 

characteristics of structures with crack. Due to presence of cracks the dynamic 

characteristics of structure changes. These are the natural frequencies, the amplitude 

responses due to vibration and the mode shapes. 
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Cracks present a serious threat to proper performance of structures and machines. 

Most of the failures are due to material fatigue. For this reason methods allowing early 

detection and localization of cracks have been the subject of intensive research for 

investigations. Since the last two decades a number of experiments and theories have 

been developed to elucidate the phenomenon and determine the crack initiation and 

propagation conditions. 

Beams are one of the most commonly used structural elements in numerous 

engineering applications and experience a wide variety of static and dynamic loads. 

Cracks may develop in beam-like structures due to such loads. Considering the crack as a 

significant form of such damage, its modelling is an important step in studying the 

behavior of damaged structures. Knowing the effect of crack on stiffness, the beam or 

shaft can be modeled using either Euler-Bernoulli or Timoshenko beam theories. The 

beam boundary conditions are used along with the crack compatibility relations to derive 

the characteristic equation relating the natural frequency, the crack depth and location 

with the other beam properties. As stated Beam type structures are being commonly used 

in steel construction and machinery industries. Studies based on structural health 

monitoring for crack detection deal with change in natural frequencies and mode shapes 

of the beam. The others deal with dynamic response of the beam due to harmonic 

forcing. 

Fatigue cracks are a potential source of catastrophic structural failure. To avoid 

failure caused by cracks, many researchers have performed extensive investigations to 

develop structural integrity monitoring techniques. Most of these techniques are based on 

vibration measurements and analysis because, in most cases, vibration-based methods 

can offer an effective and convenient way to detect fatigue cracks. Generally, vibration-

based methods can be classified into two categories: linear and nonlinear approaches. 

Linear approaches detect the presence of cracks in a target object by monitoring changes 

in the resonant frequencies in the mode shapes or in the damping factors. Depending on 

the assumptions, the type of analysis, the overall beam characteristics and the kind of 

loading or excitation, a huge number of publications containing a variety of different 

approaches have been reported in the relevant literature. In recent years, transport 
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engineering has experienced serious advances characterized mainly by parameters like 

higher speeds and weights of vehicles. These parameters make the transportation 

problem more complex.  

With a race towards high speed, high power and lightweight in rotating 

machinery design and operation often impose severe stress and environmental condition 

upon rotors. As rotating machinery is designed to operate at higher mechanical 

efficiency; operating speed, power, and load are increased as weight and dimensional 

tolerances are decreased.  High torsional and radial loads, together with a complex 

pattern of rotor motion, can create a severe mechanical stress condition that may 

eventually lead to development of a crack in the shaft. The presence of a transverse crack 

in shaft/rotor incurs a potential risk of destruction or collapse. This produces high costs 

of production and maintenance. 

Detection of a crack in its early stages may save the rotor for use after repair. By 

monitoring, depending upon the type and severity of the crack, it may be possible in 

some cases to extend the use of a flawed rotor without risking a catastrophic failure, 

while arrangements are being made for a replacement rotor. The method will also 

improve safety by helping to prevent major rotor failure. For the time being, the research 

on cracked rotor is still at the theoretical stage. 

With a well known fact the dynamic behavior of a structure with cracks is of 

significant importance in engineering. There are two types of problems related to this 

topic: the first may be called direct problem and the second called inverse problem. The 

direct problem is to determine the effect of damages on the structural dynamic 

characteristics, while the inverse problem is to detect, locate and quantify the extent of 

the damages. In the past two decades, both the direct and the inverse problems have 

attracted many researchers. 

A direct procedure is difficult for crack identification and unsuitable in some 

particular cases, since they require minutely detailed periodic inspections, which are very 

costly. In order to avoid these costs, recently researchers have adopted an alternative and 

more efficient procedure in crack detection through vibration analysis.   
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1.2 Aims and Objectives of this Research 

In the present investigation, a number of papers published so far have been surveyed, 

reviewed and analyzed. Most of the researchers studied the effect of a single crack on the 

dynamics of structures. However, in actual practice structural members such as 

beams/shafts are highly susceptible to transverse cross-sectional cracks due to fatigue. 

Some information is available on dynamics of structures due to crack but this is not 

exhaustive for real applications. Therefore an attempt has been made to formulate a 

Smart Technique for localization and identification of crack in cantilever beam 

structures. In the analysis both single and double cracks are taken into account.  

The phases of the process plan for the present investigation are as follows; 

1. Theoretical free and forced Vibration analysis of the single and double cracked 

cantilever beam. 

2. Experimental Analysis to obtain the Relative values of first, second and third 

modal natural frequencies. 

3. To train the series of data obtained in the experimental analysis in the Fuzzy 

Controller to generate the formulation to find out the relative values of crack 

depth and crack length from the three inputs of relative values of first, second and 

third modal frequencies. 

4. Finite Element formulation of the same to correlate the data obtained  

In the First stage of the research single and double transverse cracks are included for 

developing the analytical expressions on dynamic characteristics of structures. These 

cracks introduce new boundary conditions for the structures at the crack locations. These 

boundary conditions are derived from the strain energy equation using Castigliano’s 

theorem. Presence of crack also reduces stiffness of the structures which has been 

derived from stiffness matrix. The detailed analyses of crack modelling and stiffness 

matrices are presented in subsequent sections.   
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Euler-Bernoulli beam theory is used for dynamic characteristics of beams with 

transverse cracks. Modified boundary conditions due to presence of cracks, have been 

used to find out the theoretical expressions for natural frequencies for the beams.  

In the second stage a Fuzzy Controller is developed with three input parameters 

which are relative values of first, second and third mode natural frequencies. And the 

outputs are relatice crack depth and relative crack location. The training data for 

developing the same is taken from the experimental analysis. 

In the third stage Finite Element formulation is performed for the single and double 

transverse cracks of the cantilever beam. The analysis is performed using certified 

ALGOR software and the relative values of first, second and third natural frequencies are 

obtained for comparison. 

In the last stage of the investigation the effect of crack depth and crack location on 

the modal values of natural frequencies are obtained with a very convincing manner. And 

the data obtained from the Numerical analysis, Fuzzy- Controller analysis and 

Experimental analysis are compared. Suitable numerical methods are used in order to 

solve the theoretical equations developed. Useful conclusions are drawn from the 

numerical results of respective sections. The numerical results are validated by using the 

experiments on beams and rotors in the corresponding sections. Both the numerical and 

experimental results are compared and good agreements are obtained. 

1.3 Outline of the Thesis 

The processes as outlined in this thesis are broadly divided into seven chapters. The 

current chapter is the first one which deals with the introductory aspect of the thesis. The 

second chapter contains up-to-date information on literature surveyed on various aspects 

of vibration analysis of cracked structures, vibration analysis of cracked cantilever beam. 

The third chapter deals with the theoretical analysis for the Free and Forced Vibration of 

the both single and double cracked cantilever beam and contains the following sections. 

1. Governing Equation for the free vibration analysis. 

2. Governing Equation for forced vibration analysis.   
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The fourth chapter deals with the Fuzzy-Controller analysis to train the data obtain 

from the experimental analysis to generalize the relation so that relative values of crack 

depths and crack length can be obtained. 

The fifth chapter deals with the Finite Element formulation of the cracked beam to 

obtain the modal natural frequencies in which the governing equations are obtained for 

both cracked and uncracked beam. 

Chapter 6 represents the detailed discussions on the results obtained from the Fuzzy-

Controller, numerical and experimental analysis. The last chapter deals with concluding 

remarks drawn from the discussions and applications along with the scope for further 

work.  
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Literature Review 
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2. Literature Review 
Cracks are a potential source of catastrophic failure in mechanical machines and 

in civil structures and in aerospace engineering. To avoid the failure caused by cracks, 

many researchers have performed extensive investigations over the years to develop 

structural integrity monitoring techniques. Most of the techniques are based on vibration 

measurement and analysis because, in most cases, vibration based methods can offer an 

effective and convenient way to detect fatigue cracks in structures. It is always require 

that structures must safely work during its service life, however damage initiates a 

breakdown period on the structures. It is unanimous that cracks are among the most 

encountered damage types in structures. Crack in structures may be hazardous due their 

dynamic loadings. So crack detection plays an important for structural health monitoring 

applications. As Beams type structures are being commonly used in steel construction 

and machinery industries, focus of the present research work was to develop a newer 

technique for crack identification and localization. In the Literature Review several 

studies based on structural health monitoring for crack detection is being discussed. 

Damage in the form of crack affects the natural frequencies and modes shapes of 

vibrating beam. The deviations of natural frequencies and modes shapes mainly 

dependant on location and intensity of the crack. 

An analytical study have been performed by Yang et al. [1] on the free and forced 

vibration of inhomogeneous Euler–Bernoulli beams containing open edge cracks. The 

beam was subjected to an axial compressive force and a concentrated transverse load 

moving along the longitudinal direction. Analytical solutions of natural frequencies and 

dynamic deflections were obtained for cantilever, hinged–hinged, and clamped–clamped 

beams whose material properties follow an exponential through-thickness variation. It 

was found that the natural frequencies decrease and the dynamic deflection increases due 

to the presence of the edge crack and the axial compressive force. While the natural 

frequencies were greatly influenced by the edge crack, especially when it was located at 

some specific positions, the dynamic deflection was not very sensitive to the presence 

and the location of the edge crack. Both free vibration and dynamic response were much 

more affected by the axial compression than by the edge crack. 
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Orhan [2] performed a free and forced vibration analysis of a cracked beam in 

order to identify the crack in a cantilever beam. Single and two-edge cracks were 

evaluated. The analysis reveals that free vibration analysis provides suitable information 

for the detection of single and double cracks, whereas forced vibration can detect only 

single crack condition. However dynamic response of the forced vibration better 

describes the changes in crack depth and location than the free vibration. 

Damage in a cracked structure was analyzed using genetic algorithm technique by 

Taghi et al. [3]. For modeling the cracked-beam structure an analytical model of a 

cracked cantilever beam was utilized and natural frequencies were obtained through 

numerical methods. A genetic algorithm is utilized to monitor the possible changes in the 

natural frequencies of the structure. The identification of the crack location and depth in 

the cantilever beam was formulated as an optimization problem. 

Theoretical and experimental dynamic behavior of different multi-beams systems 

containing a transverse crack has been performed by Saavedra and Cuitino [4]. In the 

crack vicinity the additional flexibility generated by it was being evaluated by strain 

energy density function which was taken from the linear fracture mechanics theory. A 

new cracked stiffness matrix is deduced based on flexibility and this can be used 

subsequently in the FEM analysis of crack systems 

Bakhary et al. [5] used Artificial Neural Network for damage detection. In his 

analysis an ANN model was created by applying Rosenblueth’s point estimate method 

verified by Monte Carlo simulation, the statistics of the stiffness parameters were 

estimated. The probability of damage existence (PDE) was then calculated based on the 

probability density function of the existence of undamaged and damaged states. The 

developed approach was applied to detect simulated damage in a numerical steel portal 

frame model and also in a laboratory tested concrete slab. The numerical and 

experimental results demonstrated that, compared with the normal ANN approach, the 

statistical ANN approach gives more reliable identification of structural damage. 

Friswell at al. [6] applied genetic algorithm to the problem of damage detection 

using vibration data. The objective was to identify the position of one or more damage 

sites in a structure, and to estimate the extent of the damage at these sites. The genetic 
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algorithm was used to optimize the discrete damage location variables. For a given 

damage location site or sites, a standard eigensensitivity method was used to optimize the 

damage extent. This two-level approach incorporates the advantages of both the genetic 

algorithm and the eigensensitivity methods. The method was demonstrated on a 

simulated beam example and an experimental plate example. And Damage at one and 

two sites have been successfully located in the simulated example of a cantilever beam 

and also in the experimental cantilever plate. The algorithm was robust to systematic 

errors in the measured data, demonstrated in simulation by the addition of a discrete mass 

and experimentally by using a crude model for the plate. 

A comprehensive analysis of the stability of a cracked beam subjected to a 

follower compressive load was presented by Wang [7].The beam was fixed at its left end 

and restrained by a translational spring at its right end. The vibration analysis on such 

cracked beam was conducted to identify the critical compression load for flutter or 

buckling instability based on the variation of the first two resonant frequencies of the 

beam. Besides, the effect of the crack’s intensity and location on the buckling or flutter 

compressive load was studied through comprehensive mechanics analysis. And it was 

observed from the analysis that for flutter instability, flutter load will decrease if the 

crack is located in the region with positive curvature and increase otherwise to a greater 

extent compared with that of a healthy beam. On the contrary, for buckling instability, the 

buckling load will increase if the crack is located in the region with positive curvature 

and decrease otherwise. 

Chondros et al. [8] have developed a continuous cracked beam vibration theory 

for the lateral vibration of cracked Euler-Bernoulli beams with single-edge or double-

edge open cracks. In his approach the Hu-Washizu-Barr variational formulation was used 

to develop the differential equation and the boundary conditions of the cracked beam as a 

one-dimensional continuum. The displacement field about the crack was used to modify 

the stress and the displacement field throughout the bar. The crack was modeled as a 

continuous flexibility using the displacement field in the vicinity of the crack, found with 

fracture mechanics methods. The results of the two independent evaluations of the lowest 

natural frequency of lateral vibrations for beams with a single-edge crack are presented. 



10 
 

And it was observed that the experimental results from aluminum beams with large 

fatigue cracks are very close to the value predicted. 

A new method for natural frequency analysis of beam with an arbitrary number of 

cracks has been developed by Khiem and Lien [9] on the bases of the transfer matrix 

method and rotational spring model of crack. The resulted frequency equation of a 

multiple cracked beam was general with respect to the boundary conditions including the 

more realistic (elastic) end supports and can be constructed analytically by using 

symbolic codes. The procedure proposed was advanced by elimination of numerical 

computation of the high order determinant so that the computational time for calculating 

natural frequencies in consequence was significantly reduced. Numerical computation 

has been carried out to investigate the effect of each crack, the number of cracks and 

boundary conditions on the natural frequencies of a beam. And it was observed that the 

natural frequencies were sensitive to the elastic boundary conditions only for spring 

constants ranged in some limited interval. Outside the interval the number of cracks has a 

more significant effect on the natural frequencies. 

Cam et al. [10] have performed a study to obtain information about the location 

and depth of the cracks in cracked beam. For this purpose the vibrations as a result of 

impact shocks were analyzed and the signals obtained in defect-free and cracked beams 

were compared in the frequency domain. The result of the study was suggested to 

determine the location and depth of cracks by analyzing from the vibration signals. 

Experimental results and simulations obtained by the software ANSYS were in good 

agreement. 

The relative sensitivities of structural dynamical parameters were analyzed by He-

sheng et al. [11] using a directive derivation method. Neural network was used for this 

purpose. The combined parameters were presented as the input vector of the neural 

network, which computed with the change rates of the several former natural frequencies 

(C), the change ratios of the frequencies (R), and the assurance criterions of flexibilities   

(A). Some numerical simulation examples, such as, cantilever and truss with different 

damage extends and different damage locations were analyzed. The results indicated that 
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the combined parameters were more suitable for the input patterns of neural networks 

than the other parameters alone. 

A numerical technique based on the global-local hybrid spectral element (HSE) 

method was proposed by Hu et al. [12] to study wave propagation in beams containing 

damages in the form of transverse and lateral cracks. For this purpose spectral element 

method was employed to model the exterior or far field regions, while a new type of 

element (HSE) was constructed to model the interior region containing damages. This 

method was employed to investigate the behaviors of wave propagation in beams 

containing various types of damages, such as multiple transverse cracks and lateral 

cracks. With this balanced approach, accurate analyses can be realized with a very coarse 

FE mesh. And it was observed that the proposed HSEs were highly efficient and can be 

used to model complex problems. 

Wave vibration analysis of an axially loaded cracked Timoshenko beam have 

been performed by Mei et al. [13].Axial loading, shear deformation and rotary inertia 

criteria were considered in this analysis. The transmission and reflection matrices for 

various discontinuities on an axially loaded Timoshenko beam and the matrix relations 

between the injected waves and externally applied forces and moments were derived. 

These matrices were combined to provide a concise and systematic approach to both free 

and forced vibration analyses of complex axially loaded Timoshenko beams with 

discontinuities such as cracks and sectional changes. 

Analytical predictions of natural frequencies of cracked simply supported beam 

with a stationary roving mass have been performed by Zhong and Oyadiji [14] in which 

the natural frequencies of the damaged simply supported beam were studied and the 

transverse deflection of the cracked beam was constructed by adding a polynomial 

function, which represents the effects of a crack, to the polynomial function which 

represents the response of the intact beam. Approximate closed-form analytical 

expressions were derived for the natural frequencies of an arbitrary mode of transverse 

vibration of a cracked simply supported beam with a roving mass using the Rayleigh’s 

method. The natural frequencies change due to the roving of the mass along the cracked 

beam. Therefore the roving mass can provide additional spatial information for damage 
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detection of the beam. That is, the roving mass can be used to probe the dynamic 

characteristics of the beam by roving the mass from one end of the beam to the other. The 

presence of a crack caused the local stiffness of the beam to decrease which, in turn, 

caused a marked decrease in natural frequency of the beam when the roving mass was 

located in the vicinity of the crack. The magnitude of the roving mass used was varied 

between 0% and 50% of the mass of the beam. The predicted frequencies were compared 

very well with those obtained using the finite element method and the experimental 

results. 

Artificial Intelligence tools such as neural network, genetic algorithm and fuzzy 

logic have been used by Saridakis et al. [15] for identification of cracks in shafts using 

coupled response measurements. In this research the dynamic behavior of a shaft with 

two transverse cracks characterized by three measures: position, depth and relative angle. 

Both cracks were considered to lie along arbitrary angular positions with respect to the 

longitudinal axis of the shaft and at some distance from the clamped end. A local 

compliance matrix of two degrees of freedom (bending in both the horizontal and the 

vertical planes) was used to model each crack. The calculation of the compliance matrix 

was based on established stress intensity factor expressions and was performed for all 

rotation angles through a function that incorporated the crack depth and position as 

parameters. Towards this goal, five different objective functions were proposed and 

validated; two of these were based on fuzzy logic. More computational intelligence was 

added through a genetic algorithm, which was used to find the characteristics of the 

cracks through artificial neural networks that approximate the analytical model. Both the 

genetic algorithm and the neural networks contributed to a remarkable reduction of the 

computational time without any significant loss of accuracy. The final results showed that 

the proposed methodology may constitute an efficient tool for real-time crack 

identification. 

Another novel approach for crack detection in beam like structures using RBF 

(Radial Basis Function) neural network have been performed by Huijian et al. [16] with 

an experimental validation. In the particular research a crack damage detection algorithm 

was presented using a combination of global and local vibration-based analysis data as 

input in artificial neural networks (ANNs) for location and severity prediction of crack 
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damage in beam like structures. Finite element analysis has been used to obtain the 

dynamic characteristics of intact and damaged cantilever steel beams for the first three 

natural modes. In the experimental analysis, several steel beams with six distributed 

surface bonded electrical strain gauges and an accelerometer mounted at the tip have 

been used to obtain modal parameters such as resonant frequencies and strain mode 

shapes. Finally, the Radial Basis Function ANNs have been trained using the data 

obtained from the numerical damage case to predicate the severity and localization of the 

crack damage. 

A new concept of nonlinear output frequency response functions (NOFRFs) has 

been introduced by Peng et el. [17] to detect cracks in beams using frequency domain 

information and the results showed that the NOFRFs were a sensitive indicator of the 

presence of cracks providing the excitation is of an appropriate intensity. They also 

constitute an indicative and promising basis, which must further be explored, so that the 

method can be used for the detection of cracks in beams with applications in structural 

fault diagnosis. 

Damage identification based on propagating Lamb wave measurements have been 

introduced by Grabowska et al. [18] which has been developed especially for 

distinguishing different kinds of damages. The reason for the research was that for 

example small voids in material, classified as damage, do not influence its overall 

strength. The usage of wavelet transformation with propagating Lamb waves for 

distinguishing between different failures was the most important novelty of the research 

done. To obtain the presented results for modeling, the FFT-based spectral element 

method has been used. And for signal processing, the wavelet analysis has been 

employed. 

Crack identification in beam by dynamic response has been proposed by Law and 

Lu [19] by using time domain. The crack was modeled as a discrete open crack 

represented mathematically by the Dirac delta function. The dynamic responses were 

calculated basing on modal superposition. In the inverse analysis, optimization technique 

coupled with regularization on the solution was used to identify the crack(s). The 

formulation for identification was further extended to the case of multiple cracks. A 
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general orthogonal polynomial function was used to generate the derivatives of the strain 

or displacement time responses to eliminate the error due to measurement noise. 

Computation simulations with sinusoidal and impulsive excitations on a beam with a 

single crack or multiple cracks showed that the method was effective for identifying the 

crack parameters with accuracy. The proposed identification algorithm was also verified 

experimentally from impact hammer tests on a beam with a single crack. 

Pawar et al. [20] have proposed spatial Fourier analysis and Neural technique for 

damage detection in beam. The study investigated the effect of damage on beams with 

fixed boundary conditions using Fourier analysis of mode shapes in the spatial domain. A 

finite element model was used to obtain the mode shapes of a damaged fixed–fixed beam, 

and the damaged mode shapes were expanded using a spatial Fourier series and the effect 

of damage on the harmonics was investigated. This approach was contrasted with the 

typical time domain application of Fourier analysis for vibration problems. It was found 

that damage caused considerable change in the Fourier coefficients of the mode shapes, 

which were found to be sensitive to both damage size and location. Therefore, a damage 

index in the form of a vector of Fourier coefficients was formulated. A neural network 

was trained to detect the damage location and size using Fourier coefficients as input. 

Numerical studies showed that damage detection using Fourier coefficients and neural 

networks has the capability to detect the location and damage size accurately. 

Free and Forced response measurement method has been proposed by 

Karthikeyan et al. [21] which gave crack flexibility coefficients as a by-product. 

Timoshenko beam theory was used in the beam modeling for transverse vibrations. The 

finite element method (FEM) was used for the cracked beam free and forced vibration 

analysis. An open transverse surface crack was considered for the crack model. The 

effect of the proportionate damping has been included. A harmonic imbalance force of 

known amplitude and frequency was used to dynamically excite the beam with the help 

of an independent exiting unit. The crack localisation and sizing algorithm was iterative 

in nature. The iteration started with an initial guess for the crack depth ratio and 

iteratively estimated the crack location and the crack depth until the desired convergence 

for both the crack location and the crack depth were obtained. For estimation of bounded 

flexibility coefficients, a regularization technique has been adopted. The prediction of the 
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crack location and size were in good agreement even in the presence of the measurement 

error and noise. 

Ostachowicz [22] have proposed Spectral finite element method for crack 

detection in structures. The research brought together the principles, equations, and 

applications of damage modeling and elastic waves propagation, both traditional and 

state-of-the-art in a review form. It began with the relevant fundamentals of damage 

modeling, by deriving the basic equations of fracture mechanics and elastic wave 

propagations, and  applications of Lamb waves was covered that has been at the forefront 

of today’s research. The results obtained indicated that the current approach was capable 

of detecting cracks and delaminations of very small size, even in the presence of 

considerable measurement errors. 

Parhi and Das [23] introduced newest technique known as Fuzzy-Gaussian 

interference Technique for crack detection in cracked cantilever beam. The fuzzy-logic 

controller used in the present investigation consisted of six input parameters and two 

output parameters. The input parameters to the fuzzy controller were the relative 

divergence of the first three natural frequencies and first three mode shapes in 

dimensionless forms. The output parameters of the fuzzy controller were the relative 

crack depth and relative crack location in dimensionless forms. Theoretical expressions 

have been developed to derive the fuzzy rules for the controller considering four 

parameters such as natural frequencies, mode shapes, crack depths, and crack locations. 

The strain-energy release rate method has been used for calculating the local stiffnesses 

of the beam for a mode-I type of the crack. Several boundary conditions were outlined 

that take into account the crack location. Required fuzzy rules were derived for the fuzzy 

Gaussian controller. The experimental setup has been fabricated in the laboratory for 

verifying the robustness of the developed fuzzy controller. The developed fuzzy 

controller has been able to predict the location and depth of the crack in close proximity 

with the real results. 

An analytical, as well as experimental approach to the crack detection in 

cantilever beams 
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using vibration analysis has been established by Nahvi and Jabbari [24]. In the approach 

an experimental setup was designed in which a cracked cantilever beam was excited by a 

hammer and the response was obtained using an accelerometer attached to the beam. To 

avoid non-linearity, it was assumed that the crack was always open. To identify the crack, 

contours of the normalized frequency in terms of the normalized crack depth and location 

were plotted. The intersection of contours with the constant modal natural frequency 

planes was used to relate the crack location and depth. A minimization approach was 

employed for identifying the cracked element within the cantilever beam. The proposed 

method was based on measured frequencies and mode shapes of the beam. 

A method for crack identification in double-cracked beams based on wavelet 

analysis has been presented by Loutridis et al. [25] in which the fundamental vibration 

mode of a double-cracked cantilever beam was analyzed using continuous wavelet 

transform and both the location and depth of the cracks were estimated. The location of 

the cracks was determined by the sudden changes in the spatial variation of the 

transformed response. To estimate the relative depth of the cracks, an intensity factor was 

established which correlated the size of the cracks to the coefficients of the wavelet 

transform. It was shown that the intensity factor followed definite trends and therefore 

can be used as an indicator for crack size. The proposed technique was validated both 

analytically and experimentally in case of a double-cracked cantilever beam having 

cracks of varying depth at different positions. In the light of the obtained results, the 

advantages and limitations of the method were presented and discussed. 

The aero-elastic characteristics of a cantilevered composite panel of large aspect 

ratio and with an edge crack are investigated by Wang et al. [26]. The panel consists of 

several fiber-reinforced composite plies, and was modeled with a one-dimensional beam 

vibrating in coupled bending and torsion. The fundamental mode shapes of the cracked 

cantilever were used to study the interaction between a crack and aerodynamic 

characteristics by employing Galerkin’s method. Variation of the divergence/flutter speed 

with respect to the crack ratio, its location as well as the fiber angle was also investigated. 

The divergence/ flutter speed was more sensitive to the bending–torsion coupling 

parameter than to the presence of the crack. The crack may or may not reduce the 

divergence/flutter speed, depending on the fiber orientation. And it was observed that the 
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qualitative analysis may help the development of an online prognosis tool for an aircraft 

with large aspect-ratio unswept composite wings. 

Damage assessment in structures from changes in static parameter using neural 

network have been performed by Maity and Saha [27] in their study. The basic strategy 

applied in this study was to train a neural network to recognize the behaviour of the 

undamaged structure as well as of the structure with various possible damaged states. 

When this trained network was subjected to the measured response, it was able to detect 

any existing damage. The idea was applied on a simple cantilever beam. Strain and 

displacement were used as possible candidates for damage identification by a back-

propagation neural network and the superiority of strain over displacement for 

identification of damage has been observed. 

Identifying the locations and severity of damage in structures using frequency 

response function (FRF) data have been formulated by Hwang and Kim [28]. The basic 

method followed to detect the location and severity by minimizing the difference between 

test and analytic FRFs, which was a type of model updating or optimization method; 

however, the preferred method proposed in this study used only a subset of vectors from 

the full set of FRFs for a few frequencies and the stiffness matrix and reductions in 

explicit form was calculated. To verify the proposed method, examples for a simple 

cantilever and a helicopter rotor blade were numerically demonstrated. The proposed 

method identified the location of damage in these objects, and characterized the damage 

to a satisfactory level of precision. 

An analysis has been performed by Patil and Maiti [29] for the detection of 

multiple cracks using frequency measurements. The method is based on transverse 

vibration modelling through transfer matrix method and representation of a crack by 

rotational spring. The beam was virtually divided into a number of segments, which can 

be decided by the analyst, and each of them was considered to be associated with a 

damage parameter. The procedure gave a linear relationship explicitly between the 

changes in natural frequencies of the beam and the damage parameters. These parameters 

were determined from the knowledge of changes in the natural frequencies. After 

obtaining them, each was treated in turn to exactly pinpoint the crack location in the 
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segment and also determined its size. The forward, or natural frequency determination, 

problems were examined in the passing. Though approximate but the method has been 

capable to handle segmented beams, any boundary conditions, intermediate spring or 

rigid supports, etc. It also eliminated the need for any symbolic computation. 

Analysis for detection of the location and size of the cracks has been performed 

by Chang and Chen [30]. The proposed analysis was able to calculate both the positions 

and depths of multi-cracks from spatial wavelet based method. First, the mode shapes of 

free vibration and natural frequencies of the multiple cracked beams were obtained. The 

crack type was open crack and was represented as a rotational spring. Then the mode 

shapes were analyzed by wavelet transformation to get the positions of the cracks. When 

the positions of the cracks have been known from the plot of wavelet coefficients, the 

natural frequencies can be used to predict the depth of the cracks through the 

characteristic equation. If the number of cracks is n; the first n natural frequencies were 

used to predict the depth of the cracks. It was observed that the positions and depths of 

the cracks can be predicted with acceptable precision even though there are many cracks 

in the beam. 

Cracked beam element method for structural analysis has been used by Viola et 

al. [31] for detection of crack location. The remarks involved from the analysis was that 

the local flexibility introduced by cracks changes the dynamic behavior of the structure 

and by examining this change, crack position and magnitude can be identified. In order to 

model the structure for FEM analysis, a special finite element for a cracked Timoshenko 

beam was developed. Shape functions for rotational and translational displacement were 

used to obtain the consistent mass matrix for the cracked beam element. Effect of the 

cracks on the stiffness matrix and consistent mass matrix was investigated and the cracks 

in the structure were identified using the modal data. 

Dynamic stiffness matrix to calculate the natural frequencies and normal mode 

shapes of uniform isotropic beam element have been developed by Li et al. [32] based on 

trigonometric shear deformation theory. The theoretical expressions for the dynamic 

stiffness matrix elements were found directly, in an exact sense, by solving the governing 

differential equations of motion that described the deformations of the beam element 
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according to the trigonometric shear deformation theory, which included the sinusoidal 

variation of the axial displacement over the cross section of the beam. The numerical 

results obtained are compared to the available solutions wherever possible and validate 

the accuracy and efficiency of the present approach. 

Han et al. [33] have proposed a method for analyzing the dynamics of 

transversely vibrating beam using four theories which were: Euler-Bernoulli, Rayleigh, 

shear and Timoshenko. In the investigation four models for the transversely vibrating 

beam were prepared and the equation of motion for each model, and the expressions for 

boundary conditions were obtained using Hamilton's variational principle. The frequency 

equations were obtained for four sets of end conditions: free-free, clamped-clamped, 

hinged-hinged and clamped-free. The roots of the frequency equations were presented in 

terms of normalized wave numbers. The normalized wave numbers for the other six sets 

of end conditions were obtained using the analysis of symmetric and anti-symmetric 

modes. Then the orthogonality conditions of the eigen-functions or mode shape and the 

procedure to obtain the forced response using the method of eigen-function expansion 

was presented. 

A robust iterative algorithm has been used by Xu et al. [34] for identifying the 

locations and extent of damage in beams using only the changes in their first several 

natural frequencies. The algorithm, which was a combination of a first-order, multiple-

parameter perturbation method and the generalized inverse method, was tested 

extensively through experimental and numerical means on cantilever beams with 

different damage scenarios. If the damage was located at a position within 0–35% or 50–

95% of the length of the beam from the cantilevered end, while the resulting system 

equations were severely underdetermined, the minimum norm solution from the 

generalized inverse method lead to a solution that closely represented the desired solution 

at the end of iterations when the stiffness parameters of the undamaged structure were 

used as the initial stiffness parameters. If the damage was located at a position within 35–

50% of the length of the beam from the cantilevered end, the resulting solution by using 

the stiffness parameters of the undamaged structure as the initial stiffness parameters 

deviates significantly from the desired solution. In this case, a new method was 

developed to enrich the measurement information by modifying the structure in a 
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controlled manner and using the first several measured natural frequencies of the 

modified structure. A new method using singular value decomposition was also 

developed to handle the ill-conditioned system equations that occurred in the 

experimental investigation by using the measured natural frequencies of the modified 

structure. 

 
Waveform fractal dimension has been proposed by Qiao and Cao [35] for mode 

shape-based damage identification of beam-type structures. In the analysis a 

mathematical solution on the use of applying waveform fractal dimension to higher mode 

shapes for crack identification has been proposed, from which the inherent deficiency of 

waveform fractal dimension to identify crack when implemented to higher mode shapes 

was overcome. The applicability and effectiveness of the AWCD-MAA was validated by 

an experimental program on damage identification of a cracked composite cantilever 

beam using smart piezoelectric sensors/actuators (i.e., piezoelectric lead–zirconate–

titanate (PZT) and polyvinylidene fluoride (PVDF)). The proposed AWCD-MAA 

provided a novel, viable method for crack identification of beam-type structures without 

baseline requirement, and it expanded the scope of fractal in structural health monitoring 

applications. 

A new method of vibration-based damage identification in structures exhibiting 

axial and torsional responses has been proposed by Duffey et al. [36]. The method has 

been derived to detect and localize linear damage in a structure using the measured modal 

vibration parameters and was applicable when the vibration strain energy has been stored 

in the axial or torsional modes, which differentiated it from previously derived strain-

energy-based methods. The new method was then compared to the previously derived 

flexibility-change method. Both methods were verified by application to an analytical 

eight degree of freedom model. Experimental validation for both methods was also 

presented by application to an experimental eight degree of freedom spring-mass 

structure. 

Different crack identification techniques have been discussed briefly by 

Dimarogonas [37]. And it has been summarized in that attempt that the presence of a 

crack in a structural member introduced a local flexibility that used to affect its vibration 
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response. Moreover, the crack will open and close in time depending on the rotation and 

vibration amplitude. In this case the system was nonlinear. Furthermore, if general 

motion has been considered, the local stiffness matrix description of the cracked section 

of the shaft lead to a coupled system, while for an uncracked shaft the system was 

decoupled. This means that the crack introduced new harmonics in the spectrum. In fact, 

in addition to the second harmonic of rotation and the subharmonic of the critical speed, 

two more families of harmonics are observed: (1) higher harmonics of the rotating speed 

due to the nonlinearity of the closing crack, and (2) longitudinal and torsional harmonics 

are present in the start-up lateral vibration spectrum due to the coupling. 

For beams containing multiple cracks and subjected to axial force a new method 

has been proposed by Binici [38] which used a set of end conditions as initial parameters 

for determining the mode shape functions. Satisfying the continuity and jump conditions 

at crack locations, mode shape functions of the remaining parts were determined. Other 

set of boundary conditions yielded a second-order determinant that need to be solved for 

its roots. As the static case was approached, the roots of the characteristic equation gave 

the buckling load of the structure. The proposed method was compared against the results 

predicted by finite element analysis and a good agreement was observed between the 

proposed approach and finite element results. A parametric study was conducted in order 

to investigate the effect of cracks and axial force levels on the eigenfrequencies. Both 

simply supported and cantilever beam-columns were considered for this purpose. It is has 

been found that eigenfrequencies were strongly affected by crack locations, severities and 

axial force levels. Simple modifications to account for flexible intermediate supports 

were presented as well. The proposed method can efficiently be used in detecting crack 

locations, severities and axial forces in beams and columns. Furthermore it can be used to 

predict the critical load of damaged structures based on eigenfrequency measurements. 

A continuous cracked bar vibration model of a cracked Euler-Bernoulli 

cantilevered beam with an edge crack has been formulated by Chondros and 

Dimarogonas [39] in which the Hu-Washizu-Barr variational formulation was used to 

develop the differential equation and the boundary conditions for the cracked beam as an 

one-dimensional continuum. The crack has been modelled as a continuous flexibility 

using the displacement field in the vicinity of the crack found with fracture mechanics 
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methods. And the results of the three independent evaluations of the lowest natural 

frequency of the aluminum cantilever beam with a single-edge crack were presented. The 

experimental result was found to be being very close to the values predicted by the 

continuous cracked beam formulation. And it has been observed that the continuous 

cracked beam theory agrees with the experimental results than the lumped crack 

flexibility theory. 

Vibration based structural damage detection in flexural members using multi-

criteria approach has been presented by Shih et al. [40]. In the analysis computer 

simulation techniques have been developed and applied a procedure using non-

destructive methods for damage assessment in beams and plates, which are important 

flexural members in building and bridge structures. In addition to changes in natural 

frequencies, two methods, called the modal flexibility and the modal strain energy 

method have been incorporated which were based on the vibration characteristics of the 

structure. Using the results from modal analysis, algorithms based on flexibility and 

strain energy changes before and after damage were obtained and used as the indices for 

the assessment of the status of the structural health. The objective of the analysis was to 

evaluate the feasibility of the proposed multi-criteria method to identify and localize 

single and multiple damages in numerical models of flexural members having different 

boundary conditions. The application of the approach was demonstrated through two sets 

of numerical simulation studies on beam and plate structures with nine damage scenarios 

in each. Results showed that the proposed multi-criteria method incorporating modal 

flexibility and modal strain energy method was effective in multiple damage assessment 

in beam and plate structures. 

A vibration analysis of multiple-cracked non-uniform beams has been performed 

by Mazanoglu et al. [41] using the energy-based method. The method has been employed 

for the vibration analysis of non-uniform Euler-Bernoulli beams having multiple open 

cracks which included the distribution of the energy consumed determined by taking into 

account not only the strain change at the cracked beam surface as in general but also the 

considerable effect of the stress field caused by the angular displacement of the beam due 

to bending. The Rayleigh–Ritz approximation method has been used in the analysis. The 

method was adapted to the cases of multiple cracks with an approach based on the 
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definition of strain disturbance variation along the beam. Examples were presented on 

cantilever beams having different truncation factors. And the results were then compared 

with a commercial finite element programme and with that of the method used via 

modified Fourier series resulting encouraging agreements. 

A robust fault detection method has been formulated by McAdams and Tumer 

[42] for the damage assessment of turbine blades. Specifically in the approach the 

combined impact of crack damage and manufacturing variation on the vibrational 

characteristics of turbine blades modeled as pinned-pinned beams has been explored. The 

changes in the transverse vibration and associated eigenfrequencies of the beams were 

considered. A complete variational beam vibration model was developed and presented 

that allows variations in geometry and material properties to be considered, with and 

without crack damage. To simplify variational simulation, separation of variables was 

used for fast simulations. This formulation has been presented in detail. To establish a 

baseline of the effect of geometric variations on the system vibrational response, a 

complete numerical example was presented that included damaged beams of ideal 

geometry and damaged beams with geometric variation. It has been observed that 

changes in fault detection monitoring signals caused by geometric variation were small 

with those caused by damage and impending failure. Also, when combined, the impact of 

geometric variation and damage appear to be independent. 

Structural damage detection using transfer matrix method has been performed by 

Escobar et al. [43] in which a method for locating and estimating structural damage in 

two and three-dimensional analytical models of buildings was presented. Since the 

geometrical transformation matrix used to obtain the condensed stiffness matrix of a 

structure can be estimated, for the damaged state, from the one corresponding to the non-

damaged state with an iterative scheme, it was possible to detect structural damage by 

comparing changes on structural dynamic parameters, modal shapes and vibration 

frequencies with their defining properties. The application and accuracy of the method 

was then illustrated by means of numerical analyses of building models. 

A new damage detection technique has been formulated by Fang et al. [44] using 

neural network with learning rate improvement. In the research structural damage 
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detection using frequency response functions (FRFs) as input data to the back-

propagation neural network (BPNN) has been explored. Such method was non-model 

based and thus could have advantage in many practical applications. Neural network 

based damage detection generally consisted of a training phase and a recognition phase. 

Error back-propagation algorithm incorporating gradient method has been applied to train 

the neural network, whereas the training efficiency heavily depended on the learning rate. 

While various training algorithms, such as the dynamic steepest descent (DSD) algorithm 

and the fuzzy steepest descent (FSD) algorithm, have shown promising features (such as 

improving the learning convergence speed), their performance is hinged upon the proper 

selection of certain control parameters and control strategy. In the particular attempt 

tunable steepest descent (TSD) algorithm using heuristics approach, which improves the 

convergence speed significantly without sacrificing the algorithm simplicity and the 

computational effort, was investigated. A series of numerical examples demonstrate that 

the proposed algorithm outperforms both the DSD and FSD algorithms. With this as 

basis, the neural network has been implemented to the FRF based structural damage 

detection. The analysis resulted on a cantilevered beam show that, in all considered 

damage cases (i.e., trained damage cases and unseen damage cases, single damage cases 

and multiple-damage cases), the neural network was able to assess damage conditions 

with very good accuracy. 

Different studies on double/multi-cracks has been summarized by Sekhar [45] and 

the respective influences, identification methods in vibration structures as beams, rotors, 

pipes etc. were discussed. This particular study brought out the state of the research on 

multiple cracks and their identification. 

A novel nondestructive damage detection method has been developed by 

Hearndon et al. [46] to study the influence of a crack on the dynamic properties of a 

cantilever beam subjected to bending. Experimental measurements of transfer functions 

for the cracked cantilever beam revealed a change in the natural frequency with 

increasing crack length. A finite element model of a cracked element was created to 

compute the influence of severity and location of damage on the structural stiffness. The 

proposed model was based on the response of the cracked beam element under a static 

load. The change in beam deflection as a result of the crack was used to calculate the 
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reduction in the global component stiffness. The reduction of the beam stiffness was then 

used to determine its dynamic response employing a modal analysis computational 

model. Euler–Bernoulli and Timoshenko beam theories were used to quantify the elastic 

stiffness matrix of a finite element. The transfer functions from both theories compared 

well with the experimental results. The experimental and computational natural 

frequencies decreased with increasing crack length. Furthermore the Euler–Bernoulli and 

Timoshenko beam theories resulted in approximately the same decrease in the natural 

frequency with increasing crack length as experimentally measured. 

Identification of multiple cracks in a beam has been presented by Lee [47] in 

which the cracks were modeled as rotational springs and the forward problem was solved 

using the finite element method. The inverse problem was solved iteratively for the 

locations and sizes of the cracks using the Newton–Raphson method. Numerical 

examples have been provided for the identification of triple cracks in a cantilever beam as 

well as double cracks. The detected crack locations and sizes were in excellent agreement 

with the actual ones. 

Flexural wave propagation characteristics have been used by Park [48] for 

identification of damage in beam structures. In the analysis an experimental method of 

detecting damage using the flexural wave propagation characteristics was proposed. To 

monitor change in structural properties due to damage, the frequency-dependent variation 

of the wavenumber, wave speed, and the dynamic properties were measured in the 

frequency ranges of flexural vibration. The measured frequency dependent variation was 

compared to those measured when undamaged. The beam transfer function method was 

used to obtain the dynamic properties. The location and magnitude of damage were 

identified using the property that it had significant impact on the system potential energy. 

When the wave propagates through a medium, the total system energy remained mostly 

unchanged, but its form changes between potential and kinetic energy. The wave 

propagation characteristics were affected most when damage occurs at locations where 

the wave energy was in the form of the potential energy. The validity of the proposed 

method was confirmed by experimentation. The various locations of damage imposed on 

the beam structures with different magnitudes were identified accurately. 
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 3. Theoretical Analyses 
 
3.1 Local flexibility of a Cracked Beam under Bending and Axial Loading 
 

The presence of a transverse surface crack of depth ‘a1’ on beam of width ‘B’ 

and height ‘W’ introduces a local flexibility, which can be defined in matrix form, the 

dimension of which depends on the degrees of freedom. Here a 2x2 matrix is considered. 

A cantilever beam is subjected to axial force (P1) and bending moment (P2), shown in 

figure 1a, which gives coupling with the longitudinal and transverse motion. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 3.1 (a)  Geometry of The Cracked Cantilever Beam 
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Fig. 3.1 (b) Cross-sectional View of the Beam 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1 (c) Segments taken during Integration at the Crack section 
 
 

The strain energy release rate at the fractured section can be written as (Tada et al., 

1973); 

2
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(for plane strain condition);  

   = 
E
1 (for plane stress condition) 

Kl1, Kl2 are the stress intensity factors of mode I (opening of the crack) for load P1 and P2 

respectively. The values of stress intensity factors from earlier studies as per Tada et al. 

[49]  are; 
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Let Ut be the strain energy due to the crack. Then from Castigliano’s theorem, the 

additional displacement along the force Pi is: 

i

t
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∂
∂

=           (3.1) 

The strain energy will have the form, ∫∫ =
∂
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Where J= 
a
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∂
∂ the strain energy density function.  

From (1) and (2), thus we have 
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The flexibility influence co-efficient Cij will be, by definition  
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To find out the final flexibility matrix we have to integrate over the breadth ‘B’ 
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Putting the value strain energy release rate from above, equation (5) modifies as 
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Putting ξ = (a/w),
W
dad =ξ ,  

We get da = Wdξ and when a = 0, ξ = 0; a = a1, ξ = a1/W = ξ1 

From above condition equation (6) converts to, 
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From the equation (7), calculating C11, C12 (=C21) and C22 we get 
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Converting the influence co-efficient into dimensionless form 
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The local stiffness matrix can be obtained by taking the inversion of compliance matrix. 

i.e. 
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3.2 Analysis of Vibration Characteristics of the Cracked Beam: 
 
3.2.1 Free Vibration 
 
A cantilever beam of length ‘L’ width ‘B’ and depth ‘W’, with a crack of depth ‘a1’ at a 

distance ‘L1’ from the fixed end is considered shown in figure 1. Taking u1(x, t) and 

u2(x, t) as the amplitudes of longitudinal vibration for the sections before and after the 

crack and y1(x, t), y2(x, t) are the amplitudes of bending vibration for the same sections 

shown in figure 2. 

 

 
 

 

 

 

 

 

 

 

Fig. 3.2 Beam model 

 
A cantilever beam of length ‘L’ width ‘B’ and depth ‘W’, with a crack of depth ‘a1’ at a 

distance ‘L1’ from the fixed end is considered shown in Figure 1. Taking u1(x, t) and 

u2(x, t) as the amplitudes of longitudinal vibration for the sections before and after the 
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crack and y1(x, t), y2(x, t) are the amplitudes of bending vibration for the same sections 

shown in Figure 3. 

The normal function for the system can be defined as 

)xK(SinA)xK(CosA)x(u u2u11 +=                         (3.11a) 

)xK(SinA)xK(CosA)x(u u4u32 +=                    (3.11b) 

)xK(SinA)xK(CosA)xK(SinhA)xK(CoshA)x(y y8y7y6y51 +++=                       (3.11c) 

)xK(SinA)xK(CosA)xK(SinhA)xK(CoshA)x(y y12y11y10y92 +++=               (3.11d) 

For double crack case the above formulation will be same except variation in the above 

equations; 

)xK(SinA)xK(CosA)x(u u2u11 +=  

)xK(SinA)xK(CosA)x(u u4u32 +=                    (3.12b) 

3 5 u 6 uu (x) A Cos(K x) A Sin(K x)= +  

1 7 y 8 y 9 y 10 yy (x) A Cosh (K x) A Sinh(K x) A Cos(K x) A Sin(K x)= + + +                       (3.12d) 

2 11 y 12 y 13 y 14 yy (x) A Cosh (K x) A Sinh(K x) A Cos (K x) A Sin(K x)= + + +               (3.11e) 

3 15 y 16 y 17 y 18 yy (x) A Cosh (K x) A Sinh(K x) A Cos (K x) A Sin(K x)= + + +  
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Ai, (i=1, 12) Constants are to be determined, from boundary conditions. The boundary 

conditions of the cantilever beam in consideration are: 

0)0(u1 = ;  0)0(y1 = ;   0)0(y1 =′ ;  0)1(u2 =′ ;  0)1("y 2 = ; 0)1(y 2 =′′′

  

(3.12a)

(3.12c)

(3.12f)
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At the cracked section: 

)(u)(u 21 β=β ;  )(y)(y 21 β=β ;  )(y)(y 21 β′′=β′′ ;   )(y)(y 21 β′′′=β′′′    

Also at the cracked section, we have: 
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we get, 
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LK

, 2
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, 
3
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, 
4 2
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L K

 

The normal functions, equation (11) along with the boundary conditions as mentioned 

above, yield the characteristic equation of the system as: 

0Q =                     (3.13) 

This determinant is a function of natural circular frequency (ω), the relative location of 

the crack (β) and the local stiffness matrix (K) which in turn is a function of the relative 

crack depth (a1/W). 
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3.2.2 Forced Vibration 
 

If the cantilever beam with transverse crack is excited at its free end by a harmonic 

excitation (Y = Y0 sin (ωt)), the non-dimensional amplitude at the free end may be 

expressed as 0
0

2 y
L
y

)1(y == . Therefore the boundary conditions for the beam remain same 

as before except the boundary condition  0)1(y2 =′′′  which modified as 02 y)1(y =  

The constants Ai, i=1, to 12 are then computed from the algebraic condition 

 Q1D=B1                                                                                                             (3.14) 

Q1 is the (12 x 12) matrix obtained from boundary conditions as mentioned above, 

D is a column matrix obtained from the constants, 

B1 is a column matrix, transpose of which is given by, [ ]0 0 0 0 0 0 0 0y 0 0 0B 0
T
1 =  
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4. Fuzzy Controller Analysis 

4.1 Introduction 

The term fuzzy logic has been used in two different senses. It thus important 

to clarify the distinctions between these two different usages of the term. In a narrow 

sence, fuzzy logic refers to a logical system that generalizes classical two-valued 

logic for reasoning under uncertainty. In a broad sense, fuzzy logic refers to all of the 

theories and technology that employ fuzzy sets, which are classes with unsharp 

boundaries as referred by Yen and Lengari [50].  

4.2 Fuzzy Set Theory 

The idea of fuzzy sets was born in July 1964 by Lofti A. Zadeh who made 

significant contribution in the development of system theory (e.g., the state variable 

approach to the solution of simultaneous differential equations) and computer 

science. A fuzzy set is a set with smooth boundary. Fuzzy set theory generalizes 

classical set theory to allow partial membership. The best way to introduce fuzzy set 

is to start with a limitation of classical sets. 

4.3 Membership Function  

A fuzzy set is defined by a function that maps objects in a domain of concern 

to their membership value in the set. Such a function is known as “membership 

function”. It is usually denoted by the Greek symbol µ for ease of the recognition and 

consistency. In other words membership function can be defined as a curve that 

defines how each point in the input space is mapped to a membership value (or 

degree of membership) between 0 and 1. The input space is sometimes referred to as 

the universe of discourse, a fancy name for a simple concept.  

4.3.1. Membership functions in Fuzzy Logic-Tool Box 

The only condition a membership function must really satisfy is that it must 

vary between 0 and 1. The function itself can be an arbitrary curve whose shape we 

can define as a function that suits us from the point of view of simplicity, 

convenience, speed, and efficiency. 

 

A classical set might be expressed as 
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A = {x | x > 6} 

 

A fuzzy set is an extension of a classical set. If X is the universe of discourse and its 

elements are denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs. 

A = {x, µA(x) | x ε X} 

 

µA(x) is called the membership function (or MF) of x in A. The membership function 

maps each element of X to a membership value between 0 and 1. 

 

The toolbox includes 11 built-in membership function types. These 11 functions are, 

in turn, built from several basic functions: 

1. piecewise linear functions 

2. the Gaussian distribution function 

3. the sigmoid curve 

4. quadratic and cubic polynomial curves 

 The simplest membership functions are formed using straight lines. Of these, 

the simplest is the triangular membership function, and it has the function name trimf. 

This function is nothing more than a collection of three points forming a triangle. The 

trapezoidal membership function, trapmf, has a flat top and really is just a truncated 

triangle curve. These straight line membership functions have the advantage of 

simplicity. Two membership functions are built on the Gaussian distribution curve: a 

simple Gaussian curve and a two-sided composite of two different Gaussian curves. 

The two functions are known as gaussmf and gauss2mf. The syntax used for Gaussian 

membership function is: 

y = gaussmf(x, [sig c]) 

The symmetric Gaussian function depends on two parameters and c as given by 
2

2
-(x-c)f(x;σ,c)=e

2σ
, where the parameters for gaussmf represent the parameters and c 

listed in order in the vector [sig c]. 
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4.4. Linguistic Variables 

 A linguistic variable enables its value to be described both qualitatively by a 

linguistic term (i.e., a symbol serving as the name of a fuzzy set) and quantitatively 

by a corresponding membership function (which expresses the meaning of the fuzzy 

set). The linguistic term is used to express concepts and knowledge in human 

communication, whereas membership function is useful for processing numeric input 

data. 

4.5. Fuzzy Rules 

 Among all the techniques developed using fuzzy sets, the fuzzy if-then rule (or, 

in short, the fuzzy rule) is by far the most visible one due to its wide range successful 

applications. Fuzzy if-then rules have been applied to various disciplines such as 

control systems, decision making, pattern recognisation, system modeling and last nut 

not the least in Vibration applications. 

Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These if-

then rule statements are used to formulate the conditional statements that comprise 

fuzzy logic. A single fuzzy if-then rule assumes the form “if x is A then y is B”. 

Where A and B are linguistic values defined by fuzzy sets on the ranges (universes of 

discourse) X and Y, respectively. The if-part of the rule "x is A" is called the 

antecedent or premise, while the then-part of the rule "y is B" is called the consequent 

or conclusion. An example of such a rule might be “if service is good then tip is 

average”. The concept good is represented as a number between 0 and 1, and so the 

antecedent is an interpretation that returns a single number between 0 and 1. 

Conversely, average is represented as a fuzzy set, and so the consequent is an 

assignment that assigns the entire fuzzy set B to the output variable y. In the if-then 

rule, the word is gets used in two entirely different ways depending on whether it 

appears in the antecedent or the consequent. In MATLAB® terms, this usage is the 

distinction between a relational test using "==" and a variable assignment using the 

"=" symbol. A less confusing way of writing the rule would be “If service == good 

then tip = average”. In general, the input to an if-then rule is the current value for the 

input variable (in this case, service) and the output is an entire fuzzy set (in this case, 

average). This set will later be defuzzified, assigning one value to the output. The 

concept of defuzzification is described in the next section. Interpreting an if-then rule 
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involves distinct parts: first evaluating the antecedent (which involves fuzzifying the 

input and applying any necessary fuzzy operators) and second applying that result to 

the consequent (known as implication). In the case of two-valued or binary logic, if-

then rules do not present much difficulty. If the premise is true, then the conclusion is 

true. If you relax the restrictions of two-valued logic and let the antecedent be a fuzzy 

statement, how does this reflect on the conclusion? The answer is a simple one. if the 

antecedent is true to some degree of membership, then the consequent is also true to 

that same degree. 

 

4.6. Fuzzy Controller Analysis for the Crack localization and 

Identification. 

 The fuzzy controller has been developed where there are 3 inputs and 2 outputs 

parameter.   The natural linguistic representations for the input are as follows  

Relative first natural frequency = “FNF” 

 Relative second natural frequency = “SNF”  

Relative third natural frequency = “TNF” 

 The natural linguistic term used for the outputs are  

Relative crack depth = “RCD”  

Relative crack length= “RCL” 

The membership functions names for the linguistic terms, as shown in the figure 4.1.  

Figure 4.1 (a) shows the various linguistic terms used for the Relative 1st mode 

natural frequency. It has total 10 number of membership functions. Similarly Figure 

4.1 (b) and 4.1 (c) show the membership functions and the respective linguistic terms 

used for 2nd and 3rd mode relative natural frequencies. And both are having 10 

membership functions each. 

 

  

 

 

Fig. 4.1 Membership Functions shown in the Fuzzy Controller 
 

Membership function 

 

fnf 

snf

tnf 

RCD 

RCL 
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Fig: 4.1 (a) Membership functions for relative natural frequency for 1st Mode of 
Vibration 

 

 

 

 

 

 

 

Fig: 4.1 (b) Membership functions for relative natural frequency for 2nd Mode of 
Vibration 

 

Fig: 4.1 (c) Membership functions for relative natural frequency for 3rd Mode of 
Vibration 
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Fig: 4.1 (d) Membership functions for crack depth 

 

 

 

 

 

 

 

Fig: 4.1 (e) Membership functions for crack length 

The linguistic terms used in the Fuzzy Interference system are as described in a 

tabular form in Table 4.1. 
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Table 4.1 Fuzzy Linguistic Terms used 

 
Name of the 
Membership function 

 
Linguistic 
terms 

 
Description and range of the 
linguistic terms 

 
L1F1,L1F2,L1F3,L1F4 

 
 

fnf 1 to 4 

 
 
 
Low ranges of relative natural 
frequency for first mode of vibration in 
descending order respectively 

M1F1, M1F2 fnf5,6 

 
Medium ranges of relative natural 
frequency for first mode of vibration in 
ascending order respectively 

H1F1,H1F2,H1F3,H1F4 fnf7 to 10 

 
Higher ranges of relative natural 
frequency for first 
mode of vibration in ascending order 
respectively 

L2F1,L2F2,L2F3,L2F4 snf1 to 4 

 
Low ranges of relative natural 
frequency for second mode of vibration 
in descending order respectively 

M2F1, M2F2 snf5,6 

 
 
Medium ranges of relative natural 
frequency for second mode of vibration 
in ascending order respectively 

H2F1,H2F2,H2F3,H2F4 snf7 to 10 

 
 
Higher ranges of relative natural 
frequencies for second mode of 
vibration in ascending order 
respectively 

L3F1,L3F2,L3F3,L3F4 tnf1 to 4 

 
Low ranges of relative natural 
frequencies for third 
mode of vibration in descending order 
respectively 

M3F1.M3F2 tnf5,6 

 
Medium ranges of relative natural 
frequencies for third mode of vibration 
in ascending order respectively 

H3F1,H3F2,H3F3,H3F4 tnf7 to 10 

 
Higher ranges of relative natural 
frequencies for third mode of vibration 
in ascending order respectively 

SD1,SD2,…….SD9 rcd1 to 9 
 
Small ranges of relative crack depth in 
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descending order respectively 
MD rcd10 Medium relative crack depth 

LD1,LD2………LD9 rcd11 to 19 
 
Larger ranges of relative crack depth in 
ascending order respectively 

SL1.SL2……..SL9 rcl1 to 9 
 
Small ranges of relative crack location 
in descending order respectively 

ML rcl10 Medium relative crack length 

BL1,BL2………BL9 rcl11 to 19 
 
Bigger ranges of relative crack location 
in ascending order respectively 

 

4.7 Fuzzy mechanism used for crack detection  

Based on the above fuzzy subset the fuzzy rules are defined in a general form as 

follows: 

If (FNF is FNFi and SNF is SNFj and TNF is TNFk) then (CD is CDijk and CL is 

CLijk) 

Where i= 1to 10, j=1 to 10,   k=1 to 10                           (4.1) 

Because of “FNF”, “SNF”, “TNF” have 10 membership functions each. 

From the above expression (14), two set of rules can be written 

If (FNF is FNFi and SNF is SNFj and TNF is TNFk) then CD is CDijk                

If (FNF is FNFi and SNF is SNFj and TNF is TNFk) then CL is CLijk           

  

According to the usual Fuzzy logic control method (Parhi, 2005), a factor Wijk is 

defined for the rules as follows: 

Wijk=µfnfi (freqi) Λ µsnfj (freqj) Λ µtnfi (freqk)   

   (4.2) 
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Where freqi, freqj and freqk are the first, second and third natural frequency of the 

cantilever beam with crack respectively  ; by Appling composition rule of 

interference (Parhi, 2005) the membership values of the relative crack location and 

relative crack depth (location)CL 

µrclijk (location) = Wijk Λ µrclijk (location)          length   CL 

As; 

µrclijk (depth) = Wijk Λ µrclijk (depth)          depth   CD 

The overall conclusion by combining the output of all the fuzzy can be written as 

follows: 

 µrclijk (location) = µrcl111111 (location)   V.….V µrclijk (location)   

V.V µrcl19 19 19 19 19 19 (location)      

µrclijk (location) = µrcl111111 (depth)   V.…..V µrclijk (depth)  

 V….V µrcl19 19 19 19   19 19 19 (depth)                 

    

The crisp values of relative crack location and relative crack depth are computed 

using the center of gravity method (Parhi, 2005) as: 

 

Relative crack location =   RCL   = ( ) ( )
( ) ( )

rcl

rcl

location location d location

location d location

⋅μ ⋅

μ ⋅
∫

∫
 

Relative crack depth =      RCD   =  ( ) ( )
( ) ( )
rcd

rcd

depth depth d depth

depth d depth

⋅μ ⋅

μ ⋅
∫
∫

                

(4.4) 

(4.3) 
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4.8 Output (Crack Length and crack Depth) using Fuzzy Controller 

The inputs to the fuzzy controller are relative first mode natural frequency (FNF); 

relative second mode frequency (SNF) and relative third mode natural frequency 

(TNF). The outputs from the fuzzy controller are relative crack depth (RCD) and 

relative crack location (RCL). A few numbers of rules out of several hundred fuzzy 

rules are being enlisted in the Table 4.2. Figure 4.2 shows the fuzzy controller results 

when rule-8 and rule-20 are activated from Table 4.2. 

 

 

 

Fig. 4.2 Resultant values of relative crack depth and relative crack 
location when Rule 20 are activated 

FNF=0.9724 SNF=0.9961 TNF=0.9817 RCD=0.552 RCL=0.284 
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Table 4.2 Example of some fuzzy rules used in the Fuzzy Controller  

 
Sl No. 

 
Example of some of the few rules used in the Fuzzy Controller 

 
1 

 

If fnf is H1F2,snf is M2F2,tnf is M3F2, then rcd is SD1,and rcl is SL8 

2 If fnf is H1F2,snf is M2F2,tnf is M3F2, then rcd is SD1,and rcl is SL9 

3 If fnf is H1F1,snf is M2F1,tnf is L3F2, then rcd is MD, and rcl is SL9 

4 If fnf is M1F1,snf is L2F2,tnf is L3F2, then rcd is LD5,and rcl is SL9 

5 If fnf is H1F1,snf is M2F1,tnf is L3F1, then rcd is LD1,and rcl is SL8 

6 If fnf is M1F1,snf is L2F1,tnf is L3F2, then rcd is LD6,and rcl is SL8 

7 If fnf is H1F3,snf is H2F4,tnf is H3F1, then rcd is SD8,and rcl is SL9 

8 If fnf is H1F3,snf is H2F4,tnf is H3F2, then rcd is SD7,and rcl is SL6 

9 If fnf is H1F1,snf is M2F2,tnf is H3F2, then rcd is SD3,and rcl is SL4 

10 If fnf is H1F3,snf is H2F4,tnf is H3F4, then rcd is SD3,and rcl is SL4 

11 If fnf is H1F1,snf is H2F3,tnf is H3F2, then rcd is LD1,and rcl is SL3 

12 If fnf is H1F2,snf is H2F4,tnf is H3F2, then rcd is LD1,and rcl is SL2 

13 If fnf is H1F2,snf is H2F4,tnf is H3F1, then rcd is MD, and rcl is SL1 

14 If fnf is M1F2,snf is M2F1,tnf is L3F4, then rcd is LD9,and rcl is SL7 

15 If fnf is H1F1,snf is H2F4,tnf is M3F1, then rcd is LD4,and rcl is SL6 

16 If fnf is H1F3,snf is H2F4,tnf is H3F1, then rcd is SD2,and rcl is SL4 

17 If fnf is M1F1,snf is M2F2,tnf is L3F3, then rcd is LD9,and rcl is SL9 

18 If fnf is H1F2,snf is H2F4,tnf is L3F1, then rcd is LD3,and rcl is SL4 

19 If fnf is H1F4,snf is H2F4,tnf is H3F1, then rcd is SD2,and rcl is SL7 

20 If fnf is H1F4,snf is H2F3,tnf is M3F2, then rcd is SD4,and rcl is BL7 
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Fig. 4.3 Surface view of relative first and second natural frequency with relative 
crack depth 

 

 

Fig. 4.4 Surface view of relative first and third natural frequency with relative 
crack length 
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5. Finite Element Formulation 

5.1 Theory 

The beam with a transverse edge crack is clamped at left end, free at right end and has 

uniform structure with a constant rectangular cross-section of 800 mm X 50 mm X 6 

mm. The Euler-Bernoulli beam model is assumed for the finite element formulation. The 

crack in this particular case is assumed to be an open crack and the damping is not being 

considered in this theory. Both single and double edged crack are considered for the 

formulation. 

5.2 Governing Equation of Free Vibration 

The free bending vibration of an Euler-Bernoulli beam of a constant rectangular cross-

section is given by the following differential equation as given in: 

 

Where m is the mass of the beam per unit length (kg/m), iw is the natural frequency of 

the ith mode (rad/sec), E is the modulus of elasticity (N/m2) and I is the moment of 

inertia (m4). By defining 4 2
iw m / EIλ =  equation () is rearranged as a fourth-order 

differential equation as follows: 
4

4
4

d y y 0
dx

−λ =  

The general solution to equation (5.2) is 

i i i iy A cos x Bsin x Ccosh x Dsinh x= λ + λ + λ + λ  

Where A, B, C, D are constants and iλ is a frequency parameter. Since the bending 

vibration is studied, edge crack is modeled as a rotational spring with a lumped stiffness. 

The crack is assumed open. Based on this modeling, the beam is divided into two 

segments: the first and second segments are left and right-hand side of the crack, 

respectively. Adopting Hermitian shape functions, the stiffness matrix of the two-noded 

beam element without a crack is obtained using the standard integration based on the 

variation in flexural rigidity as 

4
2
i4

d yEI mw y 0
dx

− =
(5.1) 

(5.2) 

(5.3) 
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[ ] [ ]TeK B(x) EI B(x) dx⎡ ⎤ =⎣ ⎦ ∫  

Where[ ] { }" " " "
1 2 3 4B(x) H (x)H (x)H (x)H (x)= ,  

And 1H (x) , 2H (x) , 3H (x) , 4H (x)  are the Hermitian shape functions defined as 

2 3

1 2 3

2 3

2 2

2 3

3 2 3

2 3

4 2

3x 2xH (x) 1
l l
2x xH (x) x

l l
3x 2xH (x)
l l
2x xH (x)

l l

= − +

= − +

= −

= − +

 

Assuming the beam rigidity EI is constant and is given by EI0 within the element, and 

then the element stiffness is  

2 2
e 0

3

2 2

12 6l 12 6l

6l 4l 6l 2lEIK
12 6l 12 6ll
6l 2l 6l 4l

−⎡ ⎤
⎢ ⎥

−⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦ − − −
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Assuming the stiffness reduction caused by as open crack falls within a single element, 

and then the stiffness matrix e
cK⎡ ⎤⎣ ⎦  of the cracked element can be written as  

[ ]ee
c cK KK ⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦  

Where [ ]cK  is the reduction in the stiffness matrix due to the crack. According to Peng 

et al. [17], the matrix [ ]cK  is  

[ ]
11 12 11 14

12 22 12 24
c

11 12 11 14

14 24 14 44

k k k k
k k k k

K
k k k k

k k k k

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

 

 

 

(5.4) 

(5.5a) 

(5.5b) 

(5.5c) 

(5.5d) 

(5.6) 

(5.7) 

(5.8) 

(5.5) 
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Where 

22
0 c c

11 c4 2 2

3 2
0 c c

12 c3 2 2

3 2
0 c c

14 c3 2 2

22
0 c c

22 c2 2

24

12E(I I ) 2l 2k 3l 1
l l l

12E(I I ) l 7 6k l 2
ll l l

12E(I I ) l 5 6k l 1
ll l l

12E(I I ) 3l 3k 2l 2
ll l

1k

⎡ ⎤− ξ⎛ ⎞= + −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞− ξ ξ
= + − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞− ξ ξ
= + − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤− ξ⎛ ⎞= + −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

=
22 2

0 c c
c2 2 2

22
0 c c

44 c2 2

2E(I I ) 3l 9 92l 2
ll l l

12E(I I ) 3l 3k 2l 1
ll l

⎡ ⎤⎛ ⎞− ξ ξ⎢ ⎥+ − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤− ξ⎛ ⎞= + −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦  

cl = 1.5d, and ξ  is the distance between the left node and the crack as shown in Figure 

5.3. It is supposed that the crack does not affect the mass distribution of the beam. 

Therefore, the consistent mass matrix of the beam element can be formulated directly as  

[ ] [ ]
l

Te

0

M A H(x) H(x)⎡ ⎤ = ρ⎣ ⎦ ∫  

And we have eM⎡ ⎤
⎣ ⎦  = 

2 2

2 2

156 22l 54 13l

22l 4l 13l 3lAl
54 13l 156 22l420

13l 3l 22l 4l

−⎡ ⎤
⎢ ⎥

−ρ ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

Where [ ] { }1 2 3 4H(x) H (x)H (x)H (x)H (x)= . In the dynamic analysis, the system matrix 

is usually required to be inverted. From this aspect, a diagonalized mass matrix has a 

computational advantage. In this study, a diagonalized mass matrix is adopted, which is 

developed from the consistent mass matrix using the approach  

(5.8a) 

(5.8b) 

(5.8c) 

(5.8d) 

(5.8e) 

(5.8f) 

(5.9) 

(5.10) 
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2
e

2

39 0 0 0

0 l 0 0AlM
0 0 39 078

0 0 0 l

⎡ ⎤
⎢ ⎥

ρ ⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The natural frequency then can be calculated from the relation 

[ ] [ ]{ }2w M K q 0− + =
 

The natural frequency of the ith mode for uncracked and cracked beams is finally 

obtained as follows 

i0 i 4
EIw c

ml
=  

i i i 4
EIw r c

ml
=  

Where i0w is the ith mode frequency of the uncracked beam and ic is a constant 

depending on the mode number and beam end conditions (for clamped-free beam, ic is 

3.516 and 22.034 for the first and second mode, respectively), iw  is the ith mode 

frequency of the cracked beam. r I is the ratio between the natural frequencies of the 

cracked and uncracked beam. l is the length of the beam. 

5.3 Governing Equation of Forced Vibration 

The Euler-Bernoulli beam is discretized into finite beam element without crack and can 

be written as  

[ ] [ ] { } { }
(e)..(e) (e) (e) (e)

wcM q(t) K q(t) F(t)
⎧ ⎫

+ =⎨ ⎬
⎩ ⎭

 

Where [ ](e)M  is the element mass matrix, [ ](e)
wcK  is the element stiffness matrix, 

{ }(e)F(t)  is the element external force vector, { }(e)q(t)  is the element vector of nodal 

degree of freedom and t is the time instant. The subscript ‘wc’ represents without crack. 

And the subscript ‘e’ represents element and the dot represents the derivative with 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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respect to the time. The crack is assumed to affect only the stiffness. So the equation of a 

cracked beam element can be expressed as 

[ ] [ ] { } { }
(e)..(e) (e) (e) (e)

c ccM q (t) K q (t) F(t)
⎧ ⎫

+ =⎨ ⎬
⎩ ⎭

 

Where { }(e)
cq (t)  is the nodal degree of freedom of the cracked element, the subscript ‘c’ 

represent the crack and [ ](e)
cK  is the stiffness matrix of the cracked element and is given 

as 

[ ] [ ][ ] [ ]
1(e) (e) T

cK T C T
−

=  

With 

[ ] [ ] [ ](e) (e) (e)
0 cC C C= +  

Where [ ](e)
0C is the flexibility matrix of the uncracked beam element, [ ](e)

cC  is the 

flexibility matrix of the crack, and [ ](e)C  is the total flexibility matrix of the cracked 

beam element. Equations of motion of the complete system can be obtained by 

assembling the contribution of all equations of motions motion for cracked and 

uncracked elements in the system. Then the system equation of motion becomes 

[ ] [ ]{ } { }
..

M (t) K q(t) F(t)q
⎧ ⎫

+ =⎨ ⎬
⎩ ⎭

 

Where [ ]M  is the assembled mass matrix, [ ]K  is the assembled stiffness matrix, { }F(t)  

is the assembled external force vector, and { }q(t)  is the assembled vector of nodal 

degrees of freedom of the system. 

Let the force vector be defined as  

{ } { } jwtF(t) F e=  

Where w  is the forcing frequency, { }F  is the force amplitude vector (elements of which 

are complex quantities) and j 1= − . Thus, the response vector can be assumed as  

{ } { } jwtq(t) q e=  

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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Where { }q  is the response amplitude vector and their elements are complex quantities. 

Substituting the equations (5.20) and (5.21) into equation (5.19), the system governing as 

follows: 

[ ] [ ]( ){ } { }2w M K q F− + =  

For a given system properties (i.e. [ ]M  and [ ]K ) the response can be simulated from 

equation (5.22) corresponding to a given force{ }F . 

The cracked cantilever beam with double cracks is also analyzed using the above 

formulation. 

5.4 Simulated Crack configuration 

In the finite element analysis of the cracked cantilever beam having V-shaped single and 

double crack is taken into account. The length and cross-sectional area of the beam are 

800 mm, and 50 X 6 mm2, respectively. As per the material properties the modulus of 

elasticity (E) is 70 Gpa, the density (ρ) is 2710 kg/m3 and the Poisson’s ratio (μ) is 0.3. 

Different crack configurations of same depth and at different locations (from different 

distance from the fixed end) are prepared to find out how the crack affects the dynamic 

behavior of the beam. Crack depth was kept constant at 0.202 mm and the crack location 

from the fixed end was varied at instances of 50 mm, 100 mm, 200 mm, 300 mm, 400 

mm, 500 mm, 600 mm and 700 mm. And the effect of crack location on the natural 

frequencies was investigated. Similarly double edged cracks were formulated on the 

cantilever beam and the effect was verified. Figures 5.1 to 5.9 show the different crack 

locations from the fixed end keeping the crack depth fixed. 

 

 

 

 

(5.22) 
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Fig. 5.1 Crack location at L1 = 50 mm and crack depth a1 = 0.202 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Crack location at L1 = 100 mm and crack depth a1 = 0.202 
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Fig. 5.3 Crack location at L1 = 200 mm and crack depth a1 = 0.202 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Crack location at L1 = 200 mm and crack depth a1 = 0.202 
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Fig. 5.5 Crack location at L1 = 300 mm and crack depth a1 = 0.202 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 Crack location at L1 = 400 mm and crack depth a1 = 0.202 
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Fig. 5.7 Crack location at L1 = 500 mm and crack depth a1 = 0.202 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 Crack location at L1 = 600 mm and crack depth a1 = 0.202 
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Fig. 5.9 Crack location at L1 = 700 mm and crack depth a1 = 0.202 

 

Similarly double cracks for the cantilever beam were formulated at different crack 

locations from the fixed end. Out of the several double crack locations the positions of 

the two transverse crack is as shown in the figure 5.10. 

 

   

 

 

 

 

 

 

 

 

 

 

Fig. 5.10 Two Crack location at L1 = 100 mm and L2 = 700 mm with crack depth a1 = 0.202 
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5.5 Finite Element Modeling 

The ALGOR V 19.3 SP 2 Finite Element Program [51] was used for vibration analysis 

of the uncracked and cracked cantilever beam. For this purpose the beam element with 

different single and double crack locations were plotted using CATIA V5R15 software. 

The crack width was taken as 0.202 mm and the crack depth was kept fixed at 0.202 mm. 

The uncracked and cracked beam model was then analyzed in ALGOR environment. 

First of all the mesh generation was performed. The mesh size was around 3.333 and 

approximately 8220 elements with 11568 nodes were created. Then from the tool 

command FEA model was created by using the FEA editor. Then the parameters such as 

element type, material name were defined in the ALGOR environment. Then cantilever 

boundary conditions were modeled by constraining all degrees of freedom of the nodes 

located on the left end of the beam. The model unit was then changed to S.I. standards. 

Then in the analysis window the particular analysis type was selected (natural frequency 

i.e. modal analysis). Then the analysis was performed and the three modes of natural 

frequencies at different crack locations of the single and double crack cantilever beam 

were noted down.   Figure 5.11 shows the Finite Element modeling of the uncracked 

cantilever beam in the ALGOR environment. Figure 5.12 shows the finite element 

modeling of the single cracked beam. And figure 5.13 indicate the details of the crack 

zone.  
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Fig. 5.11 Finite Element modeling of the uncracked cantilever beam in ALGOR 

 

 
 

Fig. 5.12 Finite Element modeling of the single-cracked cantilever beam in ALGOR 
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The Finite Element modeling of the double cracked beam is as shown in figure 5.13 

. 

 
 

Fig. 5.13 Details of the crack zone in ALGOR  

 

 
 

Fig. 5.14 Finite Element modeling of the double-cracked cantilever beam in 

ALGOR 
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The modal frequencies of a few of the cracked cantilever beam model generated are as 

shown in figure 5.15  

 
 

Fig. 5.15 (a) 1st mode frequency of the cracked cantilever beam model 

 

 
 

Fig. 5.15 (b) 2nd mode frequency of the cracked cantilever beam model 
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Fig. 5.15 (c) 3rd mode frequency of the cracked cantilever beam model 
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6. Results and Discussions 

6.1 Experimental Set-up 

Experimental analysis was performed to find out the three modal natural frequencies of 

the single and double edged cracked cantilever beam. In the experiments various crack positions 

(length from the fixed end of the cantilever beam) were given in the cantilever beam. Crack 

positions were varied from the fixed end with an interval of 50 mm, 100 mm, 200 mm, 300 mm, 

400 mm, 500 mm, 600 mm, and 700 mm. For the double edged cracked cantilever beam the 

positions of V-shaped cracks were placed at 50 mm and 100 mm, 100 mm and 200 mm, 200 mm 

and 300 mm etc.  These results were used to be given as a training data to the Fuzzy Interference 

System. By incorporating the training data and the fuzzy rules the Fuzzy Controller was able to 

give outputs in terms of relative crack depth and relative crack lengths with the three inputs of 

the relative first, second and third modes of modal natural frequencies. The line-diagram of the 

Experimental set-up for performing the experiments is as shown in figure 6.1. Several tests were 

conducted on Aluminum cantilever beam specimen with single and double transverse crack. The 

length of the beam taken as 800 mm and the cross-sectional area was 50 X 6 mm2.  

6.1 Results 

The INSTRON set-up was used to provide the transverse cracks at the desired locations. 

The specimens of cracked cantilever beams were used to obtain the modal natural frequencies. 

The modal natural frequencies were then used as a training data and were given as an input to the 

Fuzzy Interference System to set logic that will give output as relative crack depth and relative 

crack location from the input as relative values of first, second and third natural frequencies. The 

finite element formulation was performed in ALGOR environment and the subsequent modal 

natural frequencies were obtained and stored in a tabular form. Figure 6.2 shows the actual view 

of the experimental set-up. Figure 6.3 shows the INSTRON set-up used to generate the 

transverse crack. 

The relation between the crack depth and the first mode natural frequency is as shown in 

Figure 6.4. Figure 6.5 indicates the relation between the crack depth with the second mode 

natural frequency. And figure 6.6 shows a relation between the crack depth with the third mode  
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Fig. 6.2 Experimental Set-up 
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Figure 6.3 INSTRON Set-up 
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natural frequency. It was found that the natural frequency decreases gradually with increase in 

crack depth.  
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Fig. 6.4 First Mode Natural Frequency versus crack depth 

Fig. 6.5 Second Mode Natural frequency versus crack depth 
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The effect of crack location on the natural frequency was verified and is summarized in a 

graphical manner from Figure 6.7 onwards. The comparison between the first mode natural 

frequency at a crack length of 50 mm and 100 mm is as shown in figure 6.7. Figure 6.8 indicates 

the comparison between the values of the first mode of natural frequencies at 50 mm and 200 

mm crack length. Figure 6.9 gives a comparative graph between the first mode natural 

frequencies at crack lengths of 50 mm and 300 mm. Comparative graphical representation of 

first mode natural frequencies between crack lengths of 50 mm and 400 mm is as shown in 

figure 6.10. Like-wise figures 6.11 to figure 6.13 give a comparison of first mode natural 

frequencies, between 50 mm and 500 mm, 50 mm and 600 mm, 50 mm and 700 mm 

respectively. 

Figure 6.14 gives a comparison second mode of natural frequencies between crack 

lengths of 50 mm and 200 mm, where figure 6.15 gives the relation of third mode natural 

frequencies between crack lengths 50 mm and 300 mm. 
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Fig. 6.6 Third mode Natural Frequency versus crack depth 
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Fig. 6.7 Comparison of First Mode Natural Frequency at 50 mm and 100 mm 

 
Fig. 6.8 Comparison of First Mode Natural Frequency at 50 mm and 200 mm 
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Fig. 6.9 Comparison of First Mode Natural Frequency at 50 mm and 300 mm 

 

 
Fig. 6.10 Comparison of First Mode Natural Frequency at 50 mm and 400 mm 
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Fig. 6.11 Comparison of First Mode Natural Frequency at 50 mm and 500 mm 

 

 
Fig. 6.12 Comparison of First Mode Natural Frequency at 50 mm and 600 mm 
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Fig. 6.13 Comparison of First Mode Natural Frequency at 50 mm and 700 mm 

 

 

 
Fig. 6.14 Comparison of Second Mode Natural Frequency at 50 mm and 200 mm 
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Fig. 6.15 Comparison of Third Mode Natural Frequency at 50 mm and 300 mm 

 
Figure 6.16 The change in First mode natural frequencies with crack location at 0.00833 
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Figure 6.17 The change in Second mode natural frequencies with crack location at 0.00833 

relative Crack depth 

 

 

 
 
Figure 6.18 The change in Second mode natural frequencies with crack location at 0.00833 

relative Crack depth 
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The deviation of natural frequency with respect to the crack length for the first, second and third 

natural frequencies are plotted as shown in figure 6.16, figure 6.17 and figure 6.18. The relative 

value of the crack depth is fixed at 0.00833. The comparison among the crack depth, crack 

length and natural frequency is as shown in the figure 6.19. First mode of natural frequency is 

considered in the graph. The comparison of results between the numerical analysis, fuzzy 

controller and the experimental analysis is as shown in a tabular format in the table 6.1. 

 

 

Figure 6.19 Three dimensional cum contour plot for relative First Mode Natural 

Frequency 
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6.2 Discussion 

 Discussions based on the outputs of the Fuzzy Controller used and the information 

supplemented by numerical and experimental analyses are as mentioned. The linguistic form of 

fuzzy rules established for the fuzzy membership functions used in the present Fuzzy Controller 

are given in table 4.1. Some of the sample examples of actual rules made for the Fuzzy 

Controller of the present investigation are enlisted in table 4.2. The present Fuzzy Controller uses 

Gaussian membership functions that are depicted in figure 4.1. The outputs of the Gaussian-

Fuzzy Controller obtained from the activation of rule-8 and rule-20 from the table 4.2 are shown 

in figure 4.2. The relation between the crack depth and the three modal natural frequencies are 

presented in figure 6.4, figure 6.5 and figure 6.6. It was observed that the natural frequency 

decreases with increase in crack depth. Figure 6.7 to figure 6.18 gives the graphical presentation 

of the relation between the different crack location (crack positions from the fixed end) and the 

three modes of natural frequencies.  It can be observed from the above figures that the natural 

frequency increases with increase in crack location from the fixed end.  
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Fig. 6.1 Schematic block diagram of Experimental Set-up 
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2 3 
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6 7 
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1. Vibration Pick-up   4.  Distribution Box   7.  Vibration Generator 

2.  Amplifier    5.  Power Supply   8.  Cantilever Beam 

3.  Vibration Indicator   6.  Power Amplifier   9.  Fixed End 
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Table 6.1 Comparison of Results among Fuzzy Controller, Numerical Analysis and Experimental Analysis 

Relative 
First 
Natural 
Frequency 
“fnf” 

Relative 
Second 
Natural 
Frequency 
“snf” 
 

Relative 
Third 
Natural 
Frequency 
“tnf” 

Fuzzy Controller Analysis
(relative crack depth ‘rcd’ 
and crack location ‘rcl’) 

Numerical Analysis 
(relative ‘rcd’ and crack 
location ‘rcl’) 

Experimental Analysis 
(relative ‘rcd’ and crack 
location ‘rcl’) 

0.9848 0.9958 0.9975 0.203 0.072 0.202 0.069 0.205 0.073 
0.9673 0.9874 0.9943 0.431 0.082 0.427 0.079 0.430 0.084 
0.9623 0.9948 0.9983 0.548 0.160 0.537 0.160 0.568 0.158 
0.9756 0.9976 0.9972 0.389 0.188 0.394 0.187 0.391 0.188 
0.9852 0.9984 0.9967 0.227 0.237 0.231 0.237 0.230 0.240 
0.9723 0.9961 0.9818 0.552 0.284 0.556 0.283 0.545 0.287 
0.9823 0.9872 0.9919 0.449 0.405 0.451 0.404 0.447 0.406 
0.981 0.9809 0.9931 0.495 0.424 0.497 0.424 0.495 0.424 
0.986 0.9842 0.9988 0.425 0.502 0.426 0.502 0.425 0.504 
0.9834 0.9685 0.9974 0.537 0.534 0.542 0.535 0.535 0.534 
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7. Conclusions 

The present investigation based on the Fuzzy Controller, Numerical Analysis and the 

Experimental Analysis results draws the following conclusions. 

• Theoretical analyses are performed for the single and double crack cantilever beam 

• Significant changes in natural frequencies of the vibrating beam are observed at the vicinity 

of crack location. When the crack location is constant but the crack depth increases, the 

natural frequency of the beam decreases both for the single and double transverse crack in 

the cracked cantilever beam.  

• When the crack depth is constant and crack location from the cantilever end varied for the 

single and double crack positions, Natural frequencies of first, second and third modes are 

also increased. 

• The Fuzzy Controller approach has been adopted in the present investigation to predict the 

identification and localization of the crack with the help of modal natural frequencies in the 

cracked cantilever beam, found to be very efficient.  The Fuzzy Controller is developed with 

Gaussian membership functions. The input parameters to the Fuzzy Controller are first three 

relative Natural Frequencies. The outputs from the Fuzzy Controller are relative crack depth 

and relative crack location. 

• The finite element formulation is performed using the ALGOR environment and the modal 

natural frequencies are calculated for comparison with the values obtained in Fuzzy 

Controller and the Experimental Analysis. 

• By Comparing the Fuzzy results with the Experimental results it is observed that the 

developed Fuzzy Controller can predict the relative crack depth and relative crack location in 

a very accurate manner.   

7.1 Scope for Future Work 

The proposed technique can be extended for un-symmetric crack prediction. New 

methodology can be adopted for robust diagnosis and condition monitoring of faulty structures. 
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