

TIME DELAY COMPENSATION SCHEMES

WITH APPLICATION TO NETWORKED

CONTROL SYSTEM

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIRMENTS FOR THE DEGREE OF

Master of Technology

In

ELECTRONICS SYSTEM AND COMMUNICATIONS

By

BOLLEPALLY RAJU

ROLL NO: 207EE110

DEPARTMENT OF ELECTRICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

2007-2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TIME DELAY COMPENSATION SCHEMES

WITH APPLICATION TO NETWORKED

CONTROL SYSTEM

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIRMENTS FOR THE DEGREE OF

Master of Technology

In

ELECTRONICS SYSTEM AND COMMUNICATIONS

By

BOLLEPALLY RAJU

Under the Guidance of

PROF.BIDYADHAR SUBUDHI

PROF.SANDIP GHOSH

DEPARTMENT OF ELECTRICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

2007-2009

National Institute Of Technology

Rourkela

C E R T I F I C A T E

This is to certify that the thesis entitled, “TIME DELAY COMPENSATION SCHEMS

WITH APPLICATION TO NETWORKED CONTROL SYSTEM” submitted by Mr.

BOLLEPALLY RAJU in partial fulfillment of the requirements for the award of Master of

Technology Degree in ELECTRICAL ENGINEERING with specialization in

“ELECTRONIC SYSTEMS AND COMMUNICATIONS” at the National Institute of

Technology, Rourkela is an authentic work carried out by him under my supervision and

guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University / Institute for the award of any Degree or Diploma.

Date: DR. BIDYADHAR SUBUDHI PROF. SANDIP GHOSH

Place: (Supervisor) (Co-Supervisor)

ACKNOWLEDGEMENTS

This project is by far the most significant accomplishment in my life and it would be

impossible without people who supported me and believed in me.

I would like to extend my gratitude and my sincere thanks to my honorable, esteemed

supervisor Dr. Bidyadhar Subudhi, head, Department of Electrical Engineering. He is not

only a great lecturer with deep vision but also most importantly a kind person. I sincerely

thank for his exemplary guidance and encouragement. His trust and support inspired me in

the most important moments of making right decisions and I am glad to work under his

supervision.

I am very much thankful to co-supervisor of Prof. Sandip Ghosh for providing a

solid background for my studies. They have been great sources of inspiration to me and I

thank them from the bottom of my heart.

I am very much thankful to Dr.S.Das, Dr.D.Patra, Mrs.K.R.Subhashini and

Mr.S.Mohanthy for providing a solid background for my studies.

 I would like to thank all my friends and especially my classmates for all the

thoughtful and mind stimulating discussions we had, which prompted us to think beyond the

obvious. I‟ve enjoyed their companionship so much during my stay at NIT, Rourkela.

I would like to thank all those who made my stay in Rourkela an unforgettable and

rewarding experience.

Last but not least I would like to thank my parents, who taught me the value of hard

work by their own example. They rendered me enormous support being apart during the

whole tenure of my stay in NIT Rourkela.

 BOLLEPALLY RAJU

CONTENTS

 Page No.

Abstract i

List of Figures ii

List of Tables iv

Abbreviations V

Chapter 1 Introduction 1

1.1. Introduction to networked control system 2

1.2. Background 5

 1.2.1 Networks and control 5

 1.2.2 Point-to-point architecture of a control system 6

 1.2.3 Basic networked control system 6

1.3. Literature survey 7

1.4. Fundamental issues in NCS 15

1.4.1 Networked –induced delay 15

 1.4.2 Single-packet versus multiple-packet 16

 1.4.3 Dropping Network Packets 16

1.5. Present control networks used in NCS 16

1.6. Applications of NCS 17

1.7. Industrial applications of NCS 18

1.8. Problem formulation 18

1.9. Contribution of thesis 19

1.10. Thesis organization 19

Chapter 2 Delays in Networked control system 20

 2.1. Introduction 21

 2.2. Delays in networked control system 21

 2.3. Delays in-the-loop 21

 2.4. Network induced delay control system (NDCS) 23

 2.5. Network delay models 24

 2.6. Effects of delays in the loop 25

 2.7. Control design methodologies 26

 2.8. Time delay compensation 28

 2.9. Different schemes of time delay control applied to NCS 29

 2.10. PID control design and tuning 29

 2.10.1. PID control 29

 2.10.2. Ziegler-Nichols tuning 32

 2.11. Simulation results 33

 2.12. Chapter summary 35

Chapter 3 Network Simulator (NS-2) 36

 3.1. Introduction 37

 3.2. Background on the NS simulator 37

 3.3. Tcl and OTcl 38

 3.4. NS simulator preliminaries 39

 3.4.1. Initialization and termination 39

 3.4.2. Definition of a network links and nodes 39

 3.4.3. Agents and applications 40

 3.4.4. Scheduling events 40

 3.4.5. Visualization: using NAM 41

 3.4.6. Tracing 42 .

3.5. Simulation results 44

 3.6. Chapter summary 44

 Chapter 4 Modeling the Digital Servo Motor 45

 4.1. Introduction 46

 4.2. Mathematical model of a DC servo motor 46

 4.3. Model estimation procedure 49

 4.3.1 Starting a new session in the GUI 50

 4.3.2. Description of the system identification tool window 50

 4.3.3. Importing models in to the GUI 52

 4.3.4. Subspace Identification 52

 4.4. Modeling the Digital servo motor 53

 4.5. Chapter summary 56

 Chapter 5 Hardware-in-loop simulation 57

 5.1. Introduction 58

 5.2. UDP (user datagram protocol) 58

 5.2.1. Reliability and congestion control solutions 59

 5.2.2. Applications 60

 5.3. Measurement of delay in feedback loop 60

 5.4. Smith predictor 68

 5.5. Chapter summary 71

 Chapter 6 Experiment on the Digital Servo Motor set-up with Artificial

 Delay Block 72

 6.1. Introduction 73

 6.1.1. Over view 73

 6.1.2. Working procedure of servo 73

 6.2. Description of servo setup 74

 6.3. Mechanical unit of servo setup 75

 6.4. Digital unit of servo setup 77

 6.5. Features 78

 6.6. PID control of DC servo motor 78

 6.7. PID control of DC servo motor with artificial delay 80

 6.8. Chapter summary 83

Chapter 7 Conclusions and Suggestions for future work 84

 7.1. Conclusions 85

 7.2. Suggestions for future work 85

References 86

i

ABSTRACT

 Feedback control systems wherein the control loops are closed through a real time

network are called networked control system (NCSs). Network control systems (NCSs) are

spatially distributed systems in which the communication between sensors, actuators, and

controllers occurs through a shared band limited digital communication network. The

defining feature of an NCS is that information (reference input plant output control input,

etc.) is exchanged using a network among control system components (sensors, controller,

actuator, etc.). The primary advantages of an NCS are reduced system wiring, ease of system

diagnosis and maintenance, and increased system agility.

 In the project an extensive study of network parameters like data packet drops, data

packet delays are pursued by using a network simulator (NS-2). It simulates the transmission

of sensor and control packets between plants and controllers. Some fundamental examples

were done using this network simulator.

 Time delay occurs used for networked control system when the exchange of data

among sensors, actuators and controllers connected through the shared medium. Such delays

affect the system Performance degradation and the reduced stability or total instability of the

closed-loop system. In order to compensate time-delay in the networked control system

(NCS) there are different time delay compensation schemes are available, which is given by

predictive controller, PID controller, LQR controller, fuzzy controller, etc. In this thesis the

discrete-time PID controller is used for compensating the time delays in the networked

control system.

 To study in reality an experimental work is done to transfer packet data between two

computer systems through a Local area Network (LAN) using UDP protocol. Subsequently

the transfer of signal between two computer systems through a LAN using UDP protocol has

been also made. These experiments were carried out using SIMULINK Instrument Control

Toolbox (ver7.6).

 Networked predictive control is also designed for networked control of servo system.

This control strategy is applied to a servo control system through the Local Area Network

(LAN).SMITH-PREDICTOR proposed to compensate the communication delays in the

networked control system.

ii

LIST OF FIGURES

Figure No. Page No.

1.1 A point-to-point architecture of control system 6

1.2 A block diagram of an NCS 6

1.3 General NCS architecture 8

1.4 Basic NCS model 9

2.1 General NCS configuration and network delays for NCS 21

2.2 Timing diagram of network delay propagation 22

2.3 The block diagram of network-induced delay 24

2.4 Model of a system with varying time-delay 29

2.5 Ziegler-Nichols tuning with step response test(left)frequency response test(right) 33

2.6 Step response of model of a system with constant time-delay 33

2.7 PID controller parameters for the first order system with constant delay 34

3.1 NAM graphic interface 41

3.2 Tracing object in a simplex link 42

3.3 Fields appearing in a trace 43

3.4 Window size of TCP with 20% of random loss 44

4.1 Model of a DC motor 47

4.2 System identification GUI 50

4.3 System identification tool window 51

4.4 System identification tool window after importing the data 53

4.5 Time plot of an imported data 54

4.6 Transient response of the model 54

4.7 Estimation of process model 55

4.8 Measured and simulated model output 56

5.1 Communicating two PC‟s through LAN 61

5.2 Transmitting simulink model in host PC 61

5.3 UDP send block parameters 62

5.4 UDP receive block parameters 63

5.5 Receiving simulink model in remote PC 64

5.6 Measurement of delay in feedback loop 64

5.7 Simulink model of a system without network 65

5.8 Step response of simulink model of a system without network 65

iii

5.9 Response of simulink model of a system without network 66

5.10 Simulink model of a system with network 67

5.11 Response of simulink PID model with network 68

5.12 Block diagram of smith predictor 69

5.13 Simulink model of a system with smith predictor in NCS 70

5.14 Response of the smith predictor with network 71

6.1 Digital servo set-up 74

6.2 Servo mechanical unit 33-100 76

6.3 Digital unit 33-120 77

6.4 Experimental set-up for PID controller 78

6.5 Simulink model of a general PID controller 79

6.6 Response of a general PID controller 79

6.7 Simulink model of PID controller with network 80

6.8 Response of simulink model of PID controller with network 80

6.9 Experimental set-up for DC servo motor with smith predictor 81

6.10 Simulink model of servo system with smith predictor 81

6.11 Response of simulink model of servo system without smith predictor 82

6.12 Response of simulink model of servo system with smith predictor 82

iv

LIST OF TABLES

Table No. Page No.

 2.1 Ziegler-Nichols tuning table for PID controller 32

v

ABBREVIATIONS USED

NCS Networked Control System

CAN Controller Area Network

LAN Local Area Network

PID Proportional-Integral-Derivative

P-P Point-to-Point

ZOH Zero Hold Order

WSN Wireless Sensor Networks

LMI Linear Matrix Lemma

LQG Linear Quadratic Gaussian

CT Continuous-Time

DT Discrete- Time

NAM Network Animator

TCL Tool Command Language

IP Internet Protocol

UDP User Datagram Protocol

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

EMS Energy Management Systems

SCADA Supervisor Control And Data Acquisition

DCS Distributed Control System

LQR Linear-Quadratic Regulator

NS-2 Network Simulator-2

GUI Graphical User Interface

NDCS Network Induced Control Systems

QoS Quality of Service

QoP Quality of Performance

Z-N Ziegler-Nichols

vi

PI Proportional-Integral

OTCL Object-oriented Tool Command Language

FTP File Transfer Protocol

CBR Constant Bit Rate

RED Random Early Discard

MAC Media Access Control

ID Identification

ACKs Acknowledgements

IS Intermediate System

TFTP Trivial File Transfer Protocol

DCCP Data Congestion Control Protocol

DNS Domain Name System

SNMP Simple Network Management Protocol

DHCP Dynamic Host Configuration Protocol

RIP Routing Information Protocol

SISO Single Input Single Output

MIMO Multiple Input Multiple Output

ADC Analog to Digital Converter

DAC Digital to Analog Converter

PWM Pulse Width Modulation

LCD Liquid Crystal Display

DVM Digital Volt Meter

USB Universal Serial Bus

PC Personal Computer

LED Light Emitting Diode

PCI Peripheral Component Interconnect

CHAPTER- 1

 INTRODUCTION

2

1.1 INTRODUCTION TO NETWORKED CONTROL SYSTEM

Communication networks in the industrial arena have, in the past decade, revolutionized the

way facilities are controlled. They have made centralized control centers possible, with a

wider range of features and more flexibility than ever before. High data transfer rates have

allowed for more efficient data storage, trending, alarming, and analysis. The drawbacks that

plagued the early generations of networks have been solved, for the most part, making them

reliable enough to be used in the most critical of applications.

The definition of a network is two or more devices connected by some means so they can

share information. The “means” is what we will address here. Additionally, even though the

most general interpretation of the definition could include many manifestations, we will focus

on data communication between devices commonly found in industry. If the problem is

broken into manageable parts, we can deal with each one effectively.

Network-based control has emerged as a topic of significant interest in the control

community. It is well known that in many practical systems, the physical plant, controller,

sensor and actuator are difficult to be located at the same place, and thus signals are required

to be transmitted from one place to another. In modern industrial systems, these components

are often connected over network media (typically digital band-limited serial communication

channels), giving rise to the so-called networked control systems (NCSs).

The study of Networked Control Systems (NCSs) brings together the historically separate

disciplines of computer networks and control theory. Feedback control systems, wherein the

loops used to control the behavior of a plant are closed through a real-time communication

network, are called networked control systems. The defining feature of an NCS is that

information is exchanged using a network among control system components (sensors,

controller, and actuator).

For many years now, data networking technologies have been widely applied in the control of

industrial and military applications. These applications include manufacturing plants,

automobiles, and aircrafts. Connecting the control system components in these applications,

such as sensors, controllers, and actuators, via a network can effectively reduce the

complexity of the systems with nominal economical investments. Furthermore, the

applications connected through a network can be remotely controlled from a long-distance

3

source. Traditionally, the networks used in the aforementioned applications are specific

industrial networks, such as CAN (Controller Area Networks), and LAN (Local Area

Network). However, general data networks such as Ethernet and Internet are rapidly

advancing to be the networks of choices for many applications due to their flexibility and

lower costs.

A Networked Control System (NCS) is a control system wherein the control loops are closed

through a real-time network. The defining feature of an NCS is that control and feedback

signals are exchanged among the system's components in the form of information packages

through a network.

Networked Control Systems (NCSs) are one type of distributed control systems where

sensors, actuators, and controllers are interconnected by communication networks. The study

of NCSs is an interdisciplinary research area, combining both network and control theory. A

major trend in modern industrial and commercial systems is to integrate computing,

communication, and control into different levels of machine/factory operations. The

traditional communication architecture for control systems is point-to-point, that is, a wire

connects the central control computer with each sensor or actuator point. This change to

common-bus introduces different forms of time delay uncertainty between sensors, actuators,

and controllers. Most NCS research has focused on two areas: communication protocols and

controller design.

The insertion of the communication network in the feedback control loops makes the analysis

and design of an NCS complex. Conventional control theories with many ideal assumptions,

such as synchronized control and non-delayed sensing and actuation, must be reevaluated

before they can be applied to NCSs. The issues that needs to be addressed while designing an

NCS include, network-induced delays that occurs while exchanging data among devices

connected to the shared medium, and packet losses, because of the unreliable network

transmission path, where packets not only suffer transmission delays but, even worse, can be

lost during transmission.

In an NCS, the most significant feature is the network induced delays, which are usually

caused by limited bits rate of the communication channels, by a node waiting to send out a

packet via a busy channel, or by signal processing and propagation. The existence of signal

http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Computer_network

4

transmission delays generally brings negative effects on NCS stability and performance. This

observation further enhances the importance of the study on time-delay systems.

A challenging problem in control of networked-based system is network delay effects. The

time to read a sensor measurement and to send a control signal to an actuator through the

network depends on network characteristics such as their topologies, routing schemes, etc.

Therefore, the overall performance of a network-based control system can be significantly

affected by network delays. The severity of the delay problem is aggravated when data loss

occurs during a transmission. Moreover, the delays do not only degrade the performance of a

network-based control system, but also can destabilize the system.

In networked control systems communication of data from sensor to controller or control

signal from controller to actuator, occur through communication networks. In Networked

Control systems, the data are communicated in the form of packets. PID controllers are

widely used controllers in the field of control systems because of their fantastic performance.

It gives the combined effect of Proportional, Integral and Derivative controllers, so the

system response is improved significantly.

Networked control systems are being used in many places such as automobiles, aircrafts

spacecrafts, manufacturing processes etc. The advantages with NCS include simplicity and

reliability. They are cheap and easy to maintain. However, these systems face problems such

as network-induced delays, data loss in the communication etc. These problems may lead to

the instability of the system. A lot of research has been done in networked control systems

area. New protocols have been proposed to improve the communication of data. The stability

of the networked control systems is an important issue; to maintain the system stability

various methods are established.

In this project, an attempt has been made to analyze the stability of an NCS resulting from the

network-induced delay (sensor-to-controller delay and controller-to-actuator delay). A simple

compensation scheme has been proposed to minimize its effect.

5

1.2 BACKGROUND

In NCS background there are network and controller are present. There are several techniques

used to transmit information through the network. Nearly all data network systems in use

today use binary digits (bits), a series of 1s and 0s, to send information, but there also must be

methods of carrying the bits across the network.

Messages are assembled into packets with formatting and addressing information, along with

the data. The general form of a message packet or frame is a leading header (sometimes

called the preamble), the data area (called the payload), and the trailer. The header contains

addressing and error checking information, the data area contains the actual data being

transmitted, and the trailer contains more error checking and message management

information (e.g. parity and stop bits). Parity, a simple error checking method, uses the

number of 1s in a byte (odd or even) to determine if the byte was received correctly.

Simplex transmissions are only in one direction, all of the time. Half-duplex is bidirectional

communication allowed in one direction at any given time, and full duplex is bidirectional

transmission in both directions simultaneously. In addition to this, synchronous (clocked)

transmissions are timed so that both devices know exactly when a transmission will begin and

end, whereas asynchronous (un-clocked) transmissions must mark the beginning and end of

messages. Synchronous transmission is usually faster than asynchronous, but the timing issue

between two remote machines can introduce problems causing asynchronous transmission to

be simpler and less expensive, and therefore more widely used. Asynchronous transmission

does, however, introduce extra control bits into a message, which slows the rate that actual

data can be transferred.

1.2.1 Networks and Control

Network control systems (NCSs) combine two engineering fields, control and computer

networks. Computer networks can be wired or wireless. Because NCSs are implemented over

a network, a good understanding of underlying communication network protocols, such as

Ethernet, Token Bus or Token Ring is required to analyze and model the system‟s behavior.

A Networked Control System (NCS) is a control system wherein the control loops are closed

through a real-time network. The defining feature of an NCS is that control and feedback

http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Computer_network

6

signals are exchanged among the system's components in the form of information packages

through a network.

1.2.2 Point-to-Point Architecture of a Control System

Figure 1.1 shows a control system implemented as a point-to-point (P-P) network. Until

about the 1960s, as a norm, sensors, controllers, actuators, drive units, and any other devices

used to have point-to-point Interconnections. With such connections, the volume, weight, and

complexity of the wiring can grow significantly with the increase in the number of connected

devices.

Fig 1.1. A point-to-point architecture of control system

1.2.3 Basic Networked Control System

A networked control system (NCS) is a feedback control system where the feedback loops are

closed by means of an electronic network [1]. Figure 1.2 illustrates a typical networked

control system. An NCS benefits its implementer by reduced cost, wiring, and system

maintenance. However, NCSs are not subject to the same design assumptions as non-

networked continuous- and discrete-time systems, including fixed transmission period, fixed

or no delay, and no data loss.

 Reference

 Signal

 Plant

Figure 1.2. A block diagram of an NCS

Plant

Sensor-1

Sensor-2

Sensor-n

Actuator-1

Actuator-2

Actuator-n

Controller

Network

Actuator Sensor Controller

7

A networked control system (NCS) is a feedback control system where information from the

sensors and the controllers is sent over an electronic communication net work [2, 13, 14]. The

popularity of computer networks has seen a tremendous rise, and in many cases, it has simply

become overwhelmingly practical to use these networks for communication between plants

and controllers. NCSs offer reduced cost and relatively simple implementation, as well as

greatly increased flexibility. Network protocols have been designed specifically for use in

control systems, but other, more general network protocols are also widely used [12].

As mentioned above, NCSs are not without their drawbacks. At best, communication

networks can introduce nontrivial delays, but the network can also introduce nondeterministic

elements such as time-varying random delays and packet loss. Additionally, the use of an

electronic network requires the discretization of measurements as well as the control signal,

and limited network capacity affects the ability of the system to use fast sampling

frequencies.

1.3. LITERATURE SURVEY

Future applications of control will be much more information-rich than those of the past and

will involve networked communications, distributed computing, and higher levels of logic

and decision-making. New theory, algorithms, and demonstrations must be developed in

which the basic input/output signals are data packets that may arrive at variable times, not

necessarily in order, and sometimes not at all. Networks between sensors, actuation, and

computation must be taken into account, and algorithms must address the tradeoff between

accuracy and computation time. Progress will require significantly more interaction between

information theory, computer science, and control than ever before.

Networked Control Systems (NCSs) are one type of distributed control systems where

sensors, actuators, and controllers are interconnected by communication networks as shown

in Fig 1.3 The study of NCSs is an interdisciplinary research area, combining both network

and control theory. A major trend in modern industrial and commercial systems is to integrate

computing, communication, and control into different levels of machine/factory operations.

The traditional communication architecture for control systems is point-to-point, that is, a

wire connects the central control computer with each sensor or actuator point. This change to

common-bus introduces different forms of time delay uncertainty between sensors, actuators,

8

and controllers. Most NCS research has focused on two areas: communication protocols and

controller design.

Networked control systems are control systems comprised of the system to be controlled and

of actuators, sensors, and controllers, the operation of which is coordinated via a

communication network. These systems are typically spatially distributed, may operate in an

asynchronous manner, but have their operation coordinated to achieve desired overall

objectives. Control systems with spatially distributed components have existed for several

decades. Examples include control systems in chemical process plants, refineries, power

plants, and airplanes. In the past, in such systems the components were connected via

hardwired connections and the systems were designed to bring all the information from the

sensors to a central location where the conditions were being monitored and decisions were

made on how to control the system.

 Sensors Actuators Sensors Actuators

Fig.1.3. General NCS architecture

The control policies then were implemented via the actuators, which could be valves, motors,

etc. What is different today is that technology can put low-cost processing power at remote

locations via microprocessors and that information can be transmitted reliably via shared

digital networks or even wireless connections. These technology driven changes are fueled by

the high costs of wiring and the difficulty in introducing additional components into the

systems as the needs change.

Traditional control systems composed of interconnected controllers, sensors, and actuators

have been successfully implemented using a point-to-point architecture. As an alternative to

point-to-point, the common-bus network architecture offers more efficient reconfigurability,

Dec

Network

Controller Controller

Enc Dec Enc

Plant Plant

9

better resource utilization, and also reduces installation and maintenance cost, which is called

networked control systems.

In a NCS, various delays with variable length occur due to sharing a common network

medium, which are called network-induced delays. Network-induced delays can vary widely

according to the transmission time of messages and the overhead time. The network-induced

delay in NCSs occurs when sensors, actuators, and controllers Exchange data across the

network. Generally, the controlled plant in NCS is assumed to be continuous-time, and thus

the actuator implements zero-order hold (ZOH) holding the last control until the next one

arrives or until the next sample time. Since networks are used for transmitting the

measurements from the plant output to the controller, the plant has to be sampled (sample

time h), which motivates the use of discrete-time controllers.

NCS are distributed real-time control systems consisting of the plant, sensors, controllers,

actuators, and a shared data network that is used for communication between the components

of the system. A general NCS layout is depicted in Figure 1.4.

 Continuous signal

 Digital signal

Figure 1.4. Basic NCS model

The controller may be physically placed in a different location from the plant, actuators and

sensors, resulting in a distributed control system. The controller can be time driven or event-

driven, so it can calculate the new control signal at discrete time instants with a constant

sample time or it can calculate the control signal immediately once it gets a new

measurement from the sensor. In addition, the actuator can be time or event-driven.

Control

Network
sc

k

Physical placed together

ZOH

Actuator

actuator

Continuous-Time

plant

Sampling (T)

sensor

Discrete-Time

Controller

Control

Network
ca

k

10

The network induces delays in the signals:
sc

k in Figure 1.4 denote the sensor-to-controller

delay and
ca

k the controller-to-actuator delay at time k. The controller computational delay

c

k can be included into sc

k or
ca

k without loss of generality .Depending on the

communications protocol used, these delays can be constant, time-varying or random.

Networked control systems (NCS) are feedback control systems wherein the control loops are

closed through a real-time network [18]. The different components of NCS exchange

information via a shared medium, a digital data network. The main motivations for using

networks for data transmissions in control systems are reduced system wiring, ease of system

diagnosis as all information is available everywhere in the system, and increased system

agility [24]. After the breakthrough of Internet and the preceding development of computer

networks in general, there are several cheap and reliable network technologies available.

Because of these reasons networks are and will be even more popular in transferring real-time

control data [15].

Networks, especially wireless ones, have already changed the consumer markets. Handheld

computers with wireless links through which the computers can communicate, and sensors,

such as cameras, are all around us. In the industry, though, the use of wireless technology is

at a very early stage, although it would bring obvious benefits, because wireless networking

extends the possibilities of NCS even further. Industrial applications having mobile

subsystems, or just savings in cabling costs, motivate the use of wireless technologies.

Wireless sensor networks (WSN) have been extensively researched for over a decade,

because they provide appealing possibilities for distributed, flexible and ubiquitous sensing

applications, where each node in the network performs sensing, data processing and

communication functions. The highly distributed nature of WSN makes them fault tolerant

and adaptive to dynamically changing environments. Even though one node in the network

experiences problems and is shut down, networking protocols and both sensing and data

processing algorithms could adapt to the changed situation. Hence packets would not be

delivered through the faulty node, routes would be reestablished and data processing would

adapt to a missing source of measurements. Automatic route establishment and other self-

healing properties of networks are required in order to execute control tasks over wireless

networks. Often the industrial applications pose stringent timing and reliability requirements,

11

and with wireless solutions these are more difficult to meet than with wired due to the

adverse properties of the radio channels [25].

The shared communication medium in NCS with communication faults that are frequent

especially in wireless networks poses new challenges for control design and analysis. The

traditional control theory is based on the assumption of uniform sampling of variables and it

does not completely cover the cases with varying time-delays or lost and intermittent

measurements. The shared medium may be reserved at the time of sampling or there might be

collisions of packets. Therefore the nodes might have to wait indefinitely before

retransmission. The distributed nature of networks makes it sometimes hard to share common

timing information, and due to drifting of local clocks the nodes are more or less asynchronic.

In addition, there are various computing tasks in NCS, and depending on the extent of the

tasks and scheduling policies of the microcontrollers, the computational times may vary

significantly]. Unmodeled and varying time-delays may yield instability in a closed-loop

control system and hence the major challenges for control design in NCS are varying time-

delays and packet loss.

During recent years the research of NCS has been rapidly growing and several solutions to

cope with varying time-delays and packet loss have been proposed. Currently, it seems that

there are a few main streams or methodologies that are under specific investigation. A

networked control system could be modeled as a linear discrete-time state-space system with

varying time-delays in the control and/or output signals. Once the control law is defined,

Lyapunov-like stability criteria are applied and the conditions for the corresponding LMI

(Linear Matrix Inequality) problem are presented (e.g. [17], [19]). The LMI is then solved

using an efficient numerical solver. Another quite common way is to develop observers that

act on the intermittent and delayed measurements and to apply LQG (Linear Quadratic

Gaussian) design on top of that (e.g. [16], [21]). In all these approaches the practical

applicability is questionable, since the calculations are computationally demanding and an

industrial control engineer might feel uncomfortable in applying these mathematically

challenging solutions in practice. The computational issues play an even more important role

in the case of wireless control systems. The computations should be run on a wireless node

that needs to have low power consumption and has a very limited computational power and

memory available.

12

This thesis discusses the control design aspects of NCS and focuses on the PID (Proportional-

Integral-Derivative) controller, its design and tuning. The PID controller is a widely applied

control algorithm in wired control systems, and there is no clear reason why it would not be

so in NCS or wireless automation applications. The use of PID in NCS has been researched

relatively little, although the choice of its structure and its tuning turn out to be crucial for it

to be applied in NCS. The PID controller is sometimes discussed in the literature in

connection with NCS (e.g. [22], [25]), but quite rarely the characteristics of the networks are

taken into account in any way in the controller tuning. Nevertheless, by tuning the PID

appropriately, it can be made very robust against varying time-delays and packet loss. To

evaluate the stability of a PID controlled system with uncertainties, such as varying time-

delays, robust control techniques can be used. For example, the robustness of different PID

tuning methods for a case process with parameter uncertainties has been investigated in [20].

The selection of the sample time plays an important role in NCS. Traditionally, a small

sample time is chosen to approximate the continuous-time plant as closely as possible and to

enable accurate control. Nevertheless, in NCS, a small sample time causes high network load

and an increasing risk of network congestion, which results in longer delays and hence lower

performance. Thus the network delay and the sample time are coupled, and finding an

optimal balance between the two is a core requirement for achieving well performing and

stable NCS [26].

The stability of a closed-loop control system should always be the first concern when

designing controllers. As discussed in the previous section, the varying time-delays induced

by the network are the major source of instability in NCS. This section reviews some of the

stability criteria proposed for NCS and also, in general, for varying time-delay systems.

The stability analysis of varying time-delay systems falls into several subcategories

depending on the scenario. The delay can be known or unknown and its maximum value

bounded or unbounded. The plant and the controller can be either continuous-time (CT) or

discrete-time (DT), and also a mixed case (CT plant and DT controller) is considered in [31].

If the delay is known, the stability criterion may make use of the lengths of delays. Thus the

delay-dependent criteria are presumably less conservative than the delay-independent criteria

[26]. Most of the available stability criteria for unknown and varying time-delays are given in

the time domain (e.g. [27], [28]), but there are also frequency domain criteria such as [29].

13

The basic problem in NCSs includes network-induced delays, single-packet or multiple-

packet transmission of plant input and outputs, and dropping of network packets [36]. The

network-induced delays in NCSs occur when sensors, actuators, and controllers exchange

data packet across the communication network. This delay can degrade the performance of

control systems designed without considering it and can even destabilize the system.

With the development of network technology, more and more intelligent devices or systems

have been embedded into Internet services. The Internet has provided a powerful tool for

distance collaborative work. It can be potentially used in many applications, such as traffic

control, remote surveillance and networked control system. Nevertheless, once a networked

control system is connected through the Internet, the random network delay and packet drop

induced by the routers of data transmission and network traffic congestion [37] are

unavoidable. That could degrade the control performance and even make the control system

unstable. Hence, for the NCS the conventional control methods are no longer suitable.

Therefore, although the notion of the networked control system is relatively new, more and

more attention has been paid to the design and implementation of such systems [38][39][40].

The random network transmission delay makes it very hard to analyze and design networked

control systems. However, there is a distinct advantage with using a network that a set of

control sequences and measurements can be transmitted from one location to another location

at the same time by packing them into one packet. This advantage makes it possible to

compensate for the random network delay by using the predictive method. Liu et al. [41]

introduced a networked predictive control scheme, in which a set of control sequences for

every possible delay time are packed together and sent to the plant side, and on the plant side

the relevant control signal corresponding to the measured delay is chosen. This is an effective

way to compensate for the network delay, but has the disadvantage that the prediction is

based on individual forward and backward delays which are difficult to measure separately.

There is no synchronization support in the present network, so the clock difference between

the controller and plant side cannot be adjusted accurately, which makes it impossible to

measure the individual forward and feedback network delays

Packet dropping is often an inevitable event in network data transmission despite the

provision network protocols. Network packet drops occasionally happen on an NCS when

there are node failures or message collisions. In real-time feedback control, data such as

14

sensor measurements and calculated control signals, it might be advantageous to discard the

old untransmitted message and transmit a new packet if it becomes available. In this way, the

controller always receives fresh data for control calculation.

Although the plant would be sampled at discrete time instants at a constant rate, the

distributed and asynchronic nature of networks makes the delays time-varying, often in

random fashion. Besides the constant delay of the process (though this delay could also be

time-varying), the control loop experiences varying time-delays induced by the network. In

the literature, these varying delays are often referred to as jitter. Many traditional control

design methods are based on the assumption of constant time-delays, but this is rarely the

case in NCS. Thus new control schemes are needed for NCS, where jitter is present.

Therefore the field of networked control systems has lately been researched widely. Recent

control design methodologies for NCS are presented, for example, in [42].

The ns-2 network simulator is a network simulation package developed at the Information

Sciences Institute at the University of Southern California [34]. Ns-2 provides many powerful

objects to simulate different types of networks and network architectures, as well as different

types of nodes and traffic patterns. The ns-2 distribution also includes other useful tools for

the study of networks, such as NAM, which creates an animation of the traffic on a network.

In [44], the ns-2 simulator was extended to simulate the continuous and discrete dynamics of

complex linear and nonlinear systems. This is accomplished through the Agent/Plant package

[45], which provides an open way to code plant dynamics, sample scheduling, and control

calculation and scheduling in the TCL code of ns-2. Because this approach is so open, it

allows for various means of calculating continuous dynamics.

Another problem related to NCS is packet loss. Some of the packets get lost in the network

due to interference, noise, node failures and packet collisions. Depending on the protocols

used, a lost packet is either retransmitted or not. For example, consider the two transport layer

protocols used in IP networks. In TCP (Transmission Control Protocol) messages are

retransmitted in the case of lost or erroneous packets, but in UDP (User Datagram Protocol)

there are no retransmissions. There is a significant difference in these two protocols with

respect to how much they congest the network, but also with respect to the reliability of the

connection. In the TCP, acknowledgements from the receiver to sender, indicating that the

15

messages are received, need to be sent. This increases the network load. On the other hand, in

the TCP the data arrive in correct packet order and all the data finally go through, if the

network is up and running. In the UDP the packets may arrive in out-of-sequence, and there

are no retransmissions. The UDP is therefore much faster than the TCP, but it is also more

unreliable [46].

The compensation for NCSs in considered for sensor-to-controller delay, sc only. Sensor-to-

controller delay can be known when the controller uses the sensor‟s data to generate the

control signal, provided the sensor and controller clocks are synchronized and the message is

time stamped. Thus an estimator can be used to reconstruct an approximation to the

undelayed plant state and make it available for the control calculation. On the other hand,

controller-to-actuator delay is different, in that the controller does not have the information

on how long will it take the control signal to reach the actuator, therefore, no exact correction

can be made at the time of control calculation.

In order to compensate the network transmission delay, a network delay compensator is

proposed. A very important characteristic of the network is that it can transmit a set of data at

the same time. Thus, it is assumed that all control predictions at time„t‟ are packed and sent to

the plant side through the network. The networked delay compensator chooses the latest

control value from the control prediction sequences available on the plant side [47].

1.4. FUNDAMENTAL ISSUES IN NCSs

In this section, we will analyze some basic problems in NCSs, including network-induced

delay, single-packet or multiple-packet transmission of plant inputs and outputs, and

dropping of network packets.

1.4.1. Network-Induced Delay

The basic problem in NCSs includes network-induced delays, single-packet or multiple-

packet transmission of plant input and outputs, and dropping of network packets [47]. The

network-induced delays in NCSs occur when sensors, actuators, and controllers exchange

data packet across the communication network. This delay can degrade the performance of

control systems designed without considering it and can even destabilize the system

16

1.4.2. Single-Packet versus Multiple-Packet Transmission

Single-packet transmission means that sensor or actuator data are lumped together into one

network packet and transmitted at the same time, whereas in multiple-packet transmission,

sensor or actuator data are transmitted in separate network packets, and they may not arrive at

the controller and plant simultaneously. One reason for multiple- packet transmission is that

packet-switched networks can only carry limited information in a single packet due to packet

size constraints. Thus, large amounts of data must be broken into multiple packets to be

transmitted. The other reason is that sensors and actuators in an NCS are often distributed

over a large physical area, and it is impossible to put the data into one network packet.

Conventional sampled-data systems assume that plant outputs and control inputs are

delivered at the same time, which may not be true for NCSs with multiple-packet

transmissions. Due to network access delays, the controller may not be able to receive all of

the plant output updates at the time of the control calculation.

1.4.3. Dropping Network Packets

Network packet drops occasionally happen on an NCS when there are node failures or

message collisions. Although most network protocols are equipped with transmission- retry

mechanisms, they can only retransmit for a limited time. After this time has expired, the

packets are dropped. Furthermore, for real-time feedback control data such as sensor

measurements and calculated control signals, it may be advantageous to discard the old,

untransmitted message and transmit a new packet if it becomes available. In this way, the

controller always receives fresh data for control calculation.

Normally, feedback-controlled plants can tolerate a certain amount of data loss, but it is

valuable to determine whether the system is stable when only transmitting the packets at a

certain rate and to compute acceptable lower bounds on the packet transmission rate.

1.5. PRESENT CONTROL NETWORKS USED IN NCS

The present control networks used for design NCS are i) CAN ii) ETHERNET.

17

CAN Network:

The Controller Area Network (CAN) serial bus system is used in a broad range of embedded

as well as automation control systems. The main CAN application fields include cars, trucks,

trains, aircraft, factory automation, industrial machine control.

CAN network is constituted on serial bus shared by stations by mean of a CSMA/CA scheme

with a deterministic collision resolution. The collision resolution is based on priorities

associated to identifiers (addresses) of the frame which carry the data) of application tasks

The priority (at which message is transmitted compared to another less urgent message) is

specified by the identifier of each message. The priorities are laid down during system design

in the form of corresponding binary values and cannot be changed dynamically. The

identifier with the lowest binary number has the highest priority. Bus access conflicts are

resolved by bit-wise arbitration of the identifiers involved by each station observing the bus

level bit for bit.

Ethernet Network

Ethernet was developed in the 1970‟s and emerged in products in the early 1980s. It is now

the dominant local area networking solution in the home and office environment. It is fast,

easy to install and the interface ICs are cheap. Despite early attempts to use Ethernet as a

real-time communication medium in the factories, practitioners were reluctant to adopt this

technology because of its intrinsic non determinism.

Originally, Ethernet uses a shared medium by using for example hub technology. In this case,

simultaneous accesses to the medium generate collisions and the transmission is delayed till

no collision occurs. It is means, in the worse case, when the medium is overloaded; a

message could never to be transmitted.

1.6. APPLICATIONS OF NETWORK CONTROL SYSTEM

• Manufacture automation factories

• Electric factories

• Advanced aircraft

18

• Network control system (NCS) utilizing high-performance workstations with

server/client technologies are used widely for stable and efficient power system

operation.

• Energy management Systems (EMS) for generation control and network analysis.

• Mobile sensor networks

• Remote surgery

• Haptics collaboration over the internet

• Automated highway systems and unmanned aerial vehicles

1.7. INDUSTRIAL APPLICATIONS

 SCADA(Supervisory Control And Data Acquisition)

 DCS (Distributed control system)

1.8. PROBLEM FORMULATION

The networked environment presents many new challenges for traditional control system

design. For example, many well-known methods have been developed and perfected to

analyze and design control systems subject to the effects of discretization. Similarly, much

attention has been devoted to the analysis of constant loop delay and its destabilizing effects

on the stability of feedback control systems. In the networked environment, however, a

controller must combat the degrading effects of both discretization and loop delay.

Additionally, the loop delay is often not constant, but time-varying and random.

Depending on the plant and desired performance specifications, sometimes well-known

control algorithms can compensate for the detrimental effects of the network. In this thesis,

we investigate the adaptation and performance of two popular control algorithms,

proportional-integral-derivative (PID) control and smith predictor, in the networked

environment.

Time delay occurs in NCS when the exchange of data among sensors, actuators and

controllers connected through the shared medium. Such delays affect the system performance

degradation and reduce stability or total instability of the closed-loop system. In order to

compensate time-delay in the networked control system (NCS) there are different time delay

19

compensation schemes developed by several researchers, There are for example predictive

controller, PID controller, LQR controller and fuzzy controller etc. In this thesis, a discrete-

time PID controller is used for compensating the time delays in the networked control system

of a DC servo system.

Networked predictive control is also designed for networked control of a DC servo system.

This control strategy is applied to a servo control system through a LAN. A smith predictor

based delay compensator is also proposed to compensate the communication delays in the

above networked control system of a DC servo system.

1.9. CONTRIBUTION OF THE THESIS

The major contributions of this thesis are

1. Review of the Networked Control System (NCS).

2. Review of different time delay compensation schemes and MATLAB simulation

studies.

3. Study of the Network Simulator (NS-2).

4. Modeling the digital servo motor.

5. Hardware-In-Loop simulation.

6. Experiment on the Digital servo motor set-up with artificial delay block.

1.10. THESIS ORGANIZATION

In Chapter 2, details regarding delays in NCS and different time delay compensation

schemes, details of proposed schemes (PID controller and Smith predictor).in order to know

about the parameters of a network we have studied extensively in doing a network simulator

studied in chapter -3.

In Chapter 3, details of network proposed simulator (NS-2) is given.

In Chapter 4, details of modeling the digital servo motor using system identification tool box

GUI in MATLAB (R2008).

In Chapter5, details of Hardware –In- Loop simulation and discusses simulation results.

In Chapter6, details experiment on the Digital servo set-up with artificial delay block.

CHAPTER- 2

DELAYS IN NETWORKED CONTROL SYSTEM

21

2.1. INTRODUCTION

In this section we detail the delays in the networked control system. The brief explanation of

PID controller and compensation scheme is given.

2.2. DELAYS IN NETWORK CONTROL SYSTEM

One of the important problems of NCS is the delay of data transmission between the units of

NCS. The network – induced delay appears from two main parts as sensor-controller and

controller-actuator. The control systems constructed without considering this delay have a

low performance and Reliability.

2.3. DELAYS IN-THE-LOOP

Since an NCS operates over a network, data transfers between the controller and the remote

system will induce network delays in addition to the controller processing delay. Fig. 8 shows

network delays in the control loop, where r is the reference signal, u is the control signal, y is

the output signal, k is the time index, and T is the sampling period. Most of networked

control methodologies use the discrete-time formulation shown in Fig 2.1.

)(kTu u(kT-
ca) y(t)

)(sckTy ))(ky y(kT)

Fig 2.1. General NCS configuration and network delays for NCS formulations

Network delays in an NCS can be categorized from the direction of data transfers as the

sensor-to-controller delay
sc and the controller-to-actuator delay

ca :

The delays are computed as

where
se is the time instant that the remote system encapsulates the measurement to a frame

or a packet to be sent,
cs is the time instant that the controller starts processing the

measurement in the delivered frame or packet,
ce is the time instant that the main controller

sccssc tt 
cersca tt 

 Controller
Remote system

ZOH

Network

Actuator Plant Sensor

T

r(kT

)

22

encapsulates the control signal to a packet to be sent, and
rs is the time instant that the

remote system starts processing the control signal. In fact, both network delays can be longer

Fig. 2.2. Timing diagram of network delay propagation

Output signal
Actual output

Signal Delayed output

Signal (sc)

)(ky

)(sckTy 

Control signal

with respect

to

Y (k)

Delayed control

signal (by sc)

)(ku)(sckTu 

Control signal

Time

Time

sct cst

cet rst

T

sc c

ca



(k+1)T kT
w f p

23

or shorter than the sampling time T: The controller processing delay
c and both network

delays can be lumped together as the control delay t for ease of analysis. This approach has

been used in some networked control methodologies. Although the controller processing

delay
c always exists, this delay is usually small compared to the network delays, and could

be neglected. In addition, the sampling periods of the main controller and of the remote

system may be different in some cases

Waiting delay
W : The waiting time delay is the delay, of which a source (the main controller

or the remote system) has to wait for queuing and network availability before actually

sending a frame or a packet out.

Frame time delay
f : The frame time delay is the delay during the moment that the source is

placing a frame or a packet on the network.

Propagation delay
p : The propagation delay is the delay for a frame or a packet traveling

through a physical media. The propagation delay depends on the speed of signal transmission

and the distance between the source and destination

Generally, the controlled plant in NCS is assumed to be continuous-time, and thus the

actuator implements zero-order hold (ZOH) holding the last control until the next one arrives

or until the next sample time. Since networks are used for transmitting the measurements

from the plant output to the controller, the plant has to be sampled (sample time h), which

motivates the use of discrete-time controllers.

2.4. NETWORK INDUCED DELAY CONTROL SYSTEMS (NDCS)

The network- induced delay in NCS occurs when sensors, actuators, and controllers exchange

data across the networks. This delay can degrade the performance of control systems

designed without considering it and even destabilize the system.

The network delay model of network induced system is seen in Fig.2.3. Here ad is the delay

between the sensor-to-controller and di is the delay between controller and actuator. By

considering this design the generalized mathematical model of NDCS can be constructed.

When we build this model we divide the NDCS into three parts as the controlled system (the

Plant), the controller system (the Controller) and the network system which bounds these first

two parts. That makes easier the system analysis.

24

Fig. 2.3. The block diagram of network-induced delay

Fig. 2.3. The block diagram of network-induced delay

There is a network between the controller and the components of the area. This construction

causes a delay between these two parts. The most important factor in the environment of the

network which affects the velocity of data transmission so the time, spent in the network, is

the data used in transmission technology

ayas TTT
af


here Tas – the transmission time in the network medium, Tay – the propagation time in the

network medium, Taf – the structuring message time in the network medium. The size of the

message, the data density and the distance between two points (the length of transmission

line) are the main subjects of determining the duration of the time.

2.5. NETWORK DELAY MODELS

There are several sources of delays in NCS. Not only the network dynamics affect the total

delay, but also the signal processing and computational delays that depend on the scheduling

policies should be taken into account. The network could also be exposed to failures, which

would increase the delay variance. Furthermore, if all the components of the NCS are time-

driven, there is an additional synchronization delay, because the components have to wait

until the next sample instant until they can act. For example, the controller might receive a

measurement from the plant 0.1h after the measurement is made, but it would have to wait

)(tyd)(tud

 d

)(tus)(ty s

Controller

Actuator Sensor

 Plant

 d

Network

di ad

25

until the next sample instant until the control signal would be transmitted to the actuator,

which again would wait until the next sample instant before actuation of the control

command.

 Network modeling is in many cases a prerequisite for control design. There are several

models available for network delays depending on the network type and protocols used.

Generally applicable network delay models are considered, where two different models are

discussed. These are: 1) constant delay, 2) random delay that is independent from

transmission to transmission.

 The constant delay model is good for cases, where the process dynamics are much

slower than those of the networks and network delays are significantly smaller than process

time-constants and delays. In this case, the network delays might always be less than the

sample time and if the system is time-driven, the variance of the delay has no effect. The

network delay experienced by the controller or the actuator would always be one sample time

in such a case. The independent random delay model is justified, because there are several

events in the network that can cause asynchronic behavior for communication. Under the

shared medium, not all the nodes can transmit simultaneously and thus sometimes they might

need to wait for the network to be idle. In the case of packet collisions, there could be a

random back off time after which the nodes would try to transmit again.

The independent random delay models do not capture the effect of a high network load that

often leads to correlated random delays, meaning that a delay value is actually dependent on

the previous value. If the network is experiencing heavy traffic, it is probable that all packets

suffer from long transmission delays until the load decreases.

2.6. EFFECTS OF DELAYS IN-THE-LOOP

One of the important problems of NCS is the delay of data transmission between the units of

NCS. This delay causes some data packages be spoiled or completely get lost. That is, the

signals are weakened. The network – induced delay appears from two main parts as sensor-

controller and controller-actuator. The control systems constructed without considering this

delay have a low performance and Reliability. The delay causes in a control loop are widely

known to degrade system performances and destabilization of a control system.

26

2.7. CONTROL DESIGN METHODOLOGIES

The recent control design methodologies for networked control are reviewed. Despite the

methodology chosen, the objective is to control the NCS so that stability is guaranteed while

providing good performance for the closed-loop control system. The basic concepts of the

control algorithms are presented here.

The augmented deterministic discrete-time model methodology is based on discrete-time state

space models. The controller uses j past measurements z(k) = y(k - i), i = {1,…,j} to

calculate the control signal at k. The network delays are handled by augmenting the delays

into the full system state model, and the stability for periodic delays is proven based on the

eigen values of the augmented system state transition matrix.

The basic idea of queuing methodology is to use observers and predictors to compensate for

the delay and hence to make the NCS time-invariant. The methodology is based on queuing

mechanisms that are used to reshape random network delays to deterministic delays. The

approach presented in uses an observer to estimate the plant states and a predictor to

compute the predictive control based on past output measurements. The control and past

output measurements are stored in FIFO queues and shift registers, and these are located

before and after the controller in the control loop. First, the past measurements are used to

estimate the plant state at k – θ + 1, where θ is the size of the shift register between the

sensor and the observer. Next, using the previous estimate, the plant state is predicted at k +

μ, where μ is the size of the register after the controller. The predictive control signal u(k + μ)

is then calculated and stored in the shift register. Since both the observer and the predictor are

model-based, the performance of the system highly depends on model accuracy.

Nilsson developed an optimal stochastic control methodology for NCS. In this work the delay

was assumed to be random, but less than one sample time. Later Lincoln extended the

optimal control methodology for delays that are longer than one sample time. The basic idea

of this approach is to formulate the problem as a LQG problem. The system dynamics are

given in state-space and the optimal controller gain is solved from the formulated LQG

problem using dynamic programming. Solving the problem requires past delay and full state

information, and for the latter the Kaman filter may be applied.

27

The perturbation methodology considers the difference between the current plant output

values and the most recently transmitted plant output values as a perturbation to the system

and searches for limits to this error. The stability is proven using the Lyapunov approach on

the dynamics of the error. Several assumptions are made, including error free

communications, fast sampling and noiseless observations, but the plant and the controller

may be nonlinear and time variant.

The sampling time scheduling methodology can be used for determining the sensor sample

times of NCS based on the delay sensitivity of each control loop in the network. The

sensitivity to delay is first analyzed using general frequency domain analysis on the worst-

case delay bound. Under certain conditions this methodology leads to optimal network

utilization.

In robust control methodology the network-induced delays are treated as perturbations to the

nominal system, and the control design is performed in the frequency domain using robust

control theory. A major advantage of this approach is that there is no need to know the exact

delay distributions in advance. The network delays are assumed bounded and they are

modeled as simultaneous multiplicative perturbations. Using the Padé approximation, the

H∞/μ-synthesis may be applied and certain multiplicative uncertainty weights are chosen so

that the uncertain delays are covered by the controller. Robust performance for randomly

time-delayed systems may be achieved using this methodology.

Fuzzy logic modulation methodology takes an advantage of fuzzy logic to update the

controller gains based on the error signal between the reference and the actual output of the

system, and the output of the controller. The fuzzy logic modulation methodology includes

online and offline membership function design by optimization.

Event-based methodology uses the system motion as the reference of the system instead of

time. For example, the distance traveled by an end-effectors of a robotic manipulator y(t)

could be converted to a motion reference s by a certain mapping. A planner uses the motion

reference as an input to calculate the reference r(s), which is used in system control. In a way,

the event-based methodology maps the time space into event space and the system stability

no longer depends on time. Thus the network-induced delays will not destabilize the system.

28

End-user control adaptation methodology is based on the ability to measure the traffic

conditions of the network, and the controller parameters are adapted accordingly. In this

methodology, the controller can request and update the Quality-of-Service (QoS) conditions

from the network, and if the desired QoS requirements cannot be met, the controller

parameters are adjusted aiming for the best possible performance.

2.8. TIME DELAY COMPENSATION

The time delays in the NCS may deteriorate the system performance and cause the system

instability. Therefore, it is necessary to design a controller which can compensate for the time

delays and improve the control performance of the NCS.

The sensor to controller delay can be known when the sensors data is used by the controller

to generate a control signal. But in the case of controller to actuator delay, the controller does

not know how long it will take the control signal to reach actuator. So at the time of control

calculation, no exact correction can be made.

An estimator can be used to predict an undelayed plant state and make it available for control

calculation. An NCS Estimator must estimate the full state of the plant using partial state

measurements and also compensate for sensor delay. This can be implemented by either full

state feedback or output feedback.

In the NCS environment the main goal of the control system is to maintain Quality of

Performance (QoP) of the control system regardless of the delays in the network. The system

should be robust and be able to compensate the delay induced by the network. Prior to

presenting the delay compensation strategies it is important to state the following

assumptions about the process and the network.

 In the network all control and measurement information is sent in a single packet.

 The process is assumed to be fast. The sampling time necessary to capture all relevant

process dynamics is significantly smaller than the network induced delay. (If the

sampling time necessary to capture all process dynamics is larger than the network

induced delay, then the delay will have a similar effect on QoP of the control system

as a small additional measurement error.

 No packet losses occur in the communication network.

29

2.9 DIFFERENT SCHEMES OF TIME DELAY CONTROL APPLIED TO NCS

 The time delay compensation schemes are used to compensate the time delays causes in the

feedback loop. Different types of time delay compensation schemes are given below.

1. PID controller

2. Smith predictor

3. Optimal controller

4. Fuzzy controller

5. Robust control

6. Sliding mode controller

7. Adaptive controller

2.10. PID CONTROL DESIGN AND TUNING

This thesis, we investigating PID controller design methods for processes with varying time-

delays. In the case of varying time-delay systems the control strategy is hard to analyses with

standard analytic control theory. In section the discrete-time PID controller is derived. It is

later used to control a distributed system. Some practical aspects that have to be considered in

PID controller design are put forth. Then some tuning methods that can be used for processes

with varying time-delays are introduced.

 yr + e y

-

 Reference Controller Process Delay

Figure.2.4. Model of a system with varying time-delay

2.10.1. PID Control

The PID controller is the most common controller in control systems. For example, in the

mid 1990‟s the PID controller was used in over 95 % of the control loops in process control.

The best features of the controller can only be achieved if the controller is well tuned.

Networked control systems almost demand algorithms like smith predictor, but in some cases

a simple and well performing PID controller can be set up with considerably less effort.

PID
1

1

Ts
)(tL

30

 The PID controller in continuous time is

)()()(
)(

)(
1

)()(
0

tututu
dt

tde
Tde

T
tetu dip

t

d

i















  

 ……… (1)

Where)(te is the difference

)()()(tytyte r 

Between the reference signal (the set-point),)(tyr and the output,)(ty of the controlled

process as in Figure 2.4, with)0(tL .

In transfer function form Equation (1) becomes

Ds
s

I
psEsT

sT
K

sE

sU
sG d

i

pPID 









)(

1
1

)(

)(
)(

The coefficients dip TTK ,, and DIP ,, are related by:

dp

i

p

p

TKD

T

K
I

KP







The controller has three parts: the proportional part (pu) is proportional to the error, the

integral part (iu) removes the steady-state error and the derivative part (du) reduces the

overshoot. The weights of the controller‟s actions are adjusted with the P, I and D gains.

The PID controller is traditionally suitable for second and lower order systems. It can also be

used for higher order plants with dominant second order behavior. The controller is usually

implemented in a computer that does calculations in discrete-time. In networked control

systems a discrete-time version of the controller is needed because the measurements are sent

over the network as packets.

The proportional part of the controller at time-step k is then

)()(][kheKtuku pkpp 

31

The integral part

 de
T

K
tu

t

i

p

i 
0

)()(

is discredited by approximating the integral with a sum





k

ni

p

i nhe
T

K
ku

0

][][

This can further be simplified by computing the difference







1

00

][][]1[][
k

ni

p
k

ni

p

ii nhe
T

K
nhe

T

K
kuku

][]1[][ke
T

hK
kuku

i

p

ii 

The derivative part can be discredited in several ways, with different outcome of the stability

and accuracy. The simplest form is the Euler approximation (forward difference):

h

keke
TKku dpd

][]1[
][




Which is usually not used since it amplifies random errors.

In NCS, controllers run in discrete-time. The CT controller discussed above may be

discredited as follows. The proportional part of the controller is static and requires no

approximation, only sampling. The backward difference method can be used in the

approximation of the integral and derivative parts.

 ]1[][]1[][

][]1[][

][

][][][][















keke
NhT

NTK
ku

NhT

T
ku

ke
T

hK
kuku

keKu

kukukuku

d

dp

d

d

d
d

i

p

ii

pp

dip

32

2.10.2. Ziegler-Nichols Tuning

The Ziegler-Nichols (Z-N) methods rely on open-loop step response or closed-loop frequency

response tests. A P-, PI- or PID controller is tuned according to a table based on the process

response test.

In the step response test a step is applied on the open-loop system. A tangent line is drawn at

the inflexion point on the response curve. The dead-time, 1T , and the rise time, 2T , are

measured (Figure 2.5).

In the frequency response method the loop is closed and a pure gain controller is used. The

gain is increased to the ultimate gain, uK , when the system exhibits a steady oscillation

whereby the oscillation period is measured, uT (Figure 2.5).Table 1 shows the tuning rules

for a PID controller. P and PI controllers have separate tuning rules.

Table 1: Ziegler-Nichols tuning table for PID controller

Method /parameter

pK

iT

dT

Z-N step response

1.2
1

2

2

1

T

T

K

K

12T

15.0 T

Z-N frequency response

uK6.0

Tu5.0

Tu125.0

For a discrete-time PID controller the table should be revised to take the sampling time into

account. There is, however, no discrete Z-N tuning table, so Table 1 is used in lack of other.

A discrete-time controller approximates a continuous-time controller at small sampling times,

so this tuning rule is only used for the shortest sampling times.

The Z-N method is designed for rejecting load disturbances. For reference step changes it

performs worse and gives for simple systems a damped oscillating response, where

consecutive peaks are ¼ of the previous peak. The tuning is usually bad for higher order

systems and can only be considered as a simple first aid tuning.

33

Fig. 2.5. Ziegler-Nichols tuning with step response test (left) and frequency response test (right)

2.11. SIMULATION RESULTS

The PID controller tuning method presented in this Section on a step response. The process is

a simple first order system with time constant T and transfer function. The controller is tuned

for a process with time constant, T, in the interval [1, 10]. The sampling time of the controller

is in the interval h = [0.1, 1].fig.2.6 show the step response of a system with constant delay.

Fig.2.6.Step responses of model of a system with constant time-delay

34

The PID controller is optimized for a constant delay in the process. These results, shown in

Figure 2.7. For a small sampling time (left side of the plots) the results are similar as in the

Fig.2.7.PID controller parameters for the first order system with constant delay

35

continuous case. The P and I terms are linear functions of the time constant, T. The D term is

hardly affected by T, but rather by the sampling time. All the terms decrease with increasing

sampling time. The controller becomes more cautious as it tracks the output less frequently

with increasing sampling time. The optimal controller tuning is more conservative with

increasing sampling time as the cost increases also. Some sampling times are relatively better

than others, as 0.5 and 1.0, because they fit better the delay of 1. The best sampling time is

the lowest, as it enables the controller the shortest response time on output changes.

2.12. CHAPTER SUMMARY

In this chapter we detailed the delays in the networked control system. The response of first

order system to a PID controller is observed with constant delay.

Chapter -3

NETWORK SIMULATOR (NS-2)

37

3.1. INTRODUCTION

NS (version 2) is an object-oriented, discrete event driven network simulator developed at

UC Barkley written in C++ and OTcl. NS is primarily useful for simulating local and wide

area networks. NS is an event driven network simulator developed at UC Berkeley that

simulates variety of IP networks. It implements network protocols such as TCP and UPD,

traffic source behavior such as FTP, CBR, router queue management mechanism such as

Drop Tail, RED and routing algorithms such as Dijkstra, and more. NS also implements

multicasting and some of the MAC layer protocols for LAN simulations.

Another major component of NS beside network objects is the event scheduler. An event in

NS is a packet ID that is unique for a packet with scheduled time and the pointer to an object

that handles the event. In NS, an event scheduler keeps track of simulation time and fires all

the events in the event queue scheduled for the current time by invoking appropriate network

components, which usually are the ones who issued the events, and let them do the

appropriate action associated with packet pointed by the event.

3.2. BACKGROUND ON THE NS SIMULATOR

NS simulator is based on two languages: an object oriented simulator, written in C++, and an

OTcl (an object oriented extension of Tcl) interpreter, used to execute user‟s command

scripts.

NS has a rich library of network and protocol objects. There are two class hierarchies: the

complied C++ hierarchy and the interpreted OTcl one. With one to one correspondence

between them.

The compiled C++ hierarchy allows us to achieve efficiency in the simulation and faster

execution times. This is in particular useful for the detailed definition and operation of

protocols.

Then in the OTcl script provided by the user, we can define a particular network topology,

the specific protocols and applications that we wish to simulate and the form of the output

that we wish to obtain from the simulator.

38

3.3. TCL AND OTCL

Tcl (Tool Command Language) is used for millions of people in the world. It is a language

with a very simple sin taxis and it allows a very easy integration with other languages. Tcl

was created by John Ousterhout.The characteristics of these language are:

 It allows a fast development

 It provide a graphique interface

 It is compatible with many platforms

 It is flexible for integration

 It is easy to use

Here are some basic of tcl and Otcl programming.

 Assigning a value to a variable is done through the “set” command; for example:”set

b 0” assigns to „b‟ the value of „0‟. This is equivalent to”b=0”.

 When we wish to use the value assigned to a variable, we should use a $ sign before

the variable. For example, if we want to assign to variable „x‟the value that variable

„a‟ has, then we should write:”set x $a”.

 A mathematical operation is done using the expression command. For example, if

wish to assign to a variable „x‟ the sum of values of some variables „a‟ and „b‟, we

should write “set x [expr $a+$b]”.

 In Tcl the variables are not typed, so a variable can be a string or an integer depending

on the value you assign to it.

 The sign # starts a commented line that is not part of the program, so the tcl

interpreter will not execute this line.

 To create a file, one has to give it a name ,say “filename”, and to assign a pointer to it

that will be used within the tcl program in order to relate to it, say “file1”.this is done

with command: set file1[open filename w].

 The command puts is used for printing an output. each time the “puts” command is

used, a new line is started. To avoid new line, one has to add –nonewline after the

“puts” command.

39

3.4. NS SIMULATOR PRELIMINARIES

3.4.1. Initialization and Termination

An ns simulator starts with the command

Set ns [new simulator]

Which is thus the first line in the tcl script? This line declares a new variable ns using the set

command, you can call this variable as you wich,but in general people declares it as ns

because it is an instance of the simulator class, so an object.teh code [new simulator] is

indeed the instantiation of the class simulator using the reserved word new.

At the end of the ns program we should call the procedure “finish” and specify at what time

the termination should occur. For example,

$ns at 125.0 “finish”

Will be used to call “finish” at time 125 sec. indeed, the at method of the simulator allows us

to schedule events explicitly.

The simulation can begin using the command

$ns run

3.4.2. Definition of a Network of Links and Nodes

The way to define a node is

Set n0 [$ns node]

We created a node that is pointed by the variable n0. When we shall refer to that node in the

script, we shall thus write $n0.

Once we define several nodes, we can define the links that connect them. An example of a

definition of a link is:

$ns duplex-link $n0 $n2 10Mb 10ms Droptail

Which means that nodes $n0 and $n2 are connected using a bi-directional link that has 10ms

of propagation delay and a capacity of 10 Mb/sec for each direction. To define a directional

link instead of a bi-directional one, we should replace “duplex-link” by “simplex-link”.

40

In NS, an output queue of a node is implemented as a part of each link whose input is that

node. the definition of the link then includes the way to handle overflow at that queue. In our

case, if the duffer capacity of the output queue is exceeded then the last packet to arrive is

dropped (Drop Tail option).

3.4.3. Agents and Applications

Having defined the topology (nodes and links) we should now make traffic flow through

them. To that end, we need to define routing (in particular sources, destinations) the agents

(protocols) and applications that use them.

 FTP over TCP:

TCP is a dynamic reliable congestion control protocol. It uses acknowledgements created by

the destination to know whether packets are well received; lost packets are interpreted as

congestion signals. The type of agent appears in the first line:

Set tcp [new Agent/TCP]

This command also gives pointer called “tcp” here to the TCP agent, which is an object in

NS. The command $ns attach-agent $n0 $tcp defines the source node of the TCP

connection.

The command set sinks [new Agent/TCPsink] defines the behavior of the destination node of

TCP and assigns to it a pointer called sink. We note that in TCP the destination node has an

active role in the protocol of generating acknowledgements in order to guarantee that all

packets arrive at the destination.

CBR over UDP:

Next we define the UDP connection and the CBR application over it. A UDP source

(Agent/UDP) and destination (Agent/Null) is defined in a similar way as in case of TCP. For

the CBR application that uses UDP.

3.4.4. Scheduling Events

NS is a discrete event based simulation. The Tcl script defines when event should occur. The

initializing command set ns [new simulator] create an event scheduler, and events are then

scheduled using the format:

41

$ns at <time> <event>

The scheduler is started when running ns, i.e. through the command $ns run

In our simple example, we should schedule the beginning and of the FTP and the CBR

application. This can be done through the following commands:

$ns at 0.1 “$cbr start”

$ns at 1.0 “$ftp start”

$ns at 124.0 “$ftp stop”

$ns at 124.5 “$cbr stop”

Thus the FTP will be active during time 1.0 till 124.0 and the CBR will be active during from

time 0.1 till 124.5(all units are in seconds).

3.4.5. Visualizations: Using Nam

The visualization tool nam will display nodes network shown in fig 3.1. The location of the

nodes could have been chosen at random.

Fig.3.1. NAM graphic interface

42

We note e that the nam display shows us with animation the CBR packets (in figure 3.1 that

from node 1 to5) in red, and TCP packets (flowing from node 0 to 4) in blue.TCP ACKs

(acknowledgements) that go in the reverse directions are also in blue but are much shorter,

since an ACK has a size of 40 bytes whereas the TCP packet is of size 552 bytes. To obtain

the colors, we had to define in the beginning of our script exl.tcl.

$ns color 1 Blue

$ns color 2 Red

Features:

1. Integration of existing topology generators.

2. Localization and visualization of sets of nodes on large network topologies according

to different selection criteria.

3. Instantiation of agents of any type on all the nodes of a given node set.

4. Customization of node parameters

5. Definition of new node types

6. support for simulation of web cache systems

3.4.6. Tracing

Tracing objects:

NS simulation can produce the visualization trace (for NAM) as well as ascii file trace

corresponding to the events registered at the network. When we use tracing, ns inserts four

objects in the link: EnqT, DeqT, RecvT and DrpT as indicated in fig 3.2

n0 n1

Fig.3.2. Tracing objects in a simplex link

RecvT

 Drop

EnqT Queue Delay TTL DeqT

DrpT Agent/Null

43

EnqT registers information concerning a packet that arrives and is queued at the input queue

of the link. If the packet overflows then information concerning the dropped packet are

handled by DrpT, DeqT registers information at the instant the packet is dequed. Finally,

RecvT gives us information about packets that have been received at the output of the link.

Structure of trace files:

When tracing into output ascii file, the trace is organized in 12 fields as follows in fig 3.3.The

meaning of the fields are:

Event Time From

node

To

node

Packet

type

Pkt

size

Flags Fid Src

addr

Dst

addr

Seq

num

Pkt

id

Fig 3.3. Fields appearing in a trace

1. The first is the event type. It is given by one of four possible symbols r, +, - , d which

correspond respectively to receive (at the output of the link), enqueued, dequeued and

dropped.

2. The second field gives the time at which the event occurs.

3. Gives the input node of the link at which the event occurs.

4. Gives the output node of the link at which the event occurs.

5. Gives the packet type (for example, CBR, or TCP).

6. Gives the packet size.

7. Gives the some flags.

8. This is the flow id(fid) of IPv6 that a user can set for each flow at the OTcl script. One

can further use this field for analysis purposes; it is also used when specifying stream

color for the NAM display.

9. This is the source address given in the form of “node. Port”.

10. This is the destination address, given in the same form.

11. This is the network layer protocol‟s packet sequence number.

12. The last field shows the unique id of the packet.

44

3.5. SIMULATION RESULTS

Fig 3.4. window size of TCP with 20% random loss

Fig 3.4. Shows the plot between the window and Time Reno created by the simulation. This

simulation output will give when we introduce the simplest error model. we assume that

packet are dropped on the forward link according independently with some fixed constant

probability. This simulation graph is show the window size of TCP with 20% random loss. In

this case we can observe long timeout, in particularly at time 300.To see the huge impact of

the random loss on TCP performance.

3.6. CHAPTER SUMMARY

In this chapter the basic concepts of network simulator has been studied. The simulation

results have been observed in the presence of a noisy link.

Chapter -4

MODELING THE DIGITAL SERVO MOTOR

46

4.1. INTRODUCTION

In this section we explained the mathematical model of DC servo motor, this modeling will

give the transfer function of the servo. In, this case we are use the system identification

toolbox in MATLAB (R2008) for modeling to estimate the transfer function of the servo

motor.

4.2. MATHEMATICAL MODELING OF DC SERVO MOTOR

Electric motors are the most common actuator used in electromagnetic systems of all types.

They are made in a variety of configurations and sizes for applications ranging from

activating precision movements to powering diesel-electric locomotives. The laboratory

motors are small servomotors, which might be used for positioning control applications in a

variety of automated machines. They are DC (direct current) motors. The armature is driven

by an external DC voltage that produces the motor torque and results in the motor speed. The

armature current produced by the applied voltage interacts with the permanent magnet field

to produce current and motion.

The servo DC motor is basically a torque transducer that converts electric energy into

mechanical energy. The torque developed on the motor shaft is directly proportional to the

field flux and the armature current.

The servo DC motor is used extensively in control systems, for analytical purpose, it is

necessary to establish mathematical models for dc motors for applications. We use the

equivalent circuit diagram in fig. (4.1) to represent a dc motor. The armature is modeled as a

circuit with resistance aR Connected in series with an inductance aL and a voltage source be

representing the back emf in the armature when the rotor rotates. The motors variables and

parameters are defined as follows:

With reference to the circuit diagram of figure (4.1), the control of the DC motor is applied at

the armature terminals in the form of applied voltage)(tea . For linear analysis, we assume

that the torque developed by the motor is proportional to the air-gap flux and the armature

current. Thus

47

)()()(titKtT amm 

…1

Since  is constant, equation (1) is written

)()(tiKtT aim 

Where iK is the torque constant in N-m/A.

Starting with the control input voltage)(tea ,the cause-and-effect equations for the motor

circuit in fig (4.1) are

)(tia = armature current aR = armature resistance

)(teb = back emf)(tTL = load torque

)(tTm = motor torque)(tm = rotor displacement

 iK = torque constant aL = armature inductance

)(tea = applied voltage bK = back – emf constant

  = magnetic flux in the air gap)(tm = rotor angular velocity

 mJ = rotor inertia mB = viscous-friction coefficient

 aR aL

 +

 ai +  Magnetic flux

 ae be m -

 - - mT m mT

Fig.4.1. model of a DC motor

)(
1

)()(
1)(

te
L

ti
L

R
te

Ldt

tdi
b

a

a

a

a

a

a

a 

 ….… (i)

)()(tiKtT aim  ………….(ii)

48

)(
)(

)(tK
dt

td
Kte mb

m
bb 




…………… (iii)

dt

td

J

B
tT

J
tT

Jdt

td m

m

m

L

m

m

m

m)(
)(

1
)(

1)(
2

2 


……… (iv)

Where)(tTL represents a load frictional torque such as coulomb friction.

Equation (i) through (iv) consider that)(tea is the cause of all causes; equation(i) consider

that dttdia /)(is the immediate effect due to the applied voltage)(tea ,then in equation(ii),

)(ti a Causes the torque)(tTm ,equation(iii) defines the back emf, and finally, in

equation(iv),the torque)(tTm causes the angular velocity)(tm and displacement)(tm .

The state variables of the system can be defined as)(ti a ,)(tm , and)(tm . By direct

substitution and eliminating all the nonstate variables from eq(i) through (iv),the state

equations of the dc-motor system are written in vector-matrix form:

)(

0

1
0

)(

0

0

1

010

0

0

)(

)(

)(

tT
J

te

L

J

B

J

K

L

K

L

R

dt

td
dt

td
dt

tdi

L

m

a

a

m

m

m

i

a

b

a

a

m

m

a
































































































………….(vi)

Using equation (vi),The transfer function between the motor displacement and the input

voltage is obtained from the state diagram as

sBRKKsLBJRsJL

K

sE

s

maibammaaa

i

a

m

)()()(

)(
23 




 ………… (vii)

From equation (vii), the significance of the transfer function)(/)(sEs am is that the dc

motor is essential an integrating device between these two variables. This is expected ,since if

)(tea is a constant input, the output motor displacement will be behave as the output of

integrator; that is, will increase linearly with time.

49

   

s
JL

BRKK
s

JL

LBJR
s

JLK

sE

s

ma

maib

ma

amma

mai

a

m








23)(

)(

 ……….. (viii)

sasas

b

sE

s

a

m

1

2

2

3

0

)(

)(






 …………………. (ix)

Where

mai JLKb 0

 ma

maib

JL

BRKK
a


1

 ma

amma

JL

LBJR
a

)(
2




4.3. MODEL ESTIMATION PROCEDURE

The model estimation is generally done by using system identification toolbox in MATLAB.

A system identification tool session represents the total progress of your identification

process, including any data sets and models in the System Identification Tool GUI.

A typical workflow in the System Identification Tool GUI includes the following steps:

1. Import your data into the MATLAB workspace,

2. Start a new session in the System Identification Tool GUI, or open a saved session.

3. Import data into the GUI from the MATLAB workspace.

4. Plot and preprocess data to prepare it for system identification. For example, you can

remove constant offsets or linear trends (for linear models only), filter data, or select

data regions of interest.

5. Specify the data for estimation and validation.

6. Select the model to estimating using the Estimate menu.

7. Validate models.

8. Export models to the MATLAB workspace for further analysis.

50

4.3.1. Starting a New Session in the GUI

To start a new session in the System Identification Tool GUI, type the following command in

the MATLAB Command Window:

Ident

Alternatively, you can start a new session by selecting Start > Toolboxes > System

Identification > System Identification Tool GUI in the MATLAB desktop. This action

opens the System Identification Tool GUI as shown in fig.4.2.

Fig 4.2. System identification GUI

You can also start a new session by closing the current session using File > Close session.

This toolbox prompts you to save your current session if it is not already saved.

4.3.2. Description of the System Identification Tool Window

The following figure describes the different areas in the System Identification Tool GUI. The

layout of the window organizes tasks and information from left to right as shown in fig.4.3.

51

This organization follows a typical workflow, where you start in the top-left corner by

importing data into the System Identification Tool GUI using the Import data menu and end

in the bottom-right corner by plotting the characteristics of your estimated model on model

plots.

The Data Board area, located below the Import data menu in the System Identification Tool

GUI, contains rectangular icons that represent the data you imported into the GUI.

The Model Board, located to the right of the <--Preprocess menu in the System Identification

Tool GUI, contains rectangular icons that represent the models you estimated or imported

into the GUI. You can drag and drop model icons in the Model Board into open dialog boxes

Fig 4.3. System Identification Tool Window

52

4.3.3. Importing Models into the GUI

 In the System Identification Tool GUI, select Import from the Import models list to

open the Import Model Object dialog box.

 In the Enter the name field, type the name of a model object. Press Enter.

 Click Import.

 Click Close to close the Import Model Object dialog box.

4.3.4 Subspace Identification

Subspace identification algorithms are based on concepts from system theory, linear algebra

and statistics. The main conceptual novelty in subspace identification algorithm is the state of

a dynamical system is emphasized in the context of system identification, whereas “classical”

approaches are based on an input-output framework.

The conceptual straightforwardness of subspace identification algorithms translates into user-

friendly software implementations. To give only one example: Since there is no explicit need

for parameterizations in our geometric framework, the user is not confronted with highly

technical and theoretical issues such as canonical parameterizations, and hence, at the level of

possible choices to be offered by the software. Where we describe the graphical user interface

(GUI) software. In this Subsection, we confront the innovations in subspace identification

with the properties of these “classical‟ approaches”.

Parameterizations: When viewed as a data fitting problem, it becomes clear that system

identification algorithms require a certain user-specified parameterization. In subspace

identification algorithms we use full state space models and the only “parameter” is the order

of the system. For classical algorithmic approaches however, there has been an extensive

amount of research to determine so-called canonical models, i.e. models with a minimum

number of parameters.

Convergence: When implemented correctly, subspace identification algorithms are fast,

despite the fact that they are using QR and singular value decompositions. As a matter of fact,

they are faster than the “classical” identification methods, such as Prediction Error Methods,

because they are not iterative. Hence there are also no convergence problems. Moreover,

numerical robustness is guaranteed precisely because of these well-understood algorithms

53

from numerical linear algebra. As a consequence, the user will never be confronted with

hard-to-deal-with-problems such as lack of convergence, slow convergence or numerical

instability.

Model reduction: Since one of our main interests lies in using the models in a computer aided

control system design environment and because, when using linear theories, the complexity

of the controller is proportional to the order of the system, one is always inclined to obtain

models with as low an order as possible. In subspace identification, the reduced model can be

obtained directly, without having to compute first the high order model, and this directly from

input-output data

4.4. MODELING THE DIGITAL SERVO MOTOR

The model estimation of digital servo motor is generally done by using system identification

tool box in MATLAB. In this modeling, we collect the output data (angular position) with

corresponding input data (voltage) by performing experiment on it. Then we use these data

for identifying the system model.

Fig.4.4. System identification tool window after importing the data

54

After collecting the data from DC servo model, we import the data on the system

identification tool GUI, and then perform the process. This process is shown fig.4.4.

Fig .4.5.Time plot of an imported data

The time plot response of an imported data is given by the fig.4.5. Where u1 is the input and

y1 is the output of the servo model and the transient response of the model is given fig.4.6.

Fig.4.6.Transient response of the model

55

The System Identification Toolbox allows you to estimate simple continuous-time process

models characterizing the static gain, dominating time constants, and possible time delays

(dead time). They are variants of the transfer function model structure as shown in fig.4.7. To

estimate models of this kind, choose Estimate > Process Models in the ident window. This

opens a dialog box as shown below.

Fig.4.7. Estimation of process model

In this dialog you enter how many time constants (poles) to estimate and whether to include a

time-delay term and an extra zero in the numerator of the transfer function. You can also

enforce integration for self-regulating processes. Moreover, there is a choice to force all time

constants to be real or to allow under damped modes (complex poles).from above case the

process model is given by the transfer function of the servo motor is third order response.

The measured and simulated model output of the servo is given in fig.4.8. After we perform

the process models we can measure the model output. The fig.4.8 shows where the output

response follow exactly as the input response

56

Fig.4.8. Measured and simulated model output

 The estimated DC servo motor parameters are given by the process models by using those

parameters we find the transfer function. Finally, the transfer function of the DC servo motor

is given by

)6088.3)(9925.148726.5(

2718.53

)(

)(
2 


ssssE

s

a

m

The above transfer function is the closed loop transfer function of the servo system, and then

the open loop response of the servo motor is given by

6922.01855.364814.9

2718.53

)(

)(
23 


ssssE

s

a

m

4.5. CHAPTER SUMMARY

This chapter provides mathematical model of a DC servo motor. A brief explanation of

model estimation procedure is provided here which is a part of system identification. The

main objective is to find the transfer function of DC servo motor using system identification

tool box in MATLAB (version 7.6).

Chapter -5

HARDWARE-IN-LOOP SIMULATION

58

5.1. INTRODUCTION

In this section we detail the hard-ware in loop simulation with PID controller and smith

predictor. Smith predictor structure to compensate process time delay, this structure contains

the process mathematical model in the feedback loop. These all simulation works done

through Local Area Network (LAN).UDP (user datagram protocol) is used to perform this

simulation through LAN and detail explanation of this protocol.

5.2. UDP (USER DATAGRAM PROTOCOL)

The User Datagram Protocol (UDP) is one of the core members of the Internet Protocol Suite,

the set of network protocols used for the Internet. With UDP, computer applications can send

messages, in this case referred to as datagrams, to other hosts on an Internet Protocol (IP)

network without requiring prior communications to set up special transmission channels or

data paths. UDP is sometimes called the Universal Datagram Protocol. The protocol was

designed by David P. Reed in 1980.

The service provided by UDP is an unreliable service that provides no guarantees for delivery

and no protection from duplication (e.g. if this arises due to software errors within an

Intermediate System (IS)). The simplicity of UDP reduces the overhead from using the

protocol and the services may be adequate in many cases.

UDP uses a simple transmission model without implicit hand-shaking dialogues for

guaranteeing reliability, ordering, or data integrity. Thus, UDP provides an unreliable service

and datagrams may arrive out of order, appear duplicated, or go missing without notice. UDP

assumes that error checking and correction is either not necessary or performed in the

application, avoiding the overhead of such processing at the network interface level. Time-

sensitive applications often use UDP because dropping packets is preferable to using delayed

packets. If error correction facilities are needed at the network interface level.

UDP provides a minimal, unreliable, best-effort, message-passing transport to applications

and upper-layer protocols. Compared to other transport protocols, UDP and its UDP-Lite

variant are unique in that they do not establish end-to-end connections between

communicating end systems. UDP communication consequently does not incur connection.

Establishment and teardown overheads and there is minimal associated end system state.

Because of these characteristics, UDP can offer a very efficient communication transport to

http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/David_P._Reed
http://www.erg.abdn.ac.uk/users/gorry/course/intro-pages/es-is.html
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/udp.html#Anchor-UDP-49575
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/udp.html#Anchor-UDP-49575

59

some applications, but has no inherent congestion control or reliability. A second unique

characteristic of UDP is that it provides no inherent On many platforms, applications can

send UDP datagram‟s at the line rate of the link interface, which is often much greater than

the available path capacity, and doing so would contribute to congestion along the path,

applications therefore need to be designed responsibly (RFC 4505).

One increasingly popular use of UDP is as a tunneling protocol, where a tunnel endpoint

encapsulates the packets of another protocol inside UDP datagrams and transmits them to

another tunnel endpoint, which decapsulates the UDP datagrams and forwards the original

packets contained in the payload. Tunnels establish virtual links that appear to directly

connect locations that are distant in the physical Internet topology, and can be used to create

virtual (private) networks. Using UDP as a tunneling protocol is attractive when the payload

protocol is not supported by middleboxes that may exist along the path, because many middle

boxes support UDP transmissions.

UDP does not provide any communications security. Applications that need to protect their

communications against eavesdropping, tampering, or message forgery therefore need to

separately provide security services using additional protocol mechanisms.

UDP's stateless nature is also useful for servers that answer small queries from huge numbers

of clients. Unlike TCP, UDP is compatible with packet broadcast (sending to all on local

network) and multicasting (send to all subscribers).

UDP applications use datagram sockets to establish host-to-host communications. Sockets

bind the application to service ports that function as the endpoints of data transmission. A

port is a software structure that is identified by the port number, a 16 bit integer value,

allowing for port numbers between 0 and 65,535. Port 0 is reserved, but is a permissible

source port value if the sending process does not expect messages in response.

5.2.1. Reliability and congestion control solutions

Lacking reliability, UDP applications must generally be willing to accept some loss, errors or

duplication. Some applications such as TFTP may add rudimentary reliability mechanisms

into the application layer as needed. Most often, UDP applications do not require reliability

mechanisms and may even be hindered by them. Streaming media, real-time multiplayer

games and voice over IP (VoIP) are examples of applications that often use UDP. If an

http://en.wikipedia.org/wiki/Stateless_server
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Broadcasting_%28networks%29
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Datagram_socket
http://en.wikipedia.org/wiki/Port_number
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Voice_over_IP

60

application requires a high degree of reliability, a protocol such as the Transmission Control

Protocol or erasure codes may be used instead.

Lacking any congestion avoidance and control mechanisms, network-based mechanisms are

required to minimize potential congestion collapse effects of uncontrolled, high rate UDP

traffic loads. In other words, since UDP senders cannot detect congestion, network-based

elements such as routers using packet queuing and dropping techniques will often be the only

tool available to slow down excessive UDP traffic. The Datagram Congestion Control

Protocol (DCCP) is being designed as a partial solution to this potential problem by adding

end host TCP-friendly congestion control behavior to high-rate UDP streams such as

streaming media.

5.2.2 Applications

While the total amount of UDP traffic found on a typical network is often in the order of only

a few percent numerous key Internet applications use UDP, including: the Domain Name

System (DNS), where queries must be fast and only consist of a single request followed by a

single reply packet, the Simple Network Management Protocol (SNMP), the Dynamic Host

Configuration Protocol (DHCP) and the Routing Information Protocol (RIP).

Voice and video traffic is generally transmitted using UDP. Real-time video and audio

streaming protocols are designed to handle occasional lost packets, so only slight degradation

in quality occurs rather than large delays if lost packets are retransmitted. Because both TCP

and UDP run over the same network, many businesses are finding that a recent increase in

UDP traffic from these real-time applications is hindering the performance of applications

using TCP, such as point of sale, accounting, and database systems. When TCP detects

packet loss, it will throttle back its data rate usage. Since both real-time and business

applications are important to businesses, developing quality of service solutions is crucial.

5.3. MEASUREMENT OF DELAY IN FEEDBACK LOOP

In this section we are find the process delay in feedback loop, this delay measurement will

perform using two computer PC‟s. One is acts a host pc and anther is acts as remote pc, these

both PC‟s are connected through a Local Area Network (LAN) and communicating each

other as shown fig.5.1.

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Erasure_code
http://en.wikipedia.org/wiki/Datagram_Congestion_Control_Protocol
http://en.wikipedia.org/wiki/Datagram_Congestion_Control_Protocol
http://en.wikipedia.org/wiki/Datagram_Congestion_Control_Protocol
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://en.wikipedia.org/wiki/Routing_Information_Protocol
http://en.wikipedia.org/wiki/Point_of_sale
http://en.wikipedia.org/wiki/Accounting_software
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Quality_of_service

61

 Host PC Remote PC

Fig.5.1. Communicating two PC‟s through LAN

Figure 5.2 shows the transmitting simulink block, this block put in host PC. For transmitting

the signal from one system to another we are using the UDP protocol. These blocks will be

available in MATLAB/simulink.UDP blocks mostly used for transmitting a signal or any data

from one system to another through a LAN. These blocks works based on IP address of the

systems.

Fig 5.2. Transmitting simulink blocks in host PC

The sinusoidal signal of amplitude 1v and frequency of 1 Hz is applied as input, shown in

fig.5.2. The simulink block of pack is used to convert one or more Simulink signals of

varying data types to a single vector of uint8 as required by the Send block. This block is the

exact analog of the Pack block. It receives a vector of uint8 and outputs various Simulink

data types in different sizes. The Pack block is on the sending side and the Unpack block is

on the receiving side in different models.

L

A

N

62

UDP send: The Send block has only one input port, which receives the uint8 vector that is

sent as a UDP packet fig 5.3.

Fig.5.3. UDP send block parameters

Block Parameters:

 IP address to send to: Specify the IP address to send the packet.

 IP port to send to: Specify the port to which to send the packet.

 Use the following local IP port: Set this parameter to -1 (default) to allow the

networking stack to automatically determine the local IP port that is used for sending.

Otherwise, specify a particular port to send a packet from that port.

 Sample time: You can set this parameter to -1 for an inheritable sample time, but it is

recommended that this be set to some specific (large) value to eliminate chances of

dropped packets. This is especially true when you are using a small base sample time.

UDP receive:

The Receive block has two output ports. The first port is the output of the received data as a

vector of uint8 while the second one is a flag indicating whether any new data has been

received. This port outputs a value of 1 for the sample when there is new data and a 0

63

otherwise. The default behavior of the Receive block is to keep the previous output when

there is no new data. You can modify this behavior by using the second port to flag when

there is new data. as shown in fig.5.4.

Fig.5.4. UDP receive block parameters

Block Parameters:

 IP address to receive from: If set to a specific IP address, only packets arriving from

that IP address are received.

 IP port to receive from: Port that the block accepts data from. The other end of the

communication sends data to the port specified here.

 Output port width: Width of the acceptable packets. You can obtain this when

designing the other side (send side) of the communication.

Figure 5.5 shows the receiving signal block, this block put in remote PC. This block will be

receiving whatever signal transmitted by the host PC. In receiving block all the blocks are

explained in UDP sender session except the terminator. The Terminator block can be used to

cap blocks whose output ports are not connected to other blocks. If you run a simulation with

blocks having unconnected output ports, Simulink software issues warning messages. Using

Terminator blocks to cap those blocks avoids warning messages.

64

Fig 5.5. Receiving simulink blocks in remote PC

For measuring the delay in feedback loop, first we put the simulink blocks of sending and

receiving in host PC, remote PC respectively. This environment will form a closed loop.

After that we run these simulink blocks in host PC and remote PC at same time. After the

completion of executing, we observe the presence of delay when comparing the input signal

to the output as shown fig 5.6.

Fig.5.6. Measurement of Delay in Feedback loop

Fig 5.6, we consider the x-axis as time in sec and y-axis as an output (amplitude of the

signal). The output will measure at remote PC as shown in fig.5.1.From the graph the first

signal is the actual signal and the second one is delayed signal. We observe from the graph

65

that delay is occurred compared to the actual signal. This delay will present when the data

packets are loss in between the host PC and remote PC communicating each other. This delay

also called as process delay. From the fig.5.6 the delay is 0.15 sec

Fig.5.7. Simulink model of a system without network

Simulink model of system without network is given by fig.5.7.The PID controller is designed

for the servo plant. The signal generator is connected as input which generates a square wave

signal of amplitude 30v and sampling period of 0.01 sec.The step response of the simulink

model of a system without network is given by in fig.5.8.

Fig.5.8. Step response of simulink model of a system without network

66

Fig.5.9. Response of simulink model of a system without network

The graph shown in above fig. 5.9 represents angular position of servo system. This graph

compares generated actual signal and angular position (output) of the model.

Simulink model of a system with network is given by fig.5.10. The Sending simulink model

with PID controller is put in host PC. The PID controller is connected to UDP send block

through pack. The UDP send block sends the controlled signal to a remote PC. The received

controlled signal is passed through the servo model and its output is feedback to host PC

through UDP send block. This servo model is given in chapter- 4 is identified by using

system identification tool box. The PID controller is present in the host PC which is designed

for the servo model. The signal generator generates a square wave of amplitude 30 v

sampling period of 0.001 sec.

 Thus the total environment looks as if a closed-loop networked control system.

67

Host PC (send)

Remote PC (Receive)

Fig.5.10. simulink model of a system with network

68

Fig.5.11.Response of simulink PID model with network.

The above figure 5.11 shows the instability of the PID controller used in a networked control

system. The same controller response tends to stability while used in without network shows

as fig.5.10. The instability of the controller in a network can be overcome by using a smith

controller.

5.4. SMITH PREDICTOR

O.J Smith developed in 1950 controller structure to compensate process time delay. The

Smith Predictor controller structure contains the process mathematical model in the feedback

loop [4]. The Smith Predictor consists of building a corrector which virtually hides the time

delay in the closed loop response of the process. It is basically a mix of a PID corrector with

an internal model. The aim of the corrector is to provide a virtual system without time delay

to the PID. But the idea can be generalized to all control processes that have long loop delays.

Figure 5.12 shows a block diagram of the scheme, in which a plant lies in a negative-

feedback loop with both feed forward and feedback delays. The Smith Predictor is very

simple. The controller operates on two separate models of the plant, both lying on internal

feedback loops.

69

Smith predictor structure to compensate systems with time delay, which are a feature of many

industrial processes. The Smith predictor structure utilizes a mathematical model of the

process in a minor feedback loop. One of its advantages is that the Smith predictor approach

for compensating a Single Input Single output (SISO) process may be directly extended to the

compensation of a Multiple Input Multiple Output (MIMO) process with the same delay in

each path.

Since the Smith Predictor structure was proposed, many modifications have been proposed to

improve the servo response, the regulator response or both. Modifications were accomplished

to adapt the structure to stable, integrative or unstable systems. Note that there are two

feedback loops. The outer control loop feeds the output back to the input, as usual. However,

this loop alone would not provide satisfactory control, because of the delay; this loop is

feeding back outdated information. Intuitively, for the k seconds during which no fresh

information is available, the system is controlled by the inner loop which contains a predictor

of what the (unobservable) output of the plant G currently is.

Fig.5.12. Block diagram of smith predictor

If this model is accurate, and the plant performance reliable, this loop can provide near

optimal control of the plant. The second model is used to compare the actual performance of

the plant with the expected performance. Because the second model includes an accurate

representation of all plant transport delays, it will delay the output from the controller to

match the delayed feedback from the periphery, and these two temporally matched signals

normally cancel out.

Refere

nce

Signal

+

-

+

-

C(z)

)(ˆ zG

G(z)
1Z

11  Z

70

Host PC (send)

Remote PC (Receive)

Fig.5.13. Simulink model of a system with smith predictor in NCS

71

Fig.5.14.Responce of the smith predictor with network

The graph shown in below fig. 5.14 represents angular position of servo system. This graph

compares generated actual signal and angular position (out signal). This delay is due to the

occurrence of packet loss in UDP protocol. The service provided by UDP is an unreliable

service that provides no guarantees for delivery of information interms of packets. The

different UDP senders and receivers as shown in fig 5.12 may not synchronize themselves

and hence the tilt and delay in the delayed signal. This delay also known as “process delay”.

The instability of the PID controller is stabilized by using the smith predictor as shown in

fig.5.14.

5.5. CHAPTER SUMMARY

This chapter gives details about the hardware-in-loop simulation which is a model experiment

setup done, before performing experiment on DC servo setup. The chapter gives information

on UDP protocol which is useful for communication between two systems. Measurements of

delay in feedback loop, stability of PID controller are discussed here. A brief explanation of

smith predictor which is used to a find the stability of a system and compensation of delay is

also included here.

Chapter -6

EXPERIMENT ON THE DIGITAL SERVO MOTOR

SET-UP WITH ARTIFICIAL DELAY BLOCK

73

6.1. INTRODUCTION

In section we perform some experiments using artificial delays. These delays makes a sense

that there is a network .we observed the instability of the system due to delays and

compensate the effect of delay using smith predictor. This smith predictor gives a

compensated results compaired to the conventional PID controller.

6.1.1. Overview

A servo is a motor that is attached to a position feedback device. Generally there is a circuit

that allows the motor to be commanded to go to a specified "position". A very common use

of servos is in Radio Controlled models. Servos are extremely useful in robotics. The motors

are small and are extremely powerful for their size. A standard servo such as the Futaba S-

148 has 42 z/inches of torque, which is pretty strong for its size. It also draws power

proportional to the mechanical load. A lightly loaded servo, therefore, doesn't consume much

energy. Servos are constructed from three basic pieces, a motor, a feedback device, and a

control board. In R/C servos the feedback device is typically a potentiometer (variable

resistor). The motor, through a series of gears, turns the output shaft and the potentiometer

simultaneously. The potentiometer is fed into the servo control circuit and when the control

circuit detects that the position is correct, it stops the motor.

6.1.2. Working Procedure of Servo

The servo motor has some control circuits and a potentiometer (a variable resistor, aka pot)

that is connected to the output shaft. The potentiometer allows the control circuitry to monitor

the current angle of the servo motor. If the shaft is at the correct angle, then the motor shuts

off. If the circuit finds that the angle is not correct, it will turn the motor the correct direction

until the angle is correct. The output shaft of the servo is capable of travelling somewhere

around 180 degrees. Usually, it‟s somewhere in the 210 degree range, but it varies by

manufacturer. A normal servo is used to control an angular motion of between 0 and 180

degrees. A normal servo is mechanically not capable of turning any farther due to a

mechanical stop built on to the main output gear. The amount of power applied to the motor

is proportional to the distance it needs to travel. So, if the shaft needs to turn a large distance,

the motor will run at full speed. If it needs to turn only a small amount, the motor will run at a

slower speed. This is called proportional control. The control wire is used to communicate the

angle. The angle is determined by the duration of a pulse that is applied to the control wire.

74

6.2. DESCRIPTION OF SERVO SETUP

The system comprises three units which allow the investigation of the fundamentals of

analogue and digital servo control:

 A Mechanical unit

 An Analogue Unit

 A Digital unit

The mechanical unit carries a power amplifier, dc motor and tachogenerator, absolute and

incremental digital encoders input and output analogue potentiometers, a digital speed and

voltage display and a sine, square and triangle waveform generator for testing purposes.

The Analogue Unit carries a four input error amplifier, a controller with independent P, I and

D channels and facilities for single amplifier compensation circuits.

Fig. 6.1. Digital servo set-up

75

The Digital Unit carries ADC and DAC for signal conversion, switching and multiplexing

circuits, encoder output and display and liner and PWM motor drive. Access is given to the

input and output potentiometers enabling a wide range of linear and digital systems to be

investigating.

Discovery software is provided for use with the Digital Unit. Interconnection between units is

by ribbon cable and system interconnection is by plugged patch leads on the analogue or

digital units, which carry clear graphic layouts.

A power supply is included which provides all of the necessary dc voltage supplies required

by the system. The system is flexible. For analogue control teaching only the Mechanical and

Analogue units are required. For Digital control teaching only the Mechanical and Digital

units are required. These options are available separately. In this project I required only

mechanical Unit and Digital unit because these two units are only used in Digital servo

experiment.

6.3. MECHANICAL UNIT OF SERVO SET-UP

The mechanical unit consists of an open-board format assembly carrying the mechanics of

the system plus its supporting electronics as shown in fig.6.2. The electromechanical

components comprise dc motor, an analogue tachogenerator, analogue input and output

potentiometers, absolute and incremental digital encoders and magnetic brake. The

supporting electronics comprises: the power amplification; a low frequency sine, square and

triangle waveform generator for testing purposes; encoder reading circuitry and LCD speed

display and DVM. The power supply for the fundamentals trainer to this unit.

76

Fig.6.2. Servo Mechanical Unit 33-100

Specification:

 Open-board format unit carrying servo, system mechanical assembly and supporting

electronics.

 Permanent magnet motor with armature current available.

 Tachogenerator, 2.5v/1000 rpm.

 Magnetic eddy current, brake for load. Input and output shaft potentiometers.

 Switchable, 3-figure, 7-segment LCD display of speed or voltage.

 Bi-phase incremental position or speed encoder on motor shaft.

 6-bit absolute (Gray code) encoder on output shaft.

 Power amplifier, continuous or PWM input.

 Sine, square and triangle waveform generator, 0.1 to 10Hz.internal faults switched

from other units.

 Power requirements: external  15V at 1.5A &_5V at 0.5A. Feedback 01-100 is

recommended.

 Dimensions 150mm(H)295mm(W) 220mm(D)

Angular

position

Optical

decoder

Optical

encoder

Motor

Reference input

77

6.4. DIGITAL UNIT OF SERVO SET-UP

The Digital unit acts as the interface between the Mechanical Unit and a PC, or compatible

microcomputer as shown if fig. 6.3.

Fig.6.3. Digital Unit 33-120

The Digital Unit contains ADC and DAC circuits for signal conversion which, together with

linear or digital PWM motor drive, input and output potentiometers or digital encoders enable

a wide range of liner and digital systems to be realized. Computer controlled switches are

provided for signal multiplexing and circuit configuration of the patching. Connection to the

mechanical Unit is by way of a ribbon cable which also supplies power to the unit and

connection to the computer is via a USB cable to the PC USB port.

Specification:

 Provide access to host PC, or compatible microcomputer.

 8-way input and output busses.

 Additional control lines available.

78

 ADC and DAC for liner system operation.

 Liner or PWM motor available.

 LED display of incremental and absolute encoders.

 Manual patching with computer controlled configuration and multiplexing.

 Switched faults distributed through system.

6.5. FEATURES

 Open and closed loop speed and position control.

 Both analogue and digital control techniques

 Discovery software for computer assisted practical assignments.

 Inbuilt PC based instrumentation.

 On board sine, square and triangle wave form generator.

 Independent single, two term, or full PID control.

 Absolute position and incremental speed and position encoders.

 Continuous analogue position and velocity feedback signals.

 Linear or PWM motor drive.

 Switched faults throughout the system.

 LCD speed and digital voltmeters.

 Connection to a PC via USB.

 Includes power supply.

6.6. PID CONTROL OF DC SERVO MOTOR

Experimental set-up for PID controller is shown in fig.6.4.The PID controller is designed for

our desired DC servo motor transfer function derived from system identification tool box

more detail description given at chapter-4.The response of the PID controller for our plant is

found to be stable.

Fig.6.4. Experimental set-up for PID controller

PID

controller

DC

Servo motor

Angular

position

Signal

Generator

DAC ADC

79

Figure 6.5 represents the simulink model of a general PID controller. Input to the model is a

square wave of amplitude 50v and frequency of 0.1 Hz with sampling time of 0.001sec.

Fig.6.5.Simulink model of a general PID controller

Fig 6.6. Response of a general PID controller

Fig.6.6. shows the response of a general PID controller. First one is the input to the model,

second one is the actual output signal, third one is the error output, which is the input to the

80

PID controller and the final one is the output of the PID controller which is the input to the

Digital-to-Analog converter (DAC) as shown in fig.6.5.

6.7. PID CONTROL OF DC SERVO MOTOR WITH ARTIFICIAL DELAY

Fig.6.7. simulink model of PID controller with network

 Fig 6.8. Response of simulink model of PID controller with network

81

The figure 6.8. Shows an unstable response of PID controller with the presence of delay in

the feedback loop. First one is the input to the model, second one is the actual output signal

which shows the unstable response, third one is the error output, which is the input to the PID

controller and the final one is the output of the PID controller which is the input to the

Digital-to-Analog converter (DAC) as shown in fig.6.8.this instability problem can be

overcome by smith predictor. The smith predictor gives the dual performance i.e, .stability of

a system and delay compensation in the feedback loop.

Experimental set-up for DC servo motor with smith predictor is shown in fig.6.9.this

eliminates the instability found due to PID controller working along network.

Fig.6.9. Experimental set-up for DC servo motor with smith predictor

Fig 6.10.shows the simulink model of a servo system with smith predictor. If this model is

accurate, and the plant performance is reliable, this loop can provide near optimal control of

Fig 6.10.simulink model of servo system with smith predictor

Smith predictor
Delay

Delay

PID

controller

DAC ADC Servo

motor

Servo

Plant

Reference

82

the plant. The second model is used to compare the actual performance of the plant with the

expected performance. Because the second model includes an accurate representation of all

plant transport delays, it will delay the output from the controller to match the delayed

feedback from the periphery, and these two temporally matched signals normally cancel out.

Fig.6.11. Response of simulink model of servo system without smith predictor

Fig 6.12. Response of simulink model of servo system with smith predictor

83

Fig 6.12 shows the response of simulink model of servo system with smith predictor First one

is the input to the model, second one is the actual output signal which shows the stable

response, third one is the error output, which is the input to the PID controller and the final

one is the output of the PID controller which is the input to the Digital-to-Analog converter

(DAC) as shown in fig.6.12. On comparing the figures 6.11 and 6.12 we can say that smith

predictor gives stable response with compensated delay over the general PID controller in the

presence of delay.

6.8. CHAPTER SUMMARY

This chapter deals with the details of the experiment on the digital servo motor set-up with

artificial delay block. A brief description of servo set-up is included here. The main objective

of this chapter is to compensate the delay in the servo feedback loop by using smith predictor

compensation scheme and the stability of servo system is observed.

Chapter -7

CONCLUSIONS AND FUTURE WORK

85

7.1. CONCLUSIONS

This thesis presents study on Networked Control System, i.e., when control loops are closed

over a communication network. As observed, communication network introduces time delays

in the control loop. These delays may have effect on system stability and performance.

The objective of the present work is to study delay compensation schemes in the feedback

loop. Smith predictor is a well known compensation technique. Using this system stability

and performance may be improved compared to without compensation of delays.

The above said servo system is compatible with only MATLAB (version 6.5).and it is

incompatible with higher versions of MATLAB. Due to this incompatibility the advance

features available in higher version of MATLAB for our experiment cannot be implemented.

This is the major disadvantage of the FEEDBACK SERVO.

7.2. FUTURE WORK

The Digital servo system in which we worked is only compatible with MATLAB (version

6.5).This is the major disadvantage of this system we found. Due to this incompatibility

problem we are not able to perform some advance experiments, that are available in higher

order version of MATLAB.The adaptor which creates communication between our target PC

and servo system is Advantech PCI1751.It can be controlled by using real time windows

target of MATLAB.The real time windows targets it creates Real-Time communication

between PC and connected hardware. The main idea is to control PCI1751 adaptor.

In delay compensation techniques the smith predictor can be replaced by a control predictive

generator which will be automatically compensate the delay. This will be more precisely

Compensate delay then the smith predictor.

We are using the Local Area Network (LAN) for our project which not reliable for control

purpose due to delay and packet losses. This can be eliminated by using a dedicated control

network Control Area Network (CAN).

86

REFERENCES

1. G. P. Liu and D. Rees and S. C. Chai “Design and Practical Implementation of

Networked Predictive Control Systems” 0-7803-8812-7/05/$20.00 02005 IEEE.

2. W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of Networked Control

Systems,” in IEEE Control Systems Magazine, vol. 21, pp. 84–99, February 2001.

3. Dimitrios Hristu-Varsakelis and William S. Levine, editors. Handbook of Net-

worked and Embedded Control Systems. BirkhÄauser, 2005.

4. Jasmin Velagic “Design of Smith-like Predictive Controller with Communication

Delay Adaptation” proceedings of world academy of science, engineering and

technology volume 30 July 2008 ISSN 1307-6884.

5. Won-jong Kim,Kun Ji and Ajith Ambike “Real-Time Operating Environment for

Networked Control Systems”. IEEE transactions on automation science and

engineering,vol.3,NO.3,JULY 2006.

6. Ramprasad Potluri, Kushagra Nagaich, Ramandeep Singh “Networked control

systems and a mixed open-loop/closed-loop control”. Proceedings of the international

conference on Advances in Control and Optimization.

7 G.P. Liu
ab

*, S.C. Chai
a
, J.X. Mu

c
 and D. Rees

a
 “Networked predictive control of

systems with random delay in signal transmission channels”. International Journal of

Systems Science Vol. 39, No. 11, November 2008, 1055–1064.

8 Lasse Eriksson,Heikki N.Kovio “Tuning of Discrete- Time PID controllers in Sensor

Network based control Systems.

9 Senchun Chai, Guo-Ping Liu, David Rees, and Yuanqing Xia “Design and Practical

Implementation of Internet-Based Predictive Control of a Servo System” IEEE

transactions on control systems technology, vol. 16, no. 1, January 2008.

87

10 Pauline Sourdilleand Aidan O‟Dwyer “An Outline And Further Development Of

Smith Predictor Based Methods for Compensation Of Processes With Time Delay”

ISSC 2003, Limerick. July 1-2.

11 Johan Nilsson “Real-Time Control Systems with Delays” Ph.D. thesis, Department

of Automatic Control, Lund Institute of Technology.

12 Feng-Li Lian, J.R. Moyne and D.M. Tilbury. Performance evaluation of control

networks: Ethernet, ControlNet, and DeviceNet. IEEE Control Systems Maga-

zine, 21:66{83, February 2001.

13 J. Nilsson. Real-Time Control Systems with Delays. PhD thesis, Department of

Automatic Control, Lund Institute of Technology, 1998.

14 G.Walsh, H. Ye, and L. Bushnell. Stability analysis of networked control systems.

In Proc. American Control Conference, pages 2876{2880, June 1999.

15 B. Lincoln, Dynamic programming and Time-Varying Delay Systems, Ph.D.

dissertation, Lund Institute of Technology, 2003.

16 B. Lincoln, B. Bernhardsson, “Optimal control over networks with long random

delays”, in Proc. International Symposium on Mathematical Theory of Networks and

Systems, Jan.2000.

17 X. Nian, “Stability of Linear Systems with Time-Varying Delays: An Lyapunov

Functional Approach”, in Proc. American Control Conference, Denver, USA, Jun. 4-

6, 2003.

18 J. Nilsson, Real-time control systems with delays, Ph.D. dissertation, Lund Institute

of Technology, 1998.

19 Y.-J. Pan, H. J. Marquez, T. Chen, “Stabilization of remote control systems with

unknown time varying delays by LMI techniques”, International Journal of Control,

Vol. 79, No. 7, pp. 752-763, Jul. 2006.

88

20 J. Pulkkinen, H. N. Koivo, K. Mäkelä, “Tuning of a robust PID controller –

application to heating process in extruder”, in Proc. Second IEEE Conference on

Control Applications, Vancouver, Canada, Sep. 13-16, 1993.

21 B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, S. Sastry, “An LQG Optimal

Linear Controller for Control Systems with Packet Losses”, in Proc. 44th IEEE

Conference on Decision and Control, and the European Control Conference 2005,

Seville, Spain, Dec. 2005.

22 Y. Tipsuwan, M.-Y. Chow, “On the Gain Scheduling for Networked PI Controller

Over IP Network”, IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 3, Sep.

2004.

23 A. Willig, K. Matheus, A. Wolisz, “Wireless Technology in Industrial Networks”,

Proc. IEEE, Vol. 93, No. 6, Jun. 2005.

24 W. Zhang, Stability Analysis of Networked Control Systems, Ph.D. thesis,

Department of Electrical Engineering and Computer Science, Case Western

Reserve University, Aug.2001.

25 K.-E. Årzén, A Simple Event-Based PID Controller, in Preprints 14th World

Congress of IFAC, Beijing, China, 1999.

26 S. Branicky, S. M. Phillips, W. Zhang, “Stability of Networked Control Systems:

 Explicit Analysis of Delay”, In Proc. 2000 American Control Conference, Chicago

. USA, pp 2352-2357, Jun. 2000

27. Y. Cao, Y.-X. Sun, C. Cheng, “Delay-Dependent Robust Stabilization of Uncertain

Systems with Multiple State Delays”, IEEE Transactions on Automatic Control, Vol.

43, No. 11, pp. 1608-1612, Nov. 1998.

28. Fridman, U. Shaked, “Delay-dependent stability and H∞ control: constant and time

varying delays”, International Journal of Control, Vol. 76, No. 1, pp. 48-60, 2003.

89

29. K. Gu, V. L. Kharitonov, J. Chen, Stability of Time-Delay Systems, Birkhäuser, 2003.

30. X. Jiang, Q.-L. Han, X. Yu, “Stability Criteria for Linear Discrete-Time Systems with

Interval Like Time-Varying Delay”, in Proc. 2005 American Control

Conference,Portland, USA, Jun. 8-10, 2005

31. C.-Y. Kao, B. Lincoln, “Simple stability criteria for systems with time-varying

delays”, Automatica, Vol. 40, pp. 1429-1434, 2004.

32. X. Li, C. E. de Souza, “Criteria for Robust Stability and Stabilization of Uncertain

Linear Systems with State Delay”, Automatica, Vol. 33, No. 9, pp. 1657-1662, 1997.

33. X. Nian, “Stability of Linear Systems with Time-Varying Delays: An Lyapunov

Functional Approach”, in Proc. American Control Conference, Denver, USA, Jun. 4-

6, 2003.

34. Y.-J. Pan, H. J. Marquez, T. Chen, “Stabilization of remote control systems with

unknown time varying delays by LMI techniques”, International Journal of Control,

Vol. 79, No. 7, pp. 752-763, Jul. 2006.

35. M. Wu, Y. He, J.-H. She, G.-P. Liu, “Delay-dependent criteria for robust stability of

time varying delay systems”, Automatica, Vol. 40, pp. 1435-1439, 2004.

36. G.C. Walsh, H. Ye, L.G. Bushnell, “Stability Analysis of Networked Control

Systems,” IEEE Transactions on Control Systems technology, Vol. 10, No. 3,

May 2002.

37. R. C. Luo and T. M. Chen, “Development of a multibehaviour-based mobile robot for

remote supervisory control through the Internet”, IEEE Transaction on Mechatronics,

vol. 5, 2000, pp.376-385.

38. Yang, S. H., X. Chen, D. W. Edwards and J. L. Alty, “Design issues and

implementation of Internet based process control”, Control Engineering Practices, vol.

11, no.6, pp. 709-720, 2003.

90

39. Zhivoglyadov, P. V. and R. H. Middleton, “Networked control design for linear

systems”, Automatica, vol. 39, no. 4, pp.743-750, 2003.

40. G. P. Liu, D. Rees, S. C. Chai and X. Y. Nie, “Design, simulation and implementation

of networked predictive control systems”, Measurement and Control, vol. 38, pp.17-

21, 2005.

41. G. P. Liu, J. X. Mu and D Rees, “Networked predictive control of system with

random communication delay”, UKACC2004 International Conference on Control,

Bath, UK, 2004.

42. Y. Tipsuwan, M.-Y. Chow, “Control methodologies in networked control systems”,

Control Engineering Practice, Vol. 11, pp. 1099-1111, 2003.

43. K. Fall and K. Varadhan, The ns Manual (formerly ns Notes and Documentation,

December 2003. http://www.isi.edu/nsnam/ns/doc/ns doc.pdf

44. M. S. Branicky, V. Liberatore, and S. M. Phillips, “Networked Control System

Co-Simulation for Co-Design,” in Proc. American Control Conference, Denver,

USA, vol. 4, pp. 3341–3346, June 2003.

45. V. Liberatore, “Network Control Systems.” World Wide Web, December 2002.

ManualforAgent/Plantextensiontons-2, http://vorlon.case.edu/~vxl11/NetBots/ncs.pdf

46. F. Halsall, Data communications, computer networks and open systems, 3rd ed.,

Addison-Wesley Publishing Company, 1992.

47. G.C. Walsh, H. Ye, L.G. Bushnell, “Stability Analysis of Networked Control

Systems,” IEEE Transactions on Control Systems technology, Vol. 10, No. 3,May

2002.

48. Anton Cervin, Martin Ohlin, Dan Henriksson “Simulation of Networked Control

Systems using True time”.

http://www.isi.edu/nsnam/ns/doc/ns%20doc.pdf
http://vorlon.case.edu/~vxl11/NetBots/ncs.pdf

91

49. Yuanqing Xia, J. Chen, G. P. Liu and D. Rees “Stability Analysis of Networked

Predictive Control Systems with Random Network Delay. Proceedings of the 2007

IEEE International Conference on Networking, Sensing and Control, London, UK,

15-17 April 2007.

50. Vatanskib N., Georges J.-P.a, Aubrun Ca., Rondeaua E. and S.-L. Jämsä-Jounelab

“Control Compensation Based on Upper bound delay in Networked Control

Systems”.

51. Katsuhiko Ogata “Discrete-Time control systems”, second edition, Prentice hall

international edition ISBN 0-13-328642-8.

52. Behrouz A.Forouzan “Data communication and Networking”, Second edition, Tata

McGraw-Hill edition,ISBN 0-07-043563-4.

