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Abstract

With the increasing popularity of technologies such as Internet streaming video and

video conferencing, video compression has became an essential component of broadcast

and entertainment media. Motion Estimation (ME) and compensation techniques, which

can eliminate temporal redundancy between adjacent frames effectively, have been widely

applied to popular video compression coding standards such as MPEG-2, MPEG-4. Tra-

ditional fast block matching algorithms are easily traped into the local minima resulting

in degradation on video quality to some extent after decoding. Since Evolutionary Com-

puting Techniques are suitable for achieving global optimal solution, these techniques are

introduced to do Motion Estimation procedure in this thesis. Zero Motion prejudgement

is also included which aims at finding static macroblocks (MB) which do not need to per-

form remaining search thus reduces the computational cost. Simulation results obtained

show that the proposed Clonal Particle Swarm Optimization algorithm given a very good

improvement in reducing the computations overhead and achieves very goood Peak Signal

to Noise Ratio(PSNR) values, which makes the techniques more efficient than the con-

ventional searching algorithms. To reduce the Motion vector overhead in Bidirectional

frame prediction, in this thesis novel Bidirectional Motion Estimation algorithm based

on PSO is also proposed and results shows that the proposed method can significantly

reduces the computational complexity involved in the Bidirectional frame prediction and

also least prediction error in all video sequences.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Digital video coding has gradually increased in importance since the 90s when MPEG-

1 first emerged. It has had large impact on video delivery, storage and presentation.

Compared to analog video, video coding achieves higher data compression rates without

significant loss of subjective picture quality [1]. This eliminates the need of high band-

width as required in analog video delivery. With this important characteristic, many

application areas have emerged. For example, set-top box video playback using compact

disk, video conferencing over IP networks, P2P video delivery, mobile TV broadcasting,

etc. The specialized nature of video applications has led to the development of video

processing systems having different size, quality, performance, power consumption and

cost.

Digitization of video scenes was an inevitable step since it has many advantages over

analog video. Digital video is virtually immune to noise, easier to transmit and is able to

provide a more interactive interface to users. Furthermore, the amount of video content,

e.g. TV content, can be made larger through improved video compression because the

bandwidth required for analog delivery can be used for more channels in a digital video

delivery system. With todays sophisticated video compression systems, end users can

also stream video, edit video and share video with friends via the internet or IP networks.

In contrast, analog signals are difficult to manipulate and transmit. Generally speaking,

video compression is a technology for transforming video signals that aims to retain origi-

nal quality under a number of constraints, e.g. storage constraint, time delay constraint or

computation power constraint. It takes advantage of data redundancy between successive

frames to reduce the storage requirement by applying computational resources [2]. The
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CHAPTER 1. INTRODUCTION

design of data compression systems normally involves a tradeoff between quality, speed,

resource utilization and power consumption.

In a video scene, data redundancy arises from spatial, temporal and statistical correla-

tion between frames. These correlations are processed separately because of differences in

their characteristics. Hybrid video coding architectures have been employed since the first

generation of video coding standards, i.e. MPEG. MPEG consists of three main parts to

reduce data redundancy from the three sources described above. Motion estimation and

compensation are used to reduce temporal redundancy between successive frames in the

time domain. Transform coding, also commonly used in image compression, is employed

to reduce spatial dependency within a frame in the spatial domain. Entropy coding is

used to reduce statistical redun- dancy over the residue and compression data. This is a

lossless compression technique commonly used in file compression.

The demand for communications with moving video picture is rapidly increasing.

Video is required in many remote video conferencing systems, and it is expected that

in near future cellular telephone systems will send and receive real-time video. A typi-

cal system, which relays video over a low bandwidth transmission channel, is shown in

Figure 1.1. The multimedia terminals could be, for example, cellular phones or handheld

computers. Both terminals contain compatible codecs: a video encoder and decoder pair,

whose purpose is to compress the video stream to be transmitted over a slow link, such as

radio waves or Internet. Often a bidirectional connection is desired, where both terminals

transmit and receive video, and thus they both need an encoder and a decoder running

in real-time.

A major problem in a video is the high requirement for bandwidth. A typical system

needs to send dozens of individual frames per second to create an illusion of a moving pic-

ture. For this reason, several standards for compression of the video have been developed.

Each individual frame is coded so that redundancy is removed. Furthermore, between

consecutive frames, a great deal of redundancy is removed with a motion compensation

system.

1.2 Video Standards

Both terminals in the Figure 1.1 need to use a video decoder that is capable of decoding the

video stream produced by the other terminal. Since there are endless ways to compress

and encode data, and many terminal vendors which each may have an unique idea of

data compression, common standards are needed, that rigidly define how the video is

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Wireless video conferencing application.

coded in the transmission channel. There are mainly two standard series in common use,

both having several versions. International Telecommunications Union (ITU) started

developing Recommendation H.261 in 1984, and the effort was finished in 1990 when it

was approved. The standard is aimed for video conferencing and video phone services

over the integrated service digital network (ISDN) with bit rate a multiple of 64 kilobits

per second.

MPEG-1 is a video compression standard developed in joint operation by International

Standards Organization (ISO) and International Electro-Technical Commission (IEC).

The system development was started in 1988 and finished in 1990, and it was accepted

as standard in 1992. MPEG-1 can be used at higher bit rates than H.261, at about

1.5 megabits per second, which is suitable for storing the compressed video stream on

compact disks or for using with interactive multimedia systems [3]. The standard covers

also audio associated with a video.

In 1996 a revised version of the standard, Recommendation H.263, was finalized which

adopts some new techniques for compression, such as half pixel and optionally smaller

block size for motion compensation. As a result it has better video quality than H.261.

Recommendation H.261 divides each frame into 16× 16 picture element (pixel) blocks for

backward motion compensation, and H.263 can also take advantage of 8× 8 pixel blocks.

A new ITU standard in development is called H.26L, and it allows motion compensation

3



CHAPTER 1. INTRODUCTION

with greater variation in block sizes.

For motion estimation, MPEG-1 uses the same block size as H.261, 16 × 16 pixels,

but in addition to backward compensation, MPEG can also apply bidirectional motion

compensation. A revised standard, MPEG-2, was approved in 1994. Its target is at higher

bit rates than MPEG-1, from 2 to 30 megabits per second, where applications may be

digital television or video services through a fast computer network. The latest ISO/IEC

video coding standard is MPEG-4, which was approved in the beginning of 1999. It is

targeted at very low bit rates (832 kilobits per second) suitable for e.g. mobile video

phones. MPEG-4 can be also used with higher bit rates, up to 4 megabits per second.

1.3 Motivation

Video compression is the field in electrical engineering and computer science that deals

with representation of video data, for storage and/or transmission, for both analog and

digital video. Video coding is often considered to be only for natural video, it can also be

applied to synthetic (computer generated) video, i.e. graphics. Many representations take

advantage of features of the Human Visual System to achieve an efficient representation.

The biggest challenge is to reduce the size of the video data using video compression.

For this reason the terms “video coding” and “video compression” are often used in-

terchangeably by those who don’t know the difference. The search for efficient video

compression techniques dominated much of the research activity for video coding since

the early 1980s, the first major milestone was H.261, from which JPEG adopted the idea

of using the DCT; since then many other advancements have been made to algorithms

such as motion estimation. Since approximately 2000 the focus has been more on Meta

data and video search, resulting in MPEG-7 and MPEG-21.

Video Compression

The main problem with the uncompressed (raw) video is it contains immense amount of

data and hence communication and storage capabilities are limited and are expensive.

For example, if we consider a HDTV video signal with 720 × 1280 pixels/frame with

progressive scanning at 60 frames/sec, then the transmitter must be able to send

(

720 × 1280pixels

frame

)(

60frames

sec

)(

3colours

pixel

)(

8bits

colour

)

= 1.3Gb/s (1.1)
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But the available HDTV channel bandwidth is around 20 Mb/s [2], i.e., it requires com-

pression by a factor of 70. A Digital Versatile Disk (DVD) can only store a few seconds

of raw video at television-quality resolution and frame rate and so DVD-Video storage

would not be practical without video and audio compression.

Achieving Compression

Video compression can be achieved by exploiting the similarities or redundancies and

irrelevancy that exists in a typical video signal. The redundancy in a video signal is based

on two principles. The first is the spatial redundancy that exists in each frame. The second

is the fact that most of the time, a video frame is very similar to its immediate neighbors.

This is called temporal redundancy. This temoparal redundancy can be eliminared by

using motion estimation and compensation procedure. Another goal of video compression

is to reduce the irrelevancy in the video signal, that is to only code video features that

are perceptually important and not to waste valuable bits on information that is not

perceptually important or irrelevant. Identifying and reducing the redundancy in a video

signal is relatively straightforward, however identifying what is perceptually relevant and

what is not is very difficult and therefore irrelevancy is difficult to exploit. This can be

done by using appropriate models of the Human Vision System.

Successive video frames may contain the same objects (still or moving). Motion esti-

mation examines the movement of objects in an image sequence to try to obtain vectors

representing the estimated motion. Motion compensation uses the knowledge of object

motion so obtained to achieve data compression. In inter frame coding motion estimation

and compensation have become powerful techniques to eliminate the temporal redun-

dancy due to high correlation between consecutive frames. In real video scenes, motion

can be a complex combination of translation and rotation. Such motion is difficult to

estimate and may require large amounts of processing. However, translational motion is

easily estimated and has been used successfully for motion compensated coding.

Different search algorithms are used to estimate motion between frames. When motion

estimation is performed by an MPEG-2 encoder it groups pixels into 16×16 macro blocks.

MPEG-4 AVC encoders can divide these macro blocks into partitions as small as 4 × 4,

and even of variable size within the same Macro block. Partitions allow for more accuracy

in motion estimation because areas with high motion can be isolated from those with less

movement.

5
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1.4 Thesis Organization

This thesis provides a fast motion estimation algorithms for video compression which

are based on different evolutionary computing techniques. simulation results given a

very good improvement in reducing the computations overhead and achieves very goood

Peak Signal to Noise Ratio (PSNR) values which makes the techniques more efficient

than the conventional searching algorithms. Thesis can be organized in the following

manner, Chapter 2 focuses on the fundamental concepts of motion estimation and the

existing conventional motion estimation algorithms. Chapter 3 describes the fast motion

estimation algorithm based on the genetic algorithm and Chapter 4 describes the praposed

Fast motion estimation algorithm based on Clonal Particle Swarm Optimization. Chpater

5 describes the praposed novel bidirectional motion estimation based on particle swarm

optimization and got a good results when compared to existing techniques. chapter 6

gives the conclusions and future scope for work.

6



CHAPTER 2

FUNDAMENTAL CONCEPTS OF MOTION ESTIMATION

2.1 Motion Estimation

A video sequence can be considered to be a discretized three-dimensional projection of

the real four-dimensional continuous space-time. The objects in the real world may move,

rotate, or deform. The movements can not be observed directly, but instead the light

reflected from the object surfaces and projected onto an image. The light source can be

moving, and the reflected light varies depending on the angle between a surface and a

light source. There may be objects occluding the light rays and casting shadows. The

objects may be transparent (so that several independent motions could be observed at

the same location of an image) or there might be fog, rain or snow blurring the observed

image. The discretization causes noise into the video sequence, from which the video

encoder makes its motion estimations. There may also be noises in the image capture

device (such as a video camera) or in the electrical transmission lines. A perfect motion

model would take all the factors into account and find the motion that has the maximum

likelihood from the observed video sequence.

Changes between frames are mainly due to the movement of objects. Using a model

of the motion of objects between frames, the encoder estimates the motion that occurred

between the reference frame and the current frame. This process is called motion esti-

mation (ME) [4]. The encoder then uses this motion model and information to move the

contents of the reference frame to provide a better prediction of the current frame. This

process is known as motion compensation (MC), and the prediction so produced is called

the motion-compensated prediction (MCP) or the displaced-frame (DF) [5]. In this case,

7



CHAPTER 2. FUNDAMENTAL CONCEPTS OF MOTION ESTIMATION

the coded prediction error signal is called the displaced-frame difference (DFD).A block

diagram of a motion-compensated coding system is illustrated in Figure 2.1. This is the

most commonly used interframe coding method.

Figure 2.1: Motion Compensated Video Coding

The reference frame employed for ME can occur temporally before or after the current

frame. The two cases are known as forward prediction and backward prediction, respec-

tively. In bidirectional prediction, however, two reference frames (one each for forward

and backward prediction) are employed and the two predictions are interpolated (the re-

sulting predicted frame is called B-frame). The most commonly used ME method is the

block-matching motion estimation (BMME) algorithm.

2.2 Block Matching Algorithm

Figure 2.2 illustrates a process of block-matching algorithm. In a typical Block Matching

Algorithm, each frame is divided into blocks, each of which consists of luminance and

chrominance blocks. Usually, for coding efficiency, motion estimation is performed only

on the luminance block. Each luminance block in the present frame is matched against

candidate blocks in a search area on the reference frame. These candidate blocks are

just the displaced versions of original block. The best candidate block is found and its

8



CHAPTER 2. FUNDAMENTAL CONCEPTS OF MOTION ESTIMATION

displacement (motion vector) is recorded. In a typical interframe coder, the input frame

is subtracted from the prediction of the reference frame. Consequently the motion vector

and the resulting error can be transmitted instead of the original luminance block; thus

interframe redundancy is removed and data compression is achieved. At receiver end,

the decoder builds the frame difference signal from the received data and adds it to the

reconstructed reference frames.

Figure 2.2: Block-matching Motion estimation

This algorithm is based on a translational model of the motion of objects between

frames. It also assumes that all pels within a block undergo the same translational

movement.There are many other ME methods, but BMME is normally preferred due to

its simplicity and good compromise between prediction quality and motion overhead.This

assumption is not strictly valid, since we capture 3-D scenes through the camera and

objects do have more degrees of freedom than just the translational one. However, the

assumptions are still reasonable, considering the practical movements of the objects over

one frame and this makes our computations much simpler.

There are many other approaches to motion estimation, some using the frequency

or wavelet domains, and designers have considered scope to invent new methods since

this process does not need to be specified in coding standards. The standards need only

specify how the motion vectors should be interpreted by the decoder . Block Matching

(BM) is the most common method of motion estimation. Typically each macro block (

16× 16 pels) in the new frame is compared with shifted regions of the same size from the

previous decoded frame, and the shift which results in the minimum error is selected as

the best motion vector for that macro block. The motion compensated prediction frame

is then formed from all the shifted regions from the previous decoded frame [5].

9
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Backward Motion Estimation

The motion estimation generally considered as backward motion estimation, since the

current frame is considered as the candidate frame and the reference frame on which the

Figure 2.3: Backward Motion estimation with current frame as k and frame (k-1) as the
reference frame

motion vectors are searched is a past frame, that is, the search is backward. Backward

motion estimation leads to forward motion prediction.

Forward Motion Estimation

It is just the opposite of backward motion estimation. Here, the search for motion vec-

tors is carried out on a frame that appears later than the candidates frame in temporal

ordering. In other words, the search is “forward”. Forward motion estimation leads to

backward motion prediction. It may appear that forward motion estimation is unusual,

since one requires future frames to predict the candidate frame. However, this is not

unusual, since the candidate frame, for which the motion vector is being sought is not

necessarily the current, that is the most recent frame. It is possible to store more than

one frame and use one of the past frames as a candidate frame that uses another frame,

appearing later in the temporal order as a reference.

Forward motion estimation (or backward motion compensation) is supported under

the MPEG 1 & 2 standards, in addition to the conventional backward motion estimation.

The standard also supports bi-directional motion compensation in which the candidate

frame is predicted from a past reference as well as a future reference frame with respect

to the candidates frame.
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Figure 2.4: Forward Motion estimation with current frame as k and frame (k+1) as the
reference frame

2.2.1 Block Matching Methods

Block-matching motion estimation (BMME) is the most widely used motion estimation

method for video coding. Interest in this method was initiated by Jain and Jain and

he praposed a block-matching algorithm (BMA)in 1981. The current frame, ft , is first

divided into blocks of M × N pels. The algorithm then assumes that all pels within

the block undergo the same translational movement. Thus, the same motion vector, d

=[dx,dy]
T , is assigned to all pels within the block. This motion vector is estimated by

searching for the best match block in a larger search window of (M +2dmx
)× (N +2dmy

)

pels centered at the same location in a reference frame, ft−∆t , where dmx
and dmy

are

the maximum allowed motion displacements in the horizontal and vertical directions,

respectively.

2.2.2 Matching Criteria for Motion Estimation

Inter frame predictive coding is used to eliminate the large amount of temporal and spatial

redundancy that exists in video sequences and helps in compressing them. In conventional

predictive coding the difference between the current frame and the predicted frame is

coded and transmitted. The better the prediction, the smaller the error and hence the

transmission bit rate when there is motion in a sequence, then a pel on the same part of

the moving object is a better prediction for the current pel..There are a number of criteria

to evaluate the “goodness” of a match.

Three popular matching criteria used for block-based motion estimation are

1. Mean of squarred error (MSE)

11
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2. Sum of absolute difference (SAD)

3. Matching pel count (MPC)

To implement the block motion estimation, the candidate video frame is partitioned

into a set of non overlapping blocks and the motion vector is to be determined for each

such candidate block with respect to the reference. For each of these criteria, square block

of size N ×N pixels is considered. The intensity value of the pixel at coordinate (n1, n2)

in the frame k is given by ,S(n1, n2, k) where (0 ≤ n1, n2 ≤ N−1). The frame k is referred

to as the candidate frame and the block of pixels defined above is the candidates block.

MSE Criterion

Considering (k− l) as the past references frame l > 0 for backward motion estimation, the

mean square error of a block of pixels computed at a displacement (i, j) in the reference

frame is given by

MSE(i, j) =
1

N2

N−1∑

n1=0

N−1∑

n2=0

[s(n1, n2, k) − s(n1 + i, n2 + j, k − l)]2 (2.1)

Consider a block of pixels of size N × N in the reference frame, at a displacement of,

where i and j are integers with respect to the candidate block position. The MSE is com-

puted for each displacement position (i, j),within a specified search range in the reference

image and the displacement that gives the minimum value of MSE is the displacement

vector which is more commonly known as motion vector and is given by

[d1, d2] = arg min
︸ ︷︷ ︸

i,j

[MSE(i, j)] (2.2)

The MSE criterion defined in equation 2.1 requires computation of N2 subtractions,

N2 multiplications (squaring) and (N2 − 1) additions for each candidate block at each

search position. This is computationally costly and a simpler matching criterion, as

defined below is often preferred over the MSE criterion.

SAD Criterion

Like the MSE criterion, the sum of absolute difference (SAD) too makes the error values

as positive, but instead of summing up the squared differences, the absolute differences

are summed up. The SAD measure at displacement (i, j) is defined as

12
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SAD(i, j) =
1

N2

N−1∑

n1=0

N−1∑

n2=0

[s(n1, n2, k) − s(n1 + i, n2 + j, k − l)] (2.3)

The motion vector is determined in a manner similar to that for MSE as

[d1, d2] = arg min
︸ ︷︷ ︸

i,j

[SAD(i, j)] (2.4)

The SAD criterion shown in equation 2.3 requires N2 computations of subtractions

with absolute values and additions N2 for each candidate block at each search position.

The absence of multiplications makes this criterion computationally more attractive and

facilitates easier hardware implementation.

MPC Criterion

In this criterion, the pixels of the candidates block B are compared with the corresponding

pixels in the block with displacement (i, j),in the reference frame and those which are less

than a specified threshold, i.e., closely matched are counted. The count for matching and

the displacement (i,j),for which the count is maximum correspond to the motion vector.

We define a binary valued function count(n1, n2)∀(n1, n2) ∈ B as

count(n1, n2) =







1 if |s(n1, n2, k) − s(n1 + i, n2 + j, k − l)| ≤ θ

0 otherwise
(2.5)

where, θ is a pre-determined threshold. The matching pel count (MPC) at displace-

ment (i, j) is defined as the accumulated value of matched pixels as given by

MPC(i, j) =
N−1∑

n1=0

N−1∑

n2=0

[count(n1, n2)] (2.6)

[d1, d2] = arg max
︸ ︷︷ ︸

i,j

[MPC(i, j)] (2.7)

Block Size

Another important parameter of the BMA is the block size.If the block size is smaller, it

achieves better prediction quality. This is due to a number of reasons. A smaller block size

reduces the effect of the accuracy problem. In other words, with a smaller block size, there

is less possibility that the block will contain different objects moving in different directions.

13
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In addition, a smaller block size provides a better piecewise translational approximation to

nontranslational motion. Since a smaller block size means that there are more blocks (and

consequently more motion vectors) per frame, this improved prediction quality comes at

the expense of a larger motion overhead. Most video coding standards use a block size of

16 × 16 as a compromise between prediction quality and motion overhead. A number of

variable-block-size motion estimation methods have also been proposed in the literature.

H.263 and MPEG standards allows adaptive switching between block sizes of 16× 16 and

8 × 8 on an Macro Block (MB) basis.

Motion compensation for each 16 × 16 macroblock can be performed using a number

of different block sizes and shapes. The original luminance component of each macroblock

(16 × 16) may be spilt into 4 kinds of size: 16 × 16, 16 × 8, 8 × 16, 8 × 8, as shown in

Figure 2.5 (a). Each of the sub-divided regions is a macroblock partition. If the 8 × 8

mode is chosen, each of the four 8× 8 may be spilt into 4 kinds of size:8× 8, 8× 4, 4× 8,

4 × 4 as shown in Figure 2.5 (b). These partitions and sub-partitions compose to a large

number to a large number of possible combinations.

Figure 2.5: macroblock (a) partition and (b) sub partition

A separate motion vector is required for each partition or sub-partition. Each of the

motion vector must be coded and transmitted, besides, the choice of partition must be

14
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encoded in the bitstream. If we use smaller partition size (eg. 8 × 8, 4 × 4 etc), we can

get smaller prediction error, but we must consume some a lot of bits to store motion

vector. Otherwise, if we choice larger partition size (eg. 16 × 16, 16 × 8, 8 × 16), we

can save a lot of bits, but the prediction error will be large. In general, a large partition

size is appropriate for homogeneous areas of the frame and a small partition size may be

beneficial for detailed areas. Usually, using seven different block sizes can translate into

bit-rate savings of more than 15% as compared to using only a 16 × 16 block size.

Search Range

The maximum allowed motion displacement dm , also known as the search range, has a

direct impact on both the computational complexity and the prediction quality of the

BMA. A small dm results in poor compensation for fast-moving areas and consequently

poor prediction quality. A large dm, on the other hand, results in better prediction

quality but leads to an increase in the computational complexity (since there are (2dm+1)2

possible blocks to be matched in the search window). A larger dm can also result in longer

motion vectors and consequently a slight increase in motion overhead [6]. In general, a

maximum allowed displacement of dm = ±15 pels is suffcient for low-bit-rate applications.

MPEG standard uses a maximum displacement of about ±15 pels, although this range

can optionally be doubled with the unrestricted motion vector mode.

Search Accuracy

Initially, the BMA was designed to estimate motion displacements with full-pel accuracy.

Clearly, this limits the performance of the algorithm, since in reality the motion of objects

is completely unrelated to the sampling grid. A number of workers in the field have

proposed to extend the BMA to subpel accuracy. For example, Ericsson demonstrated

that a prediction gain of about 2 dB can be obtained by moving from full-pel to 1/8-

pel accuracy. Girod presented an elegant theoretical analysis of motion-compensating

prediction with subpel accuracy. He termed the resulting prediction gain the accuracy

effect. He also showed that there is a “critical accuracy” beyond which the possibility of

further improving prediction is very small. He concluded that with block sizes of 16× 16,

quarter-pel accuracy is desirable for broadcast TV signals, whereas half-pel accuracy

appears to be suffcient for videophone signals. Today, most video coding standards adopt

subpel accuracy in its halfpel form. In fact, it has been shown that most of the performance

gain of H.263 over H.261 can be attributed to the move from full-pel to half-pel accuracy.
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It should be pointed out, however, that the improved prediction quality of subpel

accuracy comes at the expense of a significant increase in computational complexity.

This increase is due to two reasons. First, the reference frame intensities have to be

interpolated at subpel locations. Second, there are now more possible candidate blocks

within the search window. For example, when moving from full-pel to half-pel accuracy,

the number of candidate blocks in the search window increases from (2dm +1)2 to (4dm +

1)2. To alleviate this complexity, most video codecs implement subpel accuracy as a

postprocessing stage, where first a full-pel motion vector is obtained, usually using full

search, and then this vector is refined to subpel accuracy using a limited search. This

provides a large saving in computational complexity and at the same time maintains the

improved prediction quality.

2.3 Search Algorithms for Motion Estimation

Basic Approaches to Motion Estimation

There exists two basic approaches to motion estimation

1. Pixel based motion estimation

2. Block-based motion estimation.

The pixel based motion estimation approach seeks to determine motion vectors for

every pixel in the image. This is also referred to as the optical flow method, which

works on the fundamental assumption of brightness constancy, that is the intensity of a

pixel remains constant, when it is displaced. However, no unique match for a pixel in

the reference frame is found in the direction normal to the intensity gradient. It is for

this reason that an additional constraint is also introduced in terms of the smoothness

of velocity (or displacement) vectors in the neighborhood. The smoothness constraint

makes the algorithm interactive and requires excessively large computation time, making

it unsuitable for practical and real time implementation.

An alternative and faster approach is the block based motion estimation. In this

method, the candidates frame is divided into non-overlapping blocks ( of size 16 × 16, or

8 × 8 or even 4 × 4 pixels in the recent standards) and for each such candidate block,

the best motion vector is determined in the reference frame. Here, a single motion vector

is computed for the entire block, whereby we make an inherent assumption that the

entire block undergoes translational motion. This assumption is reasonably valid, except
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for the object boundaries and smaller block size leads to better motion estimation and

compression.

Block based motion estimation is accepted in all the video coding standards proposed

till date. It is easy to implement in hardware and real time motion estimation and

prediction is possible.

2.3.1 Full Search Motion Estimation

In order to get the best match block in the reference frame, it is necessary to compare the

current block with all the candidate blocks of the reference frames. Full search motion

estimation calculates the sum absolute difference (SAD) value at each possible location in

the search window. Full search computed the all candidate blocks intensive for the large

search window.

Figure 2.6: Full search motion estimation

consider a block of N × N pixels from the candidates frame at the coordinate posi-

tion (r, s) as shown and then consider a search window having a range ±w in both and

directions in the references frame, as shown. For each of the (2w + 1)2 search position

(including the current row and the current column of the reference frame), the candidate

block is compared with a block of size N × N pixels, according to one of the matching

criteria discussed in section 2.2.2 and the best matching block, along with the motion

vector is determined only after all the (2w+1)2 search position are exhaustively explored.

The FSBM is optimal in the sense that if the search range is correctly defined, it

is guaranteed to determine the best matching position. However, it is highly computa-

tional intensive. For each matching position, we require O(N2) computations (additions,
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Method Computations
Add/sub Multiplication Comparison

MSE (2N2 − 1)(2w + 1)2 N2(2w + 1)2 (2w + 1)2

SAD (2N2 − 1)(2w + 1)2 —— (2w + 1)2

MPC (2N2 − 1)(2w + 1)2 —– N2(2w + 1)2

Table 2.1: Computational Complexity of FSBM

subtractions, multiplications etc) and since there are(search positions, the number of

computations for each matching criterion is given by Table 2.1

FSBM requires large number of computations. If w = 7 pixels, measuring that the

best matching position exists within a displacement of ±7 pixels from the current block

position, it requires 15 × 15 = 225 search positions. For real time implementation, quick

and efficient search strategies were explored.It may be noted that such quick search tech-

niques do not make exhaustive search within the search within the search area and can

at best be sub-optimal.

2.3.2 Three Step Search (TSS)

This algorithm was introduced by Koga et al in 1981 [7]. It became very popular because

of its simplicity and also robust and near optimal performance. It searches for the best

motion vectors in a course to fine search pattern. The algorithm may be described as:

Step 1: An initial step size is picked. Eight blocks at a distance of step size from the

centre (around the centre block) are picked for comparison.

Step 2: The step size is halved. The centre is moved to the point with the minimum

distortion.

The point which gives the smallest criterion value among all tested points is selected

as the final motion vector m.TSS reduces radically the number of candidate vectors to

test, but the amount of computation required for evaluating the matching criterion value

for each vector stays the same. TSS may not find the global minimum (or maximum) of

the matching criterion; instead it may find only a local minimum and this reduces the

quality of the motion compensation system. On the other hand, most criteria can be

easily used with TSS.
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2.3.3 Diamond Search(DS) Algorithm

By exhaustively testing on all the candidate blocks , full search (FS) algorithm gives

the global minimum SAD position which corresponds to the best matching block at the

expense of highly computation. To overcome this defect, many fast BMAs are developed

such as diamond search (DS) [8] and the cross-search algorithm [9] and new four step

search [10].

The DS algorithm employs two search patterns. The first pattern, called large diamond

search pattern (LDSP) shown in figure 2.7 (a), comprises nine checking points from which

eight points surround the center one to compose a diamond shape. The second pattern

consisting of five checking points forms a small diamond shape, called small diamond

search pattern (SDSP) shown in figure 2.7 (b). In the searching procedure of the DS

algorithm, LDSP is repeatedly used until the minimum block distortion (MBD) occurs

at the center point. The search pattern is then switched from LDSP to SDSP when it

reaches the final search stage. Among the five checking points in SDSP, the position

yielding the minimum block distortion (MBD) provides the motion vector of the best

matching block. The DS algorithm can not only provides similar or in many cases better

results than NTSS, but also reduces complexity by as much as 75%. But it appears

that DS has significant quality degradation with sequences containing significant global

motion, or when coding higher resolution sequences.

Figure 2.7: (a) Large Diamond Search Pattern (b) Small Diamond Search Pattern

The large diamond search pattern (LDSP) contains 9 search points from eight sur-
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round to the center point for one and compose to a diamond shape and used at first and

repeatedly until the minimum SAD point is the center point. The small diamond search

pattern (SDSP) contains 5 search points.

The DS algorithm is summarized as follows.

1. The initial LDSP is centered at the origin of the search window, and the 9 checking

points of LDSP are tested. If the MBD point calculated is located at the center

position, go to Step 3; otherwise, go to Step 2.

2. The MBD point found in the previous search step is re-positioned as the center

point to form a new LDSP. If the new MBD point obtained is located at the center

position, go to Step 3; otherwise, recursively repeat this step.

3. Switch the search pattern from LDSP to SDSP. The MBD point found in this step

is the final solution of the motion vector which points to the best matching block.

Some insightful remarks on implementing the DS algorithm are provided as follows.

The compact shape of the search patterns used in the DS algorithm increases the pos-

sibility of finding the global minimum point located inside the search pattern. Therefore,

the DS algorithm tends to produce smaller or at least similar motion estimation error com-

pared with other fast BMAs. Unlike TSS, NTSS and 4SS, the search window size is not

restricted by the searching strategy in DS algorithm. DS algorithm greatly outperforms

the well-known TSS algorithm and achieves close MSE performance compared to NTSS

while reducing its computation by up to 22% approximately. The DS is implemented in

the MPEG-4 video-encoding environment and its efficiency is demonstrated through core

experimental results. Based on these results, it is adopted and incorporated in MPEG-4

verification model.
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CHAPTER 3

FAST MOTION ESTIMATION ALGORITHM BASED ON

GENETIC ALGORITHM (GA)

3.1 Introduction to Genetic Algorithm

Genetic algorithms (GAs) are adaptive methods which may be used to solve search and

optimisation problems. They are based on the genetic processes of biological organisms.

Over many generations, natural populations evolve according to the principles of natural

selection and “survival of the fittest”. By mimicking this process, genetic algorithms are

able to “evolve” solutions to real world problems, if they have been suitably encoded. The

basic principles of GAs were first laid down rigorously by Holland.

GAs work with a population of “individuals”, each representing a possible solution

to a given problem. Each individual is assigned a “fitness score” according to how good

a solution to the problem it is. The highly-fit individuals are given opportunities to

“reproduce”, by “cross breeding” with other individuals in the population. This produces

new individuals as “offspring”, which share some features taken from each “parent”. The

least fit members of the population are less likely to get selected for reproduction, and so

“die out”.

A whole new population of possible solutions is thus produced by selecting the best

individuals from the current “generation”, and mating them to produce a new set of

individuals [11]. This new generation contains a higher proportion of the characteristics

possessed by the good members of the previous generation. In this way, over many

generations, good characteristics are spread throughout the population. By favouring
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the mating of the more fit individuals, the most promising areas of the search space are

explored.

3.2 Genetic Algorithm

Evaluation Function

It provides a measure of performance with respect to a particular set of parameters. The

fitness function transforms that measure of performance into an allocation of reproductive

opportunities. The evaluation of a string representing a set of parameters is independent

of the evaluation of any other string. The fitness of that string, however, is always defined

with respect to other members of the current population. In the genetic algorithm, fitness

is defined by: fi/fA where fi is the evaluation associated with string i and fA is the average

evaluation of all the strings in the population.

The notion of evaluation and fitness are sometimes used interchangeably, However, it

is useful to distinguish between the evaluation function and the fitness function used by

a genetic algorithm. The evaluation function or objective function provides a measure of

performance with respect to a particular set of parameters. The fitness function trans-

forms that measure of performance into an allocation of reproductive opportunities. The

evaluation of a string representing a set of parameters is independent of the evaluation

of any other string. The fitness of that string, however, is always defined with respect to

other members of the current population.

Coding

Before a GA can be run, a suitable coding (or representation) for the problem must be

devised. We also require a fitness function, which assigns a figure of merit to each coded

solution. During the run, parents must be selected for reproduction, and recombined to

generate offspring. It is assumed that a potential solution to a problem may be represented

as a set of parameters (for example, the parameters that optimise a neural network).

These parameters (known as genes) are joined together to form a string of values (often

referred to as a chromosome. For example, if our problem is to maximise a function of

three variables, F(x; y; z), we might represent each variable by a 10-bit binary number

(suitably scaled), chromosome would therefore contain three genes, and consist of 30

binary digits. The set of parameters represented by a particular chromosome is referred to

as a genotype. The genotype contains the information required to construct an organism

22



CHAPTER 3. FAST MOTION ESTIMATION ALGORITHM BASED ON GENETIC
ALGORITHM (GA)

which is referred to as the phenotype. For example, in a bridge design task, the set of

parameters specifying a particular design is the genotype, while the finished construction

is the phenotype.

The fitness of an individual depends on the performance of the phenotype. This can

be inferred from the genotype, i.e. it can be computed from the chromosome, using the

fitness function. Assuming the interaction between parameters is nonlinear, the size of

the search space is related to the number of bits used in the problem encoding. For a bit

string encoding of length L; the size of the search space is 2L and forms a hypercube [12].

The genetic algorithm samples the corners of this L–dimensional hypercube. Generally,

most test functions are at least 30 bits in length; anything much smaller represents a

space which can be enumerated. Obviously, the expression 2L grows exponentially. As

long as the number of “good solutions” to a problem are sparse with respect to the size

of the search space, then random search or search by enumeration of a large search space

is not a practical form of problem solving. On the other hand, any search other than

random search imposes some bias in terms of how it looks for better solutions and where

it looks in the search space. A genetic algorithm belongs to the class of methods known

as “weak methods” because it makes relatively few assumptions about the problem that

is being solved.

Genetic algorithms are often described as a global search method that does not use

gradient information. Thus, nondifferentiable functions as well as functions with multiple

local optima represent classes of problems to which genetic algorithms might be applied.

Genetic algorithms, as a weak method, are robust but very general.

Chromosome Representation

Each chromosome represents the data for coordinates x and y. Each coordinate is de-

scribed by 2 genes: object and strategy genes. Object gene defines the actual coordinate

in the image. The value of object gene is determined from the search window size. For ex-

ample, if the search window is within the range [-16, 16], then the value of object gene can

take any integer number inside of this range. The search window size depends on the max-

imum motion vector size. Strategy gene determines whatever local or global search will

be carried out. Smaller value of strategy gene more localised become the search process.

The negative value defines the decrement of mutated gene and positive values respectively

determine the increment of the mutated gene. The strategy parameter depends on the

window size and can take any value up to its maximum. In order to implement the local

search, we choose to set the strategy parameter to values 0 or 1.
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Selection

Selection is the component which guides the algorithm to the solution by preferring indi-

viduals with high fitness over low-fitted ones. It can be a deterministic operation, but in

most implementations it has random components.Fitness can also be assigned based on

a string’s rank in the population or by sampling methods, such as tournament selection.

Tournament selection is one of many methods of selection in genetic algorithms which

runs a “tournament” among a few individuals chosen at random from the population

and selects the winner (the one with the best fitness) for crossover easily adjusted by

changing the tournament size. If the tournament size is larger, weak individuals have a

smaller chance to be selected.Tournament selection does not care about the spread of the

scores, only the ranking. The nth ranked invididual in a population of size mu will have

a (2mu − 2n + 1)/m2
u chance of reproducing. This puts an upper and lower bound on

the chances of any individual to reproduce for the next generation. Tournament selection

can be generalized to include more than 2 individuals being chosen for competition, and

selecting the best from this group.

After selection has been carried out the construction of the intermediate population is

complete and recombination can occur. This can be viewed as creating the next population

from the intermediate population. Crossover is applied to randomly paired strings with

a probability denoted pc. (The population should already be sufficiently shuffled by the

random selection process.) Pick a pair of strings. With probability Pc “recombine” these

strings to form two new strings that are inserted into the next population.

Crossover

In sexual reproduction, as it appears in the real world, the genetic material of the two par-

ents is mixed when the gametes of the parents merge. Usually, chromosomes are randomly

split and merged, with the consequence that some genes of a child come from one parent

while others come from the other parents.This mechanism is called crossover. It is a very

powerful tool for introducing new genetic material and maintaining genetic diversity, but

with the outstanding property that good parents also produce well-performing children or

even better ones. Several investigations have come to the conclusion that crossover is the

reason why sexually reproducing species have adapted faster than asexually reproducing

ones.

Basically, crossover is the exchange of genes between the chromosomes of the two

parents. In the simplest case, we can realize this process by cutting two strings at a
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randomly chosen position and swapping the two tails. This process, which we will call

one-point crossover in the following, is visualized in Figure 3.1. One-point crossover is

a simple and often-used method for GAs which operate on binary strings. For other

problems or different codings, other crossover methods can be useful or even necessary

Figure 3.1: One-point crossover of binary strings.

N-point crossover: Instead of only one, N breaking points are chosen randomly.

Every second section is swapped. Among this class, twopoint crossover is particularly

important.

Segmented crossover: Similar to N-point crossover with the difference that the

number of breaking points can vary.

Uniform crossover: For each position, it is decided randomly if the positions are

swapped.

Shuffle crossover: First a randomly chosen permutation is applied to the two parents,

then N-point crossover is applied to the shuffled parents, finally, the shuffled children are

transformed back with the inverse permutation.

Mutation

The last ingredient of simple genetic algorithm is mutation–the random deformation of

the genetic information of an individual by means of radio active radiation or other envi-

ronmental influences. In real reproduction, the probability that a certain gene is mutated

is almost equal for all genes. So, it is near at hand to use the following mutation technique

for a given binary string s, where pm is the probability that a single gene is modified. pm

should be rather low in order to avoid that the GA behaves chaotically like a random

search.Again, similar to the case of crossover, the choice of the appropriate mutation

technique depends on the coding and the problem itself. The motivation for using muta-

tion, then, is to prevent the permanent loss of any particular bit or allele. After several
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generations it is possible that selection will drive all the bits in some position to a single

values either 0 or 1, If this happens without the genetic algorithm converging to a sat-

isfactory solution, then the algorithm has prematurely converged. This may particularly

be a problem if one is working with a small population.

Inversion of single bits: With probability pm, one randomly chosen bit is negated.

Bitwise inversion: The whole string is inverted bit by bit with prob. pm.

Random selection: With probability pm, the string is replaced by a randomly chosen

one.

Strenghts of GA

The power of GAs comes from the fact that the technique is robust and can deal success-

fully with a wide range of difficult problems. GAs are not guaranteed to find the global

optimum solution to a problem, but they are generally good at finding “acceptably good”

solutions to problems “acceptably quickly”. Where specialised techniques exist for solving

particular problems, they are likely to outperform GAs in both speed and accuracy of the

final result.

Even where existing techniques work well, improvements have been made by hybridis-

ing them with a GA. The basic mechanism of a GA is so robust that, within fairly wide

margins, parameter settings are not critical.

Weaknesses of GA

A problem with GAs is that the genes from a few comparatively highly fit individuals may

rapidly come to dominate the population, causing it to converge on a local maximum.

Once the population has converged, the ability of the GA to continue to search for better

solutions is effectively eliminated: crossover of almost identical chromosomes produces

little that is new. Only mutation remains to explore entirely new ground, and this simply

performs a slow, random search.

The standard GA can be represented as shown in figure 3.2:

In the first generation the current population is also the initial population. After

calculating fitness for all the strings in the current population, selection is carried out.

The probability that strings in the current population are copied (i.e. duplicated) and

placed in the intermediate generation is in proportion to their fitness.
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Figure 3.2: Genetic algorithm procedure

3.3 Block Matching Algorithm based on GA

Motion estimation is an essential component of many video encoding algorithms. The

most popular method adopted to estimate the motion between frames is the block match-

ing algorithm (BMA), in which a block of size M × N is compared with a corresponding

block within a search area in the previous frame. Three main elements-match criterion,

search area and search scheme-should be considered in the BMA. The match scheme is

the most important, which plays a crucial part in the performance of BMA.

Essenticlly, the match scheme of BMA is an optimal problem .The full search BMA

will always find the optimum motion vector by calculating the difference between every

block in the search window from the previous frame and the current block. However, the

price paid for this optimum performance is a high computational cost, which prevents it

from being applied in most real-time systems. A number of fast search algorithm have

been proposed to greatly reduce the computational complexity by finding a sub-optimum

motion. All these algorithms rely on an assumption that the difference measure decreases

monotonically as the search position moves closer to the optimum position.Because this
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assumption usually does not hold, these fast algorithms may only find the local minimum

and can not find the global minimum. Thus the quality of encoded video may become

much worse.

The genetic algorithm is an optimum-searching process based on the laws of natural

selection and genetics. It adopts the coding set of parameters instead of the parameters

themselves to operate and searches the optimum based on groups of points, not a single

point. Moreover, it uses a random, instead of a definite rule to work on the searching

process. All of these give it high robustness as well as parallelism, and enable it to be free

of the limitation in continuity and single peak requirement. It is effective in solving the

problems of searching global optimum, although the computational complexity of genetic

algorithm is high [13].

To solve an actual problem with genetic algorithm, the parameters of the problem are

coded firstly; and then a fitness function should be chosen for determining the winner.

Later the initial populations are selected and begin to evolve, that is, are processed by

the selection operator, crossover operator, mutation operator and other genetic operators.

The genetic fast BMA is discussed in detail as follows

3.3.1 Genetic BMA procedure

Coding scheme

The result space should be bi-directionally mapped into a space of chromosomes. Since the

motion vector is represented by MV (x, y), It is binary encoded into (x1, x2, ..xn, y1, y2, ..yn),

where xi, yi=0 or 1, n = [log2 Sm] + 1, Sm = max(sx, sy) sx and sy represent the half

width and the half height of the search window respectively.Here, x1, y1, is specially used

for denoting the sign of the vector. (i.e. xi = 0 denotes positive motion vector; xi = 1

denotes negative motion vector.)

Fitness Function

Here we have taken the fitness function as sum of absolute difference (SAD) since SAD

criterion requires N2 computations of subtractions with absolute values and additions N2

for each candidate block at each search position. The absence of multiplications makes this

criterion computationally more attractive and facilitates easier hardware implementation.
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Initial Population and Population Size

In common genetic algorithms, the initial population are selected in random. Owing to

their significant effects on the performance of the search, here they are selected according

to a rule that they should be as near as possible to the global optimum. This rule is based

on two facts:

• Most of the motion vectors are center-biased.It has been applied in many fast BMAs.

The center point of the search window and its neighboring eight points can be chosen

for parts of the initial population.

• Neighboring motion vectors in one frame are similar.

Center-biased feature denotes that match point may exist within a small zone around

macro block center. selection of individuals as shown in Figure. 3.3 which distribute

around center of macro block. The white dot is center of macro block and dark dots

are individuals. Usually we let individuals randomly distribute in search window.

However, if individual positions are around optimization position, it can speed up

population convergence. Intial population size is 8 and we distribute intial popula-

tion equally in all 8 directions with a view to find the matching MB in each direction

with equal possibility.

Figure 3.3: selection of intial Population

Genetic Operator

Common genetic algorithms usually choose selection operator, crossover operator and

mutation operator for evolution. In this algorithm, only selection operator, mutation
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operator and a special optimization operator are used according to the character of motion

vectors.

Selection Operator:

In a general selection process, a chromosome is selected based on a probabilistic scheme,

which costs much in computation. To reduce the complexity, a simple threshold-based

selection mechanism according to the mean fitness of all chromosomes is provided. The

chromosomes, whose fitness is higher than the mean fitness, will be copied to the new

population. Others will be first acted on by a mutation operator, then enter the new

population. Thus the chromosome with a larger fitness, namely, the search point with a

smaller matching error will have enough opportunity to survive.

Mutation Operator:

After being carefully studied, the genetic mutation is found to have an actual effect in

selecting the next search point. If the significant genes of the chromosomes are mutated,

the next search point will be far from the center point of the search window, whereas the

next will be nearer to the center if the less significant genes is mutated. Owing to its out-

standing performance, the mutation operator is well used in searching the global optimum

while the crossover operator is removed. Because the horizontal vector x has nothing to

do with the vertical vector y, the mutation in the higher piece of the chromosome and the

mutation in the lower will be performed individually, that is, at first two random numbers

Rx, and Ry are generated, then the corresponding xRx
, yRy

will be bitwise reversed and

the new chrom

Stopping Rule

Here the largest fitness of the chromosomes is available when the matching error is zero. At

this time the evolution should be broken for the global optimum has been found. However,

in most circumsknce the matching error can’t reach zero, the evolution should be stopped

under the limitation in the number of generations. Due to the center-biased characteristics

of real-world motion fields, we adopt the fixed-iteration method. Generally, there are two

widely adopted stopping criteria. One is fixed-iteration, that is, given a certain iteration

time, saying N, the search stops after N iterations. The other is specified-threshold. For

minimization problems, we specify a very small threshold, and if the change of gbest

during t times of iteration is smaller than the threshold, we consider the group best value
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Sequences Format Threshold
Akiyo QCIF 350

Container QCIF 300
Mother & daughter QCIF 250

News QCIF 250
Silent QCIF 200

Table 3.1: Assumed Threshold values

very near to the global optimum, thus the matching procedure stops. Due to the center-

biased characteristics of real-world motion fields, in this thesis fixed-iteration method in

this paper for reducing the computational cost.

Genetic BMA can be summarized as follows

1. Select the intial population

2. Calculate the fitness of each chromosome and the mean fitness of this generation.

3. Copy or mutate the chromosome to the next generation according to the rule dis-

cussed above

4. Stop the evolution if the stopping rule is satisfied. Otherwise, go to step 2, 3.

5. Convert the strongest chromosome to the search point, and get the result.

Zero Motion Prejudgment (ZMP)

Zero Motion Prejudgment (ZMP) is the procedure to find the static macroblocks which

contains zero motion. In real world video sequences more than 70% of the MBs are static

which do not need the remaining search . So, significant reduction of computation is

possible if we predict the static macroblocks by ZMP procedure before starting motion

estimation procedure and the remaining search will be faster and saves memory. We first

calculate the matching error (SAD) between the MB in the current frame and the MB at

the same location in the reference frame and then compare it to a predetermined threshold,

saying ∆. If the matching error is smaller than ∆ we consider this MB static which do

not need any further motion estimation, and return a [0,0] as its motion vector(MV).

3.3.2 Experiments and Simulation Results

The performance of the proposed GA based block matching algorithm is evaluated in

terms of computation and average peak signal-to-noise ratio (PSNR) per frame of the
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reconstructed video sequence is computed for quality measurement. Computation is de-

fined as the average number of the error function evaluations per MV generation.For Zero

motion Prejudgement threshold value for each test video sequence correspondingly based

on data obtained in experiments shown in Table 3.1. This threshold value is not fixed,

may vary depending on your video sequences.We divide a whole image frame into 16× 16

MBs in the simulation that is N = 16 and the size of search window was set as 15 × 15.

For comparison, the performance of DS and our proposed algorithm are compared

in terms of PSNR and computation and documented in Table 3.2 and Table 3.3 for 5

different video sequences. Search range P=7 means that the search will be performed

within a square region of [-p, +p] around the position of the current block as shown in

figure 3.4. In our simulation experiments, the block size is fixed at 16 × 16. To make

a consistent comparison, block matching is conducted within a 15 × 15 search window.

Summed absolute difference (SAD) is used as the matching criterion to reduce the block-

matching computation in practice.

Figure 3.4: search window

To make a consistent comparison, block matching is conducted within a 15×15 search

window. Summed absolute difference (SAD) is used as the matching criterion to reduce

the block-matching computation in practice. In order to evaluate search performance

in a wide range of motion conditions, five video sequences in QCIF were tested in this

paper are Akyio, Container, mother & daughter, News, Silent from 1st frame to 100th

frame. The performance of the GA based block matching algorithm is evaluated in terms

of computation and average peak signal-to-noise ratio (PSNR) per frame of the recon-

structed video sequence is computed for quality measurement. Computation is defined

as the average number of the error function evaluations per MV generation.Here intial

population size is taken as N=8, the number of the generations G=10. Figure 3.5 shows

the PSNR (dB) comparison of genetic algorithm (GA) based BMA and diamond search

(DS) algorithm and the figure 3.6 shows the computational comparison of GA and DS.
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Sequences GA to DS
Akiyo 3.5597

Container 4.3469
Mother & daughter 3.5288

News 4.2781
Silent 3.5234

Table 3.2: Computational gain to DS

from the simulaton results we can say that GA based block matching algorithm is several

times faster than DS BMA but in PSNR comparison some acceptable drops are there.

In some applications like video streaming etc.. there should be main priority to fastness

of algorithm than to the quality. Anyway in future we can try variants of GA hybrid

algorithms for better results.. Such approaches are suitable for achieving global optimal

solution, which traditional fast BMAs are not able to obtain easily. The GA needs to

set some key parameters such as population size, probability of mutation, probability of

crossover, etc. If these parameters are not prefixed properly, efficiency of GA becomes

lower and also it is time consuming process.
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Figure 3.5: PSNR(dB) comparision of GA and DS
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Figure 3.6: Computational comparison of GA and DS

Sequences DS GA
Akiyo 40.2463 38.1706

Container 37.8131 36.2360
Mother & daughter 35.7113 33.2731

News 32.2179 29.6056
Silent 32.3068 30.2544

Table 3.3: Average PSNR(dB) performances of DS, GA

3.4 Conclusion

A novel fast motion-estimation method, the genetic BMA, is praposed. It makes full

use of the advantage of genetic algorithm to search the global optimum and get rid of its

shortcoming of high complexity in computation. Furthermore, the fixed selection of initial

population highly improves the performance. In addition, a zero-motion prejudgment

(ZMP) routine is incorporated into the GA BMA to further reduce the computational

cost of the algorithm. Simulation results show that the GA-ZMP BMA proposed requires

less amount of computation and achieves PSNR close and acceptable PSNR performance

compared to widely accepted DS BMA. The GA needs to set some key parameters such as

population size, probability of mutation, probability of crossover, etc. If these parameters

are not prefixed properly, efficiency of GA becomes lower and also it is time consuming

process so we are going to apply Particle Swarm Optimization and other techniques in

the next sections which are giving better results than GA BMA.
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FAST MOTION ESTIMATION ALGORITHM BASED ON

CLONAL PARTICLE SWARM OPTIMIZATION (CPSO)

4.1 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population based stochastic optimization tech-

nique developed by Dr. Eberhart and Dr. Kennedy in 1995 [14], inspired by social be-

havior of bird flocking or fish schooling. It is widely accepted and focused by researchers

due to its profound intelligence background and simple algorithm structure. Currently,

PSO has been implemented in a wide range of research areas such as functional optimiza-

tion, pattern recognition, neural network training, fuzzy system control etc. and obtained

significant success. Like Genetic Algorithm(GA), PSO is also an evolutionary algorithm

based on swarm intelligence. But, on the other side, unlike GA, PSO has no evolution

operators such as crossover and mutation . In PSO, the potential solutions, called par-

ticles, fly through the solution space by following the current optimum particles. The

original intent was to graphically simulate the graceful but unpredictable choreography

of a bird flock. Through competitions and cooperations, particles follow the optimum

points in the solution space to optimize the problem. Many proposals indicate that PSO

is relatively more capable for global exploration and converges more quickly than many

other heuristic algorithms.

PSO simulates the behaviors of bird flocking. Suppose the following scenario: a group

of birds are randomly searching food in an area. There is only one piece of food in the area

being searched. All the birds do not know where the food is. But they know how far the
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food is in each iteration. So what’s the best strategy to find the food? The effective one

is to follow the bird which is nearest to the food.PSO learned from the scenario and used

it to solve the optimization problems [15]. In PSO, each single solution is a “bird” in the

search space. We call it “particle”. All of particles have fitness values which are evaluated

by the fitness function to be optimized, and have velocities which direct the flying of the

particles. The particles fly through the problem space by following the current optimum

particles.

Particle Swarm has two primary operators: Velocity update and Position update.

During each generation each particle is accelerated toward the particles previous best

position and the global best position. At each iteration a new velocity value for each

particle is calculated based on its current velocity, the distance from its previous best

position, and the distance from the global best position. The new velocity value is then

used to calculate the next position of the particle in the search space. This process is

then iterated a set number of times, or until a minimum error is achieved.

Comparisons Between Genetic Algorithm and PSO

Most of evolutionary techniques have the following procedure:

1. Random generation of an initial population

2. Reckoning of a fitness value for each subject. It will directly depend on the distance

to the optimum.

3. Reproduction of the population based on fitness values.

4. If requirements are met, then stop. Otherwise go back to 2.

From the procedure, we can learn that PSO shares many common points with GA.

Both algorithms start with a group of a randomly generated population, both have fit-

ness values to evaluate the population. Both update the population and search for the

optimium with random techniques. Both systems do not guarantee success.

However, PSO does not have genetic operators like crossover and mutation. Particles

update themselves with the internal velocity. They also have memory, which is important

to the algorithm.

Compared with genetic algorithms (GAs), the information sharing mechanism in PSO

is significantly different [16]. In GAs, chromosomes share information with each other.

So the whole population moves like a one group towards an optimal area. In PSO, only
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gbest (or lbest) gives out the information to others. It is a one -way information sharing

mechanism. The evolution only looks for the best solution. Compared with GA, all the

particles tend to converge to the best solution quickly even in the local version in most

cases.

4.1.1 Conventional Particle Swarm Optimization

PSO is initialized with a group of random particles (solutions) and then searches for

optima by updating generations. In every iteration, each particle is updated by following

two “best” values. The first one is the best solution (fitness) it has achieved so far. (The

fitness value is also stored.) This value is called pbest. Another “best” value that is

tracked by the particle swarm optimizer is the best value, obtained so far by any particle

in the population. This best value is a global best and called gbest. When a particle

takes part of the population as its topological neighbors, the best value is a local best and

is called lbest. The variables pbest and gbest and their increments are both necessary.

Conceptually pbest resembles autobiographical memory, as each individual remembers its

own experience (though only one fact about it), and the velocity adjustment associarted

with pbest has been called “simple nostalgia” in that the individual tends to return to the

place thiat most satisfied it in the past. On the other hand, gbest is conceptually similar

to publicized knowledge, or a group norm or standard, which individuals seek to attain.

The updating formula for each particles velocity and position in conventional standard

PSO is written as

vid(t+1) = w×vid(t)+c1×rand(.)×(pbest−xid(t))+c2×rand(.)×(gbest−xid(t)) (4.1)

xid(t + 1) = xid(t) + vid(t + 1) (4.2)

where i = 1, 2, · · · , N , N is the number of particles in the swarm, d = 1, 2, · · · , D, and

D is the dimension of solution space; Vi = (Vi1, Vi2, ....Vid), V id ∈ [−Vmax, Vmax] is the

velocity vector of particle i which decides the particle’s displacement in each iteration.

Similarly, Xi = (Xi1, Xi2, ...Xid), Xid ∈ [−Xmax, Xmax] is the position vector of particle i

which is a potential solution in the solution space. the quality of the solution is measured
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by a fitness function; w is the inertia weight which decreases linearly during a run; c1, c2

are both positive constants, called the acceleration factors which are generally set to 2;

rand(.) and rand(.) are two independent random number distributed uniformly over the

range [0, 1]; and Pg, Pi are the best solutions discovered so far by the group and itself

respectively. The termination criterion for iterations is determined according to whether

the presetting maximum generation or a designated value of the fitness is reached.

Particles’ velocities on each dimension are clamped to a maximum velocity Vmax. If

the sum of accelerations would cause the velocity on that dimension to exceed Vmax, which

is a parameter specified by the user. Then the velocity on that dimension is limited to

Vmax.

Particle Swarm Optimization has certain parameters that require tuning to work well.

This is also the case with other stochastic search algorithms e.g. for the tuning of GA

mutation rates. However, changing a PSO parameter can have a proportionally large

effect. Leaving out the constriction coefficient and not constricting particle speed by a

maximum velocity will result in a buildup of speed, partially also because of the particle

inertia. Particles with such speeds might explore the searchspace, but loose the ability

to fine-tune a result. Constricting the particle speed too much might however cripple

the searchspace exploration. Tuning the constriction coefficient or settings for maximum

velocity is thus not a trivial task. These parameters also control the abilities of the PSO.

The higher the inertia weight, the higher the particle speed. As with the constriction

coefficient, the setting of the inertia must balance between having good exploration of

the searchspace and good finetuning abilities. The setting for these parameters thus

also determines the exploratory versus the fine-tuning abilities of the PSO. With the

tradeoffs just described, the performance of the PSO is problem dependent. To improve

the performance of PSO variants of PSO praposed by many sesearchers.

4.1.2 Variants of PSO

Since its invent, PSO has attracted an extensive attentions and interests of researchers

from different scientific domains. Many researchers have worked on improving its perfor-

mance in various ways, thereby deriving many interesting variants of PSO.

One of the variants introduces a parameter called inertia weight into the original

PSO algorithms. A clever technique for creating a discrete binary version of the PSO

introduced by Kennedy and Eberhart in 1997 uses the concept of velocity as a probability

that a bit takes on one or zero. By analyzing the convergence behavior of the PSO, a
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variant of the PSO with a constriction factor was introduced by Clerc and Kennedy , which

guarantees the convergence and at the same time improves the convergence speed sharply.

Parsopoulos and Vrahatis proposed a unified particle swarm optimizer (UPSO) which

combined both the global version and local version together. A cooperative particle swarm

optimizer was also proposed. Furthermore, El- Abd and Kamel proposed a Hierarchal

Cooperative Particle Swarm Optimizer [17]. Very recently, a comprehensive learning

particle swarm optimizer (CLPSO) [18] was proposed to improve the performance of the

original PSO on multi-modal problems greatly by a novel learning strategy. Although

there are numerous variants of the PSO, they need much time to finish evaluations of

fitness function, and give similar results in the early parts of convergence [19].

In recent times another variant of PSO was praposed which is called as Clonal Particle

Swarm optimization [20]. This algorithm employs clonal mechanism found in the natural

immune system of creatures into the PSO. By cloning the best individual of every ten

succeeding generations, the Clonal Particle Swarm optimization has better optimization

solving capability and convergence performance than the conventional PSO and GA. So

for our applicationm, to develop a fast motion estimation algorithm we have choosen this

algorithm which will be discussed in the next section.

4.1.3 Clonal Particle Swarm optimization (CPSO)

Artificial immune system inspired by the principles of immune response is a simplified

model of its natural coordinate for solving problems [21].The essence of the conventional

PSO is to use particles with best known positions to guide the swarm or the population

to converge to a single optimum in the search space. Clonal expansion is probably a good

way to guide or direct the conventional PSO escaping from local optima whilst searching

for the global optima efficiently [22]. According to the clonal expansion process in natural

immune system the clonal operator is to clone one particle as N same particles in the

solution space according to its fitness function at first, then generate N new particles via

clonal mutation, which are related to the concentration mechanisms used for antigens and

antibodies in Natural immune system. The clonal operator is used to copy one point as

N same points according to its fitness function, and then generate N new particles by

undergoing mutation and selection processes.

CPSO algorithm can be summarized as follows.

1. Initialization. Assume c1 = 2, c2 = 2, and w be from 0.9 to 0.4 linearly.

39



CHAPTER 4. FAST MOTION ESTIMATION ALGORITHM BASED ON CLONAL
PARTICLE SWARM OPTIMIZATION (CPSO)

2. The state evolution of particles is iteratively updated according to Equations 4.1

and 4.2.

3. Memory the global best-fit particle PgB of each generation, PgB, as a mother particle

of the clonal operator in Step 4.

4. Clone the global best particle. The clonal operator is used to copy one point as N

same points according to its fitness function

5. Mutate some of the cloned particles depending on the probability of mutation Pm

may be 0.2 or 0.3 for better results. Mutation process is implemented by using some

random disturbances such as Gaussian noise.

PgB = (1 − µ)PgBC (4.3)

6. So for next generation mutated particles and cloned particles will be combined and

updated using Equations 4.1 and 3.2, until the stop criteria met repeat above steps.

7. The algorithm can be terminated by some common stop criteria such as a given

maximum number of generations or a presetting accuracy of the solution. In our

experiments, we adopt the former stop criterion, i.e. a maximum number of gener-

ations.

4.2 Block Matching Algorithm Based on CPSO

With the increasing popularity of optimization algorithms digital television, Internet

streaming video and video conferencing, video compression has became an essential com-

ponent of broadcast and entertainment media. Motion estimation and compensation

techniques, which can eliminate temporal redundancy between adjacent frames effectively,

have been widely applied to popular video compression coding standards such as MPEG-

2, MPEG-4, H.263 and H.264 . Block-matching algorithm (BMA) is the most popular

technique adopted for motion estimation due to its simplicity for implementation. The

computational complexity of motion estimation is 70 percent to 90 percent in video coding

and processing systems.

Generally, the most straightforward BMA called full search (FS) simply compares the

given macro block (MB) in the anchor frame with all candidate MBs in the target frame

exhaustively within a predefined search region. This is not fit for real-time applications
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because of its unacceptable computational cost. To speed up the search, various fast

algorithms for block matching which reduce the number of search candidates have been

developed. Well known examples are three-step search (TSS), Four Step Search (4SS),

block-based gradient descent search (BBGDS) and diamond search (DS) have been pro-

posed to reduce computational efforts, based on fixed search pattern and greedy search

method.

From optimization theory, these traditional fast BMAs are based upon the following

two assumptions: the error function has only one global optimum solution and the match-

ing error decreases monotonically as the search point moves towards it . However, since

the two assumptions can hardly be satisfied in most real-world videos, above mentioned

fast BMAs are liable to get trapped in local minima resulting in degradation on video

quality to some extent after decoding. This inherent shortcoming is mainly because the

local search based on fix pattern cannot sufficiently explore solution space and the greedy

search lacks capability of searching solutions on hypo-optima paths.

Over the last few years, promising computational intelligence methods, called evolu-

tionary computing techniques such as genetic algorithm (GA) [13], particle swarm opti-

mization (PSO) [23] have been successfully applied to solve motion estimation problem.

Such approaches are suitable for achieving global optimal solution, which traditional fast

BMAs are not able to obtain easily. The GA needs to set some key parameters such as

population size, probability of mutation, probability of crossover, etc. If these parameters

are not prefixed properly, efficiency of GA becomes lower and also it is time consuming

process.

Particle swarm optimization (PSO) was originally proposed by Kennedy and Eber-

hart in 1995. Unlike genetic algorithm, PSO does not need genetic operators such as

crossover and mutation. Thus it has advantages of easy implementation, fewer param-

eters adjustment, strong capability to escape from local optima and rapid convergence

characteristic. In the paper, a new fast motion estimation method based on Clonal par-

ticle swarm optimization is proposed. This algorithm employs clonal mechanism found

in the natural immune system of creatures into the PSO. By cloning the best individual

of every ten succeeding generations, the CPSO has better optimization solving capability

and convergence performance than the conventional PSO and GA.

Zero Motion Prejudgement

Zero Motion Prejudgment (ZMP) is the procedure to find the static macroblocks which

contains zero motion [25]. In real world video sequences more than 70% of the MBs are
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static which do not need the remaining search . So, significant reduction of computation

is possible if we predict the static macroblocks by ZMP procedure before starting motion

estimation procedure and the remaining search will be faster and saves memory. We first

calculate the matching error (SAD) between the MB in the current frame and the MB at

the same location in the reference frame and then compare it to a predetermined threshold,

saying ∆. If the matching error is smaller than ∆ we consider this MB static which do

not need any further motion estimation, and return a [0,0] as its motion vector(MV).

Performance Evaluation Criterion

As widely adopted, we measure the amount of computation and the quality of compen-

sated video sequence by Computation criterion and Peak Signal-to-Noise Ratio (PSNR).

Computation is defined as the average number of the error function evaluations per MV

generation. Due to the minimum computational cost, we choose Summed Absolute Dif-

ference (SAD) as the error function which is defined as follows:

SAD(i, j) =
1

N2

N−1∑

n1=0

N−1∑

n2=0

[s(n1, n2, k) − s(n1 + i, n2 + j, k − l)] (4.4)

Where the size of a MB is N ×N , Ik and Ik−1 are current frame and reference frame.

The motion estimate quality between the original Iogn and the compensated video

sequences Icmp is measured in PSNR which is defined as the ratio between the maximum

possible power of a signal and the power of corrupting noise that affects the fidelity of its

representation.

PSNR = 10 log10

[

I2
max

MSE

]

(4.5)

MSE(i, j) =
1

N2

K∑

k=1

N−1∑

n1=0

N−1∑

n2=0

[Iogn(i, j, k) − Icmp(i, j, k)]2 (4.6)

Where K is the number of frames in the video sequence, Imax is the maximum possible

pixel value of an image. When the pixels are represented using 8 bits per sample, Imax is

255.

Population Size and Initial Position

Block-based matching algorithms consider each frame in the video sequence formed by

many non overlapping small regions, called MB which are often square-shaped and with
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fixed-size (16× 16 or 8× 8). Given a MB Bm in the anchor frame, the motion estimation

problem is to determine a corresponding matching MB in the target frame such that

the matching error between these two blocks is minimized. Then, a motion vector is

computed by subtracting the coordinates of the MB in the anchor frame from that of the

matching MB in the target frame. Instead of sending the entire frame pixel-by-pixel, a set

of motion vectors is transmitted through the channel which greatly reduces the amount

of transmission.

Center-biased feature denotes that match point may exist within a small zone around

macro block center. Thus we select individuals as shown in Figure 4.1 which distribute

around center of macro block. The white dot is center of macro block and dark dots

are individuals. Usually we let individuals randomly distribute in search window. How-

ever, if individual positions are around optimization position, it can speed up population

convergence.

Figure 4.1: Particles intial positions

We put four particles in a cross shape with size one (size refers to the distance between

any vertex point and the center-point) in the adjacent MBs and four particles in a cross

shape with size two, and then rotate it by angle π/2. With two cross shapes in different

sizes, we try to balance the global exploration and local refined search in order for broader

searching space as well as higher matching accuracy. Moreover, we distribute particles

equally in all directions (8 particles in 8 directions) with a view to find the matching MB

in each direction with equal possibility.

Stopping Criterion

Generally, there are two widely adopted stopping criteria. One is fixed-iteration, that is,

given a certain iteration time, saying N , the search stops after N iterations. The other is

specified-threshold. For minimization problems, we specify a very small threshold, and if
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the change of gbest during t times of iteration is smaller than the threshold, we consider

the group best value very near to the global optimum, thus the matching procedure

stops. Due to the center-biased characteristics of real-world motion fields, we adopt the

fixed-iteration method in this paper for reducing the computational cost.

4.2.1 Flowchart of CPSO BMA

The block matching algorithm based on CPSO for ME is summarized as sown in figure

4.2

Figure 4.2: Flowchart of CPSO-BMA
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4.2.2 Experiments and Simulation Results

CPSO Parameters

In this thesis, to balance between computational cost and compensated video quality, we

adopt the inertia weight as in which is widely considered as the defacto PSO standard.

A large inertia weight facilitates a global search while a small inertia weight facilitates

a local search. By changing the inertia weight dynamically, we use the fixed-iteration

stopping criterion with max 5 iterations. The max velocity is set to 5. The inertia weight

w decreases linearly from 0.9 to 0.4 during a CPSO run and two Acceleration coefficients

C1 and C2 can also control how far a particle will move in a single iteration [24]. Typically,

both of them are initialized as 2.0 . µ is an Gaussian random variable with zero mean

and unity variance.

Motion Estimation Parameters

We divide a whole image frame into 16 × 16 MBs in the simulation that is N = 16

and the size of search window was set as 15× 15. Threshold for each test video sequence

correspondingly based on data obtained in experiments shown in Table 4.1. This threshold

value is not fixed, may vary depending on your video sequences. We do not restrict the

range of candidate matching MBs rigidly by a search window P. Instead, through the

fixed-iteration and the setting of max velocity, particles search for the matching MB in

an area more flexible and adaptable.

Results and Analysis

The performance of the proposed CPSO based block matching algorithm is evaluated

in terms of computation and average peak signal-to-noise ratio (PSNR) per frame of

the reconstructed video sequence is computed for quality measurement. Computation is

defined as the average number of the error function evaluations per MV generation.For

Zero motion Prejudgement threshold value for each test video sequence correspondingly

based on data obtained in experiments shown in Table 4.1.

For comparison, the performance of DS, GA, PSO, and our proposed algorithm are

compared in terms of PSNR and computation and documented in Table 4.2 and Table 4.3

for 5 different video sequences. Figure 4.4 shows the computation comparison between

DS, PSO and CPSO. Figure 4.3 shows the simulation results of PSNR performances of

100 frames. Figure 4.8 shows the original and decoded frames of NEWS sequence using

different search algorithms. Figure 4.5 shows the shows the simulation results of PSNR
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performances of DS, GA, PSO, CPSO. Search range P=7 means that the search will be

performed within a square region of [-p, +p] around the position of the current block.

In our simulation experiments, the block size is fixed at 16 × 16. To make a consistent

comparison, block matching is conducted within a 15 × 15 search window.

In order to evaluate search performance in a wide range of motion conditions, five video

sequences in QCIF were tested in this paper are Akyio, Container, mother & daughter,

News, Silent from 1st frame to 100th frame. From the results obtained, CPSO shows

significant computational reductions while acceptable drops in peak signal-to-noise ratio

(PSNR). Notably, in sequence Akiyo, Container and Mother & Daughter, our method

achieves very close PSNR performance (max difference 0.5dB in Mother & Daughter) with

6.8251, 7.5869 and 5.7950 times of computation reductions compared to DS respectively

and 1.3062, 1.1518, and 1.3492 times of computation reductions compared to PSO. In

sequence Silent and News our method has achieved around 1 dB less than the Diamond

Search (DS) but it is more than using PSO. These silent and news contains high and

moderate motion contents, where our proposed method giving slightly less PSNR but in

an acceptable degree. But, in those sequences, compared to DS, CPSO consumes over

4.5 times less of computation to that of DS and 1.5 times less than that of PSO. In all of

the above sequences PSNR of GA is atleast 2 dB lesser than the standard DS algorithm

and also it is faster compared to DS but it is slower than the CPSO algorithm. Thus we

can say that our CPSO algorithm giving better results in terms of quality and speed than

other algoritms.

Sequences Format Threshold
Akiyo QCIF 350

Container QCIF 300
Mother & daughter QCIF 250

News QCIF 250
Silent QCIF 200

Table 4.1: Assumed Threshold values

Referred to, a PSNR higher than 40dB typically indicates an excellent image, between

30-40dB usually means a good images (i.e., the distortion is visible but acceptable); be-

tween 20-30dB PSNR is quite poor; and finally, a PSNR lower than 20dB is unacceptable.

For all five sequences tested, CPSO algorithm achieves PSNR higher than 30dB in most

of the frames, thus the PSNR droppings are in an acceptable degree.
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Sequences GA to DS PSO to DS CPSO to DS
Akiyo 3.5597 5.2251 6.8251

Container 4.3469 6.5869 7.5869
Mother & daughter 3.5288 4.2950 5.7950

News 4.2781 5.6956 6.4956
Silent 3.5234 4.5338 6.2338

Table 4.2: Computational gain to DS ,PSO

Sequences DS GA PSO CPSO
Akiyo 40.2463 38.1706 39.0133 40.1133

Container 37.8131 36.2360 36.2071 37.6646
Mother & daughter 35.7113 33.2731 34.1635 35.2328

News 32.2179 29.6056 30.4562 31.8493
Silent 32.3068 30.2544 30.8542 31.6207

Table 4.3: Average PSNR(dB) performances of DS, GA, PSO, CPSO

Figure 4.3: PSNR comparison of DS, PSO, CPSO
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Figure 4.4: computational comparison of DS, PSO, CPSO

frame to be predicted motion estimated frame by DS

motion estimated frame by GA motion estimated frame PSO

Figure 4.5: original and estimatted frames of silent sequence
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frame to be pridicted motion estimated frame by DS

motion estimated frame by PSO motion estimated frame CPSO

Figure 4.6: original and estimated frames of NEWS sequence

4.3 Conclusion

A fast block-matching algorithm (BMA) named fast block-matching algorithm for video

motion estimation based on clonal particle swarm optimization (CPSO) is proposed. Ap-

plying immunity-clonal strategies, can effectively overcome the inherent drawback of being

liable to get trapped in local optima in traditional fast BMAs such as TSS and DS. By

cloning the best individual of every ten succeeding generations, the CPSO has better

optimization solving capability and convergence performance than the conventional Stan-

dard PSO. In addition, skipping those static macroblocks from processing can reduce the

computational cost of the algorithm. Simulation results show that the CPSO-BMA pro-

posed requires less amount of computation and achieves PSNR in an acceptable degree

of drop when compared to DS in some highly dense motion sequences. Moreover CPSO

just consumes a few lines of codes due to its simplicity which makes the CPSO algorithm

attractive for hardware implementation. In the future, variants of PSO might be applied

to strengthen the global searching ability and to speed up the search and to avoid being

trapped in local minima.

49



CHAPTER 5

BIDIRECTIONAL MOTION ESTIMATION

5.1 MPEG Frame Encoding

MPEG provides for up to three types of frames called the I, P and B frames. The intra-

frame, or I frame, serves as a reference for predicting subsequent frames. I frames, which

occur on an average of one out of every ten to fifteen frames, only contains information

presented within itself. P Frames are predicted from information presented in the nearest

preceding I or P frame. The bi-directional B frames are coded using prediction data from

the nearest preceding I or P frame and the nearest following I or P frame. Not all MPEG

2 systems use B frames. Although a more efficient level of compression is achieved by

‘B’ frames, compatible receiver/decoders must have an additional memory buffer, which

increases the cost of the decoder.

I Frames

An I-frame is encoded as a single image, with no reference to any past or future frames.

The encoding scheme used is similar to JPEG compression. Each 8 × 8 block is encoded

independently with one exception explained below. The block is first transformed from

the spatial domain into a frequency domain using the DCT (Discrete Cosine Transform),

which separates the signal into independent frequency bands. Most frequency information

is in the upper left corner of the resulting 8 × 8 block. After this, the data is quantized.

Quantization can be thought of as ignoring lower-order bits (though this process is slightly

more complicated).
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P Frames

Starting with an intra, or I frame, the encoder can forward predict a future frame. This

is commonly referred to as a P frame, and it may also be predicted from other P frames,

although only in a forward time manner. As an example, consider a group of pictures that

lasts for 6 frames. In this case, the frame ordering is given as I, P, P, P, P, P, I, P, P, P, P ,

· · · Each P frame in this sequence is predicted from the frame immediately preceding it,

whether it is an I frame or a P frame. I frames are coded spatially with no reference to

any other frame in the sequence.

B Frames

The encoder also has the option of using forward/backward interpolated prediction. These

frames are commonly referred to as bi-directional interpolated prediction frames, or B

frames for short. As an example of the usage of I, P , and B frames, consider a group

of pictures that lasts for 6 frames, and is given as I, B, P,B, P,B, I, B, P,B, P,B,· · · As

in the previous I & P only example, I frames are coded spatially only and the P frames

are forward predicted based on previous I and P frames. The B frames however, are

coded based on a forward prediction from a previous I or P frame, as well as a backward

prediction from a succeeding I or P frame. As such, the example sequence is processed

by the encoder such that the first B frame is predicted from the first I frame and first

P frame, the second B frame is predicted from the second and third P frames, and the

third B frame is predicted from the third P frame and the first I frame of the next group

of pictures. From this example, it can be seen that backward prediction requires that the

future frames that are to be used for backward prediction be encoded and transmitted

first, out of order. There is no defined limit to the number of consecutive B frames that

may be used in a group of pictures, and of course the optimal number is application

dependent.

The main advantage of the usage of B frames is coding efficiency. In most cases, B

frames will result in less bits being coded overall. Quality can also be improved in the case

of moving objects that reveal hidden areas within a video sequence. Backward prediction

in this case allows the encoder to make more intelligent decisions on how to encode the

video within these areas. Also, since B frames are not used to predict future frames,

errors generated will not be propagated further within the sequence.

One disadvantage is that the frame reconstruction memory buffers within the encoder

and decoder must be doubled in size to accommodate the 2 anchor frames. This is almost
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never an issue for the relatively expensive encoder, and in these days of inexpensive DRAM

it has become much less of an issue for the decoder as well. Another disadvantage is that

there will necessarily be a delay throughout the system as the frames are delivered out of

order . Most one-way systems can tolerate these delays, as they are more objectionable

in applications such as video conferencing systems.

In the MPEG2, MPEG4 schemes, the order of picture coding differs to the actual

order of pictures in the video stream. Namely, a group of pictures, shown in Fig. 5.1 in

the MPEG2 video coder is actually encoded in the order shown in Fig. 5.2.

Figure 5.1: An input video stream

Figure 5.2: Encoding order

For instance, if a sequence is represented as IBBPBBPBBI , then the encoding

order becomes IPBBPBBIBB . The bi-directional frame prediction also increases the

computational complexity, since the motion estimation must be performed in both the

past and future frames.

5.2 Bidirectional Frame Prediction

Forward frame prediction (P frame coding) uses a previous frame as the reference frame in

order to predict a block in the current frame. Even though P frame coding does not cause

any coding delay, it produces poor prediction when the frame contains hidden regions or

newly entered objects. Motivated by the MPEG video standards, bi-directional frame

prediction [26] (B frame coding) uses a past frame and a future frame as two reference

frames for prediction. B frame coding provides a number of significant advantages, which

are:
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1. Hidden areas can be predicted using the future frame;

2. Less bit budget should be spent to achieve the same quality of motion compensation;

3. It has a better noise suppression quality than the forward frame prediction.

Despite the advantages, B frame coding introduces an extra delay in the encoding

process, which has become a problem in applications such as teleconferencing.

Bidirectional frame prediction consists of two stages of prediction, one is forward

frame prediction, backward frame prediction. In this scheme, a target macroblock of

16 × 16 pixels in a bidirectionally predicted frame, (or B-frame) is predicted from two

reference frames which are coded frames located before and after the B-frame on the time

axis. We shall refer to these reference frames as the previous reference frame and next

reference frame respectively [27]. The bidirectional prediction scheme generally employed

in MPEG-4 scheme is as shown in figure 5.3.

Figure 5.3: Bidirectional prediction scheme

For an input macroblock to be interpolatively predicted, one pair of forward and

backward motion vectors (VF , VB) is generated by the encoder, coded and transmitted

to the decoder. These forward and backward motion vectors try to model the motion

of the objects in the scene from the previous reference frame to the current B-frame to

the next reference frame. A target pixel in the macroblock is predicted by averaging the

pair of pixels, or half-pel interpolated pixels, in the previous and next reference frames

at coordinates corresponding to the target pixel displaced by the forward motion vector

and the backward motion vector respectively. The prediction error is then coded and

transmitted.

With a given number of bits for coding the prediction residual of the B-frame, the

resulting distortion in reproducing this frame generally decreases with the magnitude of

the prediction error. Conversely, if the B-frames are to be coded so that a certain level of
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distortion is not exceeded, the number of bits required decreases with the prediction error

magnitude [28]. Therefore, given the interpolative prediction scheme described above, the

performance of the system relies on the effectiveness of the encoder in generating a pair of

motion vectors that accurately predict the target macroblock from the reference frames.

we praposed a novel effective technique for this purpose.

5.3 Bidirectional Motion Estimation Based on PSO

Generally, the most straightforward BMA called full search (FS) simply compares the

given macro block (MB) in the anchor frame with all candidate MBs in the target frame

exhaustively within a predefined search region. This is not fit for real-time applications

because of its unacceptable computational cost. To speed up the search, various fast

algorithms for block matching which reduce the number of search candidates have been

developed. Well known examples are three-step search (TSS), Four Step Search (4SS),

block-based gradient descent search (BBGDS) and diamond search (DS) have been pro-

posed to reduce computational efforts, based on fixed search pattern and greedy search

method.

Over the last few years, promising computational intelligence methods, called evo-

lutionary computing techniques such as genetic algorithm (GA), particle swarm opti-

mization (PSO) have been successfully applied to solve motion estimation problem. Such

approaches are suitable for achieving global optimal solution, which traditional fast BMAs

are not able to obtain easily. The GA needs to set some key parameters such as population

size, probability of mutation, probability of crossover, etc. If these parameters are not

prefixed properly, efficiency of GA becomes lower and also it is time consuming process.

So here we are adopted PSO procedure inoder to do the bidirectional motion estimation.

Motivated by the potential improvement attainable by switching from independent

search to joint search for the motion vector estimaion, and by the practical requirement

of avoiding an excessively high search complexity, the proposed method is an iterative

technique to jointly optimize the motion vectors by using particle swarm optimization.

Bidirectional ME forms a major computation bottleneck in video processing appli-

cations such as the detection of noise in image sequences, interpolation/ prediction of

missing data in image sequences and deinterlacing of image sequences.

In general Bidirectional motion estimation is performed by following the these steps:

1. Finding forward motion vector VF by taking past frame as reference frame

54



CHAPTER 5. BIDIRECTIONAL MOTION ESTIMATION

2. Finding backward motion vector Vb by taking future frame as reference

3. Find the matching error for both methods and find the average motion vector po-

sition and its matching error

4. Compare all the three errors take the motion vector which is giving the least error.

Generally, the objective of a motion estimation algorithm is to minimize a cost function

that measures the interpolation error in the macroblock. Examples are the popular sum

of absolute difference (SAD).The process of finding robust motion vectors using minimal

computations is a heavily researched area, and various fast algorithms have been proposed.

In order to reduce the overall processing time in some video processing applications,

the complexity of the bidirectional ME algorithm is looked into [29]. The proposed a novel

technique to do the bidirectional motion estimation based on PSO. From the chapter 4

we can say that Block matching algorithm based on PSO giving a good results interms

of quality and less number of computations. Our idea is not to find the forward and

backward motion vectors individually but to find the minimum matching macroblock at

each time when PSO is finding for a minimum matching block. so it will reduce the

number computaions involved in finding out the minimum matching point.

5.3.1 Algorithm Steps

The praposed algorithm can be summarized in the following algorithm steps

Figure 5.4: Bidirectional search for best motion vector

1. Initialization. Assume c1 = 2, c2 = 2, and w be from 0.9 to 0.4 linearly.

2. perform block matching algorithm based on PSO.
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3. Each time find the minimum matching error (SAD) point in the past frame and the

current frame as shown in fig. 5.3

4. Take the minimum out of both matching error (SAD), this one we are taking as the

Cost function of our algorithm.

5. For each generation we are getting the minimum error point in the two reference

frame at a time.

6. Until it reaches the stopping criteria it will continue the above steps.

7. Save the final motion vector point for motion compensation.

Since we are performing the Block matching procedure at a time in two reference

frames , our objective funtion is to minimize the mean of the two matching errors between

two frames.

costfun = min(SADP , SADF ) (5.1)

where SADP and SADF are the sum of absolute difference of the past frame and future

frames.

Zero Motion Prejudgement

In real world video sequences more than 70% of the MBs are static which do not need the

remaining search [30] . So, significant reduction of computation is possible if we predict

the static macroblocks by ZMP procedure before starting motion estimation procedure

and the remaining search will be faster and saves memory. We first calculate the matching

error (SAD) between the MB in the current frame and the MB at the same location in

the reference frame and then compare it to a predetermined threshold, saying ∆. If the

matching error is smaller than ∆ we consider this MB static which do not need any further

motion estimation, and return a [0,0] as its motion vector(MV).

Population Size and Initial Position

Block-based matching algorithms consider each frame in the video sequence formed by

many non overlapping small regions, called MB which are often square-shaped and with

fixed-size (16× 16 or 8× 8). Given a MB Bm in the anchor frame, the motion estimation

problem is to determine a corresponding matching MB in the target frame such that
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the matching error between these two blocks is minimized. Then, a motion vector is

computed by subtracting the coordinates of the MB in the anchor frame from that of the

matching MB in the target frame. Instead of sending the entire frame pixel-by-pixel, a set

of motion vectors is transmitted through the channel which greatly reduces the amount

of transmission.

Performance Evaluation Criteria

As widely adopted, we measure the amount of computation in terms of Average Search

points/frame and the quality of compensated video sequence by Computation criterion

and Peak Signal-to-Noise Ratio (PSNR) and Average mean square prediction error (AM-

SPE) for each frame. Due to the minimum computational cost, we choose Summed

Absolute Difference (SAD) as the error function which is given by

SAD(i, j) =
1

N2

N−1∑

n1=0

N−1∑

n2=0

[s(n1, n2, k) − s(n1 + i, n2 + j, k − l)] (5.2)

Where the size of a MB is N ×N , Ik and Ik−1 are current frame and reference frame.

The motion estimate quality between the original Iogn and the compensated video

sequences Icmp is measured in PSNR which is defined as

PSNR = 10 log10

[

I2
max

MSPE

]

(5.3)

The evaluation is based on the AMSPE and the bit rate. The results reported in the

table are based on the average mean square prediction error (AMSPE), which is given by

AMSPE =
1

K

K∑

k=1

MSPE(K) (5.4)

K is the total number of the frames tested and MSPE (mean square prediction error)

is the average energy per pixel in the residual image as given by

MSPE(i, j) =
1

N2

N−1∑

n1=0

N−1∑

n2=0

[s(n1, n2, k) − s(n1 + i, n2 + j, k − l)]2 (5.5)

We consider a block of pixels of size N × N in the reference frame, at a displacement

of, where i and j are integers with respect to the candidate block position. The MSE

is computed for each displacement position (i, j),within a specified search range in the

reference.
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The praposed algorithm fastness is measured interms of Average Search points/frame.

Stopping Criterion

Generally, there are two widely adopted stopping criteria. One is fixed-iteration, that is,

given a certain iteration time, saying N, the search stops after N iterations. The other is

specified-threshold. For minimization problems, we specify a very small threshold, and if

the change of gbest during t times of iteration is smaller than the threshold, we consider

the group best value very near to the global optimum, thus the matching procedure

stops. Due to the center-biased characteristics of real-world motion fields, we adopt the

fixed-iteration method in this paper for reducing the computational cost.

5.3.2 Experiments and Simulation Results

The performance of the proposed Bidirectional motion estimation block matching algo-

rithm based on Particle Swarm Optimization is evaluated in terms of Average mean square

prediction error (AMSPE) , Average Search points/frame and peak signal-to-noise ratio

(PSNR) per frame of the reconstructed video sequence is computed for quality measure-

ment. Zero motion Prejudgement procedure to be done before starting of block matching

procedure. significant reduction of computation is possible if we predict the static mac-

roblocks before starting motion estimation procedure and the remaining search will be

faster and saves memory. We first calculate the matching error (SAD) between the MB

in the current frame and the MB at the same location in the reference frame and then

compare it to a predetermined threshold, saying ∆. If the matching error is smaller than

∆, we consider this MB static which do not need any further motion estimation, and

return a [0,0] as its motion vector(MV). Threshold value for each test video sequence

correspondingly based on data obtained in experiments shown in Table 3.1.

Experiments conducted over four video sequences demonstrate that the proposed tech-

nique is superior to the existing bi-directional motion compensation methods as are shown

in tables for different video sequences schemes. The prediction error is averaged over 100

frames. The motion estimation for our bi-directional prediction coding is conducted be-

tween a B-frame and a past I or P and a future frame P . since the joint search at all the

locations within the search windows in the previous and the future frame is computation-

ally very expensive. so the praposed technique will do the motion vector search in both

frame at a time. When finding out the matching error between frames each time we will

find out which matching error is minimum, the one which is giving minimum error that
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one is considered as the local best position for each particle position. After the limited

number of generations we will get the global minimum point in both of the frames. so we

reduced a lot of number of error function calulations.Due to the minimum computational

cost, we choose Summed Absolute Difference (SAD) as the error function.

As widely adopted, we measure the amount of computation in terms of Average Search

points/frame and the quality of compensated video sequence by Computation criterion

and Peak Signal-to-Noise Ratio (PSNR) and Average mean square prediction error (AM-

SPE) for each frame. The pattren of the group of picture (GOP) IBBPBBPBBI The

evaluation is based on the AMSPE . The results reported in the table are based on the

average mean square prediction error (AMSPE). The AMSPE values for all the four video

sequences namely News, Mother & Daughter, Akyio, Silent are noted in a tabular form

5.1 against the Joint search algorithm based on Diamond search and Particle Swarm Op-

timization. To find the fastness of the algorithm we find out Average Search points/frame

for all the four video sequences and are reported in the tablular form 5.2 against the Joint

search algorithm based on Diamond search and Particle Swarm Optimization. As it can

be seen that from the tables tha proposed bidirectional algorithm is giving less predicton

error and the number of search point per each frame are less.

For comparison we find out the quality between the reconstructed video sequence is

computed by PSNR of all bidirectional frames and shown in a figure 5.5 for NEWS video

sequence and figure 5.6 shows the PSNR (dB) values of SILENT video sequences against

the Joint search algorithm based on Diamond search and Particle Swarm Optimization.

As it can be seen from these two tables and the PSNR (dB) values, the praposed method

employing the bi-directional motion vectors requires less number of bits for a fixed AMSPE

or produces a better prediction error for a given bit budget. These experimental results

are obtained for the video sequences, It is quite clear that the proposed method can

significantly reduces the computational complexity involved in the Bidirectional frame

prediction and also least prediction error in all video sequences.

sequence BI-DS BI-PSO NEW BI-PSO
News 125.1636 148.0847 80.3798

Mother & daughter 32.4141 47.3537 29.5195
Akiyo 11.8697 20.0268 16.3192
Silent 76.9223 98.5123 51.4913

Table 5.1: Average mean square prediction error (AMSPE)
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Sequences BI-DS BI-PSO NEW BI-PSO
Akiyo 21.6463 17.115 10.9515

Mother & daughter 21.3988 15.2325 11.3266
News 19.7825 11.9449 9.9448
Silent 19.905 9.7298 7.5776

Table 5.2: Average Search points/frame

frame to estimated estimated by BI DS

estimated by BI PSO estimated by New BI PSO

Figure 5.5: Original and estimated frames using different methods
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Figure 5.6: NEWS video PSNR(dB) comparasion of B-frame
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Figure 5.7: SILENT video PSNR(dB) comparasion of B-frame
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5.4 Conclusion

Bidirectional ME forms a major computation bottleneck in video processing applications

such as the detection of noise in image sequences, interpolation/ prediction of missing

data in image sequences and deinterlacing of image sequences. The proposed Novel Bidi-

rectional Motion Estimation algorithm that effectively reduces the number of operations

in BM motion estimation without sacrificing the quality of the results. Praposed bidirec-

tional algorithm is giving less predicton error and the number of search point per each

frame are less. In addition, skipping those static macroblocks from processing can reduce

the computational cost of the algorithm. Simulation results shows that the proposed al-

gorithms gives the close match of PSNR values when compared to joint search algorithm

with DS and an acceptable degree of drop when compared to joint search DS in some

highly dense motion sequences. Moreover PSO just consumes a few lines of codes due to

its simplicity which makes the PSO algorithm attractive for hardware implementation.

In the future, variants of PSO might be applied to strengthen the global searching ability

and to speed up the search and to avoid being trapped in local minima.
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CONCLUSION AND FUTURE WORK

6.1 Conclusion

Because of the Internet is more and more universal and the technology of multimedia

has been progressed, the communication of the image data is a part in life. In order to

employ effect in a limit transmission bandwidth, to convey the most, high quality user

information .It is necessary to have more advanced compression method in image and data.

Motion Estimation (ME) and compensation techniques, which can eliminate temporal

redundancy between adjacent frames effectively, have been widely applied to popular

video compression coding standards such as MPEG- 2, MPEG-4. Full search Motion

Estimation algorithm is not fit for real-time applications because of its unacceptable

computational cost. Bidirectional ME forms a major computation bottleneck in video

processing applications such as the detection of noise in image sequences, interpolation/

prediction of missing data in image sequences and deinterlacing of image sequences. The

computational complexity of motion estimation is 70 percent to 90 percent in video coding

and processing systems, so the idea is to find a fast Motion Estimation algorithm to

improve the operation.

In this thesis, To speed up the search, a novel fast block matching algorithm based dif-

ferent Evolutionary Computing Techniques is praposed. Traditional fast block matching

algorithms are easily traped into the local minima resulting in degradation on video qual-

ity to some extent after decoding. Since these Evolutionary Computing Techniques are

suitable for achieving global optimal solution, In this thesis a Novel Fast Motion Estima-

tion algorithms based on Genetic Algorithm (GA) , Particle Swarm Optimization (PSO),
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Clonal Particle Swarm Optimization (CPSO). sum of Absolute Difference (SAD) is taken

as the matching Criteria due to minimum computational cost and Zero Motion prejudge-

ment is also included which aims at finding static macroblocks(MB) which do not need

to perform remaining search thus reduces the computational cost. From the simulation it

is observed that CPSO algorithm giving best results among all methods in unidirectional

motion estimation and the proposed Bidirectional method is a novel iterative technique

which reduces the number search point in aframe and a good reconstruction of frames

making these proposed methods computationally fast and efficient techniques.

6.2 Scope For Future Work

From the simulation results it is observed that CPSO just consumes a few lines of codes

due to its simplicity which makes the ME algorithm based on CPSO attractive for hard-

ware implementation. In the future, variants of PSO might be applied to strengthen the

global searching ability and to speed up the search and to avoid being trapped in local

minima. In future other evolutionary computing techniques also can be tried for the

better results. Three important factors Block size , search area, matching criteria can

be varied such as Variable block size, large search area for complex motions and small

search area for low complex motions and also by taking the intial particle positiuons also

make a big change. This algorithm is based on a translational model of the motion of

objects between frames. It also assumes that all pels within a block undergo the same

translational movement.There are many other ME methods, but Block matching ME is

normally preferred due to its simplicity and good compromise between prediction quality

and motion overhead. In bidirectional motion estimation also we can try to implement

new techniques which will further reduce the complexity of MPEG video coding.
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