
Implementation of a Generic Modular Cryptosystem for the
RSA on Reconfigurable Hardware

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

Computer Science and Engineering
(Specialization : Information Security)

By

DEEPAK KRISHNANKUTTY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA, INDIA

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Implementation of a Generic Modular Cryptosystem for the RSA on
Reconfigurable Hardware

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

Computer Science and Engineering
(Specialization : Information Security)

By

DEEPAK KRISHNANKUTTY

UNDER THE GUIDANCE OF

Prof. P. M. Khilar

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA, INDIA

2009

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

CERTIFICATE

This is to certify that the thesis entitled, “ Implementation of a Generic Modular Cryptosys-

tem for the RSA on Reconfigurable Hardware ” submitted by Deepak Krishnankutty in

partial fulfillment of the requirements for the award of Master of Technology Degree in Com-

puter Science & Engineering with specialization in Information Security during 2007 - 2009

at the National Institute of Technology, Rourkela (Deemed University) is an authentic work

carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University / Institute for the award of any Degree or Diploma.

Date Prof. P.M. Khilar

Dept. of Computer Science & Engineering

National Institute of Technology

Rourkela-769008

Orissa, India

Acknowledgements
There are many people who have contributed one way or the other to make this thesis work

possible. I would like to thank all those people for their assistance.
Special thanks to Professor P. M. Khilar, Professor in the Department of Computer Science

Engineering, NIT Rourkela, my advisor for this thesis work, for allowing me to choose such
an interesting area of Security in VLSI Design. I truly appreciate and value his encouragement
from the beginning to the end of this thesis. His trust and support inspired me in the most
important moments for making right decisions and I am glad to work with him.

I am also very thankful to all my classmates and seniors of VLSI lab in the Electronics and
Communications Engineering Department, especially Swain Ayas Kanta, K Sudeendra Kumar,
Sushant Pattnaik and Dr. Jitendra K Das,my friends Arun Kumar P.S. and George Tom V, who
always encouraged me in the successful completion of my thesis work.

I am very thankful to my parents for their continued encouragement and appreciation of the
value of my work in the most difficult times of my life.

Deepak Krishnankutty

Contents

Contents i

Abstract iv

List of Figures v

List of Tables vi

List of Abbreviations vii

1 Introduction 1
1.1 Introduction . 2
1.2 Motivation . 3
1.3 Thesis Layout . 3

2 The RSA Algorithm 5
2.1 Introduction . 6
2.2 Computation of Modular Exponentiation . 8
2.3 Layout of the RSA implementation on FPGA 9
2.4 Conclusion . 10

3 Non-restoring Division for Modulus Extraction 11
3.1 Introduction . 12

3.1.1 Restoring Division Algorithm . 12
3.2 Non-restoring division implementation . 14

3.2.1 Layout for division & Simulation Results 16
3.2.2 Synthesis Results . 17

3.3 Conclusion . 18

i

4 Modular Inversion Hardware 19
4.1 Introduction . 20

4.1.1 Extended Euclidean Algorithm . 21
4.1.2 Binary Euclidean Algorithm . 21
4.1.3 Laszlo Hars Modification . 23
4.1.4 Justification for Laszlo Hars Euclidean Algorithm 24

4.2 Laszlo Hars Inversion Implementation . 25
4.2.1 Layout of Modular Inversion . 25
4.2.2 Simulation Results . 26
4.2.3 Synthesis Results . 26

4.3 Conclusion . 27

5 Modular Multiplication Hardware 28
5.1 Introduction . 29
5.2 Modular Multiplication . 29

5.2.1 Montgomery Modular Multiplication 31
5.3 Efficient techniques for direct multiplication 33

5.3.1 Standard Multiplication Algorithm . 33
5.3.2 Karatsuba-Ofman Algorithm . 35
5.3.3 FFT-based Multiplication Algorithm 37

5.4 Hybrid Karatsuba-Ofman Implementation . 37
5.4.1 Simulation Results . 39
5.4.2 Synthesis Results . 40

5.5 Conclusion . 41

6 Modular Exponentiation Hardware 42
6.1 Introduction . 43
6.2 Efficient techniques for exponentiation . 43

6.2.1 Binary Strategies . 43
6.2.2 Montgomery Exponentiation . 45

6.3 Montgomery Exponentiation implementation 47
6.3.1 Simulation Results . 49
6.3.2 Synthesis Results . 50

6.4 Conclusion . 51

ii

7 RSA Implementation and Synthesis Results 52
7.1 Introduction . 53

7.1.1 Simulation Results . 53
7.1.2 Synthesis Results . 54

7.2 Extensions to this work . 55
7.3 Conclusion . 55

Bibliography 56

iii

Abstract
This report summarizes the work that was initiated from the summer of 2008, on the study

and analysis of cryptographic design techniques and their implementation on an FPGA board,
i.e. the Virtex II pro. The study began with the understanding of a popular HDL language,
namely, Verilog. Based on the study an implementation of a modular cryptosystem based on
the RSA and generic upto a 256 bit modulus was realized. Optimal techniques for developing
a high speed RSA cryptosystem is presented in this work.

Through out the thesis the primary tool was the Xilinx based ISE toolkit. However for val-
idation purposes other simulators such as ModelSim was also used. However, the simulations
presented in this work utilizes the Xilinx ISE 10.1 Simulator environment. The Xilinx XST
10.1 was used in the synthesis of the implementation.

The division technique utilized a modified non-restoring division scheme. The multipli-
cation scheme used the Karatsuba-Ofman technique. The exponentiation scheme used was
the Montgomery Modular exponentiation. The inversion scheme used a modified form of the
Extended Euclidean Algorithm which involves no division or multiplication as suggested by
Laszlo Hars.

The thesis concludes with suggestions on extending the present implementation of RSA on
FPGA.

iv

List of Figures

2.1 Overall Layout of RSA Implementation . 9

3.1 Restoring Division Algorithm . 13
3.2 Restoring Division Example . 13
3.3 Non-restoring Division Algorithm . 14
3.4 Non-restoring Division Example . 15
3.5 Layout of the Division Implementation . 16
3.6 Layout of the Division Simulation . 17

4.1 Binary Euclidean Algorithm . 22
4.2 Laszlo Hars Shifting Euclidean Algorithm . 23
4.3 Modular Inversion Layout . 25
4.4 Modular Inversion Simulation . 26

5.1 Standard multiplication product . 33
5.2 Standard Multiplication Algorithm . 34
5.3 Abstract 512 bit Hybrid Karatsuba Structure 37
5.4 Karatsuba-Ofman Multiplier Simulation . 39

6.1 MSB-First Binary Exponentiation . 44
6.2 LSB-First Binary Exponentiation . 44
6.3 Binary Exponentiation example . 45
6.4 Montgomery Exponentiation Algorithm . 46
6.5 Montgomery Exponentiation Implementation Layout 47
6.6 Montgomery Exponentiation Simulation . 49

7.1 RSA Implementation Simulation . 53

v

List of Tables

3.1 Synthesis Results for Non-restoring Division 17

4.1 Synthesis Results for Modular Inversion . 26

5.1 Synthesis Results for Karatsuba-Ofman Multiplier 40

6.1 Synthesis Results for Montgomery Modular Exponentiation 50

7.1 Synthesis Results for the RSA cryptosystem 54

vi

List of Abbreviations

FPGA : Field Programmable Gate Array

VHDL : V HSIC(Very High Speed Integrated Circuit) Hardware Description Language

RSA : Rivest Shamir Adleman public key cryptographic algorithm

EEA : Extended Euclidean Algorithm

BEA : Binary Euclidean Algorithm

KOM : Karatsuba−O f man Multiplication

FPGA : Field Programmable Gate Array

GF : Galois Field usually de f ined over a modulus

CLB : Con f igurable Logic Blocks

Xilinx ISE : Xilinx Integrated So f tware Environment

Xilinx XPS : Xilinx Plat f orm Studio f or EDK

EDK : Embedded Development Kit

vii

Chapter 1

Introduction

1.1. INTRODUCTION

1.1 Introduction

FPGAs are gaining importance both in commercial as well as research settings. The former
appreciate the short turn-around times, the lack of Non-reccuring Engineering costs for small
volume production and the easy prototyping. Since the technology is far more affordable than
custom-manufactured ASICs, even smaller companies can take advantage of the capabilities of
large-scale integration.The choice of reconfigurable logic as a target platform for cryptographic
algorithm implementations appears to be a practical solution for embedded systems and high-
speed applications [1]. Reconfigurable hardware devices are usually distributed in a large ge-
ographic area and operated over public networks, making on-site configuration inconvenient
or infeasible. Therefore, robust security mechanisms for remote control and configuration are
highly needed.

The RSA algorithm is a secure public key algorithm if the modulus size is sufficiently
large. It can be used in these applications as a method of exchanging secret information such
as keys and producing digital signatures. However, the RSA algorithm is very computationally
intensive, operating on very large integers. The RSA algorithm has been adopted by many
commercial software products and is built into current operating systems by Microsoft, Apple,
Sun, and Novell. Commercial Application Specific Standard Products (ASSPs) like the security
processors offered by several vendors have a much higher RSA performance than software
implementation [2].

In this thesis, the objective was to design a generic high frequency version of the RSA
with the largest possible modulus on the Virtex II pro FPGA using the Verilog HDL. In this
regard, a generic cryptosystem with the capabilities of handling a 256 bit modulus was synthe-
sised with some of the best algorithms available for the intrinsic arithmetic operations involved,
such as generic multiplication with a 512 bit product output, 256 bit modular exponentiation,
256 bit non-restoring division for the generation of modulus from a divident of size upto 512
bits and 256 bit modular inversion.This thesis focuses primarily on cryptosystems which in-
volve modular arithmetic. Although a key generation component was implemented, the 128
bit prime keys used in the generation of a 256 bit modulus was assumed to be known prior to
the implementation. This is because the implementation of the multiplication hardware (recur-
sive Karatsuba-Ofman [3]) was too large and occupied around 40 % of the available slices in
the Virtex II pro FPGA. Hence the implementation of an RNG (Random Number Generator)
hardware as well a primality tester was excluded for compactness.

NIT Rourkela 2

1.2. MOTIVATION

Based on the synthesis results, a maximum frequency of 62 Mhz was achieved for the en-
cryption component(exponentiation) in the cryptosystem. The encryption component involves
the most computationally intensive part which is modular exponentiation.

1.2 Motivation

Attacks that involve multiple parts of a security system are difficult to predict and model. If
cipher designers, software developers and hardware engineers do not understand or review each
other’s work, security assumptions made at each level of a system’s design may be incomplete
or unrealistic. As a result security faults often involve unanticipated interactions between com-
ponents designed by different people. The better solution would be to distribute the levels of
security among various levels in a complete system. In this regard a notion of Trust can be
achieved from the lower levels to the higher levels.

Trusted Computing [4] more or less serves the benefit of developing models of trust at lower
levels of a system [5]. As the range of applications related to reconfigurable logic widens, there
occurs the need for secure platforms and secure transactions in such systems. One of the most
common public-key algorithms in use for secure transactions is the RSA. Hence the goals of
designing a cryptosystem for the RSA on an FPGA become relevant. Implementing the RSA
on reconfigurable hardware with a large modulus depends on trade offs between using a high
speed algorithms which consume a large amount of space and low speed ones that

1.3 Thesis Layout

The Thesis layout has been structured with a view to provide an understanding of the com-
plexity of the submodules involved in the cryptosystem and to progressively build a complete
system that utilizes each of the submodules involved. Based on this view, the various chapters
have been presented as follows.

Chapter 2 gives an introduction to the concepts of the RSA algorithm. A review of the
previous implementations of the RSA is also discussed. Further, a layout of the RSA imple-
mentation also presented.

NIT Rourkela 3

1.3. THESIS LAYOUT

Chapter 3 introduces the division algorithms that could be utilized for the extraction of
modulus in hardware. The implementation of a variant of the non-restoring division algorithm
is presented. The synthesis results are compared with earlier implementations.

Chapter 4 introduces the methods by which inversion upon a modulus can be implemented
on hardware.The implementation of an inversion technique [6] is also presented. The syn-
thesis results are compared with other variants of the Extended Euclidean Algorithm that was
implemented in previous works

Chapter 5 introduces multiplication algorithms that are hardware compatible. The imple-
mentation of a recursive Karatsuba-Ofman multiplication with a product result of 512 bits is
also presented. The synthesis and simulation results are compared with previous implementa-
tions

Chapter 6 introduces various exponentiation techniques. The implementation of the mont-
gomery method of exponentiation is presents. The synthesis results are compared with pre-
vious implementations. This version of the montgomery exponentiation employes the direct
Karatsuba-Ofman implementation for a higher throughput result.

The last chapter Chapter 7 presents the overall implementation results and summarizes the
synthesis details. Further, possible extensions to the current work is also presented.

NIT Rourkela 4

Chapter 2

The RSA Algorithm

5

2.1. INTRODUCTION

2.1 Introduction

The RSA algorithm was invented by Rivest, Shamir, and Adleman [7]. Let p and q be two
distinct large primes.The modulus n is the product of these two primes: n=pq.
Euler’s totient function of n is given by

φ(n) = (p−1)(q−1), (2.1)

Now, select a number 1 < e < φ(n) such that

gcd(e,φ(n)) = 1, (2.2)

and compute d with
d = e−1 (mod φ(n)) (2.3)

using the Extended Euclidian algorithm [8]. Here e is the public exponent and d is the private
exponent. Usually one selects a small public exponent e.g., e = 216 +1.The modulus n and the
public exponent e are published.The values of d and the prime numbers p and q are kept secret.
Encryption is performed by computing

C = Me (mod n) (2.4)

where M is the plaintext such that 0 ≤M < n.The number C is the ciphertext from which the
plaintext M can be computed using

M = Cd (mod n) (2.5)

The correctness of the RSA algorithm follows from Euler’s theorem: Let n and a be positive,
relatively prime integers.Then

aφ(n) = 1 (mod n). (2.6)

Since we have ed = 1 (mod φ(n)), i.e.,ed = 1 + Kφ(n) for some integer K, we can write

Cd = (Me)d (mod n)

= Med (mod n)

= M1+Kφ(n) (mod n)

= M · (Mφ(n))K (mod n)

= M ·1 (mod n) (2.7)

NIT Rourkela 6

2.1. INTRODUCTION

provided that gcd(M,n) = 1. The exception gcd(M,n)>1 can be dealt as follows. According to
Carmicheal’s theorem

Mλ (n) = 1 (mod n) (2.8)

where λ (n) is Carmicheal’s function which takes a simple form for n = pq, namely,

λ (pq) =
(p−1)(q−1)

gcd(p−1,q−1)
(2.9)

Note that λ (n) is always a proper divisor of φ(n) when n is the product of distinct odd primes;
in this case λ (n) is smaller than λ (n). Now, the relationship between e and d is given by

Med = M (mod n), i f ed = 1 (mod λ (n))

Provided that n is a product of distinct primes, the above holds for all M, thus dealing with the
above-mentioned exception gcd(M,n) > 1 in Euler’s theorem.

As an example, we construct a simple RSA cryptosystem as follows: Pick p = 11 and q =
13, and compute

n = p ·q = 11 ·13 = 143,

φ(n) = (p−1) · (q−1) = 10 ·3 = 120.

We can also compute Carmicheal’s function of n as

λ (pq) =
(p−1)(q−1)

gcd(p−1,q−1)
=

10 ·12
gcd(10,12)

=
120
2

= 60

The public exponent e is selected such that 1 < e < φ(n) and

gcd(e,φ(n)) = gcd(e,120) = 1 (2.10)

For example,e =17 would satisfy this constraint. The private exponent d is computed by

d = e−1 (mod φ(n))

= 17−1 (mod 120)

= 113

NIT Rourkela 7

2.2. COMPUTATION OF MODULAR EXPONENTIATION

which is computed using the extended Euclidean algorithm, or any other algorithm for
computing the modular inverse. Thus, the user publishes the public exponent and the modulus:
(e,n) = (13,143), and keeps the following private: d = 113,p = 11 and q = 13. A typical
encryption/decryption process is executed as follows:

Plaintext : M = 50

Encryption : M = Me (mod n)

C = 5017 (mod 143)

C = 85

Ciphertext : C = 85

Decryption : M = Md (mod n)

M = 85113 (mod 143)

M = 50

2.2 Computation of Modular Exponentiation

Once an RSA cryptosystem is set up, i.e., the modulus and the private and public exponents
are determined and the public components have been published, the senders as well as the
recipients perform a single operation for signing,verification,encryption, and decryption. The
RSA algorithm in this respect is one of the simplest cryptosystems. The operation required is
the computation of Me (mod n), i.e., the modular exponentiation. The modular exponentiation
operation is a common operation for scrambling [9].It is used in several cryptosystems [10,
11, 12]. Many recent papers have emphasised the need for a fast modular exponentiation on
reconfigurable hardware and have presented implementations of the same [13]. This thesis will
review some of the exponentiation techniques in Chapter 6 and compare the present work with
the previous material.

NIT Rourkela 8

2.3. LAYOUT OF THE RSA IMPLEMENTATION ON FPGA

2.3 Layout of the RSA implementation on FPGA

The primary structure of the implementation presented in this thesis is shown in the following
figure 2.1.

Figure 2.1: Overall Layout of RSA Implementation

The plaintext, the value of encryption exponent e, the values of the 128 bit prime keys p

& q for a 256 bit modulus n are expected to be known prior to the implementation in this this
layout. The reason for this is that the Montgomery exponentiation design which utilizes the
Karatsuba-Ofman multiplier with 512 bit product output, requires 69% of the available slices
in the Virtex II pro FPGA which accounts for 9498 slices of the available 13696 slices with
a 256 bit modulus. Hence, there leaves space only for implementing the top integration level
module and the modules for inversion and modulus retrieval. However, with a view to make the
entire cryptosystem efficient, with a high throughput and high speed, we have tried to optimize
the modules for consuming the least possible resources available in the FPGA.

NIT Rourkela 9

2.4. CONCLUSION

The complete system with the RSA integration module takes 90% of the slice count which
is 12,374 out of 13,696 available slices in the Virtex II pro, hence producing a large design
relative to this FPGA. As a result, an RNG(Random Number Generator), for both generation of
prime keys and the value of encryption exponent e, and a primality tester which would create
the prime keys was out of the scope for this implementation. In the above figure 2.1 , we
can observe that the montgomery exponentiation module has a dual mode of functionality, i.e.,
it doubles up as a direct multiplier producing upto 512 bit products of which only a 256 bit
product is produced for the value of modulus n. This is largely due to the modular structure
of Verilog. A module that is instantiated at a top level cannot be shared with a submodule.
Hence if the montgomery circuit requires the functionality of simple multiplication, it has to
instantiated within the modular montgomery exponentiation circuitry. If resources are to be
limited, then there occurs the need for a dual mode functionality.

The inversion module in the above layout utilizes a highly optimized version of the Ex-

tended Euclidean Algorithm which modifed by Laszlo hars [6]. This algorithm does not require
a single division operation nor multiplication operation, thus making it one of the best resource
efficient inversion circuits available. The division module which is used for modulus extraction
uses a slight enhancement to the original non-restoring division method, whereby the subtrac-
tion is performed at a bit level rather than at a word level so as to reduce the hardware resources
required for calculation of partial remainders which would have otherwise involved shifting
of the Dividend by an amount equal to the Divisor’s bitlength. In this module, subtraction is
performed at every bit, once the MSB(Most Significant Bit) of the Dividend is detected. The
division module returns a 256 bit modulus output for a 512 bit Divident input.

2.4 Conclusion

This chapter introduced the RSA algorithm and the modular arithmetic involved in an imple-
mentation of the same. The complexity of the cryptosystem’s modular exponentiation circuitry
was presented. A layout for the entire cryptosystem implemented in this thesis was also pre-
sented. The layout briefed the functionality of the modules involved which would set a base
for the proceeding chapters.

NIT Rourkela 10

Chapter 3

Non-restoring Division for Modulus
Extraction

3.1. INTRODUCTION

3.1 Introduction

The Montgomery exponentiation and RSA require the calculation of the modulus in various
steps. The requirement for a modulus calculation for Montgomery exponentiation is mentioned
in chapter 6. Although the by products of division include a quotient and a remainder, we are
not interested in the quotient; we only need the remainder. Therefore, the steps of the division
algorithm can somewhat be simplified in order to speed up the process. The reduction step can
be achieved by making one of the well-known sequential division algorithms. In the following
sections, we describe the restoring and the non-restoring division algorithms for computing the
remainder of t when divided by n. Division is the most complex of the four basic arithmetic
operations. Given a dividend t and a divisor n, a quotient Q and a remainder R have to be
calculated in order to satisfy

t = Q ·n+R with R < n

If t and n are positive, then the quotient Q and the remainder R will be positive. The sequen-
tial division algorithm successively shifts and subtracts n from t until a remainder R with the
property 0≤ R < n is found. However, after a subtraction we may obtain a negative remainder.
The restoring and non-restoring algorithms take different actions when a negative remainder is
obtained [9].

3.1.1 Restoring Division Algorithm

Let Ri be the remainder obtained during the ith step of the division algorithm. Since we are not
interested in the quotient, we ignore the generation of the bits of the quotient in the following
algorithm. The procedure given below (3.1) first left-aligns the operands t and n. Since t is
2k-bit number and n is a k-bit number, the left alignment implies that n is shifted k bits to the
left, i.e., we start with 2kn. Furthermore, the initial value of R is taken to be t, i.e., R0 = t. We
then subtract the shifted n from t to obtain R1; if R1 is positive or zero, we continue to the next
step. If it is negative the remainder is restored to its previous value. In Step 5 of the algorithm,
we check the sign of the remainder; if it is negative, the previous remainder is taken to be the
new remainder, i.e., a restore operation is performed. If the remainder Ri is positive, it remains
as the new remainder, i.e., we do not restore.

NIT Rourkela 12

3.1. INTRODUCTION

Figure 3.1: Restoring Division Algorithm

The restoring division algorithm performs k subtractions in order to reduce the 2k-bit num-
ber t modulo the k-bit number n. Thus, it takes much longer than the standard multiplication
algorithm which requires s = k/w inner-product steps, where w is the word-size of the com-
puter.

Figure 3.2: Restoring Division Example

In the above example, we give an example of the restoring division algorithm for comput-
ing 3019 mod 53, where 3019 = (101111001011)2 and 53 = (110101)2. The result is 51 =
(110011)2.

NIT Rourkela 13

3.2. NON-RESTORING DIVISION IMPLEMENTATION

Also, before subtracting, we may check if the most significant bit of the remainder is 1. In
this case, we perform a subtraction. If it is zero, there is no need to subtract since n > Ri. We
shift n until it is aligned with a nonzero most significant bit of Ri. This way we are able to skip
several subtract/restore cycles. In the average, k/2 subtractions are performed.

3.2 Non-restoring division implementation

The nonrestoring division algorithm allows a negative remainder. In order to correct the re-
mainder, a subtraction or an addition is performed during the next cycle, depending on the
whether the sign of the remainder is positive or negative, respectively. This is based on the fol-
lowing observation: Suppose Ri = Ri−1−n < 0, then the restoring algorithm assigns Ri = Ri−1

and performs a subtraction with the shifted n, obtaining

Ri+1 = Ri−n/2 = Ri−1−n/2

However, if Ri = Ri−1n < 0, then one can instead let Ri remain negative and add the shifted n

in the following cycle. Thus, one obtains

Ri+1 = Ri +n/2 = (Ri−1−n)+n/2 = Ri−1−n/2,

which would be the same value. The steps of the non-restoring algorithm, which implements
this observation, are given below:

Figure 3.3: Non-restoring Division Algorithm

NIT Rourkela 14

3.2. NON-RESTORING DIVISION IMPLEMENTATION

Note that the nonrestoring division algorithm requires a final restoration cycle in which a
negative remainder is corrected by adding the last value of n back to it. In the following we
compute 51 = 3019 mod 53 using the non-restoring division algorithm. Since the remainder is
allowed to stay negative, we use 2s complement coding to represent such numbers.

Figure 3.4: Non-restoring Division Example

In the current implementation, the non-restoring algorithm was modified to suit the minimal
resource consumption of the FPGA. Hence, instead of having a large register of 512 bits for
both Dividend and the Divisior, the Divisor remains unshifted, however bitwise subtractions
have to be performed at every step, which increases the number of subtractions to k where k

is the bitlength of the Dividend in the worst case. This is higher than the actual algorithm,
however, the actual algorithm shifts a larger number of bits in accordance to the size of the
Divisor, making the pre-calculation of bitlength for the same mandatory.

NIT Rourkela 15

3.2. NON-RESTORING DIVISION IMPLEMENTATION

3.2.1 Layout for division & Simulation Results

The division algorithm was implemented by means of two modules and the implementation is
generic for a Dividend upto 512 bits and a Divisor upto 256 bits. Both the implementations for
division and inversion in this work do not make use of a global clock, the looping activity is
achieved by means of the switching functionality which is illustrated in figure 3.5 and explained
below. This makes it highly resistant to timing based attacks.

The Layout for the division module is shown in figure 3.5.

Figure 3.5: Layout of the Division Implementation

The function of each module is described as follows:

1. Divm - This submodule serves as a top module for the actual non-restoring step. This
module interacts with the submodule Divloop to provide a client- server interaction in
order to avoid large for loops as seen in the above cases. The Divm module additionally
uses the computed value of the Divisor bitlength in the OF input.

2. Divloop - This submodule only requires individual bits of the 512 bit Dividend to be
passed. However, the 2’s complement of the Divisor is calculated before in the Divm

module so it is not recalculated. This value is used for subtraction of partial remainders
in each step once the MSB of the Dividend is found. During the entire process, the
Divm and Divloop keep switching until a counter which initially keeps the count of the
Dividend’s bit length comes to a halt.

NIT Rourkela 16

3.2. NON-RESTORING DIVISION IMPLEMENTATION

A sample simulation of the above is shown in fig 3.6. The simulator used throughout the
thesis is the Xilinx ISE XST.

Figure 3.6: Layout of the Division Simulation

In the above simulation, hexadecimal inputs are used. They can be verified as follows,
The Dividend N is first initialized to 586491296780565 in decimal
The Divisor D is first initialized to 1587421 in decimal
The output result is 8dfe3 which is in hexadecimal.
After 20 ns the values are,
The Dividend N is first initialized to 1000000000000000000000000000 in hex
The Divisor D is first initialized to af2621d242a00eca395839462 in hex
The output result is 1e4a96d2aa2a6490391c538d4 which is in hexadecimal.
The above results may be further verified using a powerful calculator UBASIC [14].

3.2.2 Synthesis Results

The synthesis results for the implementation of a modified non-restoring division with remain-
der result of upto 256 bits is shown below in the following table:

FPGA
Logic Slices Combinational Slices Cycles Throughput

Used Delay(ηs) Available (bits/s)
Virtex II pro 455 478 13,696 1 510.75 M

Table 3.1: Synthesis Results for Non-restoring Division

As the above table shows, the div module takes very little slice area. Further, the Maximum
combinational path delay reported by Xilinx XST was 478 ηs, which makes it a very fast
implementation, because of a high throughput rate of ≈ 510 Mb/s. Avoiding the use of for
loops and substituting it with a combinational feedback switching technique, plays a role in the
synthesis of large loops.

NIT Rourkela 17

3.3. CONCLUSION

No comparison with previous implementations were available because of lack of detailed
information in any of the recent work related with FPGAs and non-restoring division.

3.3 Conclusion

The division algorithm used in this work was a non-restoring division version with a few mod-
ifications. The layout, simulation results and the synthesis details were shown. The following
chapter will discuss the inversion technique.

NIT Rourkela 18

Chapter 4

Modular Inversion Hardware

4.1. INTRODUCTION

4.1 Introduction

Among customary finite field arithmetic operations, namely, addition, subtraction, multiplica-
tion and inversion of nonzero elements, the computation of the later is the most time-consuming
one. Multiplicative inversion computation of a nonzero element a ∈ GF(2m) is defined as
the process of finding the unique element a−1 ∈ GF(2m) such that a · a−1 = 1. Several al-
gorithms for computing the multiplicative inverse in GF(2m) have been proposed in literature
[15, 16, 17, 18, 19, 20, 21]. In [18], multiplicative inverse is computed using an improved mod-
ification of the extended Euclidean algorithm called almost inverse algorithm. That iterative
algorithm can compute the multiplicative inverse in approximately 2m clock cycles [18]. In
[Gutub:2002] an architecture able to compute the Montgomery multiplicative inverse for both,
GF(p), for a prime p, and GF(2m) on a unified-field hardware platform was proposed.

Based on Fermat’s Little Theorem (FLT) and using an ingenious rearrangement of the
required field operations, the Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) was pre-
sented in [Itoh:1988]. Originally, ITMIA was proposed to be applied over binary extension
fields with normal basis field element representation. Since its publication however, several
improvements and variations of it have been reported [16, 17, 21, 20], showing that it can be
used with other field element representations too.

Unfortunately enough, cryptographic designers have historically shown some resistance to
use FLT-related techniques for computing multiplicative inverses when using polynomial basis
representation. This phenomenon is probably due to three frequent misconceptions:

1. Computing multiplicative inverses by using FLT-related techniques is inefficient as those
methods require many field multiplication and squaring operations;

2. ITMIA is a competitive design option only when using normal basis representation and;

3. The recursive nature of the ITMIA algorithm makes the parallelization of that algorithm
rather difficult if not impossible, forcing the implementation of the ITMIA procedure in
a sequential manner.

NIT Rourkela 20

4.1. INTRODUCTION

4.1.1 Extended Euclidean Algorithm

Given two polynomials A and B, not both 0, we say that the greatest common divisor of A and
B, is the highest polynomial D = gcd(A,B) that divides both A and B. Based on the property
gcd(A,B) = gcd(B±(A,A)), the revered Extended Euclidean Algorithhm (EEA) is able to find
the unique polynomials G and H that satisfies Bezout’s celebrated formula,

A ·G+B ·H = D,

where D = gcd(A,B).

Several variations of the EEA have been proposed in the open literature [1]. EEA variants
include: the almost inverse algorithm, first proposed in [22], the Binary Euclidean Algorithm
(BEA), the Montgomery inverse algorithm, etc. All those algorithms show a computational
complexity proportional to the maximum of A and B polynomial degrees. Algorithm 4.1 shows
the binary algorithm as it was reported in [16]. That algorithm takes as inputs the irreducible
polynomial P of degree m and the field element A of degree at most m− 1. It gives as output
the field element A−1 such that

A ·A−1 = 1 (mod P).

4.1.2 Binary Euclidean Algorithm

The binary GCD algorithm is an algorithm which computes the greatest common divisor of
two nonnegative integers. It gains a measure of efficiency over the ancient Euclidean algorithm
by replacing divisions and multiplications with shifts, which are cheaper when operating on
the binary representation used by modern computers. This is particularly critical on embedded
platforms that have no direct processor support for division. The following figure details the
BEA, and a brief explanation regarding the functionality of the same is given.

NIT Rourkela 21

4.1. INTRODUCTION

Figure 4.1: Binary Euclidean Algorithm

In steps 4 and 10, the operands U and V are divided by a as many times as possible, re-
spectively. Furthermore, the variables G and H are also divided by X in steps 5-8 and 11-14,
respectively. Notice that in case that either G or H are not divisible by a, then an addition with
the irreducible polynomial P must be performed first. Eventually, after approximately m itera-
tions, either U or V are equal to 1, which is the condition for exiting the main loop. Either G

or H will contain the required multiplicative inverse. The number of iterations, N, required by
4.1 depends on several factors such as design’s architecture, target platform and even the exact
structure of the irreducible polynomial P(x). N can be estimated as N ≈ m, where m is the size
of the finite field.

NIT Rourkela 22

4.1. INTRODUCTION

4.1.3 Laszlo Hars Modification

This algorithm was proposed by Laszlo Hars in 2006 [6].The original Euclidean GCD algo-
rithm replaces the larger of the two parameters by subtracting the largest number of times the
smaller parameter keeping the result nonnegative: x = x− [x/y] ·y. For this we need to calculate
the quotient [x/y] and multiply it with y. In this paper we do not deal with algorithms, which
perform division or multiplication. However, the Euclidean algorithm works with smaller co-
efficients q≤ [x/y], too : x = x−q · y. In particular, we can choose q to be the largest power of
2, such that q = 2k ≤ [x/y]. The reductions can be performed with only shifts and subtractions,
and they still clear the most significant bit of x, so the resulting algorithm will terminate in a
reasonable number of iterations. It is well known (see [12]) that for random input, in the course
of the algorithm, most of the time [x/y] = 1 or 2, so the shifting Euclidean algorithm performs
only slightly more iterations than the original, but avoids multiplications and divisions. See
Algorithm 4.2.

Figure 4.2: Laszlo Hars Shifting Euclidean Algorithm

NIT Rourkela 23

4.1. INTRODUCTION

Repeat the above reduction steps until V = 0 or ±1, when U = GCD(m,a). If V = 0, there
is no inverse, so we return 0, which is not an inverse of anything. (The pathological cases like
m = a = 1 need special handling, but these do not occur in cryptography.) In the course of the
algorithm two auxiliary variables, R and S are kept updated. At termination S is the modular
inverse, or the negative of it, within ±m.

4.1.4 Justification for Laszlo Hars Euclidean Algorithm

The algorithm starts with U = m,V = a,R = 0,S = 1. If a > m, swap (U, V) and (R, S). U

always denotes the longer of the just updated U and V . During the course of the algorithm U

is decreased, keeping GCD(U,V) = GCD(m,a) true. The algorithm reduces U , swaps with V

when U < V , until V = ±1 or 0 : U is replaced by U − 2kV , with such a k, that reduces the
length of U , leading eventually to 0 or±1, when the iteration can stop. The binarylength ‖U‖is
reduced by at least one bit in each iteration, guaranteeing that the procedure terminates in at
most ‖a‖+‖m‖ iterations.

At termination of the algorithm either V = 0 (indicating that U = 2kV beforehand, and so
there is no inverse) or V =±1, otherwise a length reduction was still possible. In the later case
1 = GCD(‖U‖,‖V‖) = GCD(m,a). Furthermore, the calculations maintain the following two
congruencies:

U ≡ Ra (mod m), V ≡ Sa (mod m) (4.1)

The weighted difference of the two congruencies in (4.1) gives U − 2kV ≡ (R− 2kS) · a
(mod m) , which ensures that at the reduction steps (4.1) remains true after updating the corre-
sponding variables : U = U−2kV , R = R−2kS. As in the proof of correctness of the original
extended Euclidean algorithm, we can see that ‖R‖ and ‖S‖ remain less than 2m, so at the end
we fix the sign of S to correspond to V , and add or subtract m to make 0 < S < m. Now 1≡ Sa

(mod m), and S is of the right magnitude, so S = a−1 (mod m).

NIT Rourkela 24

4.2. LASZLO HARS INVERSION IMPLEMENTATION

4.2 Laszlo Hars Inversion Implementation

4.2.1 Layout of Modular Inversion

The Layout for the inversion module is shown below

Figure 4.3: Modular Inversion Layout

This module contains a f or loop, which when rolled out in a circuit implementation, per-
forms the operation of finding the bitlength. Since, finding the bitlength is pivotal to this mod-
ule, a switching modulus style of looping was avoided. Ports are described as follows,
Mod takes in a 256 bit modulus ,
N is given a 256 bit Number whose inverse is to be found,
load functions as a 1 bit loading switch which initializes the algorithm 4.2,
reset is a switch which functions as an internal trigger that is used to simulate the while loop in
the above algorithm.
invrs contains the result when all the operations are complete.
invDn serves as a notifier to a sequential algorithm above.

NIT Rourkela 25

4.2. LASZLO HARS INVERSION IMPLEMENTATION

4.2.2 Simulation Results

A sample simulation of the above is shown in fig 4.4.

Figure 4.4: Modular Inversion Simulation

The number whose inverse modulo mod is to be found,
N was initialized to 290641094883699517630471009136534993 in decimal
The modulus mod was initialized to 909425361410285587424377028588512720 in decimal
The output invrs was obtained as 61 in hex which is equivalent to 97 in decimal.

4.2.3 Synthesis Results

The synthesis results for the implementation of a modified Extended Euclidean with remainder
result of upto 256 bits is shown below in the following table:

Work
FPGA Slices Size Cycles Frequency (Mhz) Timings

Used
Current work Virtex II pro 688 256 512(Max) 63 8.192 µS
ITMIA [23] Virtex II pro 9945 193 40 55 0.724 µS
BEA [23] Virtex II pro 1195 193 191 76.1 2.509 µS
Parallel Virtex 3200E 12021 193 20 21.2 0.943 µS

ITMIA [24]
ITMIA [20] Virtex 3200E 1195 193 20 21.2 1.32 µS

Table 4.1: Synthesis Results for Modular Inversion

NIT Rourkela 26

4.3. CONCLUSION

The comparison shows the benefits of utilizing the algorithm 4.2. The space consumption
(CLBs) is definitely lower than other implementations [23, 20] . The Timing details indicate
a worst case scenario, where the clock cycles used included 256 bit values for both N and
modulus m. Hence if we consider an average value of N ≈ 128bits which is the exponent
size in RSA, we will have a timing of ≈ 6µS. However, this inversion circuit is used for a dual
purpose; it is also used to find the inversion of r in the Montgomery reduction step. However,
Itoh-Tsuji inversion circuits have the disadvantage that it can only be used for modulii with
powers of 2, hence limiting it’s application only to ECCs . Hence, a good space utilization has
been achieved in this implementation.

4.3 Conclusion

The inversion algorithm which is used for both Montgomery exponentiation initialization and
for finding the decryption exponent in the RSA algorithm was discussed. Although, many vari-
ants of the Extended Euclidean Algorithms exist, the author preferred the Laszlo Hars modi-
fication because of it’s low slice consumption which will be a benefit in building larger RSA
systems with a high throughput.

NIT Rourkela 27

Chapter 5

Modular Multiplication Hardware

5.1. INTRODUCTION

5.1 Introduction

The modular exponentiation algorithms perform modular squaring and multiplication opera-
tions at each step of the exponentiation. In order to compute Me (mod n) we need to implement
a modular multiplication routine. In this section we will study algorithms for computing

R = a ·b (mod n),

where a, b, and n are k-bit integers. Since k is often more than 256, we need to build data
structures in order to deal with these large numbers. Assuming the word-size of the computer
is w (usually w = 16 or 32), we break the k-bit number into s words such that (s−1)w < k≤ sw.
The temporary results may take longer than s words, and thus, they need to be accommodated
as well. In this work, we focus on direct multiplication with the recursive Karatsuba-Ofman
implementation, which is very suitable for multi word slice multiplications. However, there is
the greatest trade off of space utilization, since this algorithm occupies a large number of slices
as will be shown in the synthesis results at the end of this chapter. However, this algorithm was
selected as the primary basis for multiplication which would serve the montgomery module
above it, and subsequently the Modular exponentiation using the montgomery based square
and multiply method which is discussed in the next chapter.

5.2 Modular Multiplication

The problem of modular multiplication and, more specically, the problem of modular reduction
has been extensively studied because it is a fundamental building block of any cryptosystem.
Among the algorithms that have been proposed we nd:

1. Sedlaks Modular Reduction Originally introduced by [25], this algorithm is used by
Siemens, in the SLE44C200 and SLE44CR80S microprocessors, to perform modular
reduction. Sedlak notices that the algorithm improves the reduction complexity by an
average factor of 1/3 when compared to the basic bit-by-bit reduction.

NIT Rourkela 29

5.2. MODULAR MULTIPLICATION

2. Barrets Modular Reduction It was originally introduced by [26], in the context of imple-
menting RSA on a DSP processor. Suppose that you want to compute X ≡ R (mod M).
Then, we can rewrite X as X = Q ·M +R with 0≤ R < M, which is a well-known identity
from the division algorithm [[27], Denition 2.82]. Thus

R≡ X (mod M) = X−Q ·M (5.1)

Barrets basic idea is that one can write Q in (1) as:

Q = bX/Mc= bb(X/bn−1)c(b2n/M)(1/bn+1)c (5.2)

In particular, Q can be approximated by

Q̂ = Q3 = bb(X/bn−1)c(b2n/M)(1/bn+1)c (5.3)

Notice that the quantity µ = b2n/M can be precomputed when performing many modu-
lar reductions with the same modulus, as is the case in cryptographic algorithms. Having
precomputed µ , the expensive computations in the algorithm are only divisions by pow-
ers of b, which are simply performed by right-shifts, and modular reduction modulo b ,
which is equivalent to truncation.

3. Brickells Modular Reduction Originally introduced by [28], is dependent on the uti-
lization of carry-delayed adders and combines a sign estimation technique and Omuras
modular reduction [29].

4. Quisquaters Modular Reduction Quisquaters algorithm, originally presented by [30],
can be thought of as an improved version of Barrets reduction algorithm.The method is
used in the Phillips smart-card chips P83C852 and P83C855, which use the CORSAIR
crypto-coprocessor [31]. Quisquaters algorithm, as presented in [31], is a combination
of the interleaved multiplication reduction method (basically, combine a normal multi-
precision algorithm with modular reduction, making use of the distributivity property of
the modular operation) and a method that makes easier and more accurate the estimation
of the quotient Q in (1).

5. Montgomery Modular Multiplication The Montgomery algorithm, originally introduced
by [32], is a technique that allows efcient implementation of the modular multiplication
without explicitly carrying out the modular reduction step.

NIT Rourkela 30

5.2. MODULAR MULTIPLICATION

5.2.1 Montgomery Modular Multiplication

The idea behind Montgomery’s algorithm is to transform the integers in M-residues and com-
pute the multiplication with these M-residues. At the end, one transforms back to the normal
representation. As with Quisquaters and Barrets method, this approach is only beneficial if we
compute a series of multiplications in the transform domain (e.g., modular exponentiation).

The Montgomery reduction algorithm is as follows:
Given integers M and R with R > M and gcd(M,R)=1,

M′ =−M ≡−1 (mod R).

Let T be an integer such that 0≤ T < MR.
If Q≡ T M′ (mod R), then Z=(T+QM)/R is an integer and further,

Z ≡ T R−1 (mod M).

This is just the reduction step involved in a modular multiplication.The multiplication step
can be carried out via multiprecision multiplication (see, e.g., [27], Chapter 14). As with pre-
vious algorithms, one can interleave multiplication and reduction steps and is further discussed
in the next section. The result is shown in Algorithm 5.1. In practice R is a multiple of the
word size of the processor and a power of two. This means that M, the modulus, has to be odd
(because of the restriction gcd(M,R)=1) but this does not represent a problem as M is a prime
or the product of two primes (RSA) in most practical cryptographic applications. In addition,
choosing R a power of 2, simplies the computation of Q and Z as they become simply truncated
(modular reduction by R) and right shifting (division by R). Notice that M′ ≡−M (mod R).
In [33] it is shown that if M = ∑

n−1
i=0 mibi, for some radix b typically a power of two, and R = bn,

then M’ can be substituted by m′0 =−M−1 (mod b).

NIT Rourkela 31

5.2. MODULAR MULTIPLICATION

Algorithm 5.1 Montgomery Multiplication Algorithm
Require: X = ∑

n−1
i=0 xibi,Y = ∑

n−1
i=0 yibi,M = ∑

n−1
i=0 mibi, with 0≤ X ,Y < M,b > 1,m′ =−m−1

0

(mod b),R = bn,gcd(b,M) = 1
Ensure: Z = X ·Y ·R−1modM

1: Z← 0{ where Z = ∑
n
i=0 zibi}

2: for i=0 to n-1 do
3: Z← (Z + xi ·Y +qi ·M)/b

4: qi← (z0 + xi · y0)m′ (mod b)
5: end for
6: if Z ≥M

7: Z← Z−M

8: end if
9: Return(Z)

In [34], the authors simplify the combinatorial logic needed to implement Montgomery
reduction.The idea in [34], is to shift Y by two digits (i.e., multiply Y by b2) and thus, make
qi in Step 4 of Algorithm 5.1 independent of Y . Notice that one could have multiplied Y by
b instead of b2 and have also obtained a qi independent of Y. However, by multiplying Y by
b2, one gets qi to be dependent only on the partial product Z and on the lowest two digits of
the multiple of M (i.e., qi ·M). The price of such a modication is two extra iterations of the
for-loop for which the digits of X are zero.

In Mazzeo et al, an architecture and the FPGA implementation of a digit-serial RSA pro-
cessor was proposed [35]. A Xilinx Virtex-E 2000-8bg560 was used for implementing the
proposed architecture.This approach has a trade off with chip area and speed.

NIT Rourkela 32

5.3. EFFICIENT TECHNIQUES FOR DIRECT MULTIPLICATION

5.3 Efficient techniques for direct multiplication

Various methods are available for a high throughput based multiplication. For a bitwise imple-
mentation, the booth’s multiplication is one of the most basic techniques.

5.3.1 Standard Multiplication Algorithm

Let a and b be two s-digit (s-word) numbers expressed in radix W as:

a = (as−1as−2 · · ·a0) =
s−1

∑
j=0

aiW i,

b = (bs−1bs−2 · · ·b0) =
s−1

∑
j=0

biW i,

where the digits of a and b are in the range [0,W-1]. In general W can be any positive number.
For computer implementations, we often select W = 2w where w is the word-size of the com-
puter, e.g., w = 32. The standard (pencil-and-paper) algorithm for multiplying a and b produces
the partial products by multiplying a digit of the multiplier (b) by the entire number a, and then
summing these partial products to obtain the final number 2s-word number t. Let ti j denote the
(Carry,Sum) pair produced from the product ai ·b j. For example, when W = 10, and ai = 7 and
b j = 8, then ti j = (5,6). The ti j pairs can be arranged in a table as

Figure 5.1: Standard multiplication product

The last row denotes the total sum of the partial products, and represents the product as
an 2s-word number. The standard algorithm for multiplication essentially performs the above
digit-by-digit multiplications and additions. In order to save space, a single partial product
variable t is being used. The initial value of the partial product is equal to zero; we then take a
digit of b and multiply by the entire number a, and add it to the partial product t.

NIT Rourkela 33

5.3. EFFICIENT TECHNIQUES FOR DIRECT MULTIPLICATION

The partial product variable t contains the final product a ·b at the end of the computation.
The standard algorithm for computing the product a ·b is given below:

Figure 5.2: Standard Multiplication Algorithm

In order to implement this algorithm, we need to be able to execute Step 4:

(C,S) = ti+ j +a j ·bi +C,

where the variables ti+ j,a j,bi,C, and S each hold a single-word, or a W -bit number. This step is
termed as an inner-product operation which is common in many of the arithmetic and number-
theoretic calculations. The inner-product operation above requires that we multiply two W -bit
numbers and add this product to previous carry which is also a W -bit number and then add this
result to the running partial product word ti+ j. From these three operations we obtain a 2W-bit
number since the maximum value is

2W −1+(2W −1)(2W −1)+2W −1 = 22W −1.

Also, since the inner-product step is within the innermost loop, it needs to run as fast as possi-
ble. Of course, the best thing is to have a single microprocessor instruction for this computation.
A brief inspection of the steps of this algorithm reveals that the total number of inner-product
steps is equal to s2. Since s = k/w and w is a constant on a given computer, the standard multi-
plication algorithm requires O(k2) bit operations in order to multiply two k-bit numbers. This
algorithm is asymptotically slower than the Karatsuba algorithm and the FFT-based algorithm
which are to be studied next. However, it is simpler to implement and, for small numbers, gives
better performance than these asymptotically faster algorithms.

NIT Rourkela 34

5.3. EFFICIENT TECHNIQUES FOR DIRECT MULTIPLICATION

5.3.2 Karatsuba-Ofman Algorithm

We now describe a recursive algorithm which requires asymptotically fewer than O(k2) bit
operations to multiply two k-bit numbers. The algorithm was introduced by two Russian math-
ematicians Karatsuba and Ofman in 1962 cite. The following is a brief explanation of the
algorithm. First, decompose a and b into two equal-size parts:

a = 2ha1 +a0,

b = 2hb1 +b0,

i.e., a1 is higher order h bits of a and a0 is the lower h bits of a, assuming k is even and2h = k.
Since we will be worried only about the asymptotics of the algorithm, let us assume that k is a
power of 2. The algorithm breaks the multiplication of a and b into multiplication of the parts
a0,a1,b0, and b1. Since

t = a ·b

= (2ha1 +a0)(2hb1 +b0)

= 22h(a1b1)+2h(a1b0 +a0b1)+a0b0

= 22ht2 +2ht1 + t0,

the multiplication of two 2h-bit numbers seems to require the multiplication of four h-bit num-
bers.The Karatsuba-Ofman algorithm is based on the following observation that, in fact, three
half-size multiplications suffice to achieve the same purpose:

t0 = a0 ·b0,

t2 = a1 ·b1,

t1 = (a0 +a1) · (b0 +b1)− t0− t2 = a0 ·b1 +a1 ·b0.

NIT Rourkela 35

5.3. EFFICIENT TECHNIQUES FOR DIRECT MULTIPLICATION

This yields the Karatsuba-Ofman recursive multiplication algorithm (KORMA) which is illus-
trated below:

function KORMA(a,b)

t0 = KORMA(a0,b0)

t2 = KORMA(a1,b1)

u0 = KORMA(a1 +a0,b1 +b0)

t1 = u0− t0− t2

return (22ht2 +2ht1 + t0)

Let T(k) denote the number of bit operations required to multiply two k-bit numbers using the
Karatsuba Ofman algorithm. Then,

T (k) = 2T (
k
2
)+T (

k
2

+1)+βk ≈ 3T (
k
2
)+βk

Similarly, βk represents the contribution of the addition, subtraction, and shift operations re-
quired in the recursive Karatsuba-Ofman algorithm. Using the initial condition T(1) = 1, we
solve this recursion and obtain that the Karatsuba-Ofman algorithm requires

O(klog23) = O(k1.58)

bit operations in order to multiply two k-bit numbers. Thus, the Karatsuba-Ofman algorithm
is asymptotically faster than the standard (recursive as well as nonrecursive) algorithm which
requires O(k2) bit operations. However, due to the recursive nature of the algorithm, there is
some overhead involved. For this reason, Karatsuba-Ofman algorithm starts paying off as k gets
larger. Current implementations indicate that after about k = 250, it starts being faster than the
standard nonrecursive multiplication algorithm. Also note that since a0 + a1 is one bit larger,
thus, some implementation difficulties may arise. However, we also have the option of stopping
at any point during the recursion. For example, we may apply one level of recursion and
then compute the required three multiplications using the standard nonrecursive multiplication
algorithm. This is primarily the reason why we chose to stop at a level when the size of
individual multiplications reached 17 bits to be precise. This is due to the fact that the internal
multipliers in Xilinx based FPGAs can have upto 18 bit by 18 bit multiplication operands.

NIT Rourkela 36

5.4. HYBRID KARATSUBA-OFMAN IMPLEMENTATION

5.3.3 FFT-based Multiplication Algorithm

The fastest multiplication algorithms use the fast Fourier transform. Although the fast Fourier
transform was originally developed for convolution of sequences, which amounts to multipli-
cation of polynomials, it can also be used for multiplication of long integers.

There are many Fourier primes, i.e., primes p for which FFTs in modulo p arithmetic exist.
Moreover, there exists a reasonably efficient algorithm for determining such primes along with
their primitive elements [31]. From these primitive elements, the required primitive roots of
unity can be efficiently computed. This method for multiplication of long integers using the
fast Fourier transform over finite fields was discovered by Schönhage and Strassen [45]. It is
described in detail by Knuth [19]. A careful analysis of the algorithm shows that the product
of two k-bit numbers can be performed using O(k logk loglogk) bit operations. However, the
constant in front of the order function is high. The break-even point is much higher than that of
Karatsuba-Ofman algorithm. It starts paying off for numbers with several thousand bits. Thus,
they are not very suitable for performing RSA operations.

5.4 Hybrid Karatsuba-Ofman Implementation

The structure for implementing a hybrid variant of the Karatsuba-Ofman multiplier is shown in
the figure 5.3:

Figure 5.3: Abstract 512 bit Hybrid Karatsuba Structure

NIT Rourkela 37

5.4. HYBRID KARATSUBA-OFMAN IMPLEMENTATION

The calls that are specially marked indicate an optimization step that generalizes the im-
plementation. The optimization step removes the Most Significant Bit (MSB) from the sum
of the parts in the recursive call. The step ensures an even division and a reduction in spe-
cialized hardware that would have been necessary if the multiplication steps were sequentially
performed. Hence this optimization is beneficial for the sequential version of the recursive
karatsuba multiplier. However, only a slight benefit occurs for a parallel implementation. For
the bit that was removed, a partial product is added by means of the following observation 5.4.
Assume that the addition result is stored into SumX and SumY for the first and second addition
operations respectively in the Karatsuba-Ofman Algorithm.

I f MSB(SumX) = 1 and MSB(SumY) = 1 then,

newProduct3 = SumX +SY,

where SX and SY are SumX and SumY with the MSB

removed, respectively

I f MSB(SumX) = 0 and MSB(SumY) = 1 then,

newProduct3 = SumX ,

I f MSB(SumX) = 1 and MSB(SumY) = 0 then,

newProduct3 = SY,

else newProduct3 = 0 (5.4)

Observation for MSB bits of the two Sum results in Karatsuba-Ofman

This observation arises, from analysis of the carry bit in the partial products that are formed
during any normal multiplication. Thus, the objective of this observation is only to remove the
MSB bit from the sum which results initially causes an extra bit during multiplication. If the
MSB bits were present in the sum result , then the even-ness of the Karatsuba division is lost.
As a result, the extra bit requires a call to an instance of the recursive hardware with extra bits.
This carries on to the sub-levels of the implementation. Hence, such a situation was avoided.

NIT Rourkela 38

5.4. HYBRID KARATSUBA-OFMAN IMPLEMENTATION

5.4.1 Simulation Results

The simulation of a parallel recursive Karatsuba-Ofman technique with the modifications out-
lined above is given below :

Figure 5.4: Karatsuba-Ofman Multiplier Simulation

A denotes the first operand and B , the seccond,
A was initialized to 3458674973089012312 in decimal
B was initialized to 4812909827000423452 in decimal
The output O was obtained as c85f5800a667515c78fb479262fc1a0 in hex which is equivalent
to 97 in hexadecimal.

NIT Rourkela 39

5.4. HYBRID KARATSUBA-OFMAN IMPLEMENTATION

5.4.2 Synthesis Results

The synthesis results for the implementation of a modified Extended Euclidean with remainder
result of upto 256 bits is shown below in the following table:

Work FPGA Slices Size Cycles Timing bits
Slices x Timing

of Product(bits)
Current work Virtex II pro 6562 512 1 61.653ηS 1.279M
Current work Virtex II pro 1887 256 1 44.047ηS 3.0832M

Non-Redundant Virtex II pro 5307 163 1 12.56ηS 2.445M
KOM by [36]

Less Recursive Virtex II pro 5409 163 1 13.37ηS 2.254M
KOM by [36]

Parallel Virtex II pro 5840 163 1 14.73ηS 1.895M
KOM by [36]
KOM by [37] Virtex II pro 1480 240 30 378ηS 0.429M

Recursive Virtex II pro 1582 240 56 523ηS 0.290M
Classical by [37]

KOM by [38] Virtex II pro 1660 240 54 655ηS 0.221M

Table 5.1: Synthesis Results for Karatsuba-Ofman Multiplier

We measure efficiency by taking the ratio of number of bits processed over slices multiplied
by the time delay achieved by the design, namely,

bits
Slices x timings

As is obvious from the above table, this work has achieved a better throughput in terms of
bits

Slices x Timing when the 256 bit product is considered. If the output is raised to 256 bits, then
the combinational delay increases proportionately, however the slice count becomes ≈ 5 times
the 256 bit version. However, it is most natural of the KOM, because of it’s inherent structure.
Although implementations in [36], show a good throughput, they have a high slice count. In
comparison to the lower slice count version by [37] and [38] , the current work fares better
because of it’s efficiency. Further, it must be mentioned that this slice count does not indicate
the number of internal multipliers used in this implementation.

This implementation utilizes 81 of the 136 internal multipliers in the 512 bit version and
27 multipliers for the 256 bit version. If the slice count conversion for such multipliers would
indicate a variable area consumption, then the utilization of available resources on the FPGA

would be the major factor for this work. The Classical version was included only for compari-
son purposes.Hence by far, this is a very good implementation.

NIT Rourkela 40

5.5. CONCLUSION

5.5 Conclusion

Various techniques for implementing modular multiplication were discussed in this chapter,
primarily due to the fact that this is one of the major contributor to the slice consumption hard-
ware. The objective of a high-throughput design will be speed. However, this affects the space
utilization and subsequent resource consumption. This work has achieved a better efficiency
in terms of both slice count and response timings as was discussed. The hybrid version of the
Karatsuba-Ofman multiplier which was used in this work was discussed, following which the
simulation and synthesis were analysed.

NIT Rourkela 41

Chapter 6

Modular Exponentiation Hardware

6.1. INTRODUCTION

6.1 Introduction

Modular exponentiation can be defined in terms of field multiplication as follows. Let a be a
positive integer in [1, n]. Let also e be defined as an arbitrary positive integer. Then, we define
modular exponentiation as the problem of finding the number y such that,

y = xe (mod n) (6.1)

Taking advantage of the linearity property of the modular operation,6.1 can be evaluated
by performing a reduction modulo n at each step of the exponentiation thus guaranteeing that
all the partial results will not grow larger than twice the length of the modulus. In the rest of
this Section we will consider that every multiplication operation always includes a subsequent
reduction step.

In general one can follow two strategies in order to optimize the computation of 6.1. One
approach is to implement field multiphcation, the main building block required for field expo-
nentiation, as efficiently as possible. This was cover in Chapter 5. The other is to reduce the
total number of multiplications needed to compute 6.1. In this Section we address the latter
approach, assuming that arbitrary choices of the base x are allowed but considering that the
exponent e has been previously fixed.

6.2 Efficient techniques for exponentiation

In this section, we include a brief review of the main deterministic heuristic proposed in the
literature for computing field exponentiation [1].

6.2.1 Binary Strategies

Let e be an arbitrary m-bit positive integer e, with a binary expansion representation given as,
e = (1em−2 · · ·e1e0)2 = 2m−1 +∑

m−2
i=0 2iei. Then,

y = xe = x2m−1+∑
m−2
i=0 2iei = x2m−1

·
m−2

∏
i=0

x2iei (6.2)

NIT Rourkela 43

6.2. EFFICIENT TECHNIQUES FOR EXPONENTIATION

Binary strategies evaluate 6.2 by scanning the bits of the exponent e one by one, either
from left to right (MSB-first binary algorithm) or from right to left (LSB-first binary algorithm)
applying the so-called Horner’s rule. Both strategies require a total of m− 1 iterations. At
each iteration a squaring operation is performed, and if the value of the scanned bit is one,
a subsequent field multiplication is performed. Therefore, the binary strategy requires a total
of m− 1 squarings and H(e)− 1 field multiplications, where H(e) is the Hamming weight of
the binary representation of e. The pseudo-code of the MSB-first and the LSB-first binary
algorithms are shown in Figures 6.1 and 6.2, respectively. The computational complexity of
the algorithm in Figure 6.1 is given as,

P(e,m) = m+H(e)−2 = blog2(e)c+H(e)−1 (6.3)

Figure 6.1: MSB-First Binary Exponentiation

Figure 6.2: LSB-First Binary Exponentiation

NIT Rourkela 44

6.2. EFFICIENT TECHNIQUES FOR EXPONENTIATION

An Example. Let us define e = 1903 = (11101101111)2. Then m = 11 and H(e) = 9.
According to 6.2 the computational complexity of the binary algorithm is given as, P(e) =
m + H(e)− 2= 11+9-2=18. After evaluating the algorithm of Figure 6.1, the resulting binary

Figure 6.3: Binary Exponentiation example

sequence is given as. We compare the MSB-first and the LSB-first binary algorithms in terms
of time and space requirements below:

• Both methods require m−1 squarings and an average of 1
2(m−1) multipUcations.

• The MSB-first binary method requires two registers: x and y.

• The LSB-first binary method requires three registers: x, y, and P. However, we note that
P can be used in place of M, if the value of M is not needed thereafter.

• The multiplication (Step 4) and squaring (Step 5) operations in the LSB first binary
method are independent of one another, and thus these steps can be parallelized. Pro-
vided that we have two multipliers (one multipher and one squarer) available, the running
time of the LSB-first binary method is bounded by the total time required for computing
h−1 squaring operations on k−bit integers.

We will consider the MSB first verion in the Montgomery Exponentiation technique for the
current work.

6.2.2 Montgomery Exponentiation

The Montgomery product [32] algorithm is more suitable when several modular multiplications
with respect to the same modulus are needed. Such is the case when one needs to compute a
modular exponentiation, i.e., the computation of Me (mod n). We replace the exponentiation
operation by a series of square and multiplication operations modulo n. This is where the
Montgomery product operation finds its best use. In the following we summarize the modular
exponentiation operation which makes use of the Montgomery product function MonPro. The
exponentiation algorithm uses the binary method [9].

NIT Rourkela 45

6.2. EFFICIENT TECHNIQUES FOR EXPONENTIATION

Figure 6.4: Montgomery Exponentiation Algorithm

Thus, we start with the ordinary residue M and obtain its n-residue M using a division
like operation, which can be achieved, for example, by a series of shift and subtract opera-
tions. Additionally, Steps 2 and 3 require divisions. However, once the preprocessing has been
completed, the inner-loop of the binary exponentiation method uses the Montgomery product
operations which performs only multiplications modulo 2k and divisions by 2k. In this work,
an inversion algorithm was presented which avoids divisions in the calculation of n’. When
the binary method finishes, we obtain the n-residue x of the quantity x = Me (mod n). The
ordinary residue number is obtained from the n-residue by executing the MonPro function with
arguments x and 1. This is easily shown to be correct since

x = x · r (mod n)

immediately implies that

x = x · r−1 (mod n) = x ·1 · r−1 (mod n) := MonPro(x,1). (6.4)

The resulting algorithm is quite fast as was demonstrated by many researchers and engineers
who have implemented it, for example, see [33]. However, this algorithm can be refined and
made more efficient, particularly when the numbers involved are multi-precision integers. For
example, Dussé and Kaliski [33] gave improved algorithms, including a simple and efficient
method for computing n’. However, in this work, we will not include an interleaving multipli-
cation technique, so as to increase throughput. This means that if the Montgomery Exponentia-
tion takes in a unit size of 2k bits, no additional splicing of the bits or serial shifting of the same
occurs. The output is calculated immediately as the input becomes available. However, since
the Montgomery Eponentiation and Montgomery product operations are sequential, they are
subjective to the system clock’s speeds for returning a result. However, the Karatsuba-Ofman
multiplier implementation is a combinational one.

NIT Rourkela 46

6.3. MONTGOMERY EXPONENTIATION IMPLEMENTATION

6.3 Montgomery Exponentiation implementation

The layout for Montgomery based exponentiation is given in the following figure 6.5.

Figure 6.5: Montgomery Exponentiation Implementation Layout

The ports for each block is defined below:

EXP LOOP BLOCK

1. M takes in the base value to be exponentiated. It is a 256 bit value which is initially
shifted by r (mod n).

2. mr takes in the value of r-1’b1 which is Montgomery’s shifting number , for implement-
ing shifts inside the EXP LOOP BLOCK. This is usually a constant value. However
in this work the value of r is taken as 2256. This conserves the property mentioned in
Chapter 5 for Montgomery product.

3. n is a 256 bit input which stores the modulus value.

4. Ne is the encryption or decryption exponent. It can take upto 256 bit input.

5. ni takes in the inverse of −n (mod r) as in the Montgomery Algorithm.

NIT Rourkela 47

6.3. MONTGOMERY EXPONENTIATION IMPLEMENTATION

6. x takes in the constant multiplier as seen in the Montgomery Exponentiation Algorithm.
Its value is 1 · r (mod n). Hence it requires pre-computation of modulus in the top mod-
ule.

7. clk is used as a clock input from the system clock, because this implementation is partly
sequential.

8. mode bit is a very crucial optimization. This avoids unnecessary hardware redundancy in
the top module for the complete system. The mode signal is used to switch from modular
exponentiation to direct Karatsuba multiplication as required by the RSA.

9. reset bit is used for resetting the values in the registers of the entire block.

10. Out is final 256 bit modular exponentiation result.

11. Dn secures the completion of all operations in the block.

The EXP LOOP BLOCK utilizes the clock signal to iterate an internal counter, which per-
forms the function of the exponential loop seen in the above algorithms. The implementa-
tion also utilizes a bit shifting technique to obtain the current and next bits of the encryp-
tion/decryption exponent so as to perform the square and multiply operation. This operation
has the disadvantage that it is directly dependent upon the clock, thereby making it susceptible
to timing attacks [39].

MONT PRO BLOCK

This module performs the Montgomery product and gives out result in Pn port which is of
256 bits.
The sub-block KARATSUBA MULTIPLIER BLOCK intermittently provides results in a single
clock cycle as mentioned in the synthesis results of the previous chapter.

load bit initializes the module for performing Montgomery Product.

KARATSUBA MULTIPLIER BLOCK

This block essentially implements the Karatsuba-Ofman multiplier that was discussed in
the previous chapter.

NIT Rourkela 48

6.3. MONTGOMERY EXPONENTIATION IMPLEMENTATION

6.3.1 Simulation Results

A sample simulation of the above is shown in fig 6.6. The inputs to the Montgomery Exponen-

Figure 6.6: Montgomery Exponentiation Simulation

tiation Module used in this simulation are as follows:
M was initialized to abe48431afe586fbdaf48ec6b7611f in hexadecimal. The shifted value of
47f48d12669e2a2e53e0a5c3d2b4de in hexadecimal mod n was initially computed.
Ne was initialized to 37f9b65af2fb303beb1d008b97e5d1 in hexadecimal
mr was initialized to 7fff in hexadecimal
x was initialized to 3cef0777388aa286db22e9f0817a40.This is the shifted value of r mod n
n was initialized to af2621d242a00eca3958394623a043 in hexadecimal.
ni which is the negative inverse mod r was initialized to
326bc59075b2db636f9c98ef7308fa12285cb17a3e9e11b90f3bfb61689a5395 in hexadecimal
The output Out was obtained as a1124634758798086756746464764 in hexadecimal.

NIT Rourkela 49

6.3. MONTGOMERY EXPONENTIATION IMPLEMENTATION

6.3.2 Synthesis Results

The synthesis results for the implementation of a modified Extended Euclidean with remainder
result of upto 256 bits is shown below in the following table:

Implementation
FPGA Logic Slices Bit Frequency T hroughput

Used Length (MHz) Rate(bps)
Current work Virtex II pro 9498 256 120.052 20.04M

(CSA based) by [40] XC2V3000 11,304 512 102.31 5.1M
(CSA based) by [40] XC2V6000 23,208 1024 95.9 4.79M
(CSA based) by [13] XC2V3000 6294 512 168.38 9.28M
(CSA based) by [13] XC2V6000 12537 1024 152.49 8.44M

Table 6.1: Synthesis Results for Montgomery Modular Exponentiation

Since, this implementation uses the Karatsuba−O f man technique discussed earlier, the
same uses only a single clock cycle to generate a 512 bit product. However, the Montgomery
Product step involves 3 calls to the Karatsuba Multiplier Block. Hence 3 clock cycles are
required for computing the Montgomery product. Further, the Montgomery Exponentiation
uses the MSB-First Binary Exponentiation technique. With a worst case scenario of a 256 bit
exponent e, we have by 6.3 , m = 256, H(e) = 256 if all of the bits are 1s ; P(e) = 510. Hence
there are 510 calls to the Montgomery product. However we must consider the final call to the
Montgomery product. This operation is trivial , however it consumes 3 extra cycles. Therefore,
the total number of cycles for the exponentiation operation can be calculated as (510 x 3)+3 =
1533 cycles, if the addition operations are considered to be trivial.

In, the above table, the current results are compared with 512 bit and 1024 bit implementa-
tions of RSA [40, 13] . It is evident from the above table that the present implementation gives a
better throughput. However, the slice consumption for this implementation was comparatively
higher and the bit lengths were very low in this work, which makes the comparison difficult to
estimate the results. Further, the Maximum frequency reported by Xilinx ISE was 120 Mhz,
which saturates the 100 Mhz bus frequency of the Virtex 2 pro board. Hence, the maximum
frequency possible for this implementation was limited by the available FPGA.

NIT Rourkela 50

6.4. CONCLUSION

6.4 Conclusion

Different techniques for exponentiation were discussed, out of which, the Montgomery Ex-
ponentiation was chosen as the modular exponentiation techniques because it is a very fast
algorithm. The synthesis results show a definitive improvement in the throughputs , however
, due to limitations of hardware, it was not possible to increase the size of the modulus for
comparison. Further, the layout of the current implementation was presented along with the
synthesis and simulation results.

NIT Rourkela 51

Chapter 7

RSA Implementation and Synthesis
Results

7.1. INTRODUCTION

7.1 Introduction

This thesis presented some of most efficient techniques available for creating and developing
a cryptosystem for modular arithmetic. Barring some of the initial conditions such as Random
Number Generation and Primality testing, an RSA modular crypto engine which is generic upto
a 256 bit modulus was synthesized. The results of this synthesis is presented in this chapter.
The RSA may be implemented both as a low throughput system with less number of Logic
Slices or as a high throughput system with larger number of slices. The latter method was
preferred for this implementation because of a greater attention to speed. The objective of a
generic RSA with upto a 256 bit modulus was thereby achieved.

However, it must be reminded that a Virtex II pro FPGA with speed grade -7 on a Digilent
board was utilized for this implementation. This is because the Virtex II pro FPGA contains
13,696 available slices which accounts to ≈ 3424 CLBs (Configurable Logic Blocks) out of
which 90 % was utilized(12,374 slices). Hence ≈ 3094 CLBs were utilized in this process.
The Layout for this implementation was presented in Chapter 2.

7.1.1 Simulation Results

A sample simulation of the RSA implementation is shown in figure 7.1

Figure 7.1: RSA Implementation Simulation

The inputs to the RSA Engine were stored in a register block of size 3x256 bits.
The values stored are listed corresponding to the RSA algorithm equivalents.The primary keys
p & q were 128 bit registers, which utilized a third of the register block.
The value of p was 113680897410347 in decimal.
The value of q was 7999808077935876437321 in decimal.

NIT Rourkela 53

7.1. INTRODUCTION

The value of encryption component e is also initialized in this register block. It can be upto
256 bits. The value of e was 97 in decimal.
The port instr was used for a manual control of the Key Generation, Encryption and Decryption
process. Additionally, if the instr is given the value zero for resetting the complete cryptosys-
tem.
The bits for keygen,cipher and decipher indicate completion of key generation,encryption and
decryption process.
The WE bit was used for re-initializing the register block with the default values.
The value of plaintext P was a1124634758798086756746464764 in hexadecimal.
The resulting cipher C was obtained as 47f48d12669e2a2e53e0a5c3d2b4de in hexadecimal.

7.1.2 Synthesis Results

The synthesis results for the implementation of a modified Extended Euclidean with remainder
result of upto 256 bits is shown below in the following table:

Logic Component Used Available
Number of Slices 12,374 13,696
Number of Slice 4,121 27,392

Flip Flops
Number of 4 input LUTs 23,810 27,392
Number of bonded IOBs 263 556

Number of Multipliers 18x18 81 136

Table 7.1: Synthesis Results for the RSA cryptosystem

The value of the plaintext was initialized prior to implementation. The input range can be
upto 255 bits (adjusting for modulus). Alternatively an input port of 256 bit width can also be
specified for this purpose.

The key-generation step initially performs two multiplication operations each. Each such
operation takes 1 clock cycle in this implementation.The next operation performs a non-restoring
division operation and an inversion operation in parallel, since both modules were implemented
separately. The results were used for Montgomery exponentiation in the next stage of encryp-
tion and subsequent decryption. Both modules consume 512 clock cycles in the worst case.

The encryption and decryption operations takes one initial remainder calculation and an
exponentiation operation to complete.Thus, the encryption and decryption operations are the
most relavant among all other operations (1533 cycles).

NIT Rourkela 54

7.2. EXTENSIONS TO THIS WORK

Throughout the implementation, the register block was used for primary key, decryption and
plaintext storage. During synthesis , this block was converted to registers , which contributed
to the overall slice count.

7.2 Extensions to this work

Since the possiblity of this cryptosystem being used as a subsystem for implementation in an
Embedded system is imminent, the portability to EDK was also considered. The EDK provided
a complete set of ip cores which allows for adding or modifying the specifications of each
device that can be used on the Virtex 2 pro board.The procedure starts of with a base system
build that includes options for including a soft core or hard core processor.The preference was
give to a hard core processor, so that the design would be a standard.The Xilinx EDK offers the
Microblaze processor as their solution of a soft core.The Virtex 2 pro can be configured to have
upto 2 hard core processors that is based on the Power PC PPC 405.

The base system offered a serial interface via RS232 and a 100 Mbps MAC PHY ethernet
interface.The serial interface was chosen to setup a mini console to start or edit settings of
the implementation.This left, only the ethernet interface, as an option to be used as input to
the cryptographic algorithm. However, due to the sheer size of this implementation, only a
webserver was set up as initial interface to this project in Xilinx based embedded C. This is still
a work in progress. Hence, no results have been included in this thesis work.

7.3 Conclusion

This thesis has summarized the work which was initiated during the summer of 2008.This
report has also summarized some of the key techniques required for RSA based crytosystems.
Finally, the report concludes with the RSA implementation simulation and synthesis results.
The results in each phase of the implementation were covered and presented in this thesis.

NIT Rourkela 55

Bibliography

[1] F. Rodrı́guez-Henrı́quez, N. Saquib, A. D. Pérez, and Çetin Kaya Koç, Cryptographic

Algorithms on Reconfigurable Hardware, ser. Signals and Communication Technology.
Springer, 2007, vol. XXVI.

[2] J. Fry and M. Langhammer, “Fpgas lower costs for rsa cryptography.” [Online]. Available:
http://www.design-reuse.com/articles/6358/fpgas-lower-costs-for-rsa-cryptography.html

[3] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on automata,” English

Translation in Soviet Physics Doklady, vol. 7, pp. 595–596, 1963.

[4] “Tpm specification version 1.2 revision 103:part 1, design principles,” 2007. [Online].
Available: http://www.trustedcomputinggroup.org/resources/tpm specification version
12 revision 103 part 1 3

[5] I. C.E. and L. K., “Trusted hardware: Can it be trustworthy ?” Design Automation Con-

ference. DAC ’07. 44th ACM/IEEE, pp. 1–4, June 2007.

[6] L. Hars, “Modular inverse algorithms without multiplications for cryptographic applica-
tions,” EURASIP Journal on Embedded System, vol. 2006, January 2006.

[7] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126,
February 1978.

[8] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, 2nd ed.
Addison-Wesley, 1981, vol. 2.

[9] Çetin Kaya Koç, “High-speed rsa implementation,” RSA Laboratories, Redwood City,
CA,, Tech. Rep. TR 201, 1994.

56

http://www.design-reuse.com/articles/6358/fpgas-lower-costs-for-rsa-cryptography.html
http://www.trustedcomputinggroup.org/resources/tpm_specification_version_12_revision_103_part_1__3
http://www.trustedcomputinggroup.org/resources/tpm_specification_version_12_revision_103_part_1__3

BIBLIOGRAPHY

[10] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete log-
arithms,” IEEE Transactions on Information Theory, vol. 31, no. 4, pp. 469–472, July
1985.

[11] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on

Information Theory, vol. 22, pp. 644–654, November 1976.

[12] N. I. for Standards and Technology, “Digital signature standard (dss),” August 1991.

[13] M. D. Shieh, J. H. Chen, H. H. Wu, and W. C. Lin, “A new modular exponentiation
architecture for efficient design of rsa cryptosystem,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems archive, vol. 16, no. 9, pp. 1151–1161, September 2008.

[14] (2009, May) Ubasic, version 8.74. [Online]. Available: http://archives.math.utk.edu/
software/msdos/number.theory/ubasic/.html

[15] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses in gf(2m)
using normal basis.” Information and Computing, vol. 78, pp. 171–177, 1988.

[16] K. Fong, D. Hankerson, J. Lopez, and A. Menezes, “Field inversion and point halving
revisited,” IEEE Trans. Computers, vol. 53, no. 8, pp. 1047–1059, 2004.

[17] N. Takagi, J. Yoshiki, and K. Tagaki, “A fast algorithm for multiplicative inversion in
gf(2m) using normal basis,” IEEE Transactions on Computers, vol. 50, no. 5, pp. 394–
398, May 2001.

[18] M. A. Hasan, “Efficient computation of multiplicative inverses for cryptographic applica-
tions,” in 15th IEEE Symposium on Computer Arithmetic. Vail,Colorado, U.S.A.: IEEE,
2001.

[19] A. A. A. Gutub, A. F. Tenca, E. Savas, and Q. K. Kog, “Scalable and unified hardware
to compute montgomery inverse in gf(p) and gf(2n),” in Cryptographic Hardware and

Embedded Systems - CHES 2002, 4th International Workshop, vol. 2523. Redwood
Shores, CA, USA, August 2002, pp. 484–499.

[20] F. R. Henrı́quez, N. A. Saqib, and N. CruzCortés, “A fast implementation of multiplicative
inversion over gf(2m),” International Conference on Information Technology: Coding and

Computing. ITCC 2005, vol. 1, pp. 574–579, April 2005.

[21] J. Guajardo and C. Paar, “Itoh-tsujii inversion in standard basis and its application in
cryptography and codes,” Designs, Codes and Cryptography, vol. 25, pp. 207–216, 2002.

NIT Rourkela 57

http://archives.math.utk.edu/software/msdos/number.theory/ubasic/.html
http://archives.math.utk.edu/software/msdos/number.theory/ubasic/.html

BIBLIOGRAPHY

[22] R. Schroeppel, H. Orman, S. W. O’Malley, and O. Spatscheck., “Fast key exchange with
elliptic curve systems,” in Proceedings of the 15th Annual International Cryptology Con-

ference on Advances in Cryptology, ser. CRYPTO ’95. London, UK: Springer-Verlag,
1995, pp. 43–56.

[23] M. N. Cervantes, K. G. Avila, and F. R. Henrı́quez, “Investigating modular inversion
in binary finite fields,” Computer Science Department CINVESTAV-IPN, Mexico, Tech.
Rep. 2006-1, May 2006.

[24] F. R. Henrı́quez, G. Marales-Luna, N. A. Saquib, and N. Cruz-Cortés, “Parallel itoh-tsujii
multiplicative inversion algorithm for a special class of trinomials,” Designs, Codes and

Cryptography, vol. 45, no. 1, pp. 19–37, October 2007.

[25] H. Sedlak, “The rsa cryptography processor,” in Advances in Cryptology - EUROCRYPT

’87, D. Chaum and W. L. Price, Eds. Berlin, Germany: Springer-Verlag, 1987, vol. 304,
pp. 95–105.

[26] P. Barret, “Implementing the rivest shamir and adleman public key encryption algorithm
on a standard digital signal processor,” in Advances in Cryptology - CRYPTO ’86. Berlin,
Germany: Springer-Verlag, 1986, vol. 263, pp. 311–323.

[27] A. J. Menezes, V. O. P. C., and S. A. Vanstone, Handbook of Applied Cryptography.
Boca Raton, Florida, USA: CRC Press, 1997.

[28] E. F. Brickell, “A fast modular multiplication algorithm with applications to two key cryp-
tography,” in Advances in Cryptology - CRYPTO ’82, R. L. R. D. Chaum and A. T. Sher-
man, Eds. New York, USA: Plenum Publishing, 1982, pp. 51–60.

[29] J. K. Omura, “A public key cell design for smart card chips.” n International Symposium

on Information Theory and its Applications, pp. 983–985, 1990.

[30] J. Quisquater, “Encoding system according to the so-called rsa method, by means of a
microcontroller and arrangement implementing this system,” United States Patent,Patent

Number 5166978, 1992.

[31] D. De Waleffe and J. Quisquater, “Corsair: A smart card for public key cryptosystems,” in
Advances in Cryptology - CRYPTO ’90, A. J. Menezes and S. A. Vanstone, Eds. Berlin:
Springer-Verlag, 1990, vol. 537, pp. 502–514.

[32] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of Com-

putation, vol. 44, pp. 519–521, 1985.

NIT Rourkela 58

BIBLIOGRAPHY

[33] S. R. Dusse and K. B. S., “A cryptographic library for the motorola dsp56000,” in Ad-

vances in Cryptology - EUROCRYPT ’90, I. B. Damgard, Ed. Berlin, German: Springer-
Verlag, 1990, vol. 473, pp. 230–244.

[34] S. Eldridge and C. Walter, “Hardware implementation of montgomery’s modular multi-
plication algorithm,” IEEE Transactions on Computers, vol. 42, no. 6, pp. 693–699, June
1993.

[35] A. Mazzeo, L. Romano, G. P. Saggese, and N. Mazzocca, “Fpga-based implementation of
a serial rsa processor,” in Proceedings of the conference on Design, Automation and Test

in Europe, vol. 1. Munich, Germany: IEEE Computer Society, March 2003, p. 10582.

[36] V. Serrano-Hernández and F. Rodrı́guez-Henrı́quez, “An fpga evaluation of karatusba-
ofman multiplier variants,” Computer Science Department CINVESTAVIPN, Mexico,
Technical Report CINVESTAV COMP 2006 2, May 2006.

[37] J. Gathen and J. Shokrollahi, “Efficient fpga based karatsuba multipliers for polynomi-
als over f2,” in Revised Selected Papers,Lecture Notes in Computer Science, vol. 3897.
Kingston,ON, Canada: Springer-Verlag, 2006, pp. 359–369.

[38] C. Grabbe, M. Bednara, J. Teich, J. Gathen, and J. Shokrollahi., “Fpga designs of parallel
high performance gf(2233) multipliers,” in Proceedings of the 2003 International Sympo-

sium on Circuits and Systems,ISCAS ’03, vol. 2, May 2003, pp. 268–271.

[39] E. Oksuzoglu and E. Savas, “Parametric, secure and compact implementation of rsa on
fpga,” International Conference on Reconfigurable Computing and FPGAs, December
2008.

[40] C. McIvor, M. McLoone, and J. McCanny, “Modified montgomery modular multipli-
cation and rsa exponentiation techniques,” IEE Proceedings in Computers and Digital

Techniques, vol. 151, no. 6, pp. 402–408, November 2004.

NIT Rourkela 59

	Contents
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Introduction
	Motivation
	Thesis Layout

	The RSA Algorithm
	Introduction
	Computation of Modular Exponentiation
	Layout of the RSA implementation on FPGA
	Conclusion

	Non-restoring Division for Modulus Extraction
	Introduction
	Restoring Division Algorithm

	Non-restoring division implementation
	Layout for division & Simulation Results
	Synthesis Results

	Conclusion

	Modular Inversion Hardware
	Introduction
	Extended Euclidean Algorithm
	Binary Euclidean Algorithm
	Laszlo Hars Modification
	Justification for Laszlo Hars Euclidean Algorithm

	Laszlo Hars Inversion Implementation
	Layout of Modular Inversion
	Simulation Results
	Synthesis Results

	Conclusion

	Modular Multiplication Hardware
	Introduction
	Modular Multiplication
	Montgomery Modular Multiplication

	Efficient techniques for direct multiplication
	Standard Multiplication Algorithm
	Karatsuba-Ofman Algorithm
	FFT-based Multiplication Algorithm

	Hybrid Karatsuba-Ofman Implementation
	Simulation Results
	Synthesis Results

	Conclusion

	Modular Exponentiation Hardware
	Introduction
	Efficient techniques for exponentiation
	Binary Strategies
	Montgomery Exponentiation

	Montgomery Exponentiation implementation
	Simulation Results
	Synthesis Results

	Conclusion

	RSA Implementation and Synthesis Results
	Introduction
	Simulation Results
	Synthesis Results

	Extensions to this work
	Conclusion

	Bibliography

