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ABSTRACT 

The  prime  objective  of  this  piece  of  work  is  to  devise  novel  techniques  for computer 

based classification of Electrocardiogram  (ECG) arrhythmias with a  focus on  less 

computational  time  and  better  accuracy. 

As an initial stride in this direction, ECG beat classification is achieved by using feature 

extracting techniques to make a neural network (NN) system more effective. The feature 

extraction technique used is Wavelet Signal Processing. Coefficients from the discrete wavelet 

transform were used to represent the ECG diagnostic information and features were extracted 

using the coefficients and were normalised. These feature sets were then used in the classifier i.e. 

a simple feed forward back propagation neural network (FFBNN). 

This paper presents a detail study  of  the  classification  accuracy  of ECG signal  by  using  

these  four  structures  for  computationally  efficient  early  diagnosis.  Neural network  used  in  

this  study  is  a  well-known  neural  network  architecture  named  as  multi-Layered perceptron 

(MLP) with back propagation  training algorithm.  

The ECG signals have been  taken  from MIT-BIH  ECG  database,  and  are  used  in  training  

to  classify  3 different Arrhythmias out of ten arrhythmias.  These are  normal  sinus  rhythm, 

paced  beat, left  bundle  branch  block.  Before testing, the proposed structures are trained by 

back propagation algorithm.  

The results show that the wavelet decomposition method is very effective and efficient for fast 

computation of ECG signal analysis in conjunction with the classifier. 
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Chapter 1      

INTRODUCTION 
 

1.1 Introduction 

 
Many physiological signals may be described either as isolated pulses or as quasi-periodic 

sequences of isolated pulses. Wavelets are a powerful tool for the representation and analysis of 

such physiologic waveforms because a wavelet has finite duration (compact support) as 

contrasted with Fourier methods based on sinusoids of infinite duration. 

 

The Fourier transform is a tool widely used for many scientific purposes, but it is well suited 

only to the study of stationary signals where all frequencies have an infinite coherence time. The 

Fourier analysis brings only global information which is not sufficient to detect compact 

patterns. Gabor introduced a local Fourier analysis, taking into account a sliding window, leading 

to a time frequency-analysis. This method is only applicable to situations where the coherence 

time is independent of the frequency. This is the case for instance for singing signals which have 

their coherence time determined by the geometry of the oral cavity. Morlet introduced the 

Wavelet Transform in order to have a coherence time proportional to the period. 

 

The wavelet transform or wavelet analysis is probably the most recent solution to overcome the 

shortcomings of the Fourier transform. In wavelet analysis the use of a fully scalable modulated 

window solves the signal-cutting problem. The window is shifted along the signal and for every 

position the spectrum is calculated. Then this process is repeated many times with a slightly 

shorter (or longer) window for every new cycle. In the end the result will be a collection of time-

frequency representations of the signal, all with different resolutions. Because of this collection 

of representations we can speak of a multi-resolution analysis. In the case of wavelets we 

normally do not speak about time-frequency representations but about time-scale representations, 

scale being in a way the opposite of frequency, because the term frequency is reserved for the 

Fourier transform. 
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1.2 Motivation 

 
The state of cardiac heart is generally reflected in the shape of ECG waveform and heart rate. It 

may contain important pointers to the nature of diseases afflicting the heart. However, bio-

signals being non-stationary signals, the reflection may occur at random in the time-scale (that is, 

the disease symptoms may not show up all the time, but would manifest at certain irregular 

intervals during the day). From the practical point of view, for the effective diagnostics, the study 

of ECG pattern and heart rate variability signal may have to be carried out over several hours. 

The volume of the data being enormous, the study is tedious and time consuming and the 

possibility of the analyst missing the vital information is high. Hence, computer based analysis 

and classification of diseases can be very helpful in diagnosis [1]. Several algorithms have been 

developed in the literature for detection and classification of ECG beats. Most of them use either 

time or frequency domain representation of the ECG waveforms, on the basis of which many 

specific features are defined, allowing the recognition between the beats belonging to different 

classes. The most difficult problem faced by today’s automatic ECG analysis is the large 

variation in the morphologies of ECG waveforms, not only of different patients or patient groups 

but also with in the same patient. The ECG waveforms may differ for the same patient to such 

extend that they are unlike to each other and at the same time alike for different types of beats. 

This is the main reason that the beat classifier, performing well on the training data generalizes 

poorly, when presented with different patients ECG waveforms [2].Here we are using wavelet 

techniques for less computational time and better accuracy for classification of ECG arrhythmia. 
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1.3 Report Layout 
 

The project is organized into following chapters. 

Chapter 1, Deals with the formal introduction to the techniques used for transformation and 

classification of physiologic waveforms (like ECG). 

Chapter 2, Deals with the formal description of physiologic waveform and background theory on 

ECG. 

Chapter 3, Background theory of the proposed Techniques for Classification of ECG arrhythmia 

using Wavelet Transform and Neural Network, presents a critical review of the Wavelet and 

Neural Network. The proposed techniques are described in detail in this chapter. 

Chapter 4, Describes how ECG signal classification is done using Wavelet Transform and Neural 

Network. 

Chapter 5, Results and Simulations, describes the comparative study of the result and simulations 

of different techniques proposed for the ECG beat classification. 

Chapter 6, Conclusions and future scope summarizes the conclusions of the project and outlines 

several ideas for further work based on the results we achieved. 
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Chapter 2 

PHYSIOLOGIC WAVEFORMS AND 

BACKGROUND THEORY ON ECG 

 

2.1 Physiologic Waveforms 

 
Many physiological signals may be described either as isolated pulses or as quasi-periodic 

sequences of isolated pulses. Wavelets are a powerful tool for the representation and analysis of 

such physiologic waveforms because a wavelet has finite duration (compact support) as 

contrasted with Fourier methods based on sinusoids of infinite duration. 

 
2.2 Electrocardiogram (ECG) 

 
An electrocardiogram (ECG/EKG) is an electrical impulse recording of the heart and is used in 

the investigation of heart disease. These impulses are recorded as waves called P-QRS-T 

deflections. Each cardiac cell is surrounded by and filled with a solution that contains, in part, 

sodium (Na+), potassium (K+), and calcium (Ca++).  In  its  resting condition  the interior of  the  

cell membrane  is  considered negatively  charged, with  respect  to  the outside. When  an  

electrical  impulse  is  initiated  in  the  heart,  the  inside  of  a  cardiac  cell    rapidly becomes  

positive  in  relation  to  the  outside  of  the  cell.  The electrical impulse causes this excited state 

and this change of polarity, is called depolarization.  Immediately    after depolarization,    the    

stimulated    cardiac    cell    returns    to    its    resting state, which is called repolarization.  The  

resting  state  is  maintained  until  the  arrival  of  the  next  wave  of depolarization. This    

change    in    cell   potential from   negative    to positive    and   back    to negative    is    called    

an action    potential.  That action potential initiates a cardiac muscle contraction.  The ECG is a 

measurement of the effect of this depolarization and repolarization for  the  entire  heart  on  the  

skin surface,  and  is  also  an  indirect  indicator  of  heart  muscle contraction, because  the  

depolarization  of  the  heart  leads  to  the  contraction  of the  heart muscles. Although the 

phases of the ECG are due to action potentials traveling through the heart muscle, the ECG is not 
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simply a recording of an action potential.  During the heartbeat, cells    fire action   potentials    at   

different    times,    and    the   ECG    reflects patterns of that electrical activity [5]. Figure 2.1 

shows ECG waves and intervals as well as standard time and voltage measures on the ECG 

paper. 

 

 
Fig 2.1 Components of an ECG signal. 

 

 

 

 

 

 

 

 

 

 

 



Page | 6  

 

 

2.2.1 Arrhythmia 

 
The rhythm of the heart is normally generated and regulated by pacemaker cells within the  

sinoatrial  (SA)  node,  which  is  located within  the  wall  of  the  right  atrium. SA nodal 6 

pacemaker activity normally governs the rhythm of the atria and ventricles. Normal rhythm is 

very regular, with minimal cyclical fluctuation. Furthermore, atrial contraction is always 

followed by ventricular contraction in the normal heart. When this rhythm becomes irregular, too 

fast (tachycardia) or too slow (bradycardia), or the frequency of the atrial and ventricular beats 

are different, this is called an arrhythmia. The term “dysrhythmia” is sometimes used and has a 

similar meaning [6]. About 14 million people in the USA have arrhythmias (5% of the 

population).  The most common disorders are atrial fibrillation and flutter.  The incidence is 

highly related to age and the presence of underlying heart disease; the incidence approaches 30% 

following open heart surgery. Patients may  describe an  arrhythmia  as  a  palpitation  or 

fluttering  sensation  in  the  chest. For  some  types  of  arrhythmias,  a  skipped  beat  might  be 

sensed  because  the  subsequent  beat  produces  a more  forceful  contraction and  a  thumping 

sensation in the chest. A "racing" heart is another description. Proper diagnosis of arrhythmias 

requires an electrocardiogram, which is used to evaluate the electrical activity of the heart. 

Depending on the severity of the arrhythmia, patients may experience dyspnea (shortness of 

breath), syncope (fainting), fatigue, heart failure symptoms, chest pain or cardiac arrest.  

 

A  frequent  cause  of arrhythmia  is  coronary  artery  disease  because  this  condition results  in 

myocardial  ischemia or  infarction.  When cardiac cells lack oxygen, they become depolarized, 

which lead to altered impulse formation and/or altered impulse conduction. The former  concerns  

changes  in rhythm  that  are  caused  by  changes  in  the  automaticity  of pacemaker cells or by 

abnormal generation of action potentials at sites other than the SA node (termed  ectopic-foci).   

Altered impulse conduction is usually associated with complete or partial block of electrical 

conduction within the heart.  Altered impulse conduction commonly results in reentry, which can 

lead to tachy-arrhythmias.   Changes in cardiac structure that accompany heart failure (e.g., 

dilated or hypertrophied cardiac chambers) can also precipitate arrhythmias.  Finally, many 
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different types of drugs (including anti-arrhythmic drugs) as well as electrolyte disturbances 

(primarily K+ and Ca++) can precipitate arrhythmias.  

 

Arrhythmias  can  be  either  benign  or  more  serious  in  nature depending  on  the 

hemodynamic  consequence  of  the  arrhythmia  and the  possibility  of  evolving  into  a  lethal 

arrhythmia.   Occasional premature  ventricular  complexes  (PVCs),  while  annoying  to  a 

patient,  are  generally  considered  benign  because  they  have  little hemodynamic  effect. 

Consequently, PVCs if not too frequent, are generally not treated.   In  contrast,  ventricular 7 

tachycardia  is  a serious  condition  that  can  lead  to  heart  failure,  or  worse,  to ventricular 

fibrillation and death.    

            

When arrhythmias require treatment, they are treated with drugs that suppress the arrhythmia. 

These drugs are called anti-arrhythmic drugs. There are many different types of anti-arrhythmic 

drugs and many different mechanisms of action. Most of the drugs affect ion channels that are 

involved in the movement of sodium, calcium and potassium ions in and out of the cell.  These 

drugs include mechanistic classes such as sodium-channel blockers, calcium-channel blockers 

and potassium-channel blockers. By altering the movement of these important ions, the electrical 

activity of the cardiac cells (both pacemaker and non-pacemaker cells) is altered, hopefully in a 

manner that suppresses arrhythmias. Other drugs affect autonomic influences on the heart, which 

may be stimulating or aggravating arrhythmias. 

 

2.2.2 Waves and Intervals of the ECG 

 
P wave 

 
During normal atrial depolarization, the main electrical vector is directed from the SA node 

towards the AV node, and spreads from the right atrium to the left atrium. This turns into the P 

wave on the ECG, which is upright in II, III, and a VF (since the general electrical activity is 

going toward the positive electrode in those leads), and inverted in a VR (since it is going away 

from the positive electrode for that lead). A P wave must be upright  in  leads  II and  a VF  and  
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inverted  in  lead  a VR  to designate  a  cardiac  rhythm  as Sinus Rhythm.   The relationship 

between P waves and QRS complexes helps distinguish various cardiac arrhythmias. 

   

•  The shape and duration of the P waves may indicate atrial enlargement  

The PR interval is measured from the beginning of the P wave to the beginning of the QRS 

complex. It is usually 120 to 200 ms long. On an ECG tracing, this corresponds to 3 to 5 small 

boxes  

•  A PR interval of over 200 ms may indicate a first degree heart block  

•  A  short PR  interval may  indicate  a  pre-excitation  syndrome  via  an accessory pathway  

that  leads  to early activation of  the ventricles, such as seen  in Wolff-Parkinson White 

syndrome 

•  A variable PR interval may indicate other types of heart block.  

•  PR segment depression may indicate atrial injury or pericarditis.  

•  Variable morphologies of P waves  in  a  single ECG  lead  are suggestive of an ectopic  

pacemaker  rhythm  such  as wandering pacemaker  or multifocal  atrial tachycardia. 

 

QRS complex  

 
The QRS complex is a structure on the ECG that corresponds to the depolarization of the 

ventricles.  Because  the  ventricles  contain  more muscle  mass  than  the  atria,  the  QRS 

complex  is  larger  than  the P wave.  In addition, because  the His/Purkinje system coordinates 

the depolarization  of  the  ventricles,  the  QRS  complex  tends  to  look "spiked"  rather  than 

rounded due  to  the  increase  in conduction velocity. A normal QRS complex is 0.06 to 0.10 sec 

(60 to 100 ms) in duration. Not every QRS complex contains a Q wave, an R wave, and an S 

wave.  By  convention,  any  combination  of  these waves  can  be referred  to  as  a  QRS 

complex.  However, correct interpretation of difficult ECGs requires exact labeling of the 

various waves. Some authors use lowercase and capital letters, depending on the relative size of 

each wave.  For  example,  an  Rs  complex  would  be  positively deflected,  while  a  RS 

complex  would  be  negatively  deflected.  If both  complexes  were  labeled  RS,  it  would  be 

impossible  to appreciate  this  distinction  without  viewing  the  actual  ECG.  The duration, 

amplitude, and morphology of the QRS complex is useful in diagnosing cardiac arrhythmias, 
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conduction  abnormalities,  ventricular hypertrophy,  myocardial  infarction, electrolyte 

derangements,  and other  disease  states.  Q waves can be normal (physiological) or 

pathological. Normal Q waves, when present, represent depolarization of the inter-ventricular 

septum. For this reason, they are referred to as septal Q waves, and can be appreciated in the 

lateral  leads  I, a VL, V5 and V6.Q waves greater  than 1/3  the height of  the R wave, greater 

than  0.04  sec  (40  ms)  in  duration,  or  in  the  right  precordial  leads  are considered  to  be 

abnormal, and may represent myocardial infarction. 

  

ST segment   

  
The ST segment connects the QRS complex and the T wave and has duration of 0.08 to 0.12 sec 

(80 to 120 ms). It starts at the J point (junction between the QRS complex and ST segment) and 

ends at the beginning of the T wave. However,  since  it  is usually difficult  to determine  

exactly  where  the  ST  segment  ends  and  the  T  wave begins,  the  relationship between  the 

ST segment and T wave should be examined  together. The typical ST segment duration is 

usually around 0.08 sec (80 ms). It should be essentially level with the PR and TP segment.  The 

normal ST segment has a slight upward concavity. Flat, down sloping or depressed ST segments 

may indicate coronary ischemia. ST segment elevation may indicate myocardial infarction. An 

elevation of >1mm and longer than 80 milliseconds following the J-point. This measure has a 

false positive rate of 15-20% (which is slightly higher in women than men) and a false negative 

rate of 20-30%. 

 

T wave  

 
The T wave represents the repolarization (or recovery) of the ventricles. The  interval from  the  

beginning  of  the  QRS  complex  to  the  apex  of the  T  wave  is  referred  to  as  the absolute 

refractory period. The last half of the T wave is referred to as the relative refractory period (or 

vulnerable period).In most leads, the T wave is positive. However, a negative T wave is normal 

in lead aVR. Lead V1 may have a positive, negative, or biphasic T wave. In addition, it is not 

uncommon to have an isolated negative T wave in lead III, a VL, or a VF. Inverted (or negative) 

T waves can be a sign of coronary ischemia, Wellens' syndrome, left ventricular hypertrophy, or 

CNS disorder. Tall or "tented" symmetrical T waves may indicate hyperkalemia.  Flat T waves 



Page | 10  

 

may indicate coronary ischemia or hypokalemia.  The earliest electrocardiographic finding of 

acute myocardial infarction is sometimes the hyperacute T wave, which can be distinguished 

from hyperkalemia by the broad base and slight asymmetry. When a conduction abnormality 

(e.g., bundle branch block, paced rhythm) is present, the T wave should be deflected opposite the 

terminal deflection of the QRS complex. This is known as appropriate T wave discordance. 

  

QT interval  

 
The QT interval is measured from the beginning of the QRS complex to the end of the T wave. A 

normal QT interval is usually about 0.40 seconds. The QT  interval as well as  the corrected  QT  

interval  is important  in  the  diagnosis  of  long  QT  syndrome  and  short  QT syndrome. The 

QT interval varies based on the heart rate, and various correction factors have been developed to 

correct the QT interval for the heart rate. The most commonly used method for correcting the QT 

interval for rate is the one formulated by Bazett and published in 1920.  

     Bazett's formula is,   

 

 

Where QTc is the QT interval corrected for rate, and RR is the interval from the onset of one 

QRS complex to the onset of the next QRS complex, measured in seconds. However, this 

formula tends to be inaccurate, and over-corrects at high heart rates and under-corrects at low 

heart rates. 

 

U wave  

The U wave is not always seen. It is typically small, and, by definition, follows the T wave. U 

waves are thought to represent repolarization of the papillary muscles or Purkinje fibers.  

Prominent U waves are most often seen in  hypokalemia, but  may  be  present  in 

hypercalcemia,  thyrotoxicosis,  or  exposure  to  digitalis,  epinephrine, and  Class  1A  and  3 

antiarrhythmics, as well as in congenital long QT syndrome and in the setting of intracranial 

hemorrhage. An inverted U wave may represent myocardial ischemia or left ventricular volume 

overload. 
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2.2.3 ECG Monitoring Method 

 
Electrodes    are   placed   on   designated    areas    of    the   patient’s body,    and    these 

various combinations   of    the   electrodes   are   used    for   analysis   of    the   heart   

condition. Each separate view of the heart is called an ECG lead. The two ECG monitoring 

methods are standard 12-lead ECG monitoring [7] and continuous ECG monitoring or holter 

monitoring [8]. 12-lead  ECG  consists  of three  standard  leads, designated  as  lead  I,II,III  and  

three augmented  leads,  designated as lead a VR, a VL and a VF, that view the heart in the 

frontal plane, and six precordial or chest  leads, designated V1  throughV2,  that view  the heart 

in  the horizontal  plane.    Both the standard leads and the augmented leads are limb leads.  The 

standard  leads  are  called  bipolar  because they  are  composed  of  two  electrodes-one that is 

negative and one that is positive-and the ECG records the difference in electrical potential 

between  them. The standard 12-lead ECG records 12 different views of the same electrical 

activity on the ECG graph paper. Holter monitoring provides a continuous recording of heart 

rhythm  during  normal  activity, and  the  monitor  is  usually  worn  for  24  hours. In holter 

monitoring, electrodes (small conducting patches) are placed on the chest and attached to a small 

recording monitor that can be carried or in a small pouch worn around the neck. 

 

2.2.4 Normal ECG signal 

 
Here are the normal ECG waves [7].  

Normal sinus rhythm  

      – Each P wave is followed by a QRS complex.  

      – P wave rate is 60 - 100 beats per minute (bpm).  

           If rate is less than 60 bpm, it is called sinus bradycardia. If rate is greater than 100, it is 

called sinus tachycardia. 

Normal P waves  

      – Height is less than 2.5 mm in lead II  

      – Width is less than 0.11 s in lead II   

Normal PR interval  

        – 0.12 to 0.20 s (3-5 small squares)  

Normal QRS complex  
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       – Less than 0.12 s duration (3 small squares)  

Normal QT interval  

       –  Calculate  the  corrected  QT  interval  by  dividing  the  QT interval  by  the  square root 

of the proceeding R-R interval.  Normal is 0.42 s.  

Normal ST segment  

       – No elevation or depression 

         

 

Fig.2.2 Normal ECG signal 
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Chapter 3 

BACKGROUND THEORY ON WAVELET 

TRANSFORM AND NEURAL NETWORK 

3.1  Wavelets 

3.1.1 Introduction 

Wavelets are a powerful tool for the representation and analysis of such physiologic waveforms 

because a wavelet has finite duration (compact support) as contrasted with Fourier methods 

based on sinusoids of infinite duration. 

The Fourier transform is a tool widely used for many scientific purposes, but it is well suited 

only to the study of stationary signals where all frequencies have an infinite coherence time. The 

Fourier analysis brings only global information which is not sufficient to detect compact 

patterns. Gabor introduced a local Fourier analysis, taking into account a sliding window, leading 

to a time frequency-analysis. This method is only applicable to situations where the coherence 

time is independent of the frequency. This is the case for instance for singing signals which have 

their coherence time determined by the geometry of the oral cavity. Morlet introduced the 

Wavelet Transform in order to have a coherence time proportional to the period. 

 

The wavelet transform or wavelet analysis is probably the most recent solution to overcome the 

shortcomings of the Fourier transform. In wavelet analysis the use of a fully scalable modulated 

window solves the signal-cutting problem. The window is shifted along the signal and for every 

position the spectrum is calculated. Then this process is repeated many times with a slightly 

shorter (or longer) window for every new cycle. In the end the result will be a collection of time-

frequency representations of the signal, all with different resolutions. Because of this collection 

of representations we can speak of a multiresolution analysis. In the case of wavelets we 

normally do not speak about time-frequency representations but about time-scale representations, 

scale being in a way the opposite of frequency, because the term frequency is reserved for the 

Fourier transform. 



Page | 14  

 

3.1.2 The continuous wavelet transforms 

The wavelet analysis described in the introduction is known as the continuous wavelet transform 

or CWT. More formally it is written as:  

      (1) 

where * denotes complex conjugation. This equation shows how a function f(t) is decomposed 

into a set of basis functions , ψs,τ(t) called the wavelets. The variables s andτ, scale and 

translation, are the new dimensions after the wavelet transform. For completeness sake (2) gives 

the inverse wavelet transform.  

     (2) 

The wavelets are generated from a single basic wavelet (t), the so-called mother wavelet, by 

scaling and translation 

               (3) 

In (3) s is the scale factor, τ is the translation factor and the factor s
-1/2

 is for energy 

normalization across the different scales. 

3.1.3 Discrete wavelets 

Now that we know what the wavelet transform is, we would like to make it practical. However, 

the wavelet transform as described so far still has three properties that make it difficult to use 

directly in the form of (1). The first is the redundancy of the CWT. In (1) the wavelet transform 

is calculated by continuously shifting a continuously scalable function over a signal and 

calculating the correlation between the two. It will be clear that these scaled functions will be 

nowhere near an orthogonal basis [6] and the obtained wavelet coefficients will therefore be 

highly redundant. For most practical applications we would like to remove this redundancy.  

http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq2#eq2
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq3#eq3
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq1#eq1
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq1#eq1
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#note6#note6
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Even without the redundancy of the CWT we still have an infinite number of wavelets in the 

wavelet transform and we would like to see this number reduced to a more manageable count. 

This is the second problem we have.  

The third problem is that for most functions the wavelet transforms have no analytical solutions 

and they can be calculated only numerically or by an optical analog computer. Fast algorithms 

are needed to be able to exploit the power of the wavelet transform and it is in fact the existence 

of these fast algorithms that have put wavelet transforms where they are today.  

Let us start with the removal of redundancy. 

As mentioned before the CWT maps a one-dimensional signal to a two-dimensional time-scale 

joint representation that is highly redundant. The time-bandwidth product of the CWT is the 

square of that of the signal and for most applications, which seek a signal description with as few 

components as possible, this is not efficient. To overcome this problem discrete wavelets have 

been introduced. Discrete wavelets are not continuously scalable and translatable but can only be 

scaled and translated in discrete steps. This is achieved by modifying the wavelet representation 

(3) to create    

      (4) 

Although it is called a discrete wavelet, it normally is a (piecewise) continuous function. In (4) j 

and k are integers and s0 > 1 is a fixed dilation step. The translation factor 0 depends on the 

dilation step. The effect of discreticizing the wavelet is that the time-scale space is now sampled 

at discrete intervals. We usually choose s0 = 2 so that the sampling of the frequency axis 

corresponds to dyadic sampling. This is a very natural choice for computers, the human ear and 

music for instance. For the translation factor we usually choose 0 = 1 so that we also have 

dyadic sampling of the time axis.  

  

http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq3#eq3
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq10#eq10
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Figure 3.1 

Localization of the discrete wavelets in the time-scale space on a dyadic grid..  

 When discrete wavelets are used to transform a continuous signal the result will be a series of 

wavelet coefficients, and it is referred to as the wavelet series decomposition. An important issue 

in such a decomposition scheme is of course the question of reconstruction. It is all very well to 

sample the time-scale joint representation on a dyadic grid, but if it will not be possible to 

reconstruct the signal it will not be of great use. As it turns out, it is indeed possible to 

reconstruct a signal from its wavelet series decomposition. In (4) it is proven that the necessary 

and sufficient condition for stable reconstruction is that the energy of the wavelet coefficients 

must lie between two positive bounds, i.e.  

             (5) 

where || f ||
2
 is the energy of f(t), A > 0, B < and A, B are independent of f(t). When (5) is 

satisfied, the family of basis functions j,k(t) with j, k Z is referred to as a frame with frame 

bounds A and B. When A = B the frame is tight and the discrete wavelets behave exactly like an 

orthonormal basis. When A B, then exact reconstruction is still possible at the expense of a dual 

http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#dau92#dau92
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq11#eq11
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frame. In a dual frame discrete wavelet transform the decomposition wavelet is different from 

the reconstruction wavelet.  

We will now immediately forget the frames and continue with the removal of all redundancy 

from the wavelet transform. The last step we have to take is making the discrete wavelets 

orthonormal. This can be done only with discrete wavelets. The discrete wavelets can be made 

orthogonal to their own dilations and translations by special choices of the mother wavelet, 

which means:  

      (6) 

An arbitrary signal can be reconstructed by summing the orthogonal wavelet basis functions, 

weighted by the wavelet transform coefficients:  

          (7) 

(7) Shows the inverse wavelet transform for discrete wavelets, which we had not yet seen.  

Orthogonality is not essential in the representation of signals. The wavelets need not be 

orthogonal and in some applications the redundancy can help to reduce the sensitivity to noise 

(7) or improve the shift invariance of the transform. This is a disadvantage of discrete wavelets: 

the resulting wavelet transform is no longer shift invariant, which means that the wavelet 

transforms of a signal and of a time-shifted version of the same signal are not simply shifted 

versions of each other.  

3.1.4.1 A band-pass filter 

With the redundancy removed, we still have two hurdles to take before we have the wavelet 

transform in a practical form. We continue by trying to reduce the number of wavelets needed in 

the wavelet transform and save the problem of the difficult analytical solutions for the end.  

http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq13#eq13
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#she96#she96
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Even with discrete wavelets we still need an infinite number of scalings and translations to 

calculate the wavelet transform. The easiest way to tackle this problem is simply not to use an 

infinite number of discrete wavelets. Of course this poses the question of the quality of the 

transform. Is it possible to reduce the number of wavelets to analyze a signal and still have a 

useful result?  

The translations of the wavelets are of course limited by the duration of the signal under 

investigation so that we have an upper boundary for the wavelets. This leaves us with the 

question of dilation: how many scales do we need to analyze our signal? How do we get a lower 

bound? It turns out that we can answer this question by looking at the wavelet transform in a 

different way.  

If we look, we see that the wavelet has a band-pass like spectrum. From Fourier theory we know 

that compression in time is equivalent to stretching the spectrum and shifting it upwards:  

        (8) 

This means that a time compression of the wavelet by a factor of 2 will stretch the frequency 

spectrum of the wavelet by a factor of 2 and also shift all frequency components up by a factor of 

2. Using this insight we can cover the finite spectrum of our signal with the spectra of dilated 

wavelets in the same way as that we covered our signal in the time domain with translated 

wavelets. To get a good coverage of the signal spectrum the stretched wavelet spectra should 

touch each other, as if they were standing hand in hand (see figure 3.2). This can be arranged by 

correctly designing the wavelets.  

  

 

Figure 3.2 

Touching wavelet spectra resulting from scaling of the mother wavelet in the time domain.  

http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#fig2#fig2
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Summarizing, if one wavelet can be seen as a band-pass filter, then a series of dilated wavelets 

can be seen as a band-pass filter bank. If we look at the ratio between the center frequency of a 

wavelet spectrum and the width of this spectrum we will see that it is the same for all wavelets. 

This ratio is normally referred to as the fidelity factor Q of a filter and in the case of wavelets one 

speaks therefore of a constant-Q filter bank.  

 

3.1.4.2 The discrete wavelet transforms 

In many practical applications the signal of interest is sampled. In order to use the results we 

have achieved so far with a discrete signal we have to make our wavelet transform discrete too. 

Remember that our discrete wavelets are not time-discrete, only the translation- and the scale 

step are discrete. Simply implementing the wavelet filter bank as a digital filter bank intuitively 

seems to do the job. But intuitively is not good enough, we have to be sure.  

 Previously, we stated that the scaling function could be expressed in wavelets from minus 

infinity up to a certain scale j. If we add a wavelet spectrum to the scaling function spectrum we 

will get a new scaling function, with a spectrum twice as wide as the first. The effect of this 

addition is that we can express the first scaling function in terms of the second, because all the 

information we need to do this is contained in the second scaling function. We can express this 

formally in the so-called multiresolution formulation or two-scale relation:  

        (9) 

The two-scale relation states that the scaling function at a certain scale can be expressed in terms 

of translated scaling functions at the next smaller scale. Do not get confused here: smaller scale 

means more detail.  
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The first scaling function replaced a set of wavelets and therefore we can also express the 

wavelets in this set in terms of translated scaling functions at the next scale. More specifically we 

can write for the wavelet at level j:  

         (10) 

which is the two-scale relation between the scaling function and the wavelet.  

Since our signal f(t) could be expressed in terms of dilated and translated wavelets up to a scale j-

1, this leads to the result that f(t) can also be expressed in terms of dilated and translated scaling 

functions at a scale j:  

               (11) 

To be consistent in our notation we should in this case speak of discrete scaling functions since 

only discrete dilations and translations are allowed.  

If in this equation we step up a scale to j-1 (!), we have to add wavelets in order to keep the same 

level of detail. We can then express the signal f(t) as  

                (12) 

If the scaling function j,k(t) and the wavelets j,k(t) are orthonormal or a tight frame, then the 

coefficients j-1(k) and j-1(k) are found by taking the inner products  

 

             (13) 
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If we now replace j,k(t) and j,k(t) in the inner products by suitably scaled and translated 

versions[12] of (9) and (10) and manipulate a bit, keeping in mind that the inner product can also 

be written as an integration, we arrive at the important result:  

       (14) 

       (15) 

These two equations state that the wavelet- and scaling function coefficients on a certain scale 

can be found by calculating a weighted sum of the scaling function coefficients from the 

previous scale. Now recall from the section on the scaling function that the scaling function 

coefficients came from a low-pass filter and recall from the section on subband coding how we 

iterated a filter bank by repeatedly splitting the low-pass spectrum into a low-pass and a high-

pass part. The filter bank iteration started with the signal spectrum, so if we imagine that the 

signal spectrum is the output of a low-pass filter at the previous (imaginary) scale, then we can 

regard our sampled signal as the scaling function coefficients from the previous (imaginary) 

scale. In other words, our sampled signal f(k) is simply equal to (k) at the largest scale!  

But there is more. As we know from signal processing theory a discrete weighted sum like the 

ones in (14) and (15) is the same as a digital filter and since we know that the coefficients j(k) 

come from the low-pass part of the splitted signal spectrum, the weighting factors h(k) in (14) 

must form a low-pass filter. And since we know that the coefficients j(k) come from the high-

pass part of the splitted signal spectrum, the weighting factors g(k) in (15) must form a high-pass 

filter. This means that (14) and (15) together form one stage of an iterated digital filter bank and 

from now on we will refer to the coefficients h(k) as the scaling filter and the coefficients g(k) as 

the wavelet filter.  

By now we have made certain that implementing the wavelet transform as an iterated digital 

filter bank is possible and from now on we can speak of the discrete wavelet transform or DWT. 

Our intuition turned out to be correct. Because of this we are rewarded with a useful bonus 

property of (14) and (15), the subsampling property. If we take one last look at these two 

http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#note12#note12
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq18#eq18
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq19#eq19
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq23#eq23
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq24#eq24
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq23#eq23
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq24#eq24
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq23#eq23
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq24#eq24
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq23#eq23
http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq24#eq24
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equations we see that the scaling and wavelet filters have a step-size of 2 in the variable k. The 

effect of this is that only every other j (k) is used in the convolution, with the result that the 

output data rate is equal to the input data rate. Although this is not a new idea, it has always been 

exploited in subband coding schemes; it is kind of nice to see it pop up here as part of the deal.  

The subsampling property also solves our problem, which had come up at the end of the section 

on the scaling function, of how to choose the width of the scaling function spectrum. Because, 

every time we iterate the filter bank the number of samples for the next stage is halved so that in 

the end we are left with just one sample (in the extreme case). It will be clear that this is where 

the iteration definitely has to stop and this determines the width of the spectrum of the scaling 

function. Normally the iteration will stop at the point where the number of samples has become 

smaller than the length of the scaling filter or the wavelet filter, whichever is the longest, so the 

length of the longest filter determines the width of the spectrum of the scaling function.  

  

 

Figure 3.3 

one stage of an iterated filter bank 
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3.1.5 Applications of Wavelets 

    Wavelet signal processing has a wide range of application. But we are mainly concerned with 

its application in ECG classification for a better diagnosis. An ECG signal is a non-stationary 

signal .therefore it can be best extracted by using discrete wavelet transform (DWT) with aid of 

matlab without any significant loss in valuable information. This data then can be classified by 

using many algorithms or techniques like neural networks or fuzzy logic or a combination of 

both. 
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3.2  Neural Network 

3.2.1 Artificial Neural Networks 

The    brain    has    the    ability    to    perform    tasks    such as pattern    recognition, perception 

and motor control much faster than any computer - even though events occur in the nanosecond 

range for silicon gates and milliseconds for neural systems.   An artificial neural network (NN)    

is    a    model    of    biological    neural    systems    that    contains    similar characteristics.  

3.2.2 Biological Neural System 

A  biological  Neural  System  is  comprised  of  a  mass  of  nerve  cells,  referred  to as  a 

neuron. A neuron consists of a cell body, dendrites and an axon. Neurons are massively 

interconnected   by interconnections   between    the   axon   of   one   neuron   and a dendrite   of   

another   neuron.     This connection is found in the synapse. Signals propagate from    the   

dendrites,    through    the   cell   body    to    the   axon, once    the   signal reaches to a synapse; 

these signals are propagated to all connected dendrites.  A signal is transmitted to the axon of a 

neuron only when the cell undergoes depolarization and repolarization. A neuron can either 

inhibit or excite the associated post-symptic neurons [9]. 

 

Figure 3.5:  A biological neuron 
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3.2.3 Artificial Neuron (AN) 

An artificial neuron (AN) is a model of a biological neuron (BN). Each AN receives signals  

from  the  environment  or  other  ANs,  and  gathers  these  signals.   When  the  cell  is 

activated,  each  AN  transmits  a signal  to  all  connected  artificial  neurons.  Figure (3.6) 

represents an artificial neuron (AN).  Input signals are inhibited or excited through negative and 

positive numerical weights associated with each connection in the AN. The firing of an AN   and    

the   strength   of    the   exciting   signal   are   controlled   via   a    function,   called an 

activation function.  The AN  collects  all  incoming  signals,  and  computes  a  net input signal 

using  the  respective  weights,  then  the  net  signal  serves  as  input  to  the  activation function 

which calculates the output signal of the AN. 

 

Fig: 3.6:  An artificial neuron 

3.2.4 Basic Structure of an Artificial Network 

An  artificial  neural  network  (NN)  is  a  layered  network  of  ANs.  An NN consists of  an  

input  layer,  one  or more  hidden  layers  and  an output  layer.    ANs  in  one  layer  are 

connected,  fully  or  partially,  to the  ANs  in  the  next  layer.  A typical NN structure is 

represented in Figure (3.7) 
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Fig: 3.7:  An artificial neural network 

 

The way to calculate the Net input signal is usually computed as the weighted (wi) sum of all 

input signals (xi) in Equation (3.1). These artificial neurons are referred to as summation units 

(SU) [9].  

                             (3.1) 

  

Once  the  net  input  signal  is  calculated,  the  function  'ƒNet, refered to  as  the  activation 

function,  receives  it  to  determine  the  output  of the  neuron.  Different types of activation 

functions can be used. The neural network is trained by a set of input data and the desired output, 

called targets using the back propagation algorithm. The back propagation algorithm, the best 

known  training algorithm for  the neural networks,  is one  in which  the  input data  is 

continuously  fed  into  the network  and  the  predicted  output  of  the  network is compared 

with the desired output and the error generated.  This process is done repeatedly until the error 

becomes insignificant.  The  artificial  neuron  learning  techniques  are  mainly  classified  into 

supervised  and  unsupervised  learning,  and  the  back  propagation  method  is  a  type  of 

supervised learning [9].  

•  Supervised    learning,    where    the    neuron    (or   NN)  is    provided with    a    data  set 

consisting  of  input  vectors  and  a  target(desired  output)  associated  with each  input vector.  

This data    set    is    referred to as the training set.  The   aim of    supervised training    is then    

to   adjust    the   weight   values   such    that    the   error between the real output of the neuron 

and the target output is minimized.  
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• Unsupervised learning, where the aim is to discover patterns or features in the input data with 

no assistance from an external source. An artificial network has been used for a wide range  of  

applications,  including  diagnosis  of  diseases,  speech  recognition,  data mining, composing  

music,  image  processing,  forecasting,    robot    control,    credit    approval, Classification, 

pattern recognition, planning game strategies, compression and many others [9].  

  

3.2.5   The Multilayer Perceptron  
  

A  three-layered  feed-forward  NN  was  used  and  trained  with  the  error  back propagation.  

The  input  signals  of  NN  were  formed  by  wavelet transformation. Fig. (3.7) shows a general 

structure of the NN. The  back propagation training  with  generalized  delta  learning  rule  is  an  

iterative  gradient algorithm designed to minimize the root mean square error between the actual 

output of a multilayered feed-forward  [32], NN  and  a  desired  output. Each layer is fully 

connected to the previous layer, and has no other connection.           

                

3.2.5.1.   Back propagation algorithm  

  
 i. Initialization: Set all the weights and biases to small real random values.  

ii. While stopping condition is false, do step 3-10. 

iii. For each training pair do step 4 to 9.  

 

Feed forward  

iv. Each input receives the input signal xi and transmits the signals to all units in the layer.  

v. Each hidden layer (zj , j=1,………p) sums its weighted input signals .  

 

                   (3.2) 

Applying activation function    

Zj=f(Zinj                      (3.3) 

vi. Each output layer (y k, k=1,……………..m) sums its weighted input signals. 

                                                (3.4) 



Page | 28  

 

and applying its activation function to calculate the output signals.  

Yk=f(yink)                                                                (3.5) 

Back propagation error  

vii.  Each  output  units  receives  a  target  pattern  corresponding  to  the  input  pattern,  error 

information term is calculated as:   

                               (3.6) 

viii. Each hidden unit (Zj, j=1,…………n) sums its delta input from units in the layer above 

                     (3.7) 

   The error information term is calculated   

                (3.8) 

Updation of Weight and Bias 

ix. Each output unit (yk, k=1,………..m), updates its bias and weights (j=0,…………….p)  

 The weight correction term is given by:  

                                                          (3.9) 

And the bias correction is given by:  

 

Therefore,  

                                          (3.10)  

                                           (3.11)  

Each hidden unit (zj, j=1,………..p) updates its bias and weights (i=0,…n)  

The weight correction term:  

 

The bias correction term:  

 

Therefore, 

Vij(new)=Vij(old)+∆Vij,                                                 (3.12)   

Voj (new)=Vj(old)+∆Voj                                                  (3.13)  

x. Test the stopping condition.The stopping condition may be the minimization of the error, 

number of epochs etc. 



Page | 29  

 

Chapter 4 
 

ECG SIGNAL ANALYSIS USING WAVELET 

TRANSFORMS 
 

4.1. Problem addressed 

The most difficult problem faced by today’sautomatic ECG analysis is the large variation in the 

morphologies of ECG waveforms, not only of different patients or patient groups but also with in 

the same patient. The ECG waveforms may differ for the same patient to such extend that they 

are unlike to each other and at the same time alike for different types of beats. This is the main 

reason that the beat classifier, performing well on the training data generalizes poorly, when 

presented with different patients ECG waveforms [2].In our study we took number of ECG 

samples of different diseases and performed the following stages in order to classify the ECG 

signal efficiently. 

 

Block diagram of the proposed system 
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4.1.1. ECG signal decomposition using discrete wavelet 

transformation 

The major advantage of DWT is that it provides good time resolution at high frequency and 

better frequency resolution at low frequency. One very important application is the ability to 

compute and manipulate data in compressed parameters, which are often called features. Thus, 

the ECG signal, consisting of many data points, can be compressed into a few parameters. These 

parameters characterize the behaviour of the ECG signal. This feature of using a smaller number 

of parameters to represent the ECG signal is particularly important for recognition and diagnostic 

purposes. The procedure of multiresolution decomposition of a signal x[n] is schematically 

shown in Fig. 4.1. Each stage of this scheme consists of two digital filters and two down 

samplers by 2. The first filter, g[·] is the discrete mother wavelet, high-pass in nature, and the 

second, h[·] is its mirror version, low-pass in nature. The down sampled outputs of first high- and 

low-pass filters provide the detail, D1 and the approximation, A1, respectively. The first 

approximation,A1 is further decomposed and this process is continued as shown in Fig. 4.1.We 

choose a Daubechies wavelet of second order i.e. Db2. 

 

Fig 4.1.Subband decomposition of discrete wavelet transform implementation; g[n] is the high-

pass filter, h[n] is the low-pass filter 

The wavelet, scaling functions and the decomposition and reconstruction filters of Db2 are 

shown in Fig.4.2. we performed the three level decomposition of the ECG signal and the detail 

and approximate coefficients were obtained by convoluting the input ecg signals with the Db2 

filter followed by down sampling it by 2. Approximation coefficients were obtained from the 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V14-4DCMDGR-1&_mathId=mml3&_user=1657113&_cdi=5664&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=8dbc4ff9c87b6a0c13b0120a5ff4ba1c
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-4DCMDGR-1&_user=1657113&_coverDate=02%2F01%2F2005&_rdoc=1&_fmt=full&_orig=search&_cdi=5664&_sort=d&_docanchor=&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=310ad51ee3ec5d29f459548d7da22aa8#fig2
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V14-4DCMDGR-1&_mathId=mml4&_user=1657113&_cdi=5664&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=2f2e810097d984fee26f46fbdadd1b50
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V14-4DCMDGR-1&_mathId=mml5&_user=1657113&_cdi=5664&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=e86e2bd53a4f5248d0e39ca08944f422
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V14-4DCMDGR-1&_mathId=mml6&_user=1657113&_cdi=5664&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=0918df63ea7e7248f7ec7f0a33850db5
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V14-4DCMDGR-1&_mathId=mml7&_user=1657113&_cdi=5664&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=d1c45e85f5f38f525bfc69b915a17c6d
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V14-4DCMDGR-1&_mathId=mml8&_user=1657113&_cdi=5664&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=3204c6723750b69fcaaf44d1043c9687
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lowpass filter h(.) which were further decomposed in the next level. Similarly the detail 

coefficients were obtained from highpass filters g(.) at each level using matlab wavelet toolbox. 

   

(a) Scaling function     (b) Wavelet function 

Fig 4.2 a, b, c – Db2 wavelet 

(c) 
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4.1.2. Feature extraction 

The three-level discrete wavelet decomposition produces signal components in different 

subbands. Several features are important in characterizing these signals. First of all, signal 

variances in a subband represent the averaged AC power in that band. With a discrete-time signal 

x of N samples, the sample variance is defined as 

     (4.1) 

where _x is the sample mean of the signal. We use the variance of the decomposed signal in each 

subband as the first feature set in our method. 

The autocorrelation function is considered as a measure of similarity or coherence between a 

signal x(n) and its shifted version. If x(n) is of length N, the autocorrelation function is expressed 

as 

         (4.2) 

where l is the time shift index, i = l, k = 0 for l P 0, and i = 0, k = l for l < 0. The variance of the 

autocorrelation calculated as the averaged AC power of the autocorrelation function, which 

measures the coherence of the signal in each subband (Goumas et al., 2002). Thus, we use it as 

the second feature for subband signals. 

The relative amplitude of the decomposed signal x(n) in each subband is defined as 

 

min(x(n))/max(x(n)) 

 

which represents the morphological characteristics of the signal and is regarded as the third 

feature for subband signals. 

The following statistical features were used to represent the time-frequency distribution of the 

ECG signals:  

1. Mean of the absolute values of the coefficients in each subband.  
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2. Average power of the wavelet coefficients in each subband. 

3. Standard deviation of the coefficients in each subband. 

4. Ratio of the absolute mean values of adjacent subbands. 

Features 1 and 2 represent the frequency distribution of the signal and the features 3 and 4 the 

amount of changes in frequency distribution. These feature vectors, which were calculated for 

the D1-D3 and A3 frequency bands using the matlab wavelet toolbox, were used for classification 

of the ECG beats. 

4.1.3 Normalization of feature vectors 

Because the quantities of the features may be quite different, a normalization process is 

necessary to standardize all the features to the same level. The formula of the normalization is 

defined as follows: 

                                                         (4.3) 

where xij is the jth component of the ith feature vector, _xj and rxj are the mean and standard 

deviation, respectively, of the jth component of the feature vectors, and tansig(Æ) is a hyperbolic 

tangent sigmoid transfer function. The expression in the brackets makes the jth component to be 

normal distributed with zero-mean and unity standard deviation. The hyperbolic tangent sigmoid 

function maps a wide-ranged signal to that with limited range [-1, +1]. In our experiment, the 

mean and the standard deviation of each component in the feature vectors are calculated from the 

training dataset and are used throughout the experiments. 

4.1.4 Classification using feed forward backpropagation neural 

network (FFBNN) 

We choose ten samples each of Normal ECG, LBBB (Left Bundle Branch Block) and PB(Paced 

Beat) half of which were used for training and rest for testing. The samples were first 

decomposed through three levels DWT and the normalised features that were extracted were 

used for training the neural network. Learning rate and momentum constant were chosen as 0.02 

and 0.3 respectively. The size of the training pattern is 15 samples * 200 segments, is presented 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V14-4DCMDGR-1&_mathId=mml30&_user=1657113&_cdi=5664&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=2703fe7e07cdb7b63acc61e86abe888d
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V14-4DCMDGR-1&_mathId=mml31&_user=1657113&_cdi=5664&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=7fa259ccd132b170ada49a32d817c194
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to NN. The number of input nodes were determined as 15, further more optimum NN 

architecture is chosen as 15:30:3. The number of segment chosen is represented in the table 4.1. 

Arrythmia In original training set In new set obtained with 

Wavelet- NN 

   

N (Normal Sinus Rhythm) 5 5 

LBBB(Left Bundle Branch Block) 5 5 

PB (Paced Beat)  5 5 

Total 15 15 

Table 4.1 the no. of segment for each arrythmia 

 

 Targets 

 

 

  1      1 

  2      2     

Inputs  3           

  15       3 Outputs 

Fig. 4.3 NN structure 

 

 

 

 

Supervised Neural 

Network Algorithm 
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Chapter 5 
 

RESULTS 

5.4. Results and Simulations 

 
The ECG signals are obtained from the MIT-BIH arrhythmia database for recognition. Since 

most of the diagnostic information lies around the R peak of the ECG signal, hence a portion of 

signal before it and a portion of signal after it are selected for processing. Herein, the samples 

extracted from the ECG signals are 0.556 s QRS segments with 0.278 s data lengths both before 

and after the R point, resulting in 200 points in each segment at a sampling frequency of 360 Hz. 

Each sample is preprocessed by firstly removing the mean value to eliminate the offset effect, 

and then dividing with the standard deviation. This process results in normalized signals with 

zero mean and unity standard deviation, which aims to reduce the possible false decisions due to 

signal amplitude biases resulting from instrumental and human differences. The ECG data has 

been taken from MIT-BIH data base which is shown in Table below: 

Type MIT-BIH data file Training (file) Testing (file) 

NORM 100,101,108,105 5 5 

LBBB 109,214,111,207 5 5 

PB 102,104,107,217 5 5 

Total  15 15 

 

 Table 5.1 ECG Samples used from MIT-BIH database 
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A total of 30 sample segments attributing to three ECG beat types were selected from the MIT-

BIH database, which are shown in the following figures: 

 

   
 Fig 5.1 Normal Arrythmia    Fig 5.2 LBBB Arrythmia 

 

 
  Fig 5.3 Paced Beat 
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The types and numbers of the ECG beats exploited in the study are summarised in the above 

table constitute a 15*200 data matrix, then the samples were decomposed using DWT and the 

following results were obtained. 

a) Detail coefficient at level 1 

 

 

 

b) Detail coefficient at level 2 
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c) Detail coefficient at level 3 

 

d) Approximation coefficient at level 3 

 

 

Fig.5.4, a, b, c, d-are detail and approximation coefficients of APB ECG signal. 
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a) Detail coefficient at level 1 

 

 

 
 

b) Detail coefficient at level 2 
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c) Detail coefficient at level 3 

 

 
d) Approximation coefficient at level 3 

 
Fig.5.5,a,b,c,d-are detail and approximation coefficients of PB ECG signal. 

 

 
After the decomposition of the ECG signal the feature vectors were extracted and normalised this 

normalised feature vectors were used to train the selected NN through experimentation, and thus 

we will get the desired out put. 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

 
In this piece of work, a novel technique is developed for ECG beat classification. In this context, 

we have considered a Neural Network (NN) classifier for beat classification. In order overcome 

the difficulty of intensive computational time taken using NN classifier, attempt has been made 

to reduce the number of input data points using wavelet transform, which is beneficial for 

automatic ECG beat classification in real time mode. The aim of using wavelet transform is to 

decompose the ECG signal for faster computation. The neural network chosen i.e. FFBNN is 

simple basic neural network having good recognition accuracy and doesn’t take longer time to 

train. The performance of the method will be better, if the number of beats is increased for the 

training. So it can be said that the proposed method is optimum for ECG beat classification. 

 
6.2. Future scope 

 
Since the application of wavelet transformation in electro cardiology is relatively new field of 

research, many methodological aspects (Choice of the mother wavelet, values of the scale 

parameters) of the wavelet technique will require further investigations in order to improve the 

clinical usefulness of this novel signal processing technique. Simultaneously diagnostic and 

prognostic significance of wavelet techniques in various fields of electro cardiology needs to be 

established in large clinical studies. 
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