
1

DESIGN OF JPEG COMPRESSOR

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

in

Electronics and Instrumentation Engineering

By

HARSH VARDHAN DWIVEDI

10507032

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela

2009

2

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “DESIGN OF JPEG COMPRESSOR” submitted by
Harsh Vardhan Dwivedi in partial fulfilments for the requirements for the award of Bachelor
of Technology Degree in Electronics and Instrumentation Engineering at National Institute
of Technology Rourkela is an authentic work carried out by him under my supervision and
guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any
other University / Institute for the award of any Degree or Diploma.

Date: Prof. K.K Mahapatra

 Dept. of Electronics and Communication Engineering

 National Institute of Technology

 Rourkela – 769008

3

ACKNOWLEDGEMENT

I would like to articulate my profound gratitude and indebtedness to my project guide

Prof. Dr. K.K Mahapatra who has always been a constant motivation and guiding factor

throughout the project time in and out as well. It has been a great pleasure for me to get an

opportunity to work under him and complete the project successfully.

An undertaking of this nature could never have been attempted without aid and

inspiration from the works of others whose details are mentioned in references section. I

 acknowledge my indebtedness to all of them. Last but not the least, my sincere thanks to all

 my friends who have patiently extended all kinds of help for accomplishing this undertaking.

Harsh Vardhan Dwivedi

4

CONTENTS

 ABSTRACT………………………………………………………………....05

CHAPTER 1: Theory behind JPEG..……………………………………...06

CHAPTER 2: Transient JPEG 2000......................................……………...24

CHAPTER 3: The Program......................………………………….………31

CHAPTER 4: MATLAB Results......................………………………….....59

REFERENCES……………………………………………………..………..64

5

ABSTRACT:

Images are generated, edited and transmitted on a very regular basis in a vast number of
systems today. The raw image data generated by the sensors on a camera is very voluminous
to store and hence not very efficient. It becomes especially cumbersome to move it around in
bandwidth constrained systems or where bandwidth is to be conserved for cost purposes such
as the World Wide Web. Such scenarios demand use of efficient image compressing
techniques such as the JPEG algorithm technique which compresses the image to a high
degree with little loss in perceived quality of the image. Today JPEG algorithm has become
the de facto standard in image compression. MATLAB was used to write code for a program
which could output a quantized DCT version of the input image and techniques for hardware
implementation of JPEG algorithm in a speedy way were investigated.

6

Chapter 1
JPEG Theory

7

JPEG Theory
JPEG is an image compression standard used for storing images in a compressed format. It
stands for Joint Photographic Experts Group. The remarkable quality of JPEG is that it
achieves high compression ratios with little loss in quality.

JPEG format is quite popular and is used in a number of devices such as digital cameras and
is also the format of choice when exchanging large sized images in a bandwidth constrained
environment such as the Internet.

The JPEG algorithm is best suited for photographs and paintings of realistic scenes with
smooth variations of tone and color. JPEG is not suited for images with many edges and
sharp variations as this can lead to many artifacts in the resultant image. In these situations it
is best to use lossless formats such as PNG, TIFF or GIF.

It is for this reason that JPEG is not used in medical and scientific applications where the
image needs to reproduce the exact data as captured and the slightest of errors may snowball
into bigger ones.

A JPEG image may undergo further losses if it is frequently edited and then saved. The
operation of decompression and recompression may further degrade the quality of the image.
To remedy this, the image should be edited and saved in a lossless format and only converted
to JPEG format just before final transmittal to the desired medium. This ensures minimum
losses due to frequent saving.

Image files saved in the JPEG format commonly have the extensions such as .jpg, .jpeg or
.jpe.

A JPEG image consists of a sequence of segments, each beginning with a marker, each of
which begins with a 0xFF byte followed by a byte indicating what kind of marker it is. Some
markers consist of just those two bytes; others are followed by two bytes indicating the length
of marker-specific payload data that follows. (The length includes the two bytes for the
length, but not the two bytes for the marker.) Some markers are followed by entropy-coded
data; the length of such a marker does not include the entropy-coded data. Note that
consecutive 0xFF bytes are used as fill bytes for padding purposes.

 Within the entropy-coded data, after any 0xFF byte, a 0x00 byte is inserted by the encoder
before the next byte, so that there does not appear to be a marker where none is intended,
preventing framing errors. Decoders must skip this 0x00 byte. This technique, called byte
stuffing, is only applied to the entropy-coded data, not to marker payload data.

8

Common JPEG Markers

Short
Name

Bytes Payload Name Comments

SOI 0xFFD8 None Start of Image
SOF0 0xFFC0 Variable

Size
Start of Frame

(Baseline
DCT)

Indicates that this is a baseline DCT-based
JPEG, and specifies the width, height,

number of components, and component
subsampling (e.g., 4:2:0).

SOF2 0xFFC2 Variable
Size

Start Of Frame
(Progressive

DCT)

Indicates that this is a progressive DCT-
based JPEG, and specifies the width,
height, number of components, and

component subsampling (e.g., 4:2:0).
DHT 0xFFC4 Variable

Size
Define

Huffman Table
Specifies one or more Huffman tables

DQT 0xFFDB Variable
Size

Define
Quantization

Table

Specifies one or more quantization tables

DRI 0xFFDD 2 Bytes Define Restart
Interval

Specifies the interval between RSTn
markers, in macroblocks.

SOS 0xFFDA Variable
Size

Start of Scan Begins a top-to-bottom scan of the image.
In baseline DCT JPEG images, there is

generally a single scan. Progressive DCT
JPEG images usually contain multiple

scans. This marker specifies which slice of
data it will contain, and is immediately

followed by entropy-coded data.
RSTn 0xFFD0

…
0xFFD7

None Restart Inserted every r macroblocks, where r is
the restart interval set by a DRI marker.

Not used if there was no DRI marker. The
low 3 bits of the marker code, cycles from

0 to 7.
APPn 0xFFEn Variable

Size
Application

Specific
For example, an Exif JPEG file uses an

APP1 marker to store metadata, laid out in
a structure based closely on TIFF

COM 0xFFFE Variable
Size

Comment Contains a text comment.

EOI 0xFFD9 None End of Image

There are other Start Of Frame markers that introduce other kinds of JPEG.

Since several vendors might use the same APPn marker type, application-specific markers
often begin with a standard or vendor name (e.g., "Exif" or "Adobe") or some other
identifying string.

At a restart marker, block-to-block predictor variables are reset, and the bitstream is
synchronized to a byte boundary. Restart markers provide means for recovery after bitstream

9

error, such as transmission over an unreliable network or file corruption. Since the runs of
macroblocks between restart markers may be independently decoded, these runs may be
decoded in parallel.

Typical Usage of JPEG codec

1. The representation of the colors in the image is converted from RGB to YCbCr,
consisting of one luma component (Y), representing brightness, and two chroma
components, (Cb and Cr), representing color. This step is sometimes skipped.

2. The resolution of the chroma data is reduced, usually by a factor of 2. This reflects the
fact that the eye is less sensitive to fine color details than to fine brightness details.

3. The image is split into blocks of 8×8 pixels, and for each block, each of the Y, Cb,
and Cr data undergoes a discrete cosine transform (DCT). A DCT is similar to a
Fourier transform in the sense that it produces a kind of spatial frequency spectrum.

4. The amplitudes of the frequency components are quantized. Human vision is much
more sensitive to small variations in color or brightness over large areas than to the
strength of high-frequency brightness variations. Therefore, the magnitudes of the
high-frequency components are stored with a lower accuracy than the low-frequency
components. The quality setting of the encoder (for example 50 or 95 on a scale of 0–
100 in the Independent JPEG Group's library[4]) affects to what extent the resolution
of each frequency component is reduced. If an excessively low quality setting is used,
the high-frequency components are discarded altogether.

5. The resulting data for all 8×8 blocks is further compressed with a loss-less algorithm,
a variant of Huffman encoding.

The decoding process reverses these steps. In the remainder of this section, the encoding and
decoding processes are described in more detail.

Encoding

Many of the options in the JPEG standard are not commonly used, and as mentioned above,
most image software uses the simpler JFIF format when creating a JPEG file, which among
other things specifies the encoding method. Here is a brief description of one of the more
common methods of encoding when applied to an input that has 24 bits per pixel (eight each
of red, green, and blue). This particular option is a lossy data compression method.

Color space transformation

First, the image should be converted from RGB into a different color space called YCbCr. It
has three components Y, Cb and Cr: the Y component represents the brightness of a pixel, the
Cb and Cr components represent the chrominance (split into blue and red components). This
is the same color space as used by digital color television as well as digital video including
video DVDs, and is similar to the way color is represented in analog PAL video and MAC
but not by analog NTSC, which uses the YIQ color space. The YCbCr color space conversion
allows greater compression without a significant effect on perceptual image quality (or
greater perceptual image quality for the same compression). The compression is more
efficient as the brightness information, which is more important to the eventual perceptual
quality of the image, is confined to a single channel, more closely representing the human
visual system.

10

This conversion to YCbCr is specified in the JFIF standard, and should be performed for the
resulting JPEG file to have maximum compatibility. However, some JPEG implementations
in "highest quality" mode do not apply this step and instead keep the colour information in
the RGB color model, where the image is stored in separate channels for red, green and blue
luminance. This results in less efficient compression, and would not likely be used if file size
was an issue.

Downsampling

Due to the densities of color- and brightness-sensitive receptors in the human eye, humans
can see considerably more fine detail in the brightness of an image (the Y component) than in
the color of an image (the Cb and Cr components). Using this knowledge, encoders can be
designed to compress images more efficiently.

The transformation into the YCbCr color model enables the next step, which is to reduce the
spatial resolution of the Cb and Cr components (called "downsampling" or "chroma
subsampling"). The ratios at which the downsampling can be done on JPEG are 4:4:4 (no
downsampling), 4:2:2 (reduce by factor of 2 in horizontal direction), and most commonly
4:2:0 (reduce by factor of 2 in horizontal and vertical directions). For the rest of the
compression process, Y, Cb and Cr are processed separately and in a very similar manner.

Block splitting

After subsampling, each channel must be split into 8×8 blocks of pixels. Depending on
chroma subsampling, this yields (Minimum Coded Unit) MCU blocks of size 8×8 (4:4:4 – no
subsampling), 16×8 (4:2:2), or most commonly 16×16 (4:2:0).

If the data for a channel does not represent an integer number of blocks then the encoder must
fill the remaining area of the incomplete blocks with some form of dummy data. Filling the
edge pixels with a fixed color (typically black) creates ringing artifacts along the visible part
of the border; repeating the edge pixels is a common technique that reduces the visible
border, but it can still create artifacts.

Discrete cosine transform

Next, each component (Y, Cb, Cr) of each 8×8 block is converted to a frequency-domain
representation, using a normalized, two-dimensional type-II discrete cosine transform (DCT).

Consider the following as an example of an 8x8 sub image:

11

Before computing the DCT of the subimage, its gray values are shifted from a positive range
to one centered around zero. For an 8-bit image each pixel has 256 possible values: [0,255].
To center around zero it is necessary to subtract by half the number of possible values, or
128.

Subtracting 128 from each pixel value yields pixel values on [− 128,127].

The next step is to take the two-dimensional DCT, which is given by:

 u is the horizontal spatial frequency, for the integers,
 v is the vertical spatial frequency, for the integers,

 gx,y is the pixel value at coordinates (x,y).
 Gu,v is the DCT coefficient at coordinates (u,v)

If this transformation is performed on the above matrix,

12

Note the rather large value of the top-left corner. This is the DC coefficient. The remaining
63 coefficients are called the AC coefficients. The advantage of the DCT is its tendency to
aggregate most of the signal in one corner of the result, as may be seen above. The
quantization step to follow accentuates this effect while simultaneously reducing the overall
size of the DCT coefficients, resulting in a signal that is easy to compress efficiently in the
entropy stage.

The DCT temporarily increases the bit-depth of the image, since the DCT coefficients of an
8-bit/component image take up to 11 or more bits (depending on fidelity of the DCT
calculation) to store. This may force the codec to temporarily use 16-bit bins to hold these
coefficients, doubling the size of the image representation at this point; they are typically
reduced back to 8-bit values by the quantization step. The temporary increase in size at this
stage is not a performance concern for most JPEG implementations, because typically only a
very small part of the image is stored in full DCT form at any given time during the image
encoding or decoding process.

Quantization

The human eye is good at seeing small differences in brightness over a relatively large area,
but not so good at distinguishing the exact strength of a high frequency brightness variation.
This allows one to greatly reduce the amount of information in the high frequency
components. This is done by simply dividing each component in the frequency domain by a
constant for that component, and then rounding to the nearest integer. This is the main lossy
operation in the whole process. As a result of this, it is typically the case that many of the
higher frequency components are rounded to zero, and many of the rest become small
positive or negative numbers, which take many fewer bits to store.

A typical Quantization matrix:

13

The quantized DCT coefficients are computed with:

where G is the unquantized DCT coefficients; Q is the quantization matrix above; and B is
the quantized DCT coefficients.

Using this quantization matrix with the DCT coefficient matrix from above results in:

For example, using −415 (the DC coefficient) and rounding to the nearest integer,

Entropy coding

Entropy coding is a special form of lossless data compression. It involves arranging the
image components in a "zigzag" order employing run-length encoding (RLE) algorithm that
groups similar frequencies together, inserting length coding zeros, and then using Huffman
coding on what is left.

The JPEG standard also allows, but does not require, the use of arithmetic coding, which is
mathematically superior to Huffman coding. However, this feature is rarely used as it is
covered by patents and because it is much slower to encode and decode compared to
Huffman coding. Arithmetic coding typically makes files about 5% smaller.

14

While using Huffman coding, the zigzag ordering of the JPEG components is done as:

Compression ratio and artifacts

The resulting compression ratio can be varied according to need by being more or less
aggressive in the divisors used in the quantization phase. Ten to one compression usually
results in an image that cannot be distinguished by eye from the original. 100 to one
compression is usually possible, but will look distinctly artifacted compared to the original.
The appropriate level of compression depends on the use to which the image will be put.

At many times JPEG images appear with certain irregularities which are due to compression
artifacts. These are due to the quantization step of the JPEG algorithm. They are especially
noticeable around sharp corners between contrasting colours (text is a good example as it
contains many such corners). They can be reduced by choosing a lower level of compression;
they may be eliminated by saving an image using a lossless file format, though for
photographic images this will usually result in a larger file size. Compression artifacts make
low-quality JPEGs unacceptable for storing height maps. The images created with ray-tracing
programs have noticeable blocky shapes on the terrain. Compression artifacts are acceptable
when the images are used for visualization purpose. Unfortunately subsequent processing of
these images usually result in unacceptable artefacts.

Decoding

Decoding to display the image consists of doing all the above in reverse.

Taking the DCT coefficient matrix (after adding the difference of the DC coefficient back in)

15

and taking the entry-for-entry product with the quantization matrix from above results in

which closely resembles the original DCT coefficient matrix for the top-left portion. Taking
the inverse DCT (type-III DCT) results in an image with values (still shifted down by 128)

and adding 128 to each entry

16

This is the uncompressed subimage and can be compared to the original subimage (also see
images to the right) by taking the difference (original − uncompressed) results in error values

with an average absolute error of about 5 values per pixels:

The error is most noticeable in the bottom-left corner where the bottom-left pixel becomes
darker than the pixel to its immediate right.

Required precision

The JPEG encoding does not fix the precision needed for the output compressed image. On
the contrary, the JPEG standard (as well as the derived MPEG standards) have very strict
precision requirements for the decoding, including all parts of the decoding process (variable
length decoding, inverse DCT, dequantization, renormalization of outputs); the output from
the reference algorithm must not exceed:

 a maximum 1 bit of difference for each pixel component
 low mean square error over each 8×8-pixel block
 very low mean error over each 8×8-pixel block
 very low mean square error over the whole image
 extremely low mean error over the whole image

17

These assertions are tested on a large set of randomized input images, to handle the worst
cases. Look at the IEEE 1180-1990 standard for reference. This has a consequence on the
implementation of decoders, and it is extremely critical because some encoding processes
(notably used for encoding sequences of images like MPEG) need to be able to construct, on
the encoder side, a reference decoded image. In order to support 8-bit precision per pixel
component output, dequantization and inverse DCT transforms are typically implemented
with at least 14-bit precision in optimized decoders.

18

Effects of JPEG compression

JPEG compression artifacts blend well into photographs with detailed non-uniform textures,
allowing higher compression ratios. Notice how a higher compression ratio first affects the
high-frequency textures in the upper-left corner of the image, and how the contrasting lines
become more fuzzy. The very high compression ratio severely affects the quality of the
image, although the overall colors and image form are still recognizable. However, the
precision of colors suffer less (for a human eye) than the precision of contours (based on
luminance). This justifies the fact that images should be first transformed in a color model
separating the luminance from the chromatic information, before subsampling the chromatic
planes (which may also use lower quality quantization) in order to preserve the precision of
the luminance plane with more information bits.

Image Quality Size

(Bytes)

Compression

Ratio

Comment

Full
quality
(Q = 100)

83,261 2.6:1 Extremely minor
artifacts

Average
quality
(Q = 50)

15,138 15:1 Initial signs of
subimage artifacts

19

Medium
quality
(Q = 25)

9,553 23:1 Stronger artifacts;
loss of high
resolution
information

Low
quality
(Q = 10)

4,787 46:1 Severe high
frequency loss;
artifacts on
subimage
boundaries
("macroblocking")
are obvious

Lowest
quality
(Q = 1)

1,523 144:1 Extreme loss of
color and detail;
the leaves are
nearly
unrecognizable

Further Lossless compression

There is ongoing research on ways to compress further the data in a JPEG image without
modifying the represented image. This has applications in scenarios where the original image
is only available in JPEG format, and its size needs to be reduced for archival or
transmission. Standard general-purpose compression tools cannot significantly compress
JPEG files.

20

Typically, such schemes take advantage of improvements to the naive scheme for coding
DCT coefficients, which fails to take into account:

 Correlations between magnitudes of adjacent coefficients in the same block;
 Correlations between magnitudes of the same coefficient in adjacent blocks;
 Correlations between magnitudes of the same coefficient/block in different channels;
 The DC coefficients when taken together resemble a downscale version of the original

image multiplied by a scaling factor. Well-known schemes for lossless coding of
continuous-tone images can be applied, achieving somewhat better compression than
the Huffman coded DPCM used in JPEG.

Some standard but rarely-used options already exist in JPEG to improve the efficiency of
coding DCT coefficients: the arithmetic coding option, and the progressive coding option
(which produces lower bitrates because values for each coefficient are coded independently,
and each coefficient has a significantly different distribution). Modern methods have
improved on these techniques by reordering coefficients to group coefficients of larger
magnitude together; using adjacent coefficients and blocks to predict new coefficient values;
dividing blocks or coefficients up among a small number of independently coded models
based on their statistics and adjacent values; and most recently, by decoding blocks,
predicting subsequent blocks in the spatial domain, and then encoding these to generate
predictions for DCT coefficients.

Typically, such methods can compress existing JPEG files between 15 and 25 percent, and
for JPEGs compressed at low-quality settings, can produce improvements of up to 65%.

21

Common Image Formats

Format Description Typical Usage
TIFF Tagged Image File Format Scan files, master images and other high quality

photographic images. Any situation where
versatility and retaining all pixels is more
important than file size.

Supports the RGB, CMYK, Lab and Grayscale
color spaces. Supports layers and alpha
channels. Supports 16 bit. Supports text
annotations.

Offers maximum compatibility between Adobe
and non-Adobe products.

PSD Photoshop Document. Native Adobe
Photoshop file format

Scan files, master images and other high quality
photographic images. Any situation where
versatility and retaining all pixels is more
important than file size.

Supports the RGB, CMYK, Lab, Grayscale and
Multichannel color spaces. Supports layers and
alpha channels. Supports 16 bit. Supports text
annotations.

Offers maximum compatibility between
Photoshop versions and other Adobe products.

Raw The unprocessed data from a digital
capture. Contains the actual, unaltered
data recorded by a digital camera's
sensor. (Technically, a Raw file is a
data file and not an image file.) Since
Raw is a word and not an acronym,
this web site spells it Raw, not RAW.

Should not be confused with Adobe's
Digital Negative format, DNG.

High quality digital camera captures. Because it
gives the photographer unaltered data, many
consider it the more flexible format. However, it
is not a format the image should remain in.
Typically, once opened in Photoshop, a copy is
made and saved in the TIFF or PSD format.

Supports a broader tonal and color range that
JPEG. File size is larger than JPEG, but smaller
than uncompressed TIFF. Supports 16 bit.

Because it is unprocessed, there is no color space
associated with it. Also, Raw is a manufacturer
proprietary, closed source format. Therefore,
Photoshop's Camera Raw plug-in will need to be
able to read the specific manufacturer's Raw
format before it can open the file.

XMP Sidecar file created by Camera Raw XMP, or Extensible Metadata Platform, files are
not actually image files nor do they contain
image data. They contain Camera Raw

22

adjustment instructions.

Photoshop will not update a manufacturer
proprietary Raw file. Instead, if adjustments are
made to a Raw file in Camera Raw, these
adjustments are stored as instructions in a XMP
file. When the file is opened again, Camera Raw
reapplies the adjustments by processing the
instructions in the XMP file.

DNG Digital Negative. Adobe's generic
Raw format.

Since Raw is a manufacturer proprietary format,
Adobe created the DNG format to allow a
universal, open source, Raw format.

GIF Graphic Interchange Format Web graphics with a very limited color gamut
and distinct detail, such as web page buttons.
Supports very small file sizes and allows an
image to have a transparent background.

Not a format for photographic images.

PNG Portable Network Graphics Web graphics. A competing format to GIF. A
license and patent free graphics format.

Supports full color. Supports 16 bit. Supports
RGB and Grayscale color spaces.

Does not support layers. Does not support non-
transparency alpha channels. Does not support
the CMYK or Lab color spaces. Does not
support text annotations.

Not a format for master photographic images.

BMP Bit mapped A Microsoft Windows graphic file format. More
appropriate for graphic work than photographic
images.

Supports the RGB and Grayscale color spaces.
Supports alpha channels.

Does not support color profiles. Does not
support the CMYK or Lab color spaces. Does
not support 16 bit. Does not support layers.

EPS Encapsulated PostScript A PostScript file. Not a format used by
photographers. Typically used by graphic artists.

23

Comparison between JPEG and Raw

 Raw JPEG
In-Camera
Processing

The only in-camera processing Raw data
undergoes is the conversion of an analog
signal to digital. The result is a capture
than contains 100% of the data recorded
by the sensor. This is the main reason the
Raw format is considered the most
flexible.

In-camera processing applies all
color, white balance and tone
conversions. The image is
complete, unless corrections or
adjustments are needed.

Convenience Raw is not a ready-to-use format. Raw
allows more control over the image but
requires more work. It must be converted
from a data file to an image file before it
can be used as an image. Photoshop's
Camera Raw performs this conversion.

A JPEG capture is ready to
print or email (assuming you do
not need to perform any image
corrections or enhancements).

White
Balance

White balance is not actually applied to a
Raw file. It is a value recorded in the
file's metadata. This means you can
change the white balance inside Camera
Raw with absolutely no loss or
degradation of quality.

White balance has been
permanently applied to the
image when saved by the digital
camera. To fix any color
imbalance, the image must be
color corrected.

Bit depth 8 or 16 bit 8 bit
Color and
tonal gamut

Since Raw is a 16 bit capture, it can
capture more gradations of tone and color
than an 8 bit capture.

Up to 16.7 million different
colors.

File size Much larger than JPEG Small due to lossy compression.
Image quality Image quality is more a function of the

photographer's skills than file format.
More photographers ruin an
image because of poor
technique than JPEG's lossy
compression ever will.

24

Chapter 2
JPEG 2000

25

JPEG 2000

JPEG 2000 is a wavelet-based image compression standard. It was created by the Joint
Photographic Experts Group committee in the year 2000 with the intention of superseding
their original discrete cosine transform-based JPEG standard (created 1992). The
standardized filename extension is .jp2 for ISO/IEC 15444-1 conforming files and .jpx for the
extended part-2 specifications, published as ISO/IEC 15444-2, while the MIME type is
image/jp2.

While there is a modest increase in compression performance of JPEG2000 compared to
JPEG, the main advantage offered by JPEG2000 is the significant flexibility of the
codestream. The codestream obtained after compression of an image with JPEG2000 is
scalable in nature, meaning that it can be decoded in a number of ways; for instance, by
truncating the codestream at any point, one may obtain a representation of the image at a
lower resolution, or signal-to-noise ratio. By ordering the codestream in various ways,
applications can achieve significant performance increases. However, as a consequence of
this flexibility, JPEG2000 requires encoders/decoders that are complex and computationally
demanding. Another difference, in comparison with JPEG, is in terms of visual artifacts:
JPEG 2000 produces ringing artifacts, manifested as blur and rings near edges in the image,
while JPEG produces ringing artifacts and 'blocking' artifacts, due to its 8×8 blocks.

JPEG 2000 has been published as an ISO standard, ISO/IEC 15444. As of 2008, JPEG 2000
is not widely supported in web browsers, and hence is not generally used on the World Wide
Web.

For traditional JPEG, additional metadata, e.g. lighting and exposure conditions, is kept in an
application marker in the Exif format specified by the JEITA. JPEG2000 chooses a different
route, encoding the same metadata in XML form. The reference between the Exif tags and
the XML elements is standardized by the ISO TC42 committee in the standard 12234-1.

Features

 Superior compression performance: At high bit rates, where artifacts become nearly
imperceptible, JPEG 2000 has a small machine-measured fidelity advantage over
JPEG. At lower bit rates (e.g., less than 0.25 bits/pixel for gray-scale images), JPEG
2000 has a much more significant advantage over certain modes of JPEG: artifacts are
less visible and there is almost no blocking. The compression gains over JPEG are
attributed to the use of DWT and a more sophisticated entropy encoding scheme.

 Multiple resolution representation: JPEG2000 decomposes the image into a multiple
resolution representation in the course of its compression process. This representation
can be put to use for other image presentation purposes beyond compression as such.

 Progressive transmission by pixel and resolution accuracy, commonly referred to as
progressive decoding and signal-to-noise ratio (SNR) scalability: JPEG2000 provides
efficient code-stream organizations which are progressive by pixel accuracy and by
image resolution (or by image size). This way, after a smaller part of the whole file
has been received, the viewer can see a lower quality version of the final picture. The
quality then improves progressively through downloading more data bits from the

26

source. The 1991 JPEG standard also has a progressive transmission feature but it's
rarely used.

 Lossless and lossy compression: Like JPEG 1991,[1] the JPEG2000 standard provides
both lossless and lossy compression in a single compression architecture. Lossless
compression is provided by the use of a reversible integer wavelet transform in JPEG
2000.

 Random code-stream access and processing, also referred as Region Of Interest
(ROI): JPEG2000 code streams offer several mechanisms to support spatial random
access or region of interest access at varying degrees of granularity. This way it is
possible to store different parts of the same picture using different quality.

 Error resilience: Like JPEG 1991, JPEG2000 is robust to bit errors introduced by
noisy communication channels, due to the coding of data in relatively small
independent blocks.

 Flexible file format: The JP2 and JPX file formats allow for handling of color-space
information, metadata, and for interactivity in networked applications as developed in
the JPEG Part 9 JPIP protocol.

 Side channel spatial information: it fully supports transparency and alpha planes.

Color components transformation

Initially, images have to be transformed from the RGB color space to another color space,
leading to three components that are handled separately. There are two possible choices:

1. Irreversible Color Transform (ICT) uses the well known YCBCR color space. It is
called "irreversible" because it has to be implemented in floating or fix-point and
causes round-off errors.

2. Reversible Color Transform (RCT) uses a modified YUV color space that does not
introduce quantization errors, so it is fully reversible. Proper implementation of the
RCT requires that numbers are rounded as specified that cannot be expressed exactly
in matrix form. The transformation is:

Tiling

After color transformation, the image is split into so-called tiles, rectangular regions of the
image that are transformed and encoded separately. Tiles can be any size, and it is also
possible to consider the whole image as one single tile. Once the size is chosen, all the tiles
will have the same size (except optionally those on the right and bottom borders). Dividing
the image into tiles is advantageous in that the decoder will need less memory to decode the
image and it can opt to decode only selected tiles to achieve a partial decoding of the image.

27

The disadvantage of this approach is that the quality of the picture decreases due to a lower
peak signal-to-noise ratio. Using many tiles can create a blocking effect similar to the older
JPEG 1992 standard.

Wavelet transform

An example of the wavelet transform that is used in JPEG2000. This is a 2nd-level CDF 9/7
wavelet transform.

These tiles are then wavelet transformed to an arbitrary depth, in contrast to JPEG 1992
which uses an 8×8 block-size discrete cosine transform. JPEG 2000 uses two different
wavelet transforms:

1. irreversible: the CDF 9/7 wavelet transform. It is said to be "irreversible" because it
introduces quantization noise that depends on the precision of the decoder.

2. reversible: a rounded version of the biorthogonal CDF 5/3 wavelet transform. It uses
only integer coefficients, so the output does not require rounding (quantization) and
so it does not introduce any quantization noise. It is used in lossless coding.

The wavelet transforms are implemented by the lifting scheme or by convolution.

Quantization

After the wavelet transform, the coefficients are scalar-quantized to reduce the amount of bits
to represent them, at the expense of a loss of quality. The output is a set of integer numbers
which have to be encoded bit-by-bit. The parameter that can be changed to set the final
quality is the quantization step: the greater the step, the greater is the compression and the
loss of quality. With a quantization step that equals 1, no quantization is performed (it is used
in lossless compression).

28

Coding

The result of the previous process is a collection of sub-bands which represent several
approximation scales. A sub-band is a set of coefficients — real numbers which represent
aspects of the image associated with a certain frequency range as well as a spatial area of the
image.

The quantized sub-bands are split further into precincts, rectangular regions in the wavelet
domain. They are typically selected in a way that the coefficients within them across the sub-
bands form approximately spatial blocks in the (reconstructed) image domain, though this is
not a requirement.

Precincts are split further into code blocks. Code blocks are located in a single sub-band and
have equal sizes — except those located at the edges of the image. The encoder has to encode
the bits of all quantized coefficients of a code block, starting with the most significant bits
and progressing to less significant bits by a process called the EBCOT scheme. EBCOT here
stands for Embedded Block Coding with Optimal Truncation. In this encoding process, each
bit plane of the code block gets encoded in three so-called coding passes, first encoding bits
(and signs) of insignificant coefficients with significant neighbors (i.e., with 1-bits in higher
bit planes), then refinement bits of significant coefficients and finally coefficients without
significant neighbors. The three passes are called Significance Propagation, Magnitude
Refinement and Cleanup pass, respectively.

Clearly, in lossless mode all bit planes have to be encoded by the EBCOT, and no bit planes
can be dropped.

The bits selected by these coding passes then get encoded by a context-driven binary
arithmetic coder, namely the binary MQ-coder. The context of a coefficient is formed by the
state of its nine neighbors in the code block.

The result is a bit-stream that is split into packets where a packet groups selected passes of all
code blocks from a precinct into one indivisible unit. Packets are the key to quality scalability
(i.e., packets containing less significant bits can be discarded to achieve lower bit rates and
higher distortion).

Packets from all sub-bands are then collected in so-called layers. The way the packets are
built up from the code-block coding passes, and thus which packets a layer will contain, is
not defined by the JPEG 2000 standard, but in general a codec will try to build layers in such
a way that the image quality will increase monotonically with each layer, and the image
distortion will shrink from layer to layer. Thus, layers define the progression by image quality
within the code stream.

The problem is now to find the optimal packet length for all code blocks which minimizes the
overall distortion in a way that the generated target bitrate equals the demanded bit rate.

While the standard does not define a procedure as to how to perform this form of rate–
distortion optimization, the general outline is given in one of its many appendices: For each
bit encoded by the EBCOT coder, the improvement in image quality, defined as mean square
error, gets measured; this can be implemented by an easy table-lookup algorithm.
Furthermore, the length of the resulting code stream gets measured. This forms for each code

29

block a graph in the rate–distortion plane, giving image quality over bitstream length. The
optimal selection for the truncation points, thus for the packet-build-up points is then given
by defining critical slopes of these curves, and picking all those coding passes whose curve in
the rate–distortion graph is steeper than the given critical slope. This method can be seen as a
special application of the method of Lagrange multiplier which is used for optimization
problems under constraints. The Lagrange multiplier, typically denoted by λ, turns out to be
the critical slope, the constraint is the demanded target bitrate, and the value to optimize is the
overall distortion.

Packets can be reordered almost arbitrarily in the JPEG 2000 bit-stream; this gives the
encoder as well as image servers a high degree of freedom.

Already encoded images can be sent over networks with arbitrary bit rates by using a layer-
progressive encoding order. On the other hand, color components can be moved back in the
bit-stream; lower resolutions (corresponding to low-frequency sub-bands) could be sent first
for image previewing. Finally, spatial browsing of large images is possible through
appropriate tile and/or partition selection. All these operations do not require any re-encoding
but only byte-wise copy operations.

Performance

JPEG 2000 gains up to about 20% compression performance for medium compression rates
in comparison to the first JPEG standard. For lower or higher compression rates, the
improvement can be somewhat greater (especially if altering the input resolution to the codec
is not considered as a technique for effective use of the older JPEG standard). Good
applications for JPEG 2000 are large images, images with low-contrast edges — e.g., medical
images.

It has, however, notably higher computational and memory demands.

Finally, JPEG2000 has in some research been found to perform inferior to the intra-frame
coding mode of H.264.

Applications of JPEG 2000

Some markets and applications intended to be served by this standard are listed below:

 Consumer applications such as multimedia devices (e.g., digital cameras, personal
digital assistants, 3G mobile phones, color facsimile, printers, scanners, etc.)

 Client/server communication (e.g., the Internet, Image database, Video streaming,
video server, Second Life, etc.)

 Military/surveillance (e.g., HD satellite images, Motion detection, network
distribution and storage, etc.)

 Medical imagery, esp. the DICOM specifications for medical data interchange.
 Remote sensing
 High-quality frame-based video recording, editing and storage.
 Digital cinema
 JPEG 2000 has many design commonalities with the ICER image compression format

that is used to send images back from the Mars rovers.

30

 World Meteorological Organization has built JPEG 2000 Compression into the new
GRIB2 file format. The GRIB file structure is designed for global distribution of
meteorological data. The implementation of JPEG 2000 compression in GRIB2 has
reduced file sizes up to 80%.

Comparison of JPEG with JPEG 2000

31

Chapter 3
Program

32

MATLAB Program

clc;
clear all;
close all;

q=1;
w=1;
row=1;
column=1;

a=imread('gs.bmp');
b=double(zeros(8,8,4096));
c=double(zeros(8,8,4096));
for k=1:4096
 for i=row:(row+7)
 for j=column:(column+7)
 b(q,w,k)=a(i,j);
 w=w+1;
 if(w==9)
 w=1;
 end
 end
 q=q+1;
 if(q==9)
 q=1;
 end
 end
 row=i+1;

 if(row==513)
 row=1;
 column=j+1;
 end
end
figure, imshow(a);
b=b-128;

for k=1:4096
 c(:,:,k)=dct2(b(:,:,k));
end

s1=double(zeros(512,512));
row=1;
q=1;
w=1;
column=1;
for k=1:4096
 for i=row:(row+7)
 for j=column:(column+7)
 s1(i,j)=c(q,w,k);
 w=w+1;
 if(w==9)
 w=1;
 end
 end
 q=q+1;
 if(q==9)

33

 q=1;
 end
 end
 row=i+1;
 if(row==513)
 row=1;
 column=j+1;
 end
end
figure,imshow(s1);

m=[16 11 10 16 24 40 51 61; 12 12 14 19 26 58 60 55; 14 13 16 24 40 57 69
56; 14 17 22 29 51 87 80 62; 18 22 37 56 68 109 103 77; 24 35 55 64 81 104
113 92; 49 64 78 87 103 121 120 101; 72 92 95 98 112 100 103 99];
m=double(m);
d=double(zeros(8,8,4096));
d=double(c);
for k=1:4096
 d(:,:,k)=round(c(:,:,k)./m);
 end
 c=d;
 e=d;

 for k=1:4096
 e(:,:,k)=round(d(:,:,k).*m);
 end

 f=double(zeros(8,8,4096));

 for k=1:4096
 f(:,:,k)=idct2(e(:,:,k));
 end

 f=f+128;

 s2=double(zeros(512,512));
row=1;
q=1;
w=1;
column=1;
for k=1:4096
 for i=row:(row+7)
 for j=column:(column+7)
 s2(i,j)=round(f(q,w,k));
 w=w+1;
 if(w==9)
 w=1;
 end
 end
 q=q+1;
 if(q==9)
 q=1;
 end
 end
 row=i+1;
 if(row==513)
 row=1;
 column=j+1;

34

 end
end
figure,imshow(s2);
s3=double(zeros(512,512));
s3=s2+128;
s3=uint8(s3);
figure, imshow(s3);
figure, imshow(s3-a);

This program was written in MATLAB to take an image as input and output the quantized
DCT version of the given image for the purpose of JPEG compression.

35

The image used in the program:

36

It is observed that when DCT definition is used to calculate the DCT coefficients a lot of time
is taken. However this time can be reduced by using an algorithmic approach towards the
computation of DCT. Most dedicated computing platforms for Image processing use fast
DCT algorithm which is similar to Fast FFT algorithm.

Computing DCT:

3 stages in implementing 2D DCT:

37

The code for such a DCT Verilog core is from Altera DSP Example Code Library as:

module dct (clk, aclr, clken, col_en, row_en,

 x0,x1,x2,x3,x4,x5,x6,x7,

 y0,y1,y2,y3, y4,y5,y6,y7);

 input clk, aclr;

 input clken;

 input col_en, row_en;

 input [21:0] x0, x1, x2, x3, x4, x5, x6, x7;

 output [21:0] y0, y1, y2, y3, y4, y5, y6, y7;

 //Parameter Declaration

 //Row-based DCT

 parameter constant_09808_14_8 = 251; //FB C(1)

 parameter constant_m09808_14_8 = 4194053; //3FFF05 -C(1)

 parameter constant_092388 = 236; //EC C(2)

 parameter constant_m092388 = 4194068; //3FFF14 -C(2)

 parameter constant_08315_14_8 = 212; //D4 C(3)

 parameter constant_070711 = 181; //B5 C(4)

 parameter constant_05556_14_8 = 142; //8E C(5)

38

 parameter constant_m05556_14_8 = 4194161; //3FFF71 -C(5)

 parameter constant_038268 = 98; //62 C(6)

 parameter constant_01951_14_8 = 50; //32 C(7)

 parameter constant_m01951_14_8 = 4194254; //3FFFCE -C(7)

 //Reg Declaration

 reg [21:0] stage1_0, stage1_1, stage1_2, stage1_3;

 reg [21:0] stage1_4, stage1_5, stage1_6, stage1_7;

 reg [21:0] stage2_0, stage2_1, stage2_2, stage2_3;

 reg [21:0] stage3_0, stage3_1;

 reg [21:0] stage4_0_0p, stage4_0_1p, stage4_0_2p, stage4_0_3p;

 reg [21:0] stage4_0_4p;

 reg [21:0] stage4_4_0p, stage4_5_0p, stage4_6_0p, stage4_7_0p;

 reg [21:0] stage4_4_1p, stage4_5_1p, stage4_6_1p, stage4_7_1p;

 reg [21:0] stage4_4_2p, stage4_5_2p, stage4_6_2p, stage4_7_2p;

 reg [21:0] stage4_4_sel, stage4_5_sel, stage4_6_sel, stage4_7_sel;

 reg [21:0] stage5_sel_0p, stage5_sel_1p, stage5_sel_2p;

 reg [21:0] stage6_2_0p, stage6_3_0p, stage6_2_1p, stage6_3_1p;

 reg [21:0] stage6_2_2p, stage6_3_2p;

 reg [21:0] stage6_4, stage6_5, stage6_6, stage6_7;

 reg [1:0] mux_sel;

 reg [7:0] mux_clken_cnt;

 //Wire Declaration

 wire [21:0] X0, X1, X2, X3, X4, X5, X6, X7;

39

 wire [21:0] stage2_4_w, stage2_5_w, stage2_6_w, stage2_7_w;

 wire [21:0] stage3_2_w, stage3_3_w, stage3_4_w, stage3_5_w, stage3_6_w,
stage3_7_w;

 wire [21:0] stage4_1_w, stage4_2_w, stage4_3_w;

 wire [21:0] stage5_0_w;

 wire [35:0] stage5_1_w;

 wire [36:0] stage5_2, stage5_3;

 wire [37:0] stage5_sel;

 wire [21:0] stage5_2_w, stage5_3_w, stage5_4_w, stage5_5_w, stage5_6_w,
stage5_7_w;

 wire [21:0] stage6_0_w, stage6_1_w, stage6_4_w, stage6_5_w, stage6_6_w,
stage6_7_w;

 wire [21:0] stage4_4_w, stage4_5_w, stage4_6_w, stage4_7_w;

 wire [21:0] stage5_sel_w;

 wire mux_clken, mux_clken_w;

 wire mux_cnt_en;

 //Feeding adders in stage1

 assign X0= x0 ;

 assign X1= x1 ;

 assign X2= x2 ;

 assign X3= x3 ;

 assign X4= x4 ;

 assign X5= x5 ;

 assign X6= x6 ;

 assign X7= x7 ;

40

 //Connect output transform (switch order)

 assign y0 = stage6_0_w;

 assign y1 = stage6_4_w;

 assign y2 = stage6_2_2p;

 assign y3 = stage6_5_w;

 assign y4 = stage6_1_w;

 assign y5 = stage6_6_w;

 assign y6 = stage6_3_2p;

 assign y7 = stage6_7_w;

 //Stage 1

 adder adder_s1_0 (

 .dataa (X0),

 .datab (X7),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage1_0),

 .cout (),

 .overflow ()

);

 adder adder_s1_1 (

41

 .dataa (X1),

 .datab (X6),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage1_1),

 .cout (),

 .overflow ()

);

 adder adder_s1_2 (

 .dataa (X2),

 .datab (X5),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage1_2),

 .cout (),

 .overflow ()

);

 adder adder_s1_3 (

 .dataa (X3),

 .datab (X4),

 .clock (clk),

42

 .aclr (aclr),

 .clken (clken),

 .result (stage1_3),

 .cout (),

 .overflow ()

);

 subtractor subtractor_s1_4 (

 .dataa (X3),

 .datab (X4),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage1_4),

 .cout (),

 .overflow ()

);

 subtractor subtractor_s1_5 (

 .dataa (X2),

 .datab (X5),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage1_5),

43

 .cout (),

 .overflow ()

);

 subtractor subtractor_s1_6 (

 .dataa (X1),

 .datab (X6),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage1_6),

 .cout (),

 .overflow ()

);

 subtractor subtractor_s1_7 (

 .dataa (X0),

 .datab (X7),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage1_7),

 .cout (),

 .overflow ()

);

44

 //Stage 2

 adder adder_s2_0 (

 .dataa (stage1_0),

 .datab (stage1_3),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage2_0),

 .cout (),

 .overflow ()

);

 adder adder_s2_1 (

 .dataa (stage1_1),

 .datab (stage1_2),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage2_1),

 .cout (),

 .overflow ()

);

45

 subtractor subtractor_s2_2 (

 .dataa (stage1_1),

 .datab (stage1_2),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage2_2),

 .cout (),

 .overflow ()

);

 subtractor subtractor_s2_3 (

 .dataa (stage1_0),

 .datab (stage1_3),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage2_3),

 .cout (),

 .overflow ()

);

 assign stage2_4_w = stage1_4;

 assign stage2_5_w = stage1_5;

 assign stage2_6_w = stage1_6;

46

 assign stage2_7_w = stage1_7;

 //Stage 3

 adder adder_s3_0 (

 .dataa (stage2_0),

 .datab (stage2_1),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage3_0),

 .cout (),

 .overflow ()

);

 subtractor subtractor_s3_1 (

 .dataa (stage2_0),

 .datab (stage2_1),

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage3_1),

 .cout (),

47

 .overflow ()

);

 assign stage3_2_w = stage2_2;

 assign stage3_3_w = stage2_3;

 assign stage3_4_w = stage2_4_w;

 assign stage3_5_w = stage2_5_w;

 assign stage3_6_w = stage2_6_w;

 assign stage3_7_w = stage2_7_w;

 //Stage 4

 always @(posedge clk or posedge aclr)

 begin

 if (aclr)

 begin

 stage4_0_0p <= 0;

 stage4_0_1p <= 0;

 stage4_0_2p <= 0;

 stage4_0_3p <= 0;

 stage4_0_4p <= 0;

 stage4_4_0p <= 0;

 stage4_5_0p <= 0;

 stage4_6_0p <= 0;

48

 stage4_7_0p <= 0;

 stage4_4_1p <= 0;

 stage4_5_1p <= 0;

 stage4_6_1p <= 0;

 stage4_7_1p <= 0;

 stage4_4_2p <= 0;

 stage4_5_2p <= 0;

 stage4_6_2p <= 0;

 stage4_7_2p <= 0;

 end

 else if (clken)

 begin

 stage4_0_0p <= stage3_0;

 stage4_0_1p <= stage4_0_0p;

 stage4_0_2p <= stage4_0_1p;

 stage4_0_3p <= stage4_0_2p;

 stage4_0_4p <= stage4_0_3p;

 stage4_4_0p <= stage3_4_w;

 stage4_5_0p <= stage3_5_w;

 stage4_6_0p <= stage3_6_w;

 stage4_7_0p <= stage3_7_w;

 stage4_4_1p <= stage4_4_0p;

 stage4_5_1p <= stage4_5_0p;

 stage4_6_1p <= stage4_6_0p;

 stage4_7_1p <= stage4_7_0p;

49

 stage4_4_2p <= stage4_4_1p;

 stage4_5_2p <= stage4_5_1p;

 stage4_6_2p <= stage4_6_1p;

 stage4_7_2p <= stage4_7_1p;

 end

 end

 assign stage4_1_w = stage3_1;

 assign stage4_2_w = stage3_2_w;

 assign stage4_3_w = stage3_3_w;

 //Stage5

 assign stage5_0_w = stage4_0_4p;

 assign stage4_4_w = stage4_4_sel;

 assign stage4_5_w = stage4_5_sel;

 assign stage4_6_w = stage4_6_sel;

 assign stage4_7_w = stage4_7_sel;

 assign mux_cnt_en = clken;

 assign mux_clken = mux_clken_w ? 1'b1 : 1'b0;

 assign mux_clken_w = mux_clken_cnt >=8 && clken == 1'b1 ;

 always @ (posedge clk or posedge aclr)

50

 begin

 if (aclr)

 begin

 mux_clken_cnt <= 0;

 end

 else if (mux_cnt_en)

 begin

 mux_clken_cnt <= mux_clken_cnt + 1;

 end

 else

 begin

 mux_clken_cnt <= 0;

 end

 end

 //Generate mux select signal

 always @ (posedge clk or posedge aclr)

 begin

 if (aclr)

 begin

 mux_sel <= 0;

 end

 else if (mux_clken)

 begin

 mux_sel <= mux_sel + 1;

51

 end

 else

 begin

 mux_sel <= 0;

 end

 end

 // Mux control for data feeding the four_mul_add block

 always @ (posedge clk)

 begin

 case (mux_sel)

 0: stage4_4_sel = stage3_4_w;

 1: stage4_4_sel = -stage4_6_0p;

 2: stage4_4_sel = stage4_5_1p;

 3: stage4_4_sel = stage4_7_2p;

 endcase

 end

 always @ (posedge clk)

 begin

 case (mux_sel)

 0: stage4_5_sel = stage3_5_w;

 1: stage4_5_sel = -stage4_4_0p;

 2: stage4_5_sel = stage4_7_1p;

 3: stage4_5_sel = -stage4_6_2p;

52

 endcase

 end

 always @ (posedge clk)

 begin

 case (mux_sel)

 0: stage4_6_sel = stage3_6_w;

 1: stage4_6_sel = stage4_7_0p;

 2: stage4_6_sel = stage4_4_1p;

 3: stage4_6_sel = stage4_5_2p;

 endcase

 end

 always @ (posedge clk)

 begin

 case (mux_sel)

 0: stage4_7_sel = stage3_7_w;

 1: stage4_7_sel = -stage4_5_0p;

 2: stage4_7_sel = -stage4_6_1p;

 3: stage4_7_sel = -stage4_4_2p;

 endcase

 end

 one_mult_blk one_mult_blk_inst0 (

53

 .dataa (stage4_1_w[17:0]),

 .datab (constant_070711), //C5

 .clock (clk),

 .aclr (aclr),

 .clken (clken),

 .result (stage5_1_w)

);

 two_mult_add_blk two_mult_add_blk_inst0(

 .aclr (aclr),

 .clken (clken),

 .clk (clk),

 .constant_one (constant_038268), //C6

 .constant_two (constant_092388), //C2

 .X (stage4_2_w[17:0]),

 .Y (stage4_3_w[17:0]),

 .result (stage5_2)

);

 two_mult_add_blk two_mult_add_blk_inst1(

 .aclr (aclr),

 .clken (clken),

 .clk (clk),

 .constant_one (constant_m092388), //-C2

 .constant_two (constant_038268), //C6

54

 .X (stage4_2_w[17:0]),

 .Y (stage4_3_w[17:0]),

 .result (stage5_3)

);

 four_mult_add_blk four_mult_add_blk_inst0(

 .aclr (aclr),

 .clken (clken),

 .clk (clk),

 .constant_one (constant_01951_14_8), //C7

 .constant_two (constant_05556_14_8), //C5

 .constant_three (constant_08315_14_8),//C3

 .constant_four (constant_09808_14_8), //C1

 .W (stage4_4_w[17:0]),

 .X (stage4_5_w[17:0]),

 .Y (stage4_6_w[17:0]),

 .Z (stage4_7_w[17:0]),

 .result (stage5_sel)

);

 assign stage5_sel_w = stage5_sel[29:8];

 always @(posedge clk or posedge aclr)

 begin

 if (aclr)

55

 begin

 stage5_sel_0p <= 0;

 stage5_sel_1p <= 0;

 stage5_sel_2p <= 0;

 end

 else if (clken)

 begin

 stage5_sel_0p <= stage5_sel_w; // s6

 stage5_sel_1p <= stage5_sel_0p; // s5

 stage5_sel_2p <= stage5_sel_1p; // s4

 end

 end

 //Stage6

 assign stage5_2_w = stage5_2[29:8];

 assign stage5_3_w = stage5_3[29:8];

 assign stage5_4_w = stage5_sel_2p;

 assign stage5_5_w = stage5_sel_1p;

 assign stage5_6_w = stage5_sel_0p;

 assign stage5_7_w = stage5_sel_w;

 always @(posedge clk or posedge aclr)

 begin

56

 if (aclr)

 begin

 stage6_2_0p <= 0;

 stage6_3_0p <= 0;

 stage6_2_1p <= 0;

 stage6_3_1p <= 0;

 stage6_2_2p <= 0;

 stage6_3_2p <= 0;

 end

 else if (clken)

 begin

 stage6_2_0p <= stage5_2_w;

 stage6_3_0p <= stage5_3_w;

 stage6_2_1p <= stage6_2_0p;

 stage6_3_1p <= stage6_3_0p;

 stage6_2_2p <= stage6_2_1p;

 stage6_3_2p <= stage6_3_1p;

 end

 end

 assign stage6_0_w = stage5_0_w;

 assign stage6_1_w = stage5_1_w[29:8];

 assign stage6_4_w = stage5_4_w;

 assign stage6_5_w = stage5_5_w;

 assign stage6_6_w = stage5_6_w;

57

 assign stage6_7_w = stage5_7_w;

endmodule

58

Chapter 4
MATLAB Results:

59

Original Input Image (Lenna)

60

Lenna DCT

Recovered Lenna Image

61

Lenna Error Image

62

Original Baboon Image

Baboon DCT

63

Recovered Baboon

Baboon Error Image

64

REFERENCES:

 Wikipedia
en.wikipedia.org

 Digital Image Processing by Gonzalez and Woods
 ALTERA DSP Example Code

