

Inte

in

NAT

Perfo

ensiv

n hete

Partial f

 Ba

D.Ansu

Departme
TIONAL IN

R

orman

e task

eroge

fulfillment

achelor of T

uman Ac
R
2

ent of Co
NSTITUTE
ROURKE

nce a

k allo

eneou

A

Thesis Rep

Submitte

 of the requ

Technology i

By

charya an
Roll No
203060

omputer S
E OF TEC
LA-76900
May 200

nalys

ocatio

us we

eport

d in

uirement for

in Compute

nd Swap
o: -
006

Science E
CHNOLOG
08 (ORISS
09

sis of

on str

eb ser

r the degree

er Science

pnil Koth

Engineeri
GY ROUR
SA)

1

f IO

ategi

rvers

e of

he

ing
RKELA

es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

T

a

b

su

of

o

R

P
D

This is to c

nalysis of I

by D.Ansum

upervision

f Technolog

f Comput

Rourkela, an

Place: Rourk
Date: May 1

Nationa
Rourkel

certify that

IO Intensiv

man Achar

 in partial f

gy in Comp

ter Science

nd this wor

kela
1, 2009

al Institu
a-769008

t the work

ve task allo

rya and Sw

fulfillment

puter Scien

e and Eng

rk has not b

ute of Tec
(Orissa)

k in this T

ocation stra

wapnil Koth

 of the requ

nce during

gineering,

been submit

chnology

Thesis Repo

ategies in h

he has be

uirements f

session 200

National

tted elsewh

y Rourkel

ort entitled

eterogeneou

een carried

for the deg

05-2009 in t

Institute

here for a de

(Bibh

Depa

Ce

2

la

d “Perform

us web serv

 out under

gree of Bach

the Departm

of Techno

egree.

hudatta Sah
Sr. Lectu

artment of C

ertifica

mance

vers”

r my

helor

ment

ology

hoo)
urer
CSE

ate

 3

No thesis is created entirely by an individual or a group of individuals for

that matter, and this is no exception. Many people have helped to create this

thesis and each of their contribution has been valuable. We express our sincerest

gratitude and heartfelt thanks to our project supervisor, Bibhu D. Sahoo, Sr.

Lecturer, CSE, for his kind and able guidance for the completion of the thesis

work. His consistent support and intellectual guidance pushed us to the limits of

our capabilities and inspired to us to work towards the completion of this

project. The work of other researchers that we have referred to and modified in

certain ways has proved to be of immense help too.

We are grateful to Dr. B.Majhi, Professor and Head, CSE for his excellent

support during my work. Thank are due to all my classmates for their love and

support in hard times.

 Last, but not least we would like to thank all professors and lecturers, and

members of the department of Computer Science, Engineering, N.I.T. Rourkela

for their generous help in various ways for the completion of this thesis.

(D.Ansuman Acharya)

10506064

(Swapnil Kothe)

10506004

B.Tech.(Comp. Sc.), 2005-2009

Acknowledgements

 4

The current rate of growth of the World Wide Web has led to an explosion in

internet traffic for many popular websites. To overcome the problem of falling

quality of service for its customers an efficient approach would be to use a

heterogeneous cluster of nodes which replicate the entire site data. In a

centralized system, a master node would load balance the user requests and

allocate them to the appropriate node. A web application which mainly provides

file sharing services to its users offers a system where the tasks are basically of

retrieval based nature and hence more IO intensive. In order to address the

allocation problem of these tasks, several IO aware policies have been designed

and compared with respect to certain standard performance metrics. The study

shows that considering the IO nature of tasks yields significantly better results

than other existing algorithms.

Abstract

 5

Contents
Section Description Page No.

Chapter 1 Introduction
 1.1 The need for load balancing in a web application 7
 1.2 Related Work 8
 1.3 Problem Formulation

1.4 Approaches of Solving the problem
10
11

 1.4 Outline of the thesis 11
 1.6 Conclusion 12

Chapter 2 System Model
 2.1 Architecture 13
 2.2 Task Specification 15
 2.3 Load Balancing Model 17
 2.4 Policies for Load Balancing 18
 2.5 IO Aware Load Balancing in heterogeneous environment 19
 2.6 Performance Metrics

 2.6.1 Standard Deviation of Server Utilizations
 2.6.2 Makespan

20
20
21

Chapter 3 IO intensive Load Balancing Policies
 3.1 Algorithms for IO intensive task allocation 22
 3.1.1 IO aware Load Balancing 22
 3.1.2 Disk Performance Based best Server 23
 3.1.3 WAL 25
 3.1.4 Random Allocation Algorithm 26
 3.2 IO CPU Memory based Load Balancing 27

Chapter 4 Simulation and Results
 4.1 Simulation Environment 29
 4.2 Finding the right number of servers 29
 4.3 Results 32

Chapter 5 Conclusion 36

Chapter 6 Future Enhancements 37

Chapter 7 Bibliography 39

 6

List of Figures

Figure

No Name of the Figure Page No

2.1
Topology of Web servers in a centralized load balancing

for a file sharing application
14

 2.2
Queuing model for centralized load balancing in a file

sharing application
16

2.3 Distribution of standard File Sizes 17

2.4 Virtual IP with direct reply 18

4.1 Determining no. of servers 30

4.2 Comparison of standard deviation of server utilizations
of different algorithms on different systems

33

4.3 Comparison of scheduling makespan of different
algorithms on different systems

34

4.4 Comparison of IORE and IORE degraded on system A 35

List of Tables
Table

No Name of the Table Page No

4.1
Disk parameters for various systems of varying

heterogeneity
32

 7

1.1 The Need for Load balancing in a web application

Internet has experienced a near exponential growth in user base, infrastructure, content

size and resources like low-latency, high throughput network links. This explosive increase

means that high traffic sites offering e-commerce, community and other resource intensive

services like a file sharing web site face an enormous challenge when it comes to ensuring high

availability and fault tolerance for their services.

This problem of congestion and slow user-request processing speeds due to heavy loads

can be solved in various ways. The most obvious solution would seem the use of a single large

powerful Server. However, this solution soon fails because of the gargantuan extent of this web

traffic. The next approach could be replicating the server information over many geographically

separated independent servers, called as ‘mirrored-server’ architecture. This approach provides

us with a list of independent URL sites that have to be manually selected by the user. Although

this should and does solve the congestion problem but with a number of disadvantages,

including not user-transparent architecture, lack of control on the request distribution by the

Web-server system and a huge loss in terms of resources. The next solution, a promising and

efficient approach, is the development of a distributed architecture where the user-requests can

be routed among several server nodes in a user-transparent way.

It is in this regard that a technique called load balancing that aims to spread work

between two or more computers or web servers, network links, CPUs, hard drives, or other

resources, in order to get optimal resource utilization, maximize throughput, and minimize

Chapter

1 Inttrroodduuccttiioonn

 8

response time comes into picture. Using multiple components with load balancing, instead of a

single component, may also increase reliability through redundancy. The balancing service is

usually provided by a dedicated program or hardware device (such as a dispatcher or switch).

We have used a centralized system which can broadcast mechanism to handle load distribution

in a server farm.

We have extensively surveyed the current state of art in this area. A web server load

balancer coordinates the allocation of several information retrieval requests for a distributed

web based application within a set of homogenous web servers that host the application. It

helps to select the best web server for servicing the request and tries to balance their overall

utilization. A dispatcher based model has been proposed in the paper which routes requests to

the appropriate web server based on an IO workload policy. The reason behind choosing such a

policy is that in the type of web application or web site that we have considered tasks of a

retrieval nature are dominant.

 A few algorithms that implement the policies have been simulated and compared with

respect to their performance across of a range of performance parameters and results

interpreted which show that considering IO load for tasks in a file sharing web application

based on a network of heterogeneous web servers leads to a much better performance than

general task allocation policies.

1.2 Related Work

The issue of task allocation by load balancing for CPU and memory resources has been

extensively studied and reported in the literature in recent years. Harchol-Balter et al. [8]

 9

proposed a CPU-based preemptive migration policy that was more effective than non-pre-

emptive migration policies. Zhang et al. [9] focused on load sharing policies that consider both

CPU and memory services among the nodes. The experimental results show that their policies

not only improve performance of memory-intensive jobs, but also maintain the same load

sharing quality of the CPU-based policies for CPU intensive jobs.

A large body of work can be found in the literature that addresses the issue of balancing

the load of disk I/O Lee et al. [10] proposed two file assignment algorithms that balance the

load across all disks. The I/O load balancing policies in these studies have been shown to be

effective in improving overall system performance by fully utilizing the available hard drives.

Zhang et al. proposed three I/O-aware scheduling schemes that are aware of the job’s spatial

preferences [11]. While the above approaches address the issue of load balancing for explicit

I/O load, our technique tackles the problem by considering both explicit I/O invoked by

application programs and implicit I/O induced by page faults.

Cho et al. [12] have developed heuristics to choose the number of I/O servers and place

them on physical processors. We have studied dynamic scheduling algorithms to improve the

read and write performance of a parallel system by balancing the global workload. The above

techniques can improve system performance by fully utilizing the available hard drives.

However, these approaches become less effective under a complex workload where I/O-

intensive tasks share resources with many memory- and CPU-intensive tasks. We have not

considered the effect of memory and CPU in this paper but only focused on the IO load on

servers due to the tasks. For simplicity, we have not considered the sharing of resources

between tasks and neglected communication overhead during the allocation of jobs in the

network.

 10

1.3 Problem Formulation

A file sharing web application needs to store huge amounts of data. It also needs to service

many simultaneous requests, download or upload from several users who are connected to it

from across the globe. In order to maintain the service level agreement for the web application,

we must use multiple servers for the same web application. Using multiple servers which have

the entire data or parts of it replicated not only improves the response time for the user requests

but also helps to enhance reliability and fault tolerance [13]. The routing of requests to the

appropriate server in a balanced way presents a major challenge to most web architects. Usually

either a centralized or distributed scheme is followed. In this study, we have accepted a

centralized scheme with a master server whose only responsibility is to allocate tasks or

requests to the different web servers. An advantage of this kind of architecture is the relatively

lesser communication overheads over any kind of distributed scheme A major drawback of this

scheme is however, the bottleneck presented by the master server upon increase in traffic and

the chance of single point failure.

The popularity of the web application may increase by a large amount over the years. In order

to accommodate the growing needs of its customers and to maintain its quality of service, the

design must be scalable. Change also implies the introduction of newer hardware of

configurations different from the original setup thus favoring a heterogeneous model of the

system which we have assumed in our study.

Allocation of each user request or task to a server presents a decision for the master server

which is a NP complete problem [14]. In this kind of web application most of the tasks are of an

IO intensive nature because the uploading and downloading of data items mainly involves disk

access from the server.

 11

The problem basically is to distribute the load consisting of several tasks amongst the servers in

a balanced manner and try to minimize the total time in which a set of retrieval requests for a

set of users can be allocated and serviced.

1.4 Approaches of Solving the Problem

There are several different ways of load balancing a set of tasks on a heterogeneous network of

servers. The existing techniques are concerned with the effective usage of CPU and memory

resources. Due to imbalance of disk IO under IO intensive workloads, the previous memory or

CPU aware algorithms suffer a significant performance drop. The use of IO loads information

while load balancing thus proves to be a remedy to this deficiency. In this study, we have

proposed a few variants of existing and well proven algorithms which aim at maintaining high

range of resource utilization on the web servers under a wide range of workload conditions.

Using memory, CPU and IO loads at once as per the varying request traffic in a system is a

highly innovative approach which can also be followed for solving this problem. There also

exist methods which consider the communication overheads and task breakdown and

simultaneous execution.

The rest of the thesis focuses on solving this problem by dominantly using IO aware policies

and considering IO centric work loads without network communication overheads or task

dependence due to resource sharing.

1.5 Outline of the Thesis

The thesis is divided into five chapters. In this chapter which is the first, we have provided the

reader with a brief overview and idea about the need of load balancing in a modern day web

application and the problem, whose solution has been explored in this work. The second

 12

chapter deals with the system model and architecture in detail and also describes the IO aware

policy along with the performance metrics that are used to evaluate the algorithms that

implement various flavors of the policy. The third chapter discusses the many algorithms in

detail and their steps. The fourth chapter describes the framework used for simulation and

compares the various algorithms with respect to the performance metrics. The fifth chapter

concludes the entire thesis and the sixth proposes certain enhancements to the work done in

newer viable directions.

1.6 Conclusion

There are several policies for allocation of tasks in a heterogeneous web server based system.

The choice of a centralized or a distributed architecture is currently a topic of great research. We

have considered a centralized approach and taken advantage of the IO intensive nature of tasks

in our system to propose variations of certain known algorithms and compared them with

respect to certain performance metrics like standard deviation of utilization and total

makespan, in the process observing the results and providing suitable interpretations and

conclusions on basis of these results.

 13

In this chapter, we consider a model of our overall system and the several policies addressed

therein. The web application which we have modeled through our system is basically a file

sharing website that lets its users upload and download files. Now as the number of users who

access the website increases, the data hosted on the site must be replicated in order to service

these requests with adherence to the service level agreements.

2.1 System Architecture

In this study, we consider a collection of nodes connected by a high-speed LAN network in a

star topology as shown in Figure 2.1. The file sharing application essentially runs on the Master

Server but the data required by it are present on the servers in a completely redundant form.

Tasks arrive at the master load balancer server which allocates these requests to one of the

many web servers on basis of the task allocation policy in use. Each node maintains its

individual task queue where newly arrived tasks are stored before the retrieval involved in each

task starts. It is implemented as a centralized system although a distributed solution could be

also possible.

The main advantage of centralized systems is that they are simple to implement, and the search

mechanism is fast and efficient. Yet, they have the same disadvantage of any centralized system:

they have a single point of failure, and so are vulnerable to attacks to the server, censorship,

technical failures, etc. Furthermore, these solutions are inherently non-scalable, and limited by

the capacity of the central server. The system described above is a heterogeneous system and

since the nature of our tasks is predominantly of IO intensive kind, we chose to keep the

Chapter

2 System Model

 14

heterogeneity limited to the difference in disk speeds. The heterogeneity of each web server can

be characterized by its CPU speed, memory capacity and disk performance [1]. We characterize

each node i by its CPU speed Ci, memory capacity Mi, and disk performance Di. The disk

performance can be measured as

Di = 1 / (Si + Ri + d / Bidisk) (2.1)

where d is the average size of data stored or retrieved by I/O requests, Bidisk , Si, and Ri denote

the disk bandwidth, average seek time, and average rotation time of the disk in node i.

Figure 2.1 – Topology of Web servers in a centralized load balancing for a file sharing application

A measure of the heterogeneity of the system is provided by Hd which is known as the disk

heterogeneity factor. For every disk there is a parameter called as Wdisk which is the ratio

between its performance and the fastest disk in the cluster. Thus we have

 Widisk = Di / (max j = 1-n(Dj)) (2.2)

And then

Now we

is modele

Where T

spends e

of prima

requirem

in a Pois

shown in

2.2 Task

Each task

system a

searching

several ti

that invo

n, we have

 consider the

ed on basis o

(j) denotes t

executing in

ary memory

ments or the

sson process

n Figure 2.2.

 Specificatio

k is of uploa

are usually

g for some

imes a file is

olve retrieval

e nature of a

of its three c

the strength

the CPU, M

y it will be

 amount of

 with arriva

ons

ading or dow

 downloads

kind of file

s downloade

l of a file fro

a task. The t

components.

T(j) =

 of the jth tas

M(j) denotes t

 using whi

data retrieva

al rate of λ a

wnloading or

s. Most use

e. The uploa

ed by multip

om one of the

ask which is

. Each task c

 C(j) + IO(j)

sk, C(j) deno

the memory

ile it is in e

al it has to p

at the centra

r a transactio

ers look for

ad usually t

ple users. So

e servers.

s actually a r

onsists basic

)+M(j)

otes the CPU

 requiremen

execution a

perform for t

l load balan

on based nat

rward to do

takes place

 we consider

 1

request for r

cally of three

U load due to

nts of the tas

and IO(j) be

the task [1].

ncer from sev

ture. Most o

ownloading

only once c

r only down

15

 (

resource retr

e parts.

 (

o it or the ti

sk or the am

e the explic

 The tasks a

veral users [

of the tasks in

 when they

compared to

nload based

(2.3)

rieval

(2.4)

ime it

mount

it IO

arrive

[2] as

n our

y are

o the

 tasks

 16

Figure 2.2 – Queuing model for centralized load balancing in a file sharing application

The size of each request which actually refers to the size of the file included is represented by a

random variable that follows the Weibull distribution [3]. It is obviously impractical to involve

thousands of users to generate a realistic web workload. Thus we need to generate the

workload by means of software. A trace client takes as input a web access log file and then

makes a replay of the get-requests contained in the web access log file. Each get-request (entry)

in a web access log contains a time stamp, specifying when the requests are to be made, and a

specification of the document requested. The log file is analyzed to reveal information about the

distribution of file sizes. The cumulative probability distribution model is given as:

F (x) = 1 - 1.2393187 * e-0.024458885x^0.475 (2.5)

The prob

For our m

function

2.3 Load

The load

techniqu

of all the

10.*.*.*). T

security m

the web

bability dens

model, we ha

 looks as in F

 Balancing M

d balancing i

e [4]. The lo

e web serve

The only wa

managemen

servers by e

sity function

ave chosen t

Figure 2.3.

F

Model

is implemen

ad balancer

ers are priva

ay to access

nt to the load

either modif

n is given by

the value of

igure 2.3 – Distri

nted using a

 only owns a

ate which ar

 the site is th

d balancer o

fying the de

 k = 5 and λ

ibution of standa

 dispatcher.

a public IP a

re inaccessib

hrough the l

only. The dis

stination IP

= 1. The cum

ard File Sizes

 It follows a

address on th

ble from the

load balance

spatcher red

 address con

 1

mulative dist

a Virtual IP w

he internet.

e internet (li

er’s IP addre

directs each r

ntained in th

17

(2.6)

tribution

with direct r

The IP addr

ike 192.168.*

ess thus con

request to o

he packet he

reply

resses

. or

nfines

one of

eader

 18

or establishing an additional connection between the dispatcher and the web server. The

selected web server sends response to the request to the client directly or indirectly. Although

the dispatcher-based architecture could yield excellent performance of load balancing, the

dispatcher may become the bottleneck and restrict the scalability of the system [5].

Figure 2.4 – Virtual IP with direct reply

2.4 Policies for Load balancing

Load balancing of retrieval based tasks can be done in several approaches that deal with

consideration of the CPU utilization, IO utilization and memory utilization of a given task. The

following is generalized classification of the different types of algorithms that are generally

used.

1. CPU based Load balancing which considers the load created by a task on the CPU for

determining a threshold value beyond which a server is not allocated any further task.[6]

 19

2. CPU- Memory based Load balancing takes both CPU and memory resources into account.

This is then used to determine a threshold value beyond which any server is not allocated any

further task. [6]

3. IO aware Load balancing only takes into account the IO load caused by a task on the

server.[1]

Since the tasks we expect to get in this system also have some CPU bound parts, following

alternate policies may lead to better performance but in this paper, we only focus on the third

kind of policy.

2.5 I/O-aware load balancing in heterogeneous environment

I/O-aware load balancing policy (IO-RE), policy relies on an I/O load index to measure two

types of I/O access: the implicit I/O load induced by page faults and the explicit I/O requests

resulting from tasks accessing disks. A node i's I/O load index is given by

loadIO(i) = ෌ ,ሺܑ܍܏܉ܘ ࢔ሻܒ
࢏ࡺࣕ࢐ + ෌ ࢔ሻܒሺ۽۷

࢏ࡺࣕ࢐ (2.7)

where page(i; j) is the implicit I/O load of task j on node i, and IO(j) is the explicit I/O

requirement of task j.

An I/O threshold, thresholdIO(i), is introduced to identify whether node i's I/O resource is

overloaded. Node i's I/O resource is considered overloaded if loadIO(i) is higher than

thresholdIO(i). The I/O threshold is given as

thresholdIO(i) = Di / (∑ ࢔ܒ۲
ୀ૚࢐) * ෌ ࢔ሻܒሺ۽۷܌܉ܗܔ

ୀ૚࢐ (2.8)

Implicit I

Explicit I

buffer hi

formula:

Where r

by a task

accessed

2.6 Perfo

The syste

We have

during si

2.6.1. Sta

I/O depend

I/O load IO(

it rate hr(i, j)

is the data r

k), buf(i, j) d

 by task j, gi

ormance Me

em that we

e used three

imulation w

andard Devi

s on Mi, load

(i,j) is propo

). The buffer

re-access rat

denotes the

ven a buffer

trics

have model

e parameters

which shall be

iation of Uti

dmem(i) and p

ortional to I/

r hit rate for

te (defined t

 buffer size

r with infinit

led needs to

s which we

e covered in

ilization of s

page fault ra

O access rat

r task j on n

to be the nu

 allocated to

te size.

 be measure

use as perfo

n the next cha

servers

ate pri.

te ar(j) and in

node i is app

mber of tim

o task j, and

ed in terms

ormance me

apter.

 2

nversely pro

proximated

mes the same

d d(j) is the

of mathema

etrics to eva

20

 (2.9)

oportional to

by the follo

(2.10)

e data is acce

e amount of

atical parame

aluate the sy

(2.11)

o I/O

wing

essed

 data

eters.

ystem

 21

Here SD stands for the standard deviation of all the server utilization values of the system. Ui

stands for the utilization of the ith server and uavg stands for the average utilization of all servers.

There are K servers in the system to which tasks are allocated. Utilization of each server is

determined by considered the number of tasks that have completed their execution at it. To

measure this we use the formula below –

 Ui = di/Ta (2.12)

Where di is the total data transferred on the disks of the server due to tasks on it and Ta is the

time for which it has been active and executing retrieval tasks. A higher value of standard

deviation implies that the utilization of the system is skewed and the load balancing is not

effective and vice versa [5].

2.6.2 Makespan

A central problem in scheduling theory is to design a schedule such that the last finishing time

of the given jobs (also called makespan) is minimized [15]. This problem is called the

minimum makespan scheduling. The makespan of a job allocation problem refers to the time by

which the last task in a given set of tasks is completed. In our problem, tasks arrive

continuously and so we find the makespan metric only for a finite set of tasks and assume it

reflects upon the performance of the entire system. A smaller makespan means the algorithm

will be more efficient at allocating jobs and provide lesser over response time and better

throughput.

In the next chapter, we shall discuss the different algorithms in detail that are used to

implement the policies discussed above and compare their performances across these

performance parameters and interpret the results.

 22

In this chapter we divert our focus to presenting the several algorithms that implement the

policies discussed in the previous chapter. In all, four algorithms have been discussed –

IORE-M, DBBS, WAL and RAT. These are variants of the algorithms suggested two existing

load balancing policies – CPU based load balancing and CPU-memory based load balancing

that have been discussed earlier [1]. Since our tasks are I/O intensive, we consider I/O aware

load balancing techniques. We have also proposed an algorithm that also takes into account the

CPU load for a task. In the sections below we describe each of these algorithms.

3.1 Algorithms for IO intensive task allocation

3.1.1. IO-aware Load Balancing

For a task j arriving at a local node i, the IORE-M (IO aware)[1] scheme attempts to balance

I/O resources in the following four main steps. This algorithm uses the IO load attribute of the

tasks to calculate the IO load on each server using equation 2.7. It then finds the threshold due

to IO load on each server using equation 2.8.

This algorithm has two stages. In the first stage the decision making criteria is not used and the

tasks are simply allocated to the servers on a FCFS basis till all servers are loaded. In the second

stage the decision making of allocation is done using the IO threshold mechanism. This has an

advantage that the overhead for the entire algorithm is reduced because the initial stage does

not incur the server selection overhead.

Chapter

3 I/O intensive Load Balancing Policies

 23

Algorithm 1 - IORE-M

Input:

• Si , Ri and Bidisk values for all the nodes used to calculate Di for each node

• The set of incoming tasks having Poisson distributed inter-arrival time and their I/O

explicit I/O requirements

Output: A valid schedule for the task set.

Steps of execution –

1. For the first n tasks (where n is the number of servers) in the system allocate the first n tasks

to the n nodes in a FCFS sequence.

2. Calculate I/O load of node i by adding task j's explicit and implicit I/O load as per the

formula 2.5.

3. Calculate the I/O threshold of each node based on Equation 2.8.

For all the subsequent tasks,

4. Pre-allocate to each server in turn and re-compute the load and threshold for it.

5. If all the nodes are overloaded, allocate the task to the server which has the lowest absolute

difference between the current load and the current threshold.

6. Else allocate the task to the server which has the highest absolute difference between the

current load and the current threshold.

7. Repeat step 4-6 till all tasks are allocated.

3.1.2. Disk Performance based Best Server algorithm

In this section, we present a centralized task allocation algorithm that utilizes the disk

heterogeneity of the servers to allocate tasks in balanced manner. In this algorithm, the selection

 24

criteria for the server to which the task will be allocated is based on its disk performance. This

algorithm is based on the fact that the most powerful node, in terms of its disk IO capability

should handle the highest IO load. The load then contributes to changing the disk performance

parameter which leads to a dynamic adjustment of task handling capabilities of each node.

Algorithm 2 - DBBS

Input:

• Si , Ri and Bidisk values for all the nodes

• The set of incoming tasks having Poisson distributed inter-arrival time and their I/O

explicit I/O requirements

Output: A valid schedule for the set of tasks

The steps of execution are as follows:

1. Calculate the value of Di for each node, taking davg=0 as given in formula 2.1

2. Construct a max-heap of the nodes based on the values of Di

3. For each task present in the queue on the master server, perform the following steps

a. Extract the node present on top of the heap and allocate the task to that node. The disk

performance threshold Dth which is defined as –

 Dth = (Di/∑ ࢔
ୀ૙ࢌ Df) x Loadtotposs (3.1)

Where the Loadtotposs parameter represents the total static load that can be produced to

the entire set of tasks on the system irrespective of what kind of load it is.

If the selected node is found overloaded after allocation of the task, consider the next

element on the heap.

b. If it is already servicing a task, add the new task in the node’s own queue.

 25

c. Increment the value of dtotal for that node by the amount of I/O data to be retrieved in

the task where dtotal is the total amount of I/O data transferred at the node due to all the

tasks on that node.

d. Compute davg for the node and recalculate its Di

e. Re-compute the heap

3.1.3. CPU and IO based Best Server algorithm (Weighted Average Load)

 For every node i, the weighted load index defined in WAL is the weighted average of the

required resource load including both CPU and IO based resources:

Load (i) = Wio x Loadio(i) + Wcpu x Loadcpu(i) (3.2)

WAL dispatches the job to a node with the smallest value of the load index. In our experiments,

the WIO and WCPU parameters are computed dynamically on basis of the tasks that are allocated

by finding the average ratio between their CPU and IO strengths. We know that I/O and CPU

are not equally important in the workload[7] since our system model deals mainly with IO

intensive tasks of a retrieval based nature so the first weight is generally smaller than the

second. The formulae to calculate Loadio(i) is mentioned in chapter 2 under equation 2.7. For

calculating Loadcpu(i), we shall use the formula –

 Loadcpu(i) = Li x (max j=1->n(Cj))/Ci (3.3)

 Where Li is the no. of tasks on node i and Ci is the cpu performance of node i

Algorithm 3 - WAL

Input:

• The set of incoming tasks having Poisson distributed inter-arrival time and their I/O

explicit I/O requirements

 26

• The CPU / IO breakdown of task strength of each task

 Output:

• A valid schedule for the set of scheduled tasks.

 The Steps of execution are follows:

1. For each task in the system perform the following steps:

a. Scan all the nodes to determine which has the least load value

b. If the IO load on the server exceeds the threshold, select the next least loaded server.

c. Assign the task to that node, in case of tie decide arbitrarily.

d. Re compute the load for the node which was just loaded with the task.

e. Re-compute the threshold value for the node.

2. Repeat till all tasks are allocated.

3.1.4 Random Allocation using IO Threshold

In this algorithm, the server to which the task is allocated is selected in a random manner if the

server to which it is initially allocated is found to be overloaded using the IO threshold

discussed previously.

Algorithm 4 – RAT

Input:

• The set of incoming tasks having Poisson distributed inter-arrival time and their I/O

explicit I/O requirements

Output:

• A valid schedule for the set of tasks.

 The Steps of execution are follows:

1. For each task in the system perform the following steps:

 27

 a. Calculate the I/O load on each server as given in formula 2.7

 b. Calculate the I/O threshold on each server as given in formula 2.8

 c. Select a server at random from all the under-loaded servers.

d. Check if it is under-loaded even after allocating the task. If it’s not, repeat step 1c. If it

is overloaded select one more server at random that after being allocated is still under

loaded.

2. Repeat till all tasks are allocated.

All these algorithms are suitable for IO intensive workloads. A more versatile algorithm can be

proposed to deal with all kinds of workloads. This algorithm would take into account the three

characteristics of each task namely the memory, CPU and IO. It is presented in the section

below.

3.2 IO-CPU-Memory based Load balancing

Since the main target of the IORE-M policy is exclusively I/O-intensive workload, IORE-M is

unable to maintain a high performance when the workload tends to be CPU- or memory-

intensive which is a possibility for a different kind of web application. To overcome this

limitation of IORE-M, a new approach, referred to as IOCMRE, attempts to achieve the effective

usage of CPU and memory in addition to I/O resources in heterogeneous clusters. More

specifically, when the explicit I/O load of a node is greater than zero, the I/O-based policy will

be leveraged by IOCMRE as an efficient means to make load-balancing decisions. When the

node exhibits no explicit I/O load, either the memory-based or the CPU-based policy will be

utilized to balance the system load. In other words, if the node has implicit I/O load due to

page faults, load-balancing decisions are made by the memory-based policy. On the other hand,

 28

the CPU-based policy is used when the node is able to fulfill the accumulative memory

requirements of all tasks running on it.

Algorithm 5 – IOCMRE

Input:

• The set of incoming tasks having Poisson distributed inter-arrival time and their I/O

explicit I/O requirements

• CPU and Memory and IO requirements of each task

• CPU and Memory and disk performance capabilities of each node.

Output:

• A valid schedule for the set of tasks

Steps of Execution:

1. For each task do the following steps:

a. Allocate the first task j at node i by means of the IORE-M policy discussed above.

b. If IO(j) + ෌ IOሺi, jሻ ௡
௝ୀଵ > 0 then use the same policy IORE-M to allocate jobs

c. Else if page(i,j) + ෌ pageሺi, jሻ ௡
௝ୀଵ > 0 use a memory based policy to allocate jobs

d. Else use the CPU based policy to allocate jobs.

e. Repeat the above steps till all tasks are allocated.

This algorithm has not been implemented by us and just proposed here to illustrate a complete

approach to allocate tasks under a wide range of workload conditions. In the next chapter, we

discuss the simulation of the four algorithms mentioned above and compare them with respect

to the performance metrics given in chapter 2.

 29

The task allocation problem for n servers has been proved to be a NP complete problem [14].

There are basically three approaches to solve a NP complete problem. It can be simulated to

find results or it can be solved using an approximation algorithm or the exact algorithm that

finds it actual solution can be used. We use the first approach to solve this problem. The details

of the simulation framework and the related results have been described in the subsequent

pages.

4.1 Simulation Environment:

In this section we shall be discussing the several important assumptions made before the

simulation of these algorithms was undertaken. We also discuss an experiment that was

conducted to fix the number of nodes in the architectural model assumed in the previous

chapter.

4.2 Finding the right number of servers

Before simulation was undertaken, a series of steps were carried out to find the right number of

servers that would be suitable for handling the set of tasks was found out by taking a sample set

of 60 tasks that followed the specifications of the nature of tasks defined in the previous chapter.

These tasks were scheduled on different numbers of servers starting from 1. Each time an

experiment was performed using the random allocation policy mentioned above and the

performance metric total make span of server allocation was measured. The results are

illustrated by the graph given below. As we can observe, the increase in number of servers after

Chapter

4 Simulation and Results

 30

a certain point does not help in increasing the balancing of load or task allocation time by a

major factor. This can be viewed in the light of Amdahl’s law [10].

Figure 4.1 Determining no. of servers

These are the assumptions while the simulation of the algorithms was undertaken –

1. When we begin simulation for a set of nodes, we assume that we start from a zero

state. It means that all the servers are now allocated zero tasks.

2. The values of all data items required for simulation have been either taken in a

random fashion to maintain uniformity or from standard sources.

3. A fully connected network is simulated without considering the communication

costs for any algorithm because the model proposed consists of servers arranged in a

 31

high speed LAN system and the costs remain negligible in comparison to costs due

to retrieval.

4. A simple disk model [1] is used for considering IO load on each of the tasks in the

proposed system framework.

5. The service time for each IO access is the summation of seek time, rotational latency

and transfer time.

6. The file sizes for each of the tasks have been assumed to be of size between 100 to

10000 bytes generated by the Weibull distribution with a mean of 2024 bytes.

7. The system has been considered to be heterogeneous only with respect to its disk

performance and its heterogeneity Hd is calculated according to the formula given in

the previous chapter. The values of Hd for different systems has been mentioned in

table 4.1.

8. The redirection overhead due to virtual IP in the load balancer is not included while

simulating because it remains indifferent to the algorithm used and hence not a

suitable parameter to be included in the framework of comparison.

9. A unit amount of the value that represents the task strength is serviced in a unit

amount of time. The real time elapsed has no relation with the time needed for task

execution.

 32

4.3 Results:

We have simulated the four algorithms on four different system models differing only in their

disk performance parameters. The CPU and Memory sizes are kept same for all of these four

systems. The disk parameters are represented in the table 4.1 below.

System Seek Time (ms)
Rotational

Latency (ms)

Bandwidth

(MB/s)
Heterogeneity

A 5.3 – 8.98 3 – 5.07 3.72 – 20 0.1428

B 4.9 – 9.78 2.5 – 6.91 2.42 - 26 0.1945

C 3.99 – 10.68 2.9 – 8.87 2.12 - 32 0.2321

D 6.83 3.86 10.7 0

Table 4.1: Disk parameters for various systems of varying heterogeneity

From the table above, it is evident that system D is homogenous and the heterogeneity level

increases from system A through system C. The disk heterogeneity is calculated using equation

2.3 from the second chapter.

The standard deviation values of server utilizations of different algorithms have been compared

in figure 4.1 under increasing levels of disk heterogeneity that is in terms of System D, System

A, System B and System C respectively.

 33

Figure 4.2: Comparison of standard deviation of server utilizations of different algorithms on different systems

From the above graph, it can be seen that IORE-M algorithm performs best across all systems

while its own performance is improved as the level of heterogeneity increases. The first part of

this can be explained by considering the fact that this algorithm takes into account IO loads at

each node due to allocated tasks and most of the tasks are IO intensive. And since the algorithm

computes the IO load of each node using a factor that involves the ratio of disk performances, a

more spread disk performance of all the nodes helps in choosing the threshold effectively.

(Higher values of standard deviation metric imply lower performance and vice versa). DBBS

algorithm shows the worst performance. The RAT and WAL algorithms show mediocre

performance in all the systems. RAT’s performance shows no interpretable trend as the level of

heterogeneity increases because the algorithm does not take into account the disk performances

or the I/O load on the nodes.

 34

Figure 4.3 Comparison of scheduling makespan of different algorithms on different systems

From Figure 4.2 above, we see that the makespan metric virtually follows the standard

deviation metric. This asserts the consistency of our algorithms. DBBS algorithm does not

consider the IO load on any node while allocating tasks, rather it considers only a threshold

defined solely on basis on total system load which is static and depends on disk performance.

As a result, the servers with the better performing disks get most of the tasks and this leads to

low performance. The WAL algorithm is better than both RAT and DBBS for both the metrics.

We also simulated the IORE-M algorithm over a less IO intensive and more CPU intensive

workload. It is called as IORE-M degraded in this case. In this experiment, it was seen that its

performance degraded. Clearly, this algorithm is designed only for a task with an IO intensive

nature an

has been

In th

nd not very

n made on ba

he next chapt

0

20

40

60

80

100

120

140

160

suitable for

asis of Figure

Figure 4.4 – Co

ter, we conc

13.92

 tasks which

e 4.3.

omparison of IOR

lude the stu

8.51

1

1. Standard D

IORE‐

h are of a wi

RE-M and IORE-

udy based on

Deviation of Se
2.Makespan

‐M degraded

der range of

-M degraded on

n the results

141.5

2

erver Utilizatio
n

IORE‐M

 3

f workload.

 system A

 obtained in

108.3

2

n

35

 This observ

 this chapter

vation

r.

 36

The replication of web site data and information across a cluster of heterogeneous web servers

is essential for web applications or web sites that cater to a large number of users due to the

rapid growth of internet traffic. Following this, load balancing plays a crucial role in adhering to

the required QOS parameters by allocating the user tasks to each of the nodes in an efficient

manner.

For a web application that uses file sharing and involves heavy data access from web servers

thus dedicating more proportion of the total load to IO intensive tasks, IO aware load balancing

policies are needed. The IORE-M algorithm was found to the best among the four algorithms

considered for all the systems which show diverse levels of heterogeneity However, for a

system which also services tasks that have a varied distribution of CPU, IO and Memory, the

WAL algorithm is likely to perform better. The IOCMRE algorithm is also an apt choice for an

environment of this kind but it has higher runtime overhead.

The proposed model thus solves the problem mentioned at the start of the thesis but within a

framework that is limited by several assumptions. An actual implementation however, will

enforce the results in support of the work done by simulation in this study.

Chapter
 5 Conclusion

 37

 Chapter

 6 FFuuttuurree EEnnhhaanncceemmeennttss

The approach proposed through out the study suffers from certain limitations which have

already been discussed in the first chapter. The work done by us can be suitably extended in

several other directions as suggested.

1. Considering a distributed model of load allocation instead of the centralized master load

balancer model is a good choice for taking this work father due to a number of reasons.

Resources can be shared and the reliability and fault tolerance is greatly increased. Also

it is possible that some of the algorithms may be intrinsically more suitable to a

distributed kind of node structure.

2. Developing an intelligent or adaptive load balancing algorithm which uses heuristics to

determine which algorithm based either on more weight to CPU, IO or memory load or

any viable combination of these factors to use in a given situation for a task allocation

problem depending on the current system state.

3. Considering a task model in which the requests or tasks which have the potential to be

parallel executed but are limited due to the sharing of resources with other tasks or

some other form of control dependency.

4. The study of multimedia based web applications and the special requirements of such

task allocation schemes in systems like video on demand [17] which are basically

retrieval based systems presents a challenge.

 38

5. The break up of individual tasks into finer elements and their concurrent execution or

data retrieval by methods like striping can improve the performance of almost all

algorithms in this area.

6. The entire data or information to be stored for the web application need not always be

replicated on all the servers. This leads to unnecessary costs and infrastructure

maintenance. Considering selective replication depending upon the average system

loading and QOS can be an area where work can be extended on the framework

proposed in this study.

 39

 [1] Xiao Qin, Hong Jiang,Yifeng Zhu, David R. Swanson: Dynamic Load Balancing for IO

intensive tasks on Heterogeneous clusters. Proceedings of 2003 International Conference on

High Performance Computing.

[2] Zhongju Zhang, Weiguo Fan: Web Server Load Balancing – A queuing analysis. European

Journal of Operation Research 186 (2008) 681-693.

[3] Lisa Wells, Soren Christensen, Lars M. Kristensen, and Kjeld H. Mortensen: Simulation

based Performance Analysis of Servers. In: Proceedings of 9th International Workshop on Petri

Nets and Performance Models, PNPM'01 Aachen, Sept. 11-14 , 2001, Reinhard German and

Boudewijn Haverkort (eds.), IEEE, pages 59-68. 2001.

[4] Nartpong Ampronaramveth, Surasak Sanguanpong: Optimization of Cluster Web Server

Scheduling from Site Access Statistics. Proceedings of the Sixth Annual National Symposium on

Computational Science and Engineering, Nakhon Si Thamarat, Thailand, April 2002

[5] Zhong Xu, Rong Huang, Laxmi N. Bhuyan: Load balancing of DNS based distributed web

server systems with Page caching. Proceedings of the 10th international conference on parallel

and distributed systems 2004.

[6] Xiao, L.., Zhang, X., Qu, Y: Effective load sharing on heterogeneous networks of

workstations. Proceedings of International Symposium on Parallel and Distributed Processing.

(2000).

Chapter

7 Bibliography

 40

[7] Xiao Qin Hong Jiang, Yifeng Zhu, David R.Swanson: A dynamic load balancing scheme for

IO intensive applications in distributed systems. Proceedings of International Conference on

Parallel Processing Workshops 2003.

[8] M. Harchol-Balter and A. Downey: “Exploiting Process Lifetime Distributions for Load

Balacing,” Published in ACM Transactions on Computer Systems, vol. 3, no. 31, 1997.

[9] X. Zhang, Y. Qu, and L. Xiao: “Improving Distributed Workload Performance by Sharing

both CPU and Memory Resources,” Proceedings of the 20th International Conference on

Distributed Computing Systems (ICDCS 2000), Apr. 2000.

[10] L. Lee, P. Scheauermann, and R. Vingralek: “File Assignment in Parallel I/O Systems with

Minimal Variance of Service time,” IEEE Trans. on Computers, Vol. 49, No.2, pp.127-140, 2000.

[11] Y. Zhang, A. Yang, A. Sivasubramaniam, and J. Moreira: “Gang Scheduling Extensions for

I/O Intensive Workloads,” Proceedings of the 9th Workshop on Job Scheduling Strategies for

Parallel Processing, 2003.

[12] Cho, Y., Winslett, M., S. Kuo, J.L., Chen, Y: Parallel I/O for scientific applications on

heterogeneous clusters: A resource-utilization approach. In: Proceedings of Supercomputing.

(1999)

[13] Chu-Sing Yang and Mon-Yen Luo: Building an adaptive Fault tolerant highly manageable

web server on clusters of non dedicated workstations. IEEE Journal 2000.

[14] Mathijs de Weerdt, Yingqian Zhang, Tomas Klos: Distributed task allocation in social

networks. Proceedings of autonomous agents and multiagent systems, ACM Press 2007.

 41

[15] Rasaratnam Logendran and Nudtapon Nudtasomboon: Minimizing the makespan of a

group scheduling problem- a new heuristic. Internation Journal of Production Economics Vol.22

Issue 3, Dec 1991.

[16] Thomas H. Cormen, Charles E. Leiserson, Donald R Rivest, Clifford Stein: Introduction to

Algorithms 2nd Edition, MIT Press 2001.

[17] Yin-Fu Huang, Chih – Chiang Fang : Load Balancing of Clusters of VOD Servers.

Information Sciences 164[2004].

	chapter0.pdf
	chapter1.pdf
	chapter2.pdf
	Chapter3.pdf
	Chapter 4.pdf
	Chapter5.pdf
	chapter6.pdf
	chapter7.pdf

