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ABSTRACT 

Image compression is the application of Data compression on digital images. 

A fundamental shift in the image compression approach came after the Discrete 

Wavelet Transform (DWT) became popular.  To overcome the inefficiencies in the 

JPEG standard and serve emerging areas of mobile and Internet communications, 

the new JPEG2000 standard has been developed based on the principles of DWT.  

An image compression algorithm was comprehended using Matlab code, and 

modified to perform better when implemented in hardware description language. 

Using Verilog HDL, the encoder for the image compression employing DWT 

was implemented. Detailed analysis for power, timing and area was done for Booth 

multiplier which forms the major building block in implementing DWT. The 

encoding technique exploits the zero tree structure present in the bitplanes to 

compress the transform coefficients.  
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Data compression is the technique to reduce the redundancies in data representation in 

order to decrease data storage requirements and hence communication costs. Reducing the 

storage requirement is equivalent to increasing the capacity of the storage medium and hence 

communication bandwidth. Thus the development of efficient compression techniques will 

continue to be a design challenge for future communication systems and advanced multimedia 

applications.  

Data is represented as a combination of information and redundancy. Information is the 

portion of data that must be preserved permanently in its original form in order to correctly 

interpret the meaning or purpose of the data. Redundancy is that portion of data that can be 

removed when it is not needed or can be reinserted to interpret the data when needed. Most 

often, the redundancy is reinserted in order to generate the original data in its original form. A 

technique to reduce the redundancy of data is defined as Data compression. The redundancy in 

data representation is reduced such a way that it can be subsequently reinserted to recover the 

original data, which is called decompression of the data.  

Classification of Compression Algorithms 
Data compression can be understood as a method that takes an input data D and generates a 

shorter representation of the data c(D) with less number of bits compared to that of D. The 

reverse process is called decompression, which takes the compressed data c(D) and generates or 

reconstructs the data D‟ as shown in Figure 1. Sometimes the compression (coding) and 

decompression (decoding) systems together are called a “CODEC”. 

 

 

 

 

 

 

The reconstructed data D‟ could be identical to the original data D or it could be an 

approximation of the original data D, depending on the reconstruction requirements. If the 

Compression 

System 

Decompression 

System 

Compressed  Data 

c(D) 

Input  Data 
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Reconstructed  

Data 

D’ 

Figure 1 CODEC 
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reconstructed data D‟ is an exact replica of the original data D, the algorithm applied to compress 

D and decompress c(D) is lossless. On the other hand, the algorithms are lossy when D‟ is not an 

exact replica of D. Hence as far as the reversibility of the original data is concerned, the data 

compression algorithms can be broadly classified in two categories – lossless and lossy. Usually 

loseless data compression techniques are applied on text data or scientific data. 

Sometimes data compression is referred as coding, and the terms noiseless or noisy coding, 

usually refer to loseless and lossy compression techniques respectively. The term “noise” here is 

the “error of reconstruction” in the lossy compression techniques because the reconstructed data 

item is not identical to the original one. 

Data compression schemes could be static or dynamic. In static methods, the mapping from 

a set of messages (data or signal) to the corresponding set of compressed codes is always fixed. 

In dynamic methods, the mapping from the set of messages to the set of compressed codes 

changes over time. A dynamic method is called adaptive if the codes adapt to changes in 

ensemble characteristics over time. For example, if the probabilities of occurrences of the 

symbols from the source are not fixed over time, an adaptive formulation of the binary 

codewords of the symbols is suitable, so that the compressed file size can adaptively change for 

better compression efficiency. 

Advantages of Data Compression 
i) It reduces the data storage requirements 

ii) The audience can experience rich-quality signals for audio-visual data representation 

iii) Data security can also be greatly enhanced by encrypting the decoding parameters and 

transmitting them separately from the compressed database files to restrict access of 

proprietary information 

iv) The rate of input-output operations in a computing device can be greatly increased due to 

shorter representation of data 

v) Data Compression obviously reduces the cost of backup and recovery of data in computer 

systems by storing the backup of large database files in compressed form 
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Disadvantages of Data Compression 
i) The extra overhead incurred by encoding and decoding process is one of the most serious 

drawbacks of data compression, which discourages its use in some areas 

ii) Data compression generally reduces the reliability of the records 

iii) Transmission of very sensitive compressed data through a noisy communication channel is 

risky because the burst errors introduced by the noisy channel can destroy the transmitted 

data 

iv) Disruption of data properties of a compressed data, will result in compressed data different 

from the original data 

v) In many hardware and systems implementations, the extra complexity added by data 

compression can increase the system‟s cost and reduce the system‟s efficiency, especially 

in the areas of applications that require very low-power VLSI implementation 

A Data Compression Model 
A model of a typical data compression system can be described using the block diagram 

shown in Figure 2. A data compression system mainly consists of three major steps – removal or 

reduction in data redundancy, reduction in entropy and entropy encoding. 

 The redundancy in data may appear in different forms. For example, the neighbouring 

pixels in a typical image are very much spatially correlated to each other. By correlation it means 

that the pixel values are very similar in the non-edge smooth regions in the image. The 

composition of the words or sentences in a natural text follows same context model based on the 

grammar being used. Similarly, the records in a typical numeric database may have some sort of 

relationship among the atomic entities that comprise each record in the database. There are 

rhythms and pauses on regular intervals in any natural audio or speech data. These redundancies 

in data representation can be reduced in order to achieve potential compression. 

Removal or reduction in data redundancy is typically achieved by transforming the original 

data from one form or representation to another. The popular techniques used in the redundancy 

reduction step are prediction of the data samples using some model, transformation of the 

original data from spatial domain such as Discrete Cosine Transform (DCT), decomposition of 

the original data set into different subbands such as Discrete Wavelet Transform (DWT), etc. In 

principle, this step potentially yields more compact representation of the information in the 
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original data set in terms of fewer coefficients or equivalent. In case of loseless data 

compression, this step is completely reversible. Transformation of data usually reduces entropy 

of the original data by moving the redundancies that appear in the known structure of the data 

sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

The next major step in a lossy data compression system is to further reduce the entropy of 

the transformed data significantly in order to allocate fewer bits for transmission or storage. The 

reduction in entropy is achieved by dropping nonsignificant information in the transformed data 

based on the application criteria. This is a nonreversible process because it is not possible to 

exactly recover the lost data or information using the inverse process. This step is applied in 

lossy data compression schemes and this is usually accomplished by some version of 

quantization technique. The nature and amount of quantization dictate the quality of the 

reconstructed data. The quantized coefficients are then losslessly encoded using some entropy 

scheme to compactly represent the quantized data for storage or transmission. Since the entropy 

of the quantized data is less compared to the original one, it can be represented by fewer bits 

compared to the original data set, hence compression is accomplished. 

The decomposition system is just an inverse process. The compressed code is first decoded 

to generate the quantized coefficients. The inverse quantization step is applied on these quantized 

coefficients to generate the approximation of the transformed coefficients. The quantized 

transformed coefficients are then inverse transformed in order to create the approximate version 

Reduction of Data 

Redundancy 

Reduction of Entropy 

Entropy Encoding 

Compressed Data 

Input Data 

Figure 2 A Data Compression Model 
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of the original data. If the quantization and inverse quantization steps are absent in the codec and 

the transformation step for redundancy removal is reversible, the decompression system 

produces the exact replica of the original data and hence the compression system can be called a 

lossless compression system. 

Image Compression  
Image compression is the application of Data compression on digital images. The objective 

of image compression is to reduce redundancy of the image data in order to be able to store 

or transmit data in an efficient form. Image compression can be lossy or lossless. Lossless 

compression is sometimes preferred for artificial images such as technical drawings, icons or 

comics. This is because lossy compression methods, especially when used at low bit rates, 

introduce compression artifacts. Lossless compression methods may also be preferred for high 

value content, such as medical imagery or image scans made for archival purposes. Lossy 

methods are especially suitable for natural images such as photos in applications where minor 

loss of fidelity is acceptable to achieve a substantial reduction in bit rate. The lossy compression 

that produces imperceptible differences can be called visually lossless. Run-length encoding and 

entropy encoding are the methods for lossless image compression. Transform coding, where a 

 Fourier-related transform such as DCT or the wavelet transform are applied, followed 

by quantization and entropy coding can be cited as a method for lossy image compression.  

Compression Artifact  
A compression artifact (or artefact) is the result of an aggressive data compression scheme 

applied to an image, that discards some data that may be too complex to store in the available 

data-rate, or may have been incorrectly determined by an algorithm to be of little subjective 

importance, but is in fact objectionable to the viewer. Artifacts are often a result of 

the latent errors inherent in lossy data compression.  

Some of the common artefacts are: 

 Blocking Artifacts : A distortion that appears in compressed image as abnormally large 

pixel blocks. Also called "macroblocking," it occurs when the encoder cannot keep up with the 

allocated bandwidth. Image uses lossy compression, and the higher the compression rate, the 

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Data_transmission
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Lossless_compression
http://en.wikipedia.org/wiki/Bit_rate
http://en.wikipedia.org/wiki/Compression_artifact
http://en.wikipedia.org/w/index.php?title=Visually_lossless_compression&action=edit&redlink=1
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Transform_coding
http://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Wavelet_transform
http://en.wikipedia.org/wiki/Quantization
http://en.wikipedia.org/wiki/Entropy_coding
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Algorithm
http://en.wiktionary.org/wiki/latent
http://en.wikipedia.org/wiki/Lossy_data_compression
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more content is removed. At decompression, the output of certain decoded blocks makes 

surrounding pixels appear averaged together and look like larger blocks.  

 Colour Distortion : As human eyes are not as sensitive to colour as to brightness, much of 

the detailed colour (chrominance) information is disposed, while luminance is retained. This 

process is called "chroma subsampling", and it means that a colour image is split into a 

brightness image and two colour images. The brightness (luma) image is stored at the original 

resolution, whereas the two colour (chroma) images are stored at a lower resolution. The 

compressed images look slightly washed-out, with less brilliant colour. 

 Ringing Artifacts  : In digital image processing, ringing artifacts are artifacts that appear as 

spurious signals ("rings") near sharp transitions in a signal. Visually, they appear as "rings" near 

edges. As with other artifacts, their minimization is a criterion in filter design. The main cause of 

ringing artifacts is due to a signal being bandlimited (specifically, not having high frequencies) 

or passed through a low-pass filter; this is the frequency domain description. In terms of the time 

domain, the cause of this type of ringing is the ripples in the sinc function, which is the impulse 

response (time domain representation) of a perfect low-pass filter. Mathematically, this is called 

the Gibbs phenomenon. 

 Blurring Artifacts  : Blurring means that the image is smoother than originally. 

Literature Review 
The discrete wavelet transform (DWT) [1] has gained wide popularity due to its excellent 

decorrelation property, many modern image and video compression systems embody the DWT 

as the transform stage [2]. It is widely recognized that the 9/7 filters [3] are among the best filters 

for DWT-based image compression [4]. In fact, the JPEG2000 image coding standard [5] 

employs the 9/7 filters as the default wavelet filters for lossy compression and 5/3 filters for 

lossless compression. The performance of a hardware implementation of the 9/7 filter bank (FB) 

depends on the accuracy with which filter coefficients are represented. Lossless image 

compression techniques find applications in fields such as medical imaging, preservation of 

artwork, remote sensing etc. Day-by-day Discrete Wavelet Transform (DWT) is becoming more 

and more popular for digital image compression. Biorthogonal (5, 3) and (9, 7) filters have been 

chosen to be the standard filters used in the JPEG2000 codec standard [5].  

http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Filter_design
http://en.wikipedia.org/wiki/Bandlimited
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Sinc_function
http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Gibbs_phenomenon
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Discrete wavelet transform as reported by Zervas et al. [6], there are three basic 

architectures for the two-dimensional DWT: level-by-level, line-based, and block-based 

architectures. In implementing the 2-D DWT, a recursive algorithm based on the line based 

architectures is used.  The image to be transformed is stored in a 2-D array. Once all the elements 

in a row is obtained, the convolution is performed in that particular row. The process of row-wise 

convolution will divide the given image into two parts with the number of rows in each part 

equal to half that of the image. This matrix is again subjected to a recursive line-based 

convolution, but this time column-wise. The result will DWT coefficients corresponding to the 

image, with the approximation coefficient occupying the top-left quarter of the matrix, horizontal 

coefficients occupying the bottom-left quarter of the matrix, vertical coefficients occupying the 

top-right quarter of the matrix and the diagonal coefficients occupying the bottom-right quarter 

of the matrix. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Line Based Architecture for 2-D DWT 
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After DWT was introduced, several codec algorithms were proposed to compress the 

transform coefficients as much as possible. Among them, Embedded Zerotree Wavelet (EZW) 

[7], Set Partitioning In Hierarchical Trees (SPIHT) [8] and Embedded Bock Coding with 

Optimized Truncation (EBCOT) [2] are the most famous ones.  

The embedded zerotree wavelet algorithm (EZW) is a simple, yet remarkably effective, 

image compression algorithm, having the property that the bits in the bit stream are generated in 

order of importance, yielding a fully embedded code. The embedded code represents a sequence 

of binary decisions that distinguish an image from the “null” image. Using an embedded coding 

algorithm, an encoder can terminate the encoding at any point thereby allowing a target rate or 

target distortion metric to be met exactly. Also, given a bit stream, the decoder can cease 

decoding at any point in the bit stream and still produce exactly the same image that would have 

been encoded at the bit rate corresponding to the truncated bit stream. In addition to producing a 

fully embedded bit stream, EZW consistently produces compression results that are competitive 

with virtually all known compression algorithms on standard test images. Yet this performance is 

achieved with a technique that requires absolutely no training, no pre-stored tables or codebooks, 

and requires no prior knowledge of the image source. The EZW algorithm is based on four key 

concepts: 1) a discrete wavelet transform or hierarchical subband decomposition, 2) prediction of 

the absence of significant information across scales by exploiting the self-similarity inherent in 

images, 3) entropy-coded successive-approximation quantization, and 4) universal lossless data 

compression which is achieved via adaptive arithmetic coding. 

On the contrary, SPIHT, rooted from EZW, enjoys a much simpler coding procedure. If no 

entropy coding or arithmetic coding methods are incorporated, SPIHT does not require any table 

with slight loss in compression ratio. With SPIHT, the encoded bit stream can be divided into 

several successive sections of sub bit streams during the encoding process. With each additional 

data, the quality of the decoded image is better. This is very important for progressive 

transmission of digital images in application such as tele-medicine. Moreover, SPIHT can be 

easily used in fixed rate or variable rate transmission applications. With integer DWT, SPIHT 

can also be used in lossless image compression. In the image processing applications, first the 

wavelet coefficients are stored in a 2-D array. Because searching for the descendants of a given 
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coefficient has to be performed very frequently, it is necessary to design a dedicated circuitry to 

compute the coefficient addresses. This also consumes more number of clock cycles. Second, the 

three lists used in SPIHT algorithm store the coefficients coordinates. Transactions among the 

lists are required frequently. Third, linked lists are used as the data structure to store the 

coefficients. When there is a change to the list, insertion or deletion operations are necessary.  

EBCOT algorithm exhibits state-of-the-art compression performance while producing a 

bit-stream with a rich set of features, including resolution and SNR scalability together with a 

“random access” property. The algorithm has modest complexity and is suitable for applications 

involving remote browsing of large compressed images. The algorithm lends itself to explicit 

optimization with respect to MSE as well as more realistic psychovisual metrics, capable of 

modelling the spatially varying visual masking phenomenon. While EBCOT has the best 

compression rate of all and is adopted by JPEG2000, it requires much more complex multi-layer 

coding procedures, multiple coding tables and arithmetic coding techniques. These make the 

hardware implementation of EBCOT codec more difficult and expensive.  

The core coding system in JPEG2000 has been defined in Part 1 of the standard. The whole 

compression system can be divided into three phases- image preprocessing, compression, and 

compressed bitstream formation. The concepts behind the preprocessing functionalities, includes 

tiling of the input image, DC level shifting, and multicomponent transformation, before the 

actual compression takes place. In lossy compression mode, a dead-zone scalar quantization 

technique is applied on the wavelet coefficients. The concept of region of interest coding allows 

one to encode different regions of the input image with different fidelity. The entropy coding and 

the generation of compressed bitstream in JPEG2000 are divided into two coding steps: Tier-l 

and Tier-2 coding.  

 

 

 

 

 



 Implementation of Image Compression Algorithm using Verilog with Area, Power and Timing Constraints 

 
 

 

National Institute of Technology, Rourkela                                                                                                            11 
 

 

 

 

 

 

 

 

Chapter 2 
 

 

 

 

 

 

Discrete Wavelet Transform 
 

 

 

 

 

 



 Implementation of Image Compression Algorithm using Verilog with Area, Power and Timing Constraints 

 
 

 

National Institute of Technology, Rourkela                                                                                                            12 
 

Mathematically a “wave” is expressed as a sinusoidal (or oscillating) function of time or 

space. Fourier analysis expands an arbitrary signal in terms of infinite number of sinusoidal 

functions of its harmonics. Fourier representation of signals is known to be very effective in 

analysis of time-invariant (stationary) periodic signals. In contrast to a sinusoidal function, a 

wavelet is a small wave whose energy is concentrated in time. Properties of wavelets allow both 

time and frequency analysis of signals simultaneously because of the fact that the energy of 

wavelets is concentrated in time and still possesses the wave-like (periodic) characteristics. 

Wavelet representation thus provides a versatile mathematical tool to analyse transient, time-

variant (nonstationary) signals that may not be statistically predictable especially at the region of 

discontinuities – a special feature that is typical of images having discontinuities at the edges. 

Wavelet Transforms 
Wavelets are functions generated from one single function (basis function) called the 

prototype or mother wavelet by dilations (scalings) and translations (shifts) in time (frequency) 

domain. If the mother wavelet is denoted by ψ t , the other waveletsψ
𝑎,𝑏

 t   can be represented 

as  

ψ
𝑎,𝑏

 t =  
1

  𝑎 
ψ  

𝑡−𝑏

𝑎
                                          (2.1) 

where a and b are two arbitrary real numbers. The variables a and b represent the parameters for 

dilations and translations respectively in the time axis. From Eq. 2.1, it is obvious that the mother 

wavelet can be essentially represented as 

ψ t =  ψ
1,0

 t                                                     (2.2) 

For any arbitrary a ≠ 1 and b = 0, it is possible to derive that 

ψ
𝑎,𝑏

 t =  
1

  𝑎 
ψ  

𝑡−𝑏

𝑎
                                   (2.3) 

As shown in Eq. 2.3, ψa,0(t) is nothing but a time-scaled (by a) and amplitude-scaled (by 

  𝑎  ) version of the mother wavelet function ψ t  in Eq. 2.2. The parameter a causes 

contraction of ψ t  in the time axis when a < 1 and expression or stretching when a > 1. That‟s 

why the parameter a is called the dilation (scaling) parameter. For a < 0, the function 

ψ
𝑎,𝑏

 t  results in time reversal with dilation. Mathematically, substituting t in Eq. 2.3 by t-b to 

cause a translation or shift in the time axis resulting in the wavelet function ψ
𝑎,𝑏

 t  as shown in 
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Eq. 2.1. The function ψ
𝑎,𝑏

 t  is a shift  of ψ
𝑎,0

 t  in right along the time axis by an amount b  

when b > 0 whereas it is a shift in left along the time axis by an amount  b when b < 0. That‟s 

why the variable b represents the translation in time (shift in frequency) domain. 

 

Figure 4 shows an illustration of a mother wavelet and its dilations in the time domain with 

the dilation parameter a = α. For the mother wavelet ψ t  shown in Figure 4(a), a contraction of 

the signal in the time axis when α < 1 is shown in Figure 4(b) and expansion of the signal in the 

time axis when α > 1 is shown in Figure 4(c). Based on this definition of wavelets, the wavelet 

transform (WT) of a function (signal) f(t) is mathematically represented by 

𝛿 

𝛼𝛿 

𝛼𝛿 

(a) 

(b) 

(c) 

Figure 4 (a) A mother wavelet, (b)𝝍 𝒕 𝜶  : 𝟎 < 𝛼 < 1 , (c)𝝍 𝒕 𝜶  : 𝜶 > 1 . 
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𝑊 𝑎, 𝑏 =   ψ𝑎,𝑏 t 
+∞

−∞
𝑓(t)dt                        (2.4) 

The inverse transform to reconstruct f(t) from W(a, b) is mathematically represented by 

𝑓 t =  
1

𝐶
  

1

 𝑎 2

+∞

𝑏 = −∞

+∞

𝑎 = −∞
W(𝑎, 𝑏) ψ𝑎,𝑏 t 𝑑𝑎𝑑𝑏     (2.5) 

where 

𝐶 =   
 Ψ(ω) 2

 ω 

∞

−∞
𝑑𝜔                                   (2.6) 

and Ψ(ω) is the Fourier transform of the mother wavelet ψ t . 

If a and b are two continuous (nondiscrete) variables and f(t) is also a continuous function, 

W(𝑎, 𝑏) is called the continuous wavelet transform (CWT). Hence the CWT maps a one-

dimensional function f(t) to a function W(a, b) of two continuous real variables a (dilation) and b 

(translation). 

Discrete Wavelet Transforms 
Since the input signal (e.g., a digital image) is processed by a digital computing machine, it 

is prudent to define the discrete version of the wavelet transform. To define the wavelet in terms 

of discrete values of the dilation and translation parameters a and b instead of being continuous, 

make a and b discrete using Eq. 2.6, 

          a = 𝑎0
𝑚 ,                              b = n𝑏0𝑎0

𝑚  

where m and n  are integers. Substituted a and b in Eq. 2.1 by Eq. 2.6, the discrete wavelets can 

be represented by Eq. 2.7. 

ψ
𝑚,𝑛

 t =  𝑎0
−m/2

ψ 𝑎0
−𝑚𝑡 − 𝑛𝑏0       (2.7) 

There are many choices to select the values of 𝑎0 and 𝑏0. By selecting 𝑎0 = 2 and 𝑏0 = 1, 

𝑎 =  2𝑚  and 𝑏 =  𝑛2𝑚 . This corresponds to sampling (discretization) of a and b in such a way 

that the consecutive dicrete values of a and b as well as the sampling intervals differ by a factor 

of two. This way of sampling is popularly known as dyadic decomposition. Using these values, it 

is possible to represent the discrete wavelets as in eq. 2.8, which constitutes a family of 

orthonormal basis functions. 

ψ
𝑚,𝑛

 t =  2−𝑚/2ψ 𝑎0
−𝑚𝑡 − 𝑛    (2.8) 

In general, the wavelet coefficients for function f(t) are given by 

𝐶𝑚,𝑛 𝑓 =  𝑎0
−𝑚/2

 𝑓 𝑡  ψ 𝑎0
−𝑚𝑡 − 𝑛𝑏0 𝑑𝑡      (2.9) 
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and hence for dyadic decomposition, the wavelet coefficients can be derived accordingly as 

𝐶𝑚,𝑛 𝑓 =  2−𝑚/2  𝑓 𝑡  ψ 𝑎0
−𝑚𝑡 − 𝑛𝑏0 𝑑𝑡     (2.10) 

This allows us to reconstruct the signal f(t) in form the discrete wavelet coefficients as 

𝑓 𝑡 =    𝑐𝑚,𝑛
∞
𝑛= −∞

∞
𝑚= −∞  𝑓 ψ

𝑚,𝑛
 t      (2.11) 

The transform shown in Eq. 2.9 is called the wavelet series, which is analogous to the 

Fourier series because the input function f(t) is still a continuous function whereas the transform 

coefficients are discrete. This is often called the discrete time wavelet transform (DTWT). For 

digital signal or image processing applications executed by a digital computer, the input signal 

f(t) needs to be discrete in nature because of the digital sampling of the original data, which is 

represented by a finite number bits. When the input function f(t) as well as the wavelet 

parameters a and b are represented in discrete form, the transformation is commonly referred to 

as the discrete wavelet transform (DWT) of the signal f(t). 

The discrete wavelet transform (DWT) became a very versatile signal processing tool after 

Mallat [9] proposed the multiresolution representation of signals based on wavelet 

decomposition. The method of multiresolution is to represent a function (signal) with a collection 

of coefficients, each of which provides information about the position as well as the frequency of 

the signal (function). The advantage of DWT over Fourier transformation is that it performs 

multiresolution analysis of signals with localization. As a result, the DWT decomposes a digital 

signal into different subbands so that the lower frequency subbands will have finer frequency 

resolution and coarser time resolution compared to the higher frequency subbands. The DWT is 

being increasingly used for image compression due to the fact that the DWT supports features 

like progressive image transmission ( by quality, by resolution), ease of compressed image 

manipulation, region of interest coding, etc. Because of these characteristics, the DWT is the 

basis of the new JPEG2000 image compression standard [10]. 

Concept of Multiresolution Analysis  
There are a number of orthogonal wavelet basis-functions of the form ψ

𝑚,𝑛
 t =

 2−𝑚/2ψ 𝑎0
−𝑚𝑡 − 𝑛 . The theory of multiresolution analysis presented a systematic approach to 

generate the wavelets. The idea of multiresolution analysis is to approximate a function f(t) at 

different levels of resolution. 
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In multiresolution analysis, two functions are considered: the mother wavelet ψ t  and the 

scaling function ф t . The dilated (scaled) and translated (shifted) version of the scaling function 

is given by  ф
𝑚,𝑛

 t =  2−𝑚/2ф 𝑎0
−𝑚𝑡 − 𝑛 . For fixed m, the set of scaling functions  ф

𝑚,𝑛
 t  

are orthonormal. By the linear combinations of the scaling function and its translations, a set of 

functions can be generated 

𝑓 t =   αnn  ф
𝑚,𝑛

 t          (2.12) 

The set of all such functions generated by linear combination of the set { ф
𝑚,𝑛

 t } is called 

the span of the set { ф
𝑚,𝑛

 t }, denoted by Span{ ф
𝑚,𝑛

 t }. Now consider Vm to be a vector space 

corresponding to Span{ ф
𝑚,𝑛

 t }. Assuming that the resolution increases with decreasing m, 

these vector spaces describe successive approximation vector spaces, ... ⊂ 𝑉2  ⊂ 𝑉1  ⊂ 𝑉0  ⊂

𝑉−1  ⊂ 𝑉−2 ⊂ ..., each with resolution 2
m
 (i.e., each space Vj+1 is contained in the next resolution 

space Vj). In multiresolution analysis, the set of subspaces satisfies the following properties: 

1. 𝑉𝑚+1  ⊂ 𝑉𝑚1, for all m: This property state that each subspaces is contained in the next 

resolution subspace. 

2.   𝑉𝑚       =ℒ2 ℛ : This property indicates that the union of subspaces is dense in the space of 

square integrable functions ℒ2 ℛ ; ℛ indicates a set of real numbers (upward 

completeness property). 

3.  𝑉𝑚 = 0 (an empty set): This property is called downward completeness property. 

4. 𝑓 𝑡 ∈ 𝑉0 ↔ 𝑓(2−𝑚𝑡) ∈ 𝑉𝑚 : Dilating a function from resolution space 𝑉0 by a factor of 2𝑚  

results in the lower resolution space 𝑉𝑚  (scale or dilation invariance property). 

5. 𝑓 𝑡 ∈ 𝑉0 ↔ 𝑓(𝑡 − 𝑛) ∈ 𝑉0: Combining this with the scale invariance property above, this 

property states that translating a function in a resolution space does not change the 

resolution (translation invariance property). 

6. There exists a set { ф(𝑡 − 𝑛) ∈ 𝑉0: n is an integer} that forms an orthogonal basis of V0. 

The basic tenet of multiresolution analysis is that whenever the above properties are 

satisfied, there exists an orthonormal wavelet basis 𝜓𝑚,𝑛 𝑡 =  2−𝑚/2𝜓 2−𝑚𝑡 − 𝑛  such that  

𝑃𝑚−1 𝑓 = 𝑃𝑚  𝑓 +   𝑐𝑚,𝑛 𝑓 ψ
𝑚,𝑛

 t              (2.13) 

where 𝑃𝑗 is the orthonormal projection of ψ onto Vj . For each m, consider the wavelet functions 

ψ
𝑚,𝑛

 t  span a vector space Wm. It is clear from Eq. 2.13 that the wavelet that generates the 
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space Wm and the scaling function that generates the space Vm are not independent. Wm is 

exactly the orthogonal complement of Vm in Vm-1. Thus, any function in Vm-1 can be expressed as 

the sum of a function in Vm and a function in the wavelet space Wm. Symbolically, it is possible 

to express this as 

Vm-1 = Vm ⊕ Wm                    (2.14) 

 Since, m is arbitrary, 

Vm = Vm+1 ⊕ Wm+1           (2.15) 

 

Thus, 

Vm-1 = Vm+1 ⊕ Wm+1  ⊕ Wm                   (2.16) 

Continuing in this fashion, it is possible to establish that 

Vm-1 = Vk ⊕ Wk ⊕ Wk-1⊕ Wk-2 ... ⊕ Wm                  (2.17) 

 for any k ≥ m. 

Thus, a function belonging to the space Vm-1 (i.e., the function can be exactly represented 

by the scaling function at resolution  m – 1), can be decomposed to a sum of functions starting 

with lower-resolution approximation followed by a sequence of functions generated by dilations 

of wavelet that represent the loss of information in terms of details. The successive levels of 

approximations can be considered as the representation of an image with fewer and fewer pixels. 

The wavelet coefficients can then be considered as the additional detail information needed to go 

from a coarser to a finer approximation. Hence, in each level of decomposition the signal can be 

decomposed into two parts, one is the coarse approximation of the signal in the lower resolution 

and the other is the detail information that was lost because of approximation. The wavelet 

coefficients derived by Eq. 2.9 or 2.10, therefore, describe the information (detail) lost when 

going from an approximation of the signal at resolution 2
m-1

 to the coarser approximation at 

resolution 2
m
. 
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Implementation by Filters and the Pyramid Algorithm  
Multiresolution analysis decomposes signal into two parts – one approximation of the 

original signal from finer to coarser resolution and the other detail information that was lost sue 

to the approximation. This can be represented as  

𝑓 t =   𝑎𝑚+1,𝑛n ф
𝑚+1,𝑛

+   𝑐𝑚+1,𝑛n ψ
𝑚+1,𝑛

      (2.18) 

where f(t) denotes the value of input function f(t) at resolution 2
m
, cm+1,n is the detail information, 

and am+1,n is the coarser approximation of the signal at resolution 2
m+1

. The functions, ф
𝑚+1,𝑛

 

and ψ
𝑚+1,𝑛

 are the dilation and wavelet basis functions (orthonormal).  

In 1989, Mallat [9] proposed the multiresolution approach for wavelet decomposition of 

signals using a pyramidal filter structure of quadrature mirror filter (QMF) pairs. Wavelets 

developed by Daubechies [11, 12], in terms of discrete-time perfect reconstruction filter banks, 

correspond to IFR filters. In multiresolution analysis, it can be proven that decomposition of 

signals using the discrete wavelet transform can be expressed in terms of FIR filters and the 

algorithm for computation of the wavelet coefficients for the signal f(t) can be represented as  

 𝑐𝑚,𝑛 𝑓 =  𝑔2𝑛−𝑘𝑘 𝑎𝑚−1,𝑘(𝑓)                                               

𝑎𝑚,𝑛 𝑓 =  𝑕2𝑛−𝑘𝑘 𝑎𝑚−1,𝑘(𝑓)            (2.19) 

where g and h are the high-pass and low-pass filters, 𝑔𝑖 = (−1)𝑖𝑕−𝑖+1 and 𝑕𝑖 = 21/2   ф(𝑥 −

𝑖)  ф(2𝑥)𝑑𝑥. Actually, 𝑎𝑚,𝑛(𝑓) are the coefficients characteristics characterizing the projection 

of the function f(t) in the vector subspace Vm (i.e. approximation of the function in resolution 

2
m
), whereas 𝑐𝑚,𝑛 𝑓 ∈ 𝑊𝑚  are the wavelet coefficients (detail information) at resolution 2

m
. If 

the input signal f(t) is in discrete sampled form, then it is possible to consider these samples as 

the highest order resolution approximation coefficients 𝑎0,𝑛 𝑓 ∈ 𝑉0 and Eq. 2.19 describes the 

multiresolution subband decomposition algorithm to construct 𝑎𝑚,𝑛 𝑓  and 𝑐𝑚,𝑛 𝑓  at level m 

with a low-pass filter h and high-pass filter g from 𝑐𝑚−1,𝑛 𝑓 , which were generated  at level m-

1. These filters are called the analysis filters. The recursive algorithm to compute DWT in 

different levels using Eq 2.19 is popularly called Mallat‟s Pyramid Algorithm. Since the 
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synthesis filters h and g have been derived from the orthonormal basis functions ф and ψ, these 

filters give exact reconstruction   

𝑎𝑚−1,𝑖 𝑓 =   𝑕2𝑛−𝑖𝑛 𝑎𝑚,𝑛(𝑓) +   𝑔2𝑛−𝑖𝑛 𝑐𝑚,𝑛(𝑓)   (2.20) 

Most of the orthogonal wavelet basis functions have infinitely supported ψ and accordingly 

the filters h and g could be with infinitely many taps. However, for practical and computationally 

efficient implementation of the DWT for image processing applications, it is desirable to have 

infinite impulse response filters (FIR) with a small number of taps. It is possible to construct 

such filters by relaxing the orthonormality requirements and using biorthogonal basis functions. 

It should be noted that the wavelet filters are orthogonal when (h‟, g‟) = (h, g), otherwise it is 

biorthogonal. In such a case the filters (h‟ and g‟, called the synthesis filters) for reconstruction 

of the signal can be different than the analysis filters (h and g) for decomposition of the signals. 

In order to achieve exact reconstruction, construct the filters such that it satisfies the relationship 

of the synthesis filter with the analysis filter as shown in Eq. 2.21: 

     𝑔′
𝑛

= (−1)𝑛𝑕−𝑛+1                                                  

𝑔𝑛 = (−1)𝑛𝑕′−𝑛+1     (2.21) 

  𝑕𝑛𝑛 𝑕′𝑛+2𝑘 = 𝛿𝑘,0 

If (h’, g’) = (h, g), the wavelet filters are called orthogonal, otherwise they are called 

biorthogonal. The popular (9, 7) wavelet filter adopted in JPEG2000 is one example of such a 

biorthogonal filter. The signal is still decomposed using Eq. 2.19, but the reconstruction equation 

is now done using the synthesis filters h’ and g’ as shown in Eq. 2.22: 

𝑎𝑚−1,𝑖 𝑓 =   𝑎𝑚,𝑛(𝑓)𝑛 𝑕′2𝑛−𝑖 +   𝑐𝑚,𝑛(𝑓)𝑛 𝑔2𝑛−𝑖     (2.22) 

Let‟s summarize the DWT computation here in terms of simple digital FIR filtering. Given 

the input discrete signal x(n) (shown as a(0,n) in Figure 5), it is filtered parallelly by a low-pass 

(h) and a high-pass (g) at each transform level. The two output streams are then subsampled by 

simply dropping the alternate output samples in each stream to produce the low-pass subband yL. 

The above arithmetic computation can be expressed as follows: 
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𝑦𝐿 𝑛 =  𝑕(𝑖)
𝜏𝐿−1
𝑖=0  𝑥(2𝑛 − 𝑖) , 𝑦𝐻 𝑛 =  𝑔(𝑖)

𝜏𝐻−1
𝑖=0  𝑥(2𝑛 − 𝑖)   (2.23) 

where 𝜏𝐿 and 𝜏𝐻 are the lengths of the lengths of the low-pass (h) and high-pass (g) filters 

respectively. Since the low-pass subband a(1, n) is an approximation of the input, applying the 

above computation again on a(1,n) to produce the subbands a(2,n) and c(2,n) and so on. During 

the inverse transform to reconstruct the signal, both a(3,n) and c(3,n) are first upsampled by 

inserting zeros between two samples, and then they are filtered by low-pass (h’) and high-pass 

(g’) filters respectively. These two filtered output streams are added together to reconstruct 

a(2,n). The same continues until the reconstruction of the original signal a(0,n). 

 

 

 

 

 

 

 

 

Extension to Two-Dimensional Signals  
The two-dimensional extension of DWT is essential for transformation of two-dimensional 

signals, such as a digital image. A two-dimensional digital signal can be represented by a two-

dimensional array X[M, N] with M rows and N columns, where M and N are nonnegative 

integers. The simple approach for two-dimensional implementation of the DWT is to perform the 

one-dimensional DWT row-wise to produce an intermediate result and then perform the same 

one-dimensional DWT column-wise on this intermediate result to produce the final result. This is 

shown in Figure 6(a). This is possible because the two-dimensional scaling functions can be 

expressed as separable functions which is the product of two-dimensional scaling function such 

Figure 5 Three-level multiresolution wavelet decomposition and reconstruction and  reconstruction of signals using pyramidal 
filter structure 
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as ∅2 𝑥, 𝑦 =  ∅1 𝑥 ∅1 𝑦 . The same is true for the wavelet function ψ(x, y) as well. Applying 

the one-dimensional transform in each row, two subbands are produced in each row. When the 

low-frequency subbands of all the rows (L) are put together, it looks like a thin version (of size 

M x 
𝑁

2
 ) of the input signal as shown in Figure 6(a). Similarly put together the high-frequency 

subbands of all the rows to produce the H subband of size M x 
𝑁

2
, which contains mainly the 

high-frequency information around discontinuities (edges in an image) in the input signal. Then 

applying  

 

 

 

 

 

 

 

 

a one-dimensional DWT column-wise on these L and H subbands (intermediate result), four 

subbands LL, LH, HL, and HH of size 
𝑀

2
×

𝑁

2
 are generated as shown in Figure 6(a). LL is a 

coarser version of the original input signal. LH, HL, and HH are the high frequency subband 

containing the detail information. It is also possible to apply one-dimensional DWT column-wise 

first and then row-wise to achieve the same result. Figure 7 comprehends the idea describe 

above. 

The multiresolution decomposition approach in the two-dimensional signal is demonstrated in 

Figures 6(b) and (c). After the first level of decomposition, it generates four subbands  LL1, 

HL1, LH1, and HH1 as shown in Figure 6(a). Considering the input signal is an image, the LL1 

subband can be considered as a 2:1 subsampled (both horizontally and vertically) version of 

Figure 6 Row - Column computation of two-dimensional DWT 
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image. The other three subbands HL1, LH1, and HH1 contain higher frequency detail 

information. These spatially oriented (horizontal , vertical or diagonal) subbands mostly contain 

information of local discontinuities in the image and the bulk of the energy  in each of these three 

 

 

 

 

 

 

 

 

 

 

 

 

subbands is concentrated in the vicinity of areas corresponding to edge activities in the 

original image. Since LL1 is acoarser approximation of the input, it has similar spatial and 

statistical characteristics to the original image. As  a result, it can be further decomposed into 

four subbands LL2, LH2, HL2 and HH2 as shown in Figure 6(b) based on the principle of 

multiresolution analysis. Accordingly the image is decomposed into 10 subbands LL3, LH3, 

HL3, HH3, HL2, LH2, HH2, LH1, HL1 and HH1 after three levels of pyramidal multiresolution 

subband decomposition, as shown in Figure 6(c). The same computation can continue to further 

decompose LL3 into higher levels. 

 

Figure 7 Extension of DWT in two - dimensional signals. 
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Source coding can mean both lossless and lossy compression. Depending on the 

characteristics of the data, each algorithm may give different compression performance. So 

selection of the particular algorithm will depend upon the characteristics of the data themselves. 

In a lossy compression mode, the source coding algorithms are usually applied in the entropy 

encoding step after transformation and quantization. 

Run-Length Coding  

The neighbouring pixels in a typical image are highly correlated to each other. Often it is 

observed that the consecutive pixels in a smooth region of an image are identical or the variation 

among the neighbouring pixels is very small. Appearance of runs of identical values is 

particularly true for binary images where usually the image consists of runs of 0‟s or 1‟s. Even if 

the consecutive pixels in grayscale or colour images are not exactly identical but slowly varying, 

it can often be pre-processed and the consecutive processed pixel values become identical. If 

there is a long run of identical pixels, it is more economical to transmit the length of the run 

associated with the particular pixel value instead of encoding individual pixel values. 

Run-length coding is a simple approach to source coding when there exists a long run of 

the same data, in a consecutive manner, in a data set. As an example, the data d = 5 5 5 5 5 5 5 

19 19 19 19 19 19 19 19 19 19 19 19 0 0 0 0 0 0 0 0 23 23 23 23 23 23 contains long runs of 5‟s, 

19‟s, 0‟s, 23‟s etc. Rather than coding each sample in the run individually, the data can be 

represented compactly by simply indicating the value of the sample and the length of its run 

when it appears. In this manner the data d can be run-length encoded as (5 7) (19 12) (0 8) (23 

6). Here the first value represents the pixel, while the second indicates the length of its run. 

In some cases, the appearance of runs of symbols may not be very apparent. But the data 

can possibly be pre-processed in order to aid run-length coding. Consider the data d = 26 29 32 

35 38 41 44 50 56 62 68 78 88 98 108 118 116 114 112 110 108 106 104 102 100 98 96. A 

simple pre-process on this data, by taking the sample difference e(i) = d(i) – d(i-1), to produce 

the processed data e’ = 26 3 3 3 3 3 3 3 6 6 6 6 10 10 10 10 10 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2. 

This pre-processed data can now be easily run-length encoded as (26 1) (3 6) (6 4) (10 5) (-2 11). 

A variation of this technique is applied in the baseline JPEG standard for still-picture 

compression. The same technique can be applied to numeric databases as well. 
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On the other hand, binary (black and white) images, such as facsimile, usually consist of 

0‟s and 1‟s. As an example, if a segment of a binary image is represented as d = 

0000000001111111111100000000000000011100000000000001001111111111, it can be 

compactly represented as c(d) = (9, 11, 15, 3, 13, 1, 2, 10) by simply listing the lengths of 

alternate runs of 0‟s and 1‟s. While the original binary data d requires 65 bits for storage, its 

compact representation c(d) requires 32 bits only under the assumption that each length of run is 

being represented by 4 bits. 

Huffman Coding  

From Shannon‟s Source Coding Theory, it is known that a source can be coded with an 

average code length close to the entropy of the source. In 1952, D.A. Huffman [13] invented a 

coding technique to produce the shortest possible average code length given the source symbol 

set and the associated probability of occurrence of the symbols. Codes generated using these 

coding techniques are popularly known as Huffman codes. Huffman coding technique is based 

on the following two observations regarding optimum prefix codes. 

 The more frequently occurring symbols can be allocated with shorter code words than the 

less frequently occurring symbols. 

 The two least frequently occurring symbols will have codewords of the same length, and 

they differ only in the least significant bit. 

Average length of these codes is close to entropy of the source. 

Assume that there are m source symbols {s1, s2, ..., sm} with associated probability of 

occurrence {p1, p2, ..., pm}. Using these probability values, generate a set of Huffman codes of 

the source symbols. The Huffman codes can be mapped into a binary tree, popularly known as 

the Huffman tree. The algorithm to generate Huffman tree and hence the Huffman codes of the 

source symbols can be shown as below: 

 

i) Produce a set N = {N1, N2, ..., Nm} of m nodes as leaves of a binary tree. Assign a node Ni 

with the source symbol si, i = 1, 2, ..., m and label the node with the associated probability 

pi. 

ii) Find the two nodes with the two lowest probability symbols from the current node set, and 

produce a new node as a parent of these two nodes. 
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iii) Label the probability of this new parent node as the sum of the probabilities of its two child 

nodes. 

iv) Label the branch of one child node of the new parent node as 1 and the branch of the other 

child node as 0. 

v) Update the node set by replacing the two child nodes with smallest probabilities by the 

newly generated parent node. If the number of nodes remaining in the node set is greater 

than 1, go to Step (ii). 

vi) Transverse the generated binary tree from the root node to each leaf node  Ni, i = 1, 2, ..., 

m, to produce the codeword of the corresponding symbol si, which is a concatenation of 

the binary labels (0 or 1) of the branches from the root to the leaf node. 

Figure 8 shows the Huffman tree construction for eight symbols with their probability of 

occurrence of each symbol is indicated in the associated parentheses and corresponding Huffman 

code table is shown in Table 1. 
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Figure 8 Huffman tree construction 
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Limitations of Huffman Coding  
i) Huffman code is optimal only if exact probability distribution of the source symbols is 

known. 

ii) Each symbol is encoded with integer number of bits. 

iii) Huffman coding is not efficient to adapt with the changing source statistics. 

iv) The length of the codes of the least probable symbol could be very large to store into a 

single word or basic storage unit in a computing system. 

Table 1 Huffman Code Table 

Symbol Probability Huffman Code 

a 0.30 1 0 

b 0.10 0 0 1 

c 0.20 0 1 

d 0.06 1 1 1 1 1 

e 0.09 0 0 0 

f 0.07 1 1 1 0 

g 0.03 1 1 1 1 0 

h 0.15 1 1 0 

Arithmetic Coding 
Arithmetic coding is a variable-length source encoding technique [14]. In traditional 

entropy encoding techniques such as Huffman coding, each input symbol in a message is 

substituted by a specific code specified by an integer number of bits. Arithmetic coding deviates 

from this paradigm. In arithmetic coding a sequence of input symbols is represented by an 

interval of real numbers between 0.0 and 1.0. The longer the message, the smaller the interval to 

represent the message becomes. More probable symbols reduce the interval less than the less 

probable symbols and hence add fewer bits in the encoded message. As a result, the coding result 

can reach to Shannon‟s entropy limit for a sufficiently large sequence of input symbols as long as 

the statistics are accurate. 

Arithmetic coding offers superior efficiency and more flexibility compared to the popular 

Huffman coding. It is particularly useful when dealing with sources with small alphabets such as 
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binary alphabets and alphabets with highly skewed probabilities. Huffman coding cannot achieve 

any compression for a source of binary alphabets. As a result arithmetic coding is highly efficient 

for coding bi-level images. However, arithmetic coding is more complicated and is intrinsically 

less error resilient compared to the Huffman coding. The arithmetic coding requires significantly 

higher computation because of the requirement of multiplication to compute the intervals. 

However several multiplication-free arithmetic coding technique have been developed for binary 

compression [15]. 

Encoding Algorithm  
The arithmetic coding algorithm is explained here with an example. Consider a four-

symbol alphabet A = {a, b, c, d} with the fixed symbol probabilities p(a) = 0.3, p(b) = 0.2, p(c) = 

0.4, and p(d) =  0.1 respectively. The symbol probabilities can be expressed in terms of partition 

of the half-open range [0.0, 1.0), as shown in Table 2. 

Table 2 Probability Model 

Index Symbol Probability Cumulative 

Probability 

Range 

1 a 0.3 0.3 [0.0, 0.3) 

2 b 0.2 0.5 [0.3, 0.5) 

3 c 0.4 0.9 [0.5, 0.9) 

4 d 0.1 1.0 [0.9, 1.0) 

 

The algorithm for arithmetic coding is presented below. In this algorithm, N is considered 

as the length of the message (i.e. total number of symbols in the message); F(i) is the cumulative 

probability of i
th

 source symbol as shown in Table 2. 

“c a c b a d”  is the message to be encoded using the above fixed model of probability 

estimates. At the beginning of both encoding and decoding processes, the range for the message 

is the entire half-open interval [0.0, 1.0), which can be partitioned into disjoint subintervals or 

ranges [0.0, 0.3), [0.3, 0.5), [0.5, 0.9) and [0.9, 1.0) corresponding to the symbols a, b, c, and d 

respectively, as by the range R(start) [0.0 1.0) the symbol probabilities stipulated by the 

probability model. As each symbol in the message is processed, the range is narrowed down by 

the encoder as explained in the algorithm. Since the first symbol of the message is c, the range is 
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first narrowed down to the half-open interval R(c) = [0.5, 0.9). This range is further partitioned 

into exactly the same proportions as the original one, yielding the four half-open disjoint 

intervals [0.5, 0.62). [0.62, 0.70), [0.70, 0.86), and [0.86, 0.90) corresponding to a, b, c and d 

respectively. As a result, the range is narrowed down to R(c a) = [0.5, 0.62) when the second 

symbol a in the message is processed. This new range [0.5, 0.62) is now partitioned into four 

disjoint intervals [0.5, 0.536), [0.536, 0.560), [0.560, 0.608), and [0.608, 0.62). After processing 

the third symbol, c, the range is accordingly narrowed down to R(c a c) = [0.560, 0.608). This is 

again partitioned into [0.560, 0.5744), [0.5744, 0.5840), [0.5840, 0.6032), and [0.6032, 0.608) in 

order to process the next symbol in the message. After processing the fourth symbol, b, the range 

is now narrowed down to R(c a c b) = [0.5744, 0.5840). This is again partitioned into four 

intervals [0.5744, 0.57728), [0.5728, 0.57920), [0.57920, 0.58304), and [0.58304, 0.584) 

corresponding to the symbols a, b, c, and d respectively. After processing the fifth symbol, a, the 

range is now narrowed down to R(c a c b a) = [0.5744, 0.57728). This is further partitioned into 

the disjoint intervals [0.5744, 0.575264), [0.575264, 0.575840), [0.575840, 0.576992) and 

[0.576992, 0.57728). The last symbol in the message is d and hence the final range for the 

message becomes R(c a c b a d) = [0.576992, 0.57728). As a result, the message “c a c b a d” can 

be encoded by any number in the range [0.576992, 0.57728) because it is not necessary for the 

decoder to know both ends of the range produced by the encoder. If the midpoint of the interval 

is used, the encoded value will be 0.577136. 

Decoding Algorithm  
Both the encoder and the decoder have the same probability model. Initially the decoder 

starts with the range [0.0, 1.0), which is partitioned into four intervals [0.0, 0.3), [0.3, 0.5), [0.5, 

0.9), and [0.9, 1.0) corresponding to the symbols a, b, c, and d in the alphabet. As soon as the 

decoder receives an encodes number 0.577, it can immediately decode that the first symbol of 

the message is c because the number 0.577 belongs to the range [0.5, 0.9) and the range is 

narrowed down to [0.5, 0.9) and partitioned into [0.5, 0.62), [0.62, 0.70), [0.70, 0.86) and [0.86, 

0.9) in a similar fashion as the encoder. Since the number 0.577 belong to the range [0.56, 0.62), 

it can be immediately decode second symbol a. The range is now narrowed down to [0.5, 0.62) 

and partitioned into [0.5, 0.536), [0.536, 0.560), [0.560, 0.608), and [0.608, 0.62). Since the 

number 0.577 belongs to the range [0.560, 0.608), the decoder can decode the third symbol to be 
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c. The range is now narrowed down to [0.560, 0.608) and partitioned into the four subintervals 

[0.560, 0.5744), [0.5744, 0.5840), [0.5840, 0.6032), and [0.6032, 0.608). Since the number is 

0.577 belongs in the range [0.5744, 0.584), the decoder deduces that the next symbol is b and 

narrows the range down to [0.5744, 0.584). The range is now subdivided into [0.5744, 0.57728), 

[0.5728, 0.57920), [0.57920, 0.58304), and [0.58304, 0.584). Since the number 0.577 belongs 

within the range [0.5744, 0.57728), the next symbol decoded is a and the range is narrowed 

down to [0.5744, 0.57728) and partitioned into four subintervals [0.5744, 0.575264), [0.575264, 

0.575840), [0.575840, 0.576992) and [0.576992, 0.57728). Since 0.577 belongs to the range 

[0.576992, 0.57728), it is very natural that the decoders decode the next symbol to be d and 

narrows the range down to [0.576992, 0.5770784), [0.5770784, 0.577136), [0.577136, 

0.5772512, and [0.5772512, 0.57728) respectively. Hence the decoder could uniquely decode the 

message “c a c b a d” until this step. If the decoder is aware of the length of the message, it can 

stop decoding here. Otherwise, it can continue decoding the next symbol to be a because 0.577 

belongs to the range [0.576992, 0.5770784) and so on indefinitely. To resolve the ambiguity, it is 

possible to ensure that each message ends with a special terminating symbol know to both 

encoder and decoder. In this example, if d is assumed to be the special terminating symbol, the 

decoder will effectively stop after decoding the message “c a c b a d”. Otherwise the length of 

the original message needs to be known to the decoder in order to stop decoding effectively. 

Limitations of Arithmetic Coding  
i) The encoded value is not unique because any value within the final range can be 

considered as the encoded message. It is desirable to have a unique binary code for the 

encoded message. 

ii) The encoding algorithm does not transmit anything until encoding of the entire message 

has been completed. As a result, the decoding algorithm cannot start until it has received 

the complete encoded data. The above two limitations can be overcome by using the binary 

arithmetic coding which will be described in the next section.  

iii) The precision required to represent the intervals grows with the length of the message.  

iv) Use of the multiplications in the encoding and decoding process, in order to compute the 

ranges in every step, may be prohibitive for many real time fast applications. 
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Introduction 
JPEG2000 is the new international standard for image compression [16, 17, 18] developed 

jointly by the International Organization for Standardization (ISO) and the International 

Electrotechnical Commission (IEC) and also recommended by International 

Telecommunications Union (ITU). A fundamental shift in the image compression approach came 

after the Discrete Wavelet Transform (DWT) became popular. Exploiting the interesting features 

in DWT, many scalable image compression algorithms were proposed in the literature [3, 7, 8, 

19, 20, 21, 22]. To overcome the inefficiencies in the JPEG[23] standard and serve emerging 

applications areas in this age of mobile and Internet communications, the new JPEG2000 

standard has been developed based on the principles of DWT and currently more developments 

in this standard are still in progress in the ISO/IEC standard committee. It incorporated the last 

advances in the image compression to provide a unified optimized tool to accomplish both 

lossless and lossy compression and decomposition using the same algorithm and the bit stream 

syntax. The systems architecture is not only optimized for compression efficiency at even very 

low bit-rates, it is also optimized for scalability and interoperability in the networks and noisy 

mobile environments. The JPEG2000 standard will be effective in wide application areas such as 

internet, digital photography, digital library, image archival, compound documents, image 

databases, colour reprography (photocopying, printing, scanning, facsimile), graphics, medical 

imagery, mobile multimedia communication, 3G cellular telephony, client-server networking, e-

commerce, etc. 

The main drawback of the JPEG2000 standard compared to current JPEG is that the coding 

algorithm is much more complex and the computational needs are much higher. Moreover, bit-

plane-wise computing may restrict good computational performance with a general-purpose 

computing platform. Analysis shows that JPEG2000 is more than 30 times complex as compared 

with current JPEG. As a result, there is a tremendous need to develop high-performance 

architectures and special-purpose custom VLSI chips exploiting the underlying data parallelism 

to speed up the DWT and entropy encoding phase of JPEG2000 to make it suitable for real-time 

applications. 
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Salient Features of JPEG2000 
Some of the salient features offered by the JPEG2000 standard that are effective in vast 

areas of applications are as follows: 

 Superior low bit-rate performance: It offers superior performance in terms of visual 

quality and PSNR (peak signal-to-noise ratio) at very low bit-rates (below 0.25 bit/pixel) 

compared to the baseline JPEG. For equivalent visual quality JPEG2000 achieves more 

compression compared to JPEG. This feature is very useful for transmission of 

compressed images through a low-bandwidth transmission channel. 

 

 Continuous tone and bi-level image compression: The JPEG2000 standard is capable of 

compressing and decompressing both the continuous tone (grayscale and colour) and bi-

Ievel images. The JBIG2 standard was defined to compress the bi-Ievel images and it uses 

the same MQ-coder that is used to entropy encode the wavelet coefficients of the 

grayscale or colour image components. 

 

 Large dynamic range of the pixels: The JPEG2000 standard-compliant systems can 

compress and decompress images with various dynamic ranges for each colour 

component. Although the desired dynamic range for each component in the requirement 

document is 1 to 16 bits, the system is allowed to have a maximum of 38 bits precision 

based on the bitstream syntax. As a matter of fact, JPEG2000 is the only standard that can 

deal with pixels with more than 16 bits precision. This feature is particularly suitable both 

for software and hardware implementers to choose the precision requirement for 

targeted applications. 

 

 Large images and large numbers of image components: The JPEG2000 standard allows 

the maximum size of an image to be (232 - 1) x (232 - 1) and the maximum number of 

components in an image to be 214. This feature is particularly suitable for satellite imagery 
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and astronomical image processing involving multispectral images with a large number of 

components and size. 

 

 Lossless and lossy compression: The single unified compression architecture can provide 

both the lossless and the lossy mode of image compression. Lossy and lossless 

decompressions are also possible from a single compressed bitstream. The reversible 

colour transform and the reversible wavelet transform (using integer wavelet filter 

coefficients) make the lossless compression possible by the same coding architecture. As 

a result, the same technology is applicable in varying applications areas ranging from 

medical imagery requiring lossless compression to digital transmission of images through 

communication networks. 

 

 Fixed size can be preassigned: The JPEG2000 standard allows users to select a desired size 

of the compressed file. This is possible because of the bit-plane coding of the architecture 

and controlling the bit-rate through the rate control. The compression can continue bit-

plane by bit-plane in all the code-blocks until the desired compressed size is achieved and 

the compression process can terminate. This is a very useful feature for restricted-buffer-

size hardware implementation as in reprographic architectures such as printer, 

photocopier, scanner, etc. This is also a very useful feature to dynamically control the size 

of the compressed file in a limited-bandwidth communications networking environment. 

 

 Progressive transmission by pixel accuracy and resolution: Using the JPEG2000 standard, it 

is possible to organize the code-stream in a progressive manner in terms of pixel accuracy 

(i.e., visual quality or SNR) of images that allows reconstruction of images with increasing 

pixel accuracy as more and more compressed bits are received and decoded. This is 

possible by progressively decoding most significant bit-plane to lower significant bit-

planes until all the bit-planes are reconstructed. The code-stream can also be organized as 

progressive in resolution such that the higher-resolution images are generated as more 

compressed data are received and decoded. This is possible by decoding and inverse DWT 
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of more and more higher level subbands that were generated by the multiresolution 

decomposition of the image by DWT. These features are very effective for real-time 

browsing of images on the Web, downloading or reconstructing the images in a system 

with limited memory buffer, transmission of images through limited-bandwidth channels, 

decoding the images depending on the available resolution of the rendering system, etc 

 

 Region of interest (ROI) coding: Sometimes it may be desired certain parts of an image 

that are of greater importance to be encoded with higher fidelity compared to the rest of 

the image. During decompression the quality of the image also can be adjusted 

depending on the degree of interest in each region of interest.  

 

 Random access and compressed domain processing: By randomly extracting the code-

blocks from the compressed bitstream, it is possible to manipulate certain areas (or 

regions of interest) of the image. Some of the examples of compressed-domain 

processing could be cropping, flipping, rotation, translation, scaling, feature extraction, 

etc. One might want to replace one object in the image with another, sometimes even 

with a synthetically generated image object. It is possible to extract the compressed code-

blocks representing the object and replace them with compressed code-blocks of the 

desired object. This feature is very useful in many applications areas such as editing, 

studio, animation, graphics, etc. 

 

 Robustness to bit-errors (error resiliency): Robustness to bit-errors is highly desirable for 

transmission of images over noisy communications channels. The JPEG2000 standard 

facilitates this by coding small size independent code-blocks and including 

resynchronization markers in the syntax of the compressed bitstream. There are also 

provisions to detect and correct errors within each code-block. This feature makes 

JPEG2000 applicable in emerging third-generation mobile telephony applications. 
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 Sequential buildup capability: The JPEG2000-compliant system can be designed to encode 

an image from top to bottom in a single sequential pass without the need to buffer an 

entire image, and hence is suitable for low-memory on-chip VLSI implementation. The 

line-based implementation of DWT and tiling of the images facilitates this feature. 

Parts of the JPEG2000 Standard 
The standard has 11 parts (because Part 7 has been abandoned) with each part adding new 

features to the core standard in Part 1. The 11 parts and their features are as follows: 

 

 Part 1-Core Coding System [24] is now published as an International Standard ISO/IEC 

15444-1:2000, and this part specifies the basic feature set and code-stream syntax for 

JPEG2000 . 

 

 Part 2-Extensions [25] to Part 1. This part adds a lot more features to the core coding 

system.  

 

 Part 3-Motion JPEG2000 [26] specifies a file format (MJ2) that contains an image 

sequence encoded with the JPEG2000 core coding algorithm for motion video. It is aimed 

at applications where high-quality frame-based compression is desired. 

 

 Part 4-Conformance Testing [27] is now published as an International Standard (ISO/IEC 

15444-4:2002). It specifies compliance-testing procedures for encoding/decoding using 

Part 1 of JPEG2000. 

 

 Part 5-Reference Software [28]. In this part, two software source packages (using Java and 

C programming languages) are provided for the purpose of testing and validation for 

JPEG2000 systems implemented by the developers. 

 

 Part 6-Compound Image File Format [29] specifies another file format (JPM) for the 

purpose of storing compound images. The ITU-T T.4411S0 16485  multilayer Mixed 
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Raster Content (MRC) model is used to represent a compound image in Part 6 of 

JPEG2000. 

 Part 7-This part has been abandoned. 

 

 Part 8-Secure JPEG2000 (JPSEC). This part deals with security aspects for JPEG2000 

applications such as encryption, watermarking, etc. 

 

 Part 9-lnteractivity Tools, APls and Protocols (JPIP). This part defines an interactive 

network protocol, and it specifies tools for efficient exchange of JPEG2000 images and 

related metadata. 

 

 Part 10-3-D and Floating Point Data (JP3D). This part is developed with the concern of 

three-dimensional data such as 3-D medical image reconstruction. 

 

 Part 11-Wireless (JPWL). This part is developed for wireless multimedia applications. The 

main concerns for JPWL are error protection, detection, and correction for JPEG2000 in an 

error-prone wireless environment. 

 

 Part 12-ISO Base Media File Format has a common text with ISO/IEC 14496-12 for 

MPEG-4. 

Overview of the JPEG2000 Part 1 Encoding System 
Once the encoder system is well understood, it becomes easier to comprehend the decoder 

system described in the standard document. This section explains the encoder engine for the 

JPEG2000 Part 1 standard. The whole compression system is simply divided into three phases 

namely, (1) image preprocessing, (2) compression, and (3) compressed bitstream formation. The 

functionalities of these three phases is explained in the following sections. 

Image Preprocessing 
The image preprocessing phase consists of three optional major functions: first tiling, then 

DC level shifting, followed by the multicomponent transformation. 
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Tiling 

The first preprocessing operation is tiling. In this step, the input source image is 

(optionally) partitioned into a number of rectangular nonoverlapping blocks if the image is very 

large. Each of these blocks is called a tile. All the tiles have exactly the same dimension except 

the tiles at the image boundary if the dimension of the image is not an integer multiple of the 

dimension of the tiles. The tile sizes can be arbitrary up to the size of the original image. For an 

image with multiple components, each tile also consists of these components. For a grayscale 

image, the tile has a single component. Since the tiles are compressed independently, visible 

artifacts may be created at the tile boundaries when it is heavily quantized for very-low-bit-rate 

compression as typical in any block transform coding. Smaller tiles create more boundary 

artifacts and also degrade the compression efficiency compared to the larger tiles. Obviously, no 

tiling offers the best visual quality. On the other hand, if the tile size is too large, it requires 

larger memory buffers for implementation either by software or hardware. For VLSI 

implementation, it requires large on-chip memory to buffer large tiles mainly for DWT 

computation. The tile size 256 x 256 or 512 x 512 is found to be a typical choice for VLSI 

implementation based on the cost, area, and power consideration. With the advances in memory 

technology with more compaction and reducing cost, the choice of tile size in the near future will 

be accordingly larger. 

DC level Shifting 

Originally, the pixels in the image are stored in unsigned integers. For mathematical 

computation, it is essential to convert the samples into two's complement representation before 

any transformation or mathematical computation starts in the image. The purpose of DC level 

shifting (optional) is to ensure that the input image samples have a dynamic range that is 

approximately centred around the zero. The DC level shifting is performed on image samples 

that are represented by unsigned integers only. All samples 𝐼𝑖(𝑥, 𝑦) in the i
th

 component of the 

image (or tile) are level shifted by subtracting the same quantity 2𝑆𝑠𝑖𝑧
𝑖 −1 to produce the DC level 

shifted sample 𝐼𝑖
′(𝑥, 𝑦) as follows, 

 

𝐼𝑖
′ 𝑥, 𝑦 ← 𝐼𝑖 𝑥, 𝑦 − 2𝑆𝑠𝑖𝑧

𝑖 −1 
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where 2𝑆𝑠𝑖𝑧
𝑖 −1 is the precision of image samples signalled in the SIZ (image and tile size) marker 

segment in compressed bitstream. For images whose samples are represented by signed integers, 

such as CT (computed tomography) images, the dynamic range is already centred about zero, 

and no DC level shifting is required. 

Multicomponent Transformations 

The multicomponent transform is effective in reducing the correlations (if any) amongst 

the multiple components in a multi component image. This results in reduction in redundancy 

and increase in compression performance. Actually, the standard does not consider the 

components as colour planes and in that sense the standard itself is colourblind. However, it 

defines an optional multicomponent transformation in the first three components only. These 

first three components can be interpreted as three colour planes (R, G, B) for ease of 

understanding. That's why they are often called multicomponent colour transformation as well. 

However, they do not necessarily represent Red-Green-Blue data of a colour image. In general, 

each component can have different bit-depth (precision of each pixel in a component) and 

different dimension. However, the condition of application of multi component transform is that 

the first three components should have identical bit-depth and identical dimension as well. 

The JPEG2000 Part 1 standard supports two different transformations: (1) reversible colour 

transform (RCT), and (2) irreversible colour transform (ICT). The RCT can be applied for both 

lossless and lossy compression of images. However, ICT is applied only in lossy compression.  

 

Reversible Colour Transformation: For lossless compression of an image, only the reversible 

colour transform (RCT) is allowed because the pixels can be exactly reconstructed by the inverse 

RCT. Although it has been defined for lossless image compression, the standard allows it for 

lossy compression as well. In case of lossy compression, the errors are introduced by the 

transformation and/or quantization steps only, not by the RCT. The forward RCT and inverse 

RCT are given by: 

 

Forward RCT:   𝑌𝑟 =  
𝑅+2𝐺+𝐵

4
  

 𝑈𝑟 = 𝐵 − 𝐺       4.1 

 𝑉𝑟 = 𝑅 − 𝐺 
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Inverse RCT:   𝐺 = 𝑌𝑟 −  
𝑈𝑟+𝑉𝑟

4
  

 𝑅 = 𝑉𝑟 + 𝐺    4.1 

 𝐵 = 𝑈𝑟 + 𝐺 

 

Irreversible Colour Transformation: The irreversible colour transformation (ICT) is applied for 

lossy compression only because of the error introduced due to forward and inverse 

transformation by using noninteger coefficients as the weighting parameters in the 

transformation matrix, as shown in Eqs. 4.3 and 4.4. The ICT is the same as the luminance-

chrominance colour transformation used in baseline JPEG. Y is the luminance component of the 

image representing intensity of the pixels (light) and Cb and Cr are the two chrominance 

components representing the colour information in each pixel. In baseline JPEG, the 

chrominance components can be subsampled to reduce the amount of data to start with. 

However, in the JPEG2000 standard, this subsampling is not allowed. The forward ICT and 

inverse ICT are given by: 

 

Forward ICT: 

 

   
𝑌
𝐶𝑏
𝐶𝑟

 =  
0.299000 0.587000 0.114000

−0.168736 −0.331264 0.500000
0.500000 −0.418688 −0.081312

  
𝑅
𝐺
𝐵
   4.3 

 

Inverse ICT: 

 

   
𝑅
𝐺
𝐵
 =  

1.0 0.0 1.402000
1.0 −0.344136 −0.714136
1.0 1.772000 0.0

 ×  
𝑌
𝐶𝑏
𝐶𝑟

   4.4 

Compression 
After the optional preprocessing phase, the compression phase actually generates the 

compressed code. The computational block diagram of the functionalities of the compression 

system is shown in Figure 9(a). The data flow of the compression system is shown in Figure 

9(b). As shown in Figure 9(b), each preprocessed component is independently compressed and 

transmitted as shown in Figure 9(a). The compression phase is mainly divided into three  
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Figure 9 (a) Block diagram of the JPEG2000; (b) dataflow 
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sequential steps: (1) Discrete Wavelet Transform (DWT), (2) Quantization, and (3) Entropy Encoding. 

After preprocessing, each component is independently analyzed by a suitable discrete wavelet transform 

(DWT). The DWT essentially decomposes each component into a number of sub bands in different 

resolution levels. Each subband is then independently quantized by a quantization parameter, in case of 

lossy compression. The quantized subbands are then divided into a number of smaller code-blocks of 

equal size, except for the code- blocks at the boundary of each subband. Typical size of the code-blocks is 

usually 32 x 32 or 64 x 64 for better memory handling and is very suitable for VLSI implementation with 

on-chip memory in the encoder architecture. The standard allows the limit of code-block sizes with some 

restrictions. Each code-block is then entropy encoded independently to produce compressed bitstreams as 

shown in the dataflow diagram in Figure 9(b). The three major functions in the compression phase is 

discussed in the following sections. 

Discrete Wavelet Transformation 

The key difference between current JPEG  and JPEG2000 starts with the adoption of 

discrete wavelet transform (DWT) instead of the 8 x 8 block based discrete cosine transform 

(DCT). The DWT essentially analyzes a tile (image) component to decompose it into a number 

of subbands at different levels of resolution. The two-dimensional DWT is performed by 

applying the one-dimensional DWT row-wise and then column-wise in each component. In the 

first level of decomposition, four subbands LL1, HL1, LH1, and HHI are created. The low-pass 

subband (LL1) represents a 2:1 subsampled in both vertical and horizonal directions, a low-

resolution version of the original component. This is an approximation of the original image in 

subsampled form. The other subbands (HL1, LH1, and HH1) represent a downsampled residual 

version (error because of coarser approximation) of the original image needed for the perfect 

reconstruction of the original image. The LLI subband can again be analyzed to produce four 

subbands LL2, HL2, LH2, and HH2, and the higher level of decomposition can continue in a 

similar fashion. Typically, it won‟t give much compression benefit after five levels of 

decomposition in natural images. However, theoretically it can go even further. The maximum 

number of levels of decomposition allowed in Part 1 is 32. In Part 1 of the JPEG2000 standard, 

only power of 2 dyadic decomposition in multiple levels of resolution is allowed. The standard 

supports both the convolution and the lifting-based approach for DWT. Next section presents the 

two default wavelet filter pairs supported by Part 1 of the JPEG2000 standard. 

 



 Implementation of Image Compression Algorithm using Verilog with Area, Power and Timing Constraints 

 
 

 

National Institute of Technology, Rourkela                                                                                                            43 
 

Discrete Wavelet Transformation for Lossy Compression: For lossy compression, the default 

wavelet filter used in the JPEG2000 standard is the Daubechies (9, 7) biorthogonal spline filter. 

By (9, 7) we indicate that the analysis filter is formed by a 9-tap low-pass FIR filter and a 7-tap 

high-pass FIR filter. Both filters are symmetric. The analysis filter coefficients (for forward 

transformation) are as follows: 

 9-tap low-pass filter : [𝑕−4,  𝑕−3, ,  𝑕−2,  𝑕−1,  𝑕0,  𝑕1 ,  𝑕2 ,  𝑕3,  𝑕4] 

 𝑕4 = 𝑕−4  = +0.026748757410810 

 𝑕3 =  𝑕−3 = -0.016864118442875 

 𝑕2 =  𝑕−2 = -0.078223266528988 

 𝑕1 =  𝑕−1 = +0.266864118442872 

          𝑕0   = +0.602949018236358 

 7-tap high-pass filter: [ 𝑔−3,  𝑔−2,  𝑔−1,  𝑔0,  𝑔1,  𝑔2,  𝑔3] 

 𝑔3 =  𝑔−3 = +0.0912717631142495 

 𝑔2 =  𝑔−2 = -0.057543526228500 

 𝑔1 =  𝑔−1 = -0.591271763114247 

          𝑔0   = +1.115087052456994 

 

For the synthesis filter pair used for inverse transformation, the low-pass FIR filter has 

seven filter coefficients and the high-pass FIR filter has nine coefficients. The corresponding 

synthesis filter coefficients are as follows: 

 7-tap low-pass filter: [ 𝑕−3
′ ,   𝑕−2

′ ,   𝑕−1
′ ,   𝑕0

′ ,   𝑕1
′ ,   𝑕2

′ ,   𝑕3
′ ] 

 𝑕3
′  = 𝑕−3

′  = -0.0912717631142495 

 𝑕2
′  = 𝑕−2

′  = -0.057543526228500 

 𝑕1
′  = 𝑕−1

′  = +0.591271763114247 

         𝑕0
′    = + 1.115087052456994  

 9-tap high-pass filter: [ 𝑔−4
′ , 𝑔−3

′ ,   𝑔−2
′ ,   𝑔−1

′ ,   𝑔0
′ ,   𝑔1

′ ,   𝑔2
′ ,   𝑔3

′ ,  𝑔4
′ ] 

 𝑔4
′  = 𝑔−4

′  = +0.026748757410810 

 𝑔3
′  = 𝑔−3

′  = +0.016864118442875 

 𝑔2
′  = 𝑔−2

′  = -0.078223266528988 

 𝑔1
′  = 𝑔−1

′  = -0.266864118442872 
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         𝑔0
′    = +0.602949018236358 

 

For lifting implementation, the (9, 7) wavelet filter pair can be factorized into a sequence 

of primal and dual lifting. The most efficient factorization of the polyphase matrix for the (9, 7) 

filter is as follows [30]:  

 

 𝑃  𝑧 =  1 𝑎(1 + 𝑧−1)
0 1

  
1 0

𝑏(1 + 𝑧) 1
  1 𝑐(1 + 𝑧−1)

0 1
  

1 0
𝑑(1 + 𝑧) 1

  
𝐾 0
0 1 𝐾 

  

 

where a = -1.586134342, b = -0.05298011854, c = 0.8829110762, d = -0.4435068522, K = 

1.149604398. 

 

Reversible Wavelet Transform for Lossless Compression: For loss less compression, the default 

wavelet filter used in the JPEG2000 standard is the Le Gall (5, 3) spline filter [31]. Although this 

is the default filter for loss less transformation, it can be applied in lossy compression as well. 

However, experimentally it has been observed that the (9, 7) filter produces better visual quality 

and compression efficiency in lossy mode than the (5, 3) filter. The analysis filter coefficients for 

the (5, 3) filter is as follows: 

 5-tap low-pass filter : [ 𝑕−2,  𝑕−1,  𝑕0,  𝑕1,  𝑕2] 

 𝑕2 =  𝑕−2 = -1/8 

 𝑕1 =  𝑕−1 = +1/4 

          𝑕0   = +3/4 

 

 3-tap high-pass filter: [ 𝑔−1,  𝑔0,  𝑔1] 

 𝑔1 =  𝑔−1 = -1/2 

          𝑔0   = +1 

The corresponding synthesis filter coefficients are as follows: 

 3-tap low-pass filter: [ 𝑕−1
′ ,   𝑕0

′ ,   𝑕1
′  

 𝑕1
′  = 𝑕−1

′  = +1/2 

         𝑕0
′    = + 1  
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 5-tap high-pass filter: [ 𝑔−2
′ ,   𝑔−1

′ ,   𝑔0
′ ,   𝑔1

′ ,   𝑔2
′ ] 

𝑔2
′  = 𝑔−2

′   = -1/8 

 𝑔1
′  = 𝑔−1

′  = -1/4 

         𝑔0
′    = +3/4 

 

Therefore, the polyphase for the (5,3) filter can be written as follows, 

 

 𝑃  𝑧 =  
1

1

4
(1 + 𝑧)

0 1
  

1 0

−
1

2
(1 + 𝑧−1) 1  

 

Boundary Handling Like a convolution, filtering is applied to the input samples by 

multiplying the filter coefficients with the input samples and accumulating the results. Since 

these filters are not causal, they cause discontinuities at the tile boundaries and create visible 

artifacts at the image boundaries as well. This introduces the dilemma of what to do at the 

boundaries. In order to reduce discontinuities in tile boundaries or reduce artifacts at image 

boundaries, the input samples should be first extended periodically at both sides of the input 

boundaries before applying the one dimensional filtering both during row-wise and column-wise 

computation. By symmetrical/mirror extension of the data around the boundaries, one is able to 

deal with the noncausal nature of the filters and avoid edge effects. The number of additional 

samples needed to extend the boundaries of the input data is dependent on filter length.  

Quantization 
After the DWT, all the subbands are quantized in lossy compression mode in order to 

reduce the precision of the subbands to aid in achieving compression. Quantization of DWT sub 

bands is one of the main sources of information loss in the encoder. Coarser quantization results 

in more compression and hence in reducing the reconstruction fidelity of the image because of 

greater loss of information. Quantization is not performed in case of lossless encoding. In Part 1 

of the standard, the quantization is performed by uniform scalar quantization with dead-zone 

about the origin. In dead-zone scalar quantizer with step-size Δb, the width of the dead-zone (i.e., 

the central quantization bin around the origin) is 2Δb as shown in Figure 10. The standard 

supports separate quantization step sizes for each subband. The quantization step size (Δb) for a 
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subband (b) is calculated based on the dynamic range of the subband values. The formula of 

uniform scalar quantization with a dead-zone is 

 

 𝑞𝑏 𝑖, 𝑗 = 𝑠𝑖𝑔𝑛(𝑦𝑏 𝑖, 𝑗 )  
 𝑦𝑏(𝑖,𝑗 ) 

∆𝑏
      (4.5) 

 

where 𝑦𝑏 𝑖, 𝑗  is a DWT coefficient in subband band ∆𝑏  is the quantization step size for the 

subband b. All the resulting quantized DWT coefficients 𝑞𝑏 𝑖, 𝑗  are signed integers. 

 

 

 

 

 

 

 

All the computations up to the quantization step are carried out in two's complement form. 

After the quantization, the quantized DWT coefficients are converted into sign-magnitude 

represented prior to entropy coding because of the inherent characteristics of the entropy 

encoding process. 

Region of Interest Coding 
The region of interest (ROI) coding is a unique feature of the JPEG2000 standard. It allows 

different regions of an image to be coded with different fidelity criteria. These regions can have 

arbitrary shapes and be disjoint to each other. In Figure 11, we show an example of ROI coding. 

We compressed the ROI portion of the Zebra image losslessly and introduced losses in the non-

ROI (background) part of the image. The reconstructed image after decompression is shown in 

Figure 11(a). We indicate the ROI by a circle around the head of the Zebra in Figure 11(a). In 

Figure 11(b), we pictorially show the difference between the original image and the 

reconstructed image after ROI coding and decoding. The values of difference of the original and 

the reconstructed pixels in the ROI region (i.e., inside the circle) are all zeros (black) and they 

are nonzero (white) in the non-ROI parts of the image. This shows the capability of the  

2∆𝑏  ∆𝑏  ∆𝑏  ∆𝑏  ∆𝑏  ∆𝑏  ∆𝑏  

-3 -2 -1  0 3 2 1 

Figure 10 Dead-zone quantization about the origin 
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(a) (b) 

Figure 11 (a) Reconstructed image  with circular shape ROI. (b) Difference between original image and 
reconstructed image 
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Figure 12 (a) ROI mask (b) Scaling of ROI coefficients 
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JPEG2000 standard in how we can compress different regions of an image with different degrees 

of fidelity. 

The ROI method defined in the JPEG2000 Part 1 standard is called the MAXSHIFT 

method [32]. The MAXSHIFT method is an extension of the scaling-based ROI coding method 

[33]. During ROI coding, a binary mask is generated in the wavelet domain for distinction of the 

ROI from the background as shown in Figure 12(a). In the scaling-based ROI coding, the bits 

associated with the wavelet coefficients corresponding to an ROI (as indicated by the ROI mask) 

are scaled (shifted) to higher bit-planes than the bits associated with the non-ROI portion of the 

image. This is shown by a block diagram in Figure 12(b). 

During the encoding process, the most significant ROI bit-planes are encoded and 

transmitted progressively before encoding the bit-planes associated with the non-ROI 

background region. As a result, during the decoding process, the most significant bit-planes of 

ROI can be decoded before the background region progressively in order to produce high fidelity 

in the ROI portions of the image compared to its background. In this method, the encoding can 

stop at any point and still the ROI portion of the reconstructed image will have higher quality 

than the non-ROI portion. In scaling-based ROI, the scaling parameter and the shape information 

needs to be transmitted along with the compressed bitstream. This is used in the Part 2 extension 

of the standard. 

 

 

 

 

 

 

 

 

 

In JPEG2000 Part 1, the MAXSHIFT technique is applied instead of the more general 

scaling-based technique. The MAXSHIFT allows arbitraryshaped regions to be encoded without 

Figure 13 MAXSHIFT 
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requiring to transmit the shape information along with the compressed bitstream. As a result, 

there is no need for shape coding or decoding in the MAXSHIFT technique. The basic principle 

of the MAXSHIFT method is to find the minimum value (Vmin) in the ROI and the maximum 

value in the background (both in wavelet transformed domain) and then scale (shift) the wavelet 

coefficients in ROI in such a manner that the smallest coefficient in the ROI is always greater 

than the largest coefficient in the background. Then the bit-planes are encoded in the order of the 

most significant bit (MSB) plane first to the least significant bit (LSB) plane last. Figure 13 

shows an example where the LSB plane of ROI is shifted above the MSB plane of the 

background region. During the decompression process, the wavelet coefficients that are larger 

than Vmin are identified as the ROI coefficients without requiring any shape information or the 

binary mask that was used during the encoding process. The ROI coefficients are now shifted 

down relative to Vmin in order to represent it with original bits of precision.  

In JPEG2000, due to the sign-magnitude representation of the quantized wavelet 

coefficients required in the bit-plane coding, there is an implementation precision for number of 

bit-planes. Scaling the ROI coefficients up may cause an overflow problem when it goes beyond 

this implementation precision. Therefore, instead of shifting ROI up to higher bit-planes, the 

coefficients of background are downscaled by a specified value s, which is stored in the RGN 

(ReGioN) marker segment in the bitstream header. The decoder can deduce the shape 

information based on this shift value s and magnitude of the coefficients. By choosing an 

appropriate value of s, we can decide how many bit-planes to truncate in the background in order 

to achieve overall bit-rate without sacrificing the visual quality of the ROI.  

Rate Control 
Although the key encoding modules of JPEG2000 such as wavelet transformation, 

quantization, and entropy coding (bit-plane coding and binary arithmetic coding) are clearly 

specified, some implementation issues are left up to the prerogative of the individual developers. 

Rate control is one such open issue in JPEG2000 standard. Rate control is a process by which the 

bitrates (sometimes called coding rates) are allocated in each code-block in each subband in 

order to achieve the overall target encoding bit-rate for the whole image while minimizing the 

distortion (errors) introduced in the reconstructed image due to quantization and truncation of 

codes to achieve the desired code rate. It can also be treated in another way. Given the allowed 
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distortion in the MSE (mean square energy) sense, the rate control can dictate the optimum 

encoding rate while achieving the maximum given MSE. 

The JPEG2000 encoder generates a number of independent bitstreams by encoding the 

code-blocks. Accordingly a rate-distortion optimization algorithm generates the truncation points 

for these bitstreams in an optimal way in order to minimize the distortion according to a target 

bit rate. After the image is completely compressed, the rate-distortion optimization algorithm is 

applied once at the end using all the rate and rate-distortion slope information of each coding 

unit. This is the so-called postcompression rate-distortion (PCRD) algorithm. 

There is another simple way to control bit-rate by choosing the quantization step size. The 

bigger the step size, the lower the rate will be. However, this method can apply only to lossy 

compression mode, and every time the step sizes change, the Tier-l encoding needs to be 

recomputed. Since the Tier-l coding is a very computationally intensive module in JPEG2000 

standard, this approach of bit-rate control may not be suitable for some applications that are 

computationally constrained. 

However, the bit-rate control is purely an encoder issue, and remains an open issue for the 

JPEG2000 standard. It is up to the prerogative of the developers how they want to accomplish 

the rate-distortion optimization in a computationally efficient way without incurring too much 

computation and/or hardware cost.  

From the hardware implementation perspective, the rate-distortion algorithm requires a 

microcontroller to compute the breakpoints using a rate distortion optimization technique and 

supply these breakpoints to the entropy encoding engine for formation of the compress bitstream. 

Entropy Encoding 
Physically the data are compressed by the entropy encoding of the quantized wavelet 

coefficients in each code-block in each subband. The entropy coding and generation of 

compressed bitstream in JPEG2000 is divided into two coding steps: Tier-l and Tier-2 coding. 

 

Tier-1 Coding : In Tier-l coding, the code-blocks are encoded independently. If the precision of 

the elements in the code-block is p, then the code-block is decomposed into p bit-planes and they 

are encoded from the most significant bit-plane to the least significant bit-plane sequentially. 

Each bit-plane is first encoded by a fractional bit-plane coding (BPC) mechanism to generate 
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intermediate data in the form of a context and a binary decision value for each bit position. In 

JPEG2000 the embedded block coding with optimized truncation (EBCOT) algorithm [2] has 

been adopted for the BPC. EBCOT encodes each bit-plane in three coding passes, with a part of 

a bit-plane being coded in each coding pass without any overlapping with the other two coding 

passes. That is the reason why the BPC is also called fractional bit-plane coding. The three 

coding passes in the order in which they are performed on each bit-plane are significant 

propagation pass, magnitude refinement pass, and cleanup pass.  

 

The binary decision values generated by the EBCOT are encoded using a variation of 

binary arithmetic coding (BAC) to generate compressed codes for each code-block. The 

variation of the binary arithmetic coder is a context adaptive BAC called the MQ-coder, which is 

the same coder used in the JBIG2 standard to compress bi-Ievel images. The context information 

generated by EBCOT is used to select the estimated probability value from a lookup table and 

this probability value is used by the MQ-coder to adjust the intervals and generate the 

compressed codes. JPEG2000 standard uses a predefined lookup table with 47 entries for only 19 

possible different contexts for each bit type depending on the coding passes. This facilitates rapid 

probability adaptation in the MQ-coder and produces compact bitstreams.  

TIER-2 Coding and Bitstream Formation 
After the compressed bits for each code-block are generated by Tier-1 coding, the Tier-2 

coding engine efficiently represents the layer and block summary information for each code-

block. A layer consists of consecutive bit-plane coding passes from each code-block in a tile, 

including all the subbands of all the components in the tile. The block summary information 

consists of length of compressed code words of the codeblock, the most significant magnitude 

bit-plane at which any sample in the code-block is nonzero, as well as the truncation point 

between the bitstream layers, among others. The decoder receives this information in an encoded 

manner in the form of two tag trees. This encoding helps to represent this information in a very 

compact form without incurring too much overhead in the final compressed file. The encoding 

process is popularly known as Tag Tree coding.  

 

 



 Implementation of Image Compression Algorithm using Verilog with Area, Power and Timing Constraints 

 
 

 

National Institute of Technology, Rourkela                                                                                                            52 
 

 

 

 

 

 

 

 

 

Chapter 5 
 

 

 

Simulation of Image 

Compression Algorithm using 

Matlab 
 

 

 

 

 

 



 Implementation of Image Compression Algorithm using Verilog with Area, Power and Timing Constraints 

 
 

 

National Institute of Technology, Rourkela                                                                                                            53 
 

Digital image is composed of a finite number of elements, each has a particular location 

and value. Image compression is a complex process and involves numerous steps of calculation 

to attain a reduction in the amount of data required to represent a digital image. Data redundancy 

is a fundamental issue in image compression. A lossy image compression technique which 

provides a higher level of data reduction but result in a less than perfect reproduction of original 

image is implemented here using matlab code. An image compression method which exploits the 

ability of discrete wavelet transform to decorrelate adjacent pixels of the image and uses 

Huffman coding to encode the transformed coefficients based on the estimated probability of 

occurrence for each possible value of the source symbol is presented with their performance 

analysis. 

Algorithm 
The first step of the encoding process is to DC level shift the samples of the Ssiz-bit 

unsigned image to be coded by subtracting 2
Ssiz-1

. If the image has more than one component - 

like the red, green and blue planes of a colour image – each component is individually shifted. If 

there are exactly three components, they may be optionally decorrelated using a reversible or 

nonreversible linear combination of the components. Here the code is developed for handling a 

grayscale image, i.e. only one component specifying the gray level of the image at that point, 

having values ranging from 0 to 255 for each pixel. A bitmap format 512 x 512 lena image with 

8-bit pixel representation is used as the test image.  The image is a grayscale image has values 

ranging from 0 to 255 for each pixel.  

After the image has been level shifted, its components are optionally divided into tiles. 

Tiles are rectangular arrays of pixels that contain the same relative portion of all components. 

Thus, the tiling process creates tile components that can be extracted and reconstructed 

independently, providing a simple mechanism for accessing and/or manipulating a limited region 

of a coded image. The tile size holds inverse relation with the distortion in the reconstructed 

image. So the larger the tile size the better will be the reconstructed image in terms of distortions. 

Here the tile size is taken as equal to the image size. The discrete wavelet transform is applied on 

the image to obtain the decorrelated transform coefficients. Cohen-Daubechies-Feauveau 

wavelet, a biorthogonal 9/7 coefficient scaling-wavelet vector is employed for a lossy 
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compression. The discrete wavelet transform is implemented as two parts, first a row-wise 

convolution followed by a column-wise convolution to generate each set of coefficients namely 

approximation, horizontal, vertical and diagonal. The image is convoluted row-wise using low 

pass filter coefficients to get a matrix of half the number of columns, while the number of rows 

remaining same. This matrix is then convoluted column-wise with the low pass and high pass 

filter coefficients to get the approximation and horizontal coefficients respectively. The image 

when convoluted row-wise with high pass filter coefficients, then column-wise with low pass 

and high pass will generate the vertical and diagonal coefficients respectively. 

It is necessary to pad elements around the image to avoid the distortion of the reconstructed 

image at the edges. This distortion occurs due to the failure to handle the periodicity issue 

properly during convolution. Thus unless proper padding is implemented, the result is erroneous, 

commonly referred to as wraparound error. Different kinds of padding include: padding with 

zeros, extending the elements at the edge etc. These padding needs additional number elements 

to be included in the result to reproduce desired result. So to avoid the wraparound error while 

keeping the size of the coefficient matrix same as that of the image, padding is done with the 

elements of the opposite edge of the image, i.e. the number of elements in the filter minus one 

elements, required to pad on one edge of the image is taken from the opposite edge. This style of 

padding avoids duplication of any element within the image or an array of zeros and provides the 

information back when same style of padding is repeated at the time of deconvolution. 

When each of the tile components has been processed, the total number of transform 

coefficients is equal to the number of samples  in the original image – but the important visual 

information is concentrated in a few coefficients. To reproduce the number of bits needed to 

represent the transform, coefficient ab(u, v) of subband b is quantized to value qb(u,v) using 

𝑞𝑏 𝑢, 𝑣 = 𝑠𝑖𝑔𝑛 𝑎𝑏 𝑢, 𝑣  . 𝑓𝑙𝑜𝑜𝑟  
 𝑎𝑏 𝑢,𝑣  

∆𝑏
   (5.1) 

where quantization step size ∆𝑏  is 

∆𝑏= 2𝑅𝑏−𝜀𝑏 (1 +
𝜇𝑏

211 )    (5.2) 

𝑅𝑏  is the nominal dynamic range of subband b, and 𝜀𝑏  and 𝜇𝑏  are the number of bits allotted to 

the exponent and mantissa of the subband‟s coefficients. The nominal dynamic range of subband 
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b is the sum of the number of bits used to represent the original image and the analysis gain bits 

for subband b. For error-free compression, 𝜇𝑏 = 0, 𝑅𝑏 = 𝜀𝑏 , and ∆𝑏= 1. For irreversible 

compression, no particular quantization step size is specified in the standard.  

Now the coefficients are entropy coded using Huffman coding. The final steps of the 

encoding process are coefficient packetizing, where the output consists of an array of 1‟s and 0‟s, 

packed as groups of sixteen. Packets are the fundamental unit of the encoded code stream.  The 

decoders simply invert the operations described previously.  

Simulation Results 
The grayscale lena image of 512x512 pixel, with 8-bit representation for each pixel is used 

as the test input. The test image was compressed to different scales, from one to three and the 

compression ratio as well as the root mean square error of the reconstructed image were 

calculated for minimal error case and quantised case.  The result is tabulated below: 

Table 3 RMS error and Compression ratio for different scale 

SCALE Minimal Error Case Qunatized Case 

RMS Error Compression Ratio RMS Error Compression Ratio 

1 0.7916 1.4744 0.6744 1.4497 

2 0.9759 1.7640 1.2858 1.9555 

3 1.1563 1.8676 2.2667 2.2000 

 

 

 

 

 

 

 

 

   

 

 

 Figure 14 Test input - Lena image 
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       The actual test image and the recovered image after compression, with the difference from 

actual image for scales 1 & 2 for minimal error case and quantized case are shown in Figures 14 – 18. 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reconstructed Image Difference 

Figure 15 Scale 1 and Minimal error case 

Reconstructed Image Difference 

Figure 16 Scale 1 and Quantized case 
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Reconstructed Image Difference 

Reconstructed Image Difference 

Figure 17 Scale 2 and Minimal error case 

Figure 18 Scale 2 and Quantized case 
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Introduction 
With rapid developments in field of signal processing, control systems and other computer 

applications, arithmetic circuits mainly multipliers are becoming very important.  And also 

handheld electronic gadgets are trend of today.  To design high performance handheld gadgets, 

circuit designs must be optimized for area, power and timing.   All the three tenets of VLSI 

design: area, power and timing must given attention during design.  Here the focus is on 

designing booth multipliers with different adder architectures and their ASIC implementation. 

Booth multipliers are designed using CLA, RCA and CSA adders.    Area, power and timing 

analysis of different designs is discussed. Also a detailed power estimation techniques based 

switching activity is applied on different multiplier designs, which gives deeper insight into 

power dissipation in digital design. The three main layers of abstraction include RTL, gate and 

transistor level. The various power values are calculated using Synopsys tools in this research 

[34] [35]. 

In CMOS technologies, the chip components draw power only during a logic transition. 

This is considered as an attractive feature, it makes the power dissipation highly dependent on 

„switching activity‟ inside these circuits. This complicates the power estimation problem because 

the power dissipation will become input pattern dependent. Even though, it is practically 

impossible to estimate the power by simulating the circuit for all possible inputs. There are 

several techniques like using probabilities to describe the set of all the possible logic signals, 

some statistical techniques are also applied [34][36]. Probability and statistical method based 

techniques use simplified delay models, so that they do not provide the same accuracy as 

simulation. Also statistical techniques are slow and not feasible for big circuits [34]. For simple 

combinational circuits like adders and multipliers, switching based power calculation is feasible. 

Our main goal is to analyze area; timing and power of Booth multiplier with different 

adder architectures in TSMC 65nm technology. For each of the architecture, power is calculated 

at various levels of abstraction using Power Compiler and Primepower. One of the contributions 

of our research is calculating the switching activity based power at RTL level and comparing 

them with the Primepower, which gives post layout power. Timing analysis is done using 

Primetime. 
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The remainder of this chapter is structured as follows. Section 2 gives the brief description 

of both multiplier design with carry look ahead adder (CLA), ripple carry adder (RCA), and 

carry save adder (CSA). Section 3 describes the power analysis methodology adopted for 

calculating the various levels of design flow. Finally in section 4 and 5, results and conclusion 

are drawn. 

Booth Multiplier 

Booth Algorithm 
Multipliers form the basic and central module in any computing system. There are several 

algorithms for performing this complex process depending on the type of numbers taking into 

consideration as multiplicand and multiplier. Booth‟s algorithm [37], a technique explained by 

Andrew D. Booth half a century back whereby two binary numbers of either sign may be 

multiplied together by a uniform process which is independent of any fore knowledge of the 

signs of these numbers.  The basic idea remains the same to the long multiplication, to find 

partial product and sum, except for some modifications to suit the signed base-two 

representation. 

Booth‟s algorithm takes on account two bits starting from the least significant digit in the 

multiplier at a time to decide on the partial products, which are variants of the multiplicand as 

shown in Table 4. Except for the last partial product for a particular multiplier, the partial 

products are shifted and added to the existing sum of partial products.   

Table 4 Partial products in Booth’s algorithm 

Xn+1Xn Partial Product 

00 zero 

01 same as the multiplicand 

10 negative of the multiplicand 

00 zero 

 

Booth presented an algorithm based on radix-2 recording for the multiplication of two 

signed fixed point numbers, by a method of multiplication which uses uniform shift by single 

place following an addition or subtraction and permits predicting the number of cycles that will 
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be required from the size of the multiplier. The last cycle of operation needs special handling. By 

using higher radices the number of cycles required to complete the multiplication operation can 

be reduced [38]. This reduction in the number of cycles will result in superior performance in 

terms of speed with a trade-off between the speed and complexity. 

Addition of partial products forms an important stage in the implementation of a Booth‟s 

multiplier. By using different types of adders like carry look-ahead adder and carry save adder 

instead of ripple carry adder, improvements can be done in delay and power consumption of the 

multiplier. In this chapter, power consumption of signed 16-bit Booth Multiplier at various levels 

is analysed for above adders and combination of them.  

Booth Algorithm for Radix-4 Fixed Point Multiplication 
Radix-4 Booth‟s algorithm analyze more number bit at a time and consequently gives the 

product with less number of cycles compared to the standard Booth‟s algorithm. For high radices 

Booth‟s algorithm correction cycles are employed. For the radix-4, a divide-by-2 correction 

cycle is needed when the length of the multiplier is even, and a correction cycle is not needed 

when the length of the multiplier is odd [39].             

Table 5 Partial products for Radix-4 Booth's algorithm 

Bit Grouping Partial 

Product 

000 or 111 (P+0)/4 

001 or 010 (P+B)/4 

011 (P+2B)/4 

100 (P-2B)/4 

101 or 110 (P-B)/4 

 

The rules for the radix-4 Booth recording are as follows: 

1. Append a zero to the right of the LSB of the multiplier number, A. 

2. Analyse the groups of three adjacent bits of A, starting with the LSB and the appended 

zero. 

a. If the triad is 000 or 111, then shift the partial product two bits to the right (i.e. divide 

the partial product by 4). 
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b. If the triad is 001 or 010, then add the multiplicand, B, to the partial product and shift 

the new partial product by two bits to the right. 

c. If the triad is 101 or 110, then subtract the multiplicand, B, from the partial product 

and shift the new partial product by two bits to the right. 

d. If the triad is 011, then add twice the multiplicand, 2B, to the partial product and shift 

the new partial product by two bits to the right. 

e. If the triad is 100, then subtract twice the multiplicand, 2B, from the partial product 

and shift the new partial product by two bits to the right. 

3. The step 2 is continued in a manner such that the LSB of the current triad is MSB of the 

previous. 

4. The last triad is analysed, correction right shifts [39] are performed on the product 

produced by the relation „(L – 1) mod2‟, where L is the length of the multiplier. 

Adders Description   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The radix-4 booth recording of a 16-bit number results in 8 partial products, which are 

added to get the product. The primary option for addition of these partial products is to use ripple 

carry adder (RCA). When it is desired to improve the performance of the multiplier in terms of 
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Figure 19 Arrangement of CLA in Booth Multiplier 
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the delay or area, the use of alternatives for RCA is a good technique. Adders like carry look 

ahead adder (CLA) [40] and carry save adder (CSA) are the alternatives considered for RCA. 

Adders of two different sizes, result‟s size and partial product‟s size, are used and compared the 

performance of the multiplier with reference of the size of the adder size.  

The RCA is a simple adder in which the carry has to propagate or ripple through the 

fulladder modules. The worst case delay for a 31-bit RCA is 30 carry bit calculations and that for 

a 17-bit RCA is 16 carry calculations. The CLA adder computes several carries at the same time, 

thereby reducing the computational time. In the extreme case, all the carries could be computed 

at the same time. A two-level CLA adder is used to calculate the sum of two 31-nbit number. 

The 31-bit number (n = 31) is divided into groups of 4-bits (m = 4). The above eight groups are 

again grouped into two to form two levels (p = 2). The CLA module consists of four parts: (i) the 

computation of xor (pi), carry generate (gi), carry propagate (ai) for each bit; (ii) the computation 

of carry lookahead generator in which carry at each bit position of a group is calculated 

simultaneously; (iii) the computation of carry propagate (Ai), carry generate (Gi)  and carry-out 

at each level; (iv) computation of sum (si). 
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Figure 20 Arrangement of CLA in Booth Multiplier 
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The worst case delay is of a two-level CLA is given by the expression: 

T2-CLA = ta,g +tA,G + (n/pm) tclg + tclg + ts 

where  ta,g is delay of computation of ai, gi; tA,G of Ai, Gi; tclg of carry lookahead generator, ts of si 

and (n/pm) tclg of rippling carry between groups.  

CLA adder of sizes 31-bit and 17-bit were realised, with above architecture. For 17-bit 

adder, the delay due to the term „(n/pm) tclg‟ is less, resulting in lesser worst case delay. The 

arrangement of CLA in the booth multiplier for adding eight partial products is shown in the 

Figure 19. 

The CSA adder performs addition of three binary vectors using an array of fulladders, but 

without propagating the carries. The output is represented by two binary vectors called carry 

vector and the pseudo-sum vector. The CSA produces a reduction from three binary vectors to 

two binary vectors. The carry-save representation is converted to conventional using a carry-

propagate adder with the two operands being carry vector and the pseudo-sum vector. The time 

of carry-save addition corresponds to the delay of one full-adder, independent of the number of 

bits. Carry propagation occurs only in the last stage, hence that the carry-save adder becomes 

more efficient in terms of delay with the number carry-save additions. The worst case delay is 

given by the expression: 

TCSA = n.TFA + TCPA 

Where TFA is the full adder delay, „n‟ is the number of CSA stages and TCPA is the worst case 

delay of CPA, which is equal to the propagation time of carry from lsb to msb.  The 

arrangement of CSA in the booth multiplier for adding eight partial products is shown in the 

Figure 20. 

Power Estimation Model 
Switching activity based power analysis is widely adopted method. Typically the methods 

for creating the switching activity inside a circuit fall into either simulation based methodology 

or estimation based methodology. Based on the analysis flow that is used, switching activity can 

be modeled in different levels of detail.  

Power analysis is done at three stages: RTL level, gate level, post layout analysis. RTL 

power estimator is used to calculate power at first (P1).In RTL level, at first SAIF (Switching 

Activity Interchange Format) file is generated using power compiler. SAIF is an open ASCII 
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format and captures the switching statistics for each node in the design in terms of static and 

dynamic attributes that be state and path dependent. Both static and dynamic attributes can be 

state-dependent, capturing the switching statistics separately for the different states of a cell. 

State dependent static attributes are useful for computing state dependent leakage power and for 

computing dynamic power. The dynamic attributes can also be path dependent, capturing 

separate switching statistics based on which input path caused the transition on the pin [34][35]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTL simulation based power analysis flow within power compiler is shown in Figure 21. 

Switching activity is captured via RTL simulation at the synthesis invariant points in the design. 
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These include the hierarchy boundaries and sequential elements. Capacitance and power models 

for wires and gates are taken from the library. The RTL design is synthesized to gate level along 

with all the constraints. Activity information that is captured at the synthesis invariant points is 

propagated to all the input pins of all cells in the gate-level design. This information is passed to 

the power computation engine, which reports the power of entire design. Front SAIF file 

generated by the Power Compiler is used in RTL simulation to generate back annotated SAIF 

file from simulator. The back annotated SAIF is fed into synthesis tool (Design Compiler) and 

synthesizing the design. After synthesis, calculate power (P2). The detailed flow is shown in 

Figure 21. 

The gate-level simulation based power analysis flow is similar, except that no internal 

activity propagation is required because activity is captured at the input pins of all the cells in the 

gate-level netlist via gate-level simulation. Because this activity is captures in full detail, it is 

possible to use the state and path dependent information in the library models and in SAIF to 

perform a more accurate power analysis (P3). The detailed flow is similar to RTL simulation 

flow and shown in Figure 22 [41][42]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complete time-based power profile view of the chip is calculated using the value 

change dump (VCD) or VCD formats, which are generated based on gate-level based switching 
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annotated from layout. Primepower provides a detailed analysis of the power dissipation in a 

design (P4) and relies on the complete VCD switching activity format and back annotated 

parasitic file. It works on a gate-level netlist with gate-level simulation data and is targeted to 

full-chip capacity. Along with the average power numbers, it also gives the time-based 

waveforms of power consumption in different ports of design and allows designers to locate hot 

spots in design. The detailed flow is shown in Figure 23 [34] [41] [42]. 

Results 
For the synthesis and power calculation, 65nm library from TSMC is used. The Table 6 

shows the power numbers for booth multiplier with different adders. The variation of different 

power values from power estimator (P1), RTL switching activity (P2), gate level switching 

activity (P3) and post layout power calculated from Primepower (P4) can be observed. 

The results of Primepower i.e. P4 can be considered as more accurate power than others.  

RTL and gate level switching activity based power (P2 & P4) gives information on switching 

power.   

Table 6 Power Calculated 

Adder Architecture P1(mW) P2(µW) P3(µW) P4(µW) 

RCA 31-bit 7.0893 158.0197 94.3455 185.147 

CLA 31-bit 9.8731 216.4607 154.7195 195.983 

CSA 31-bit RCA 31-

bit 

6.4396 147.3754 85.5816 144.568 

CSA 31-bit CLA 31-

bit 

6.8364 156.5996 95.0299 147.621 

RCA 17-bit 5.4041 128.0270 63.5296 117.97 

CLA 17-bit 6.7736 150.4392 88.5719 118.795 

CSA 17-bit RCA 31-

bit 

5.4912 133.0934 72.8919 111.736 

CSA 17-bit CLA 31-

bit 

5.6856 138.8414 77.2312 107.553 

 

Timing analysis and area for the eight different architectures are tabulated in the Table 7. 

T1 is pre-layout timing analysis and T2 is post-layout timing analysis. The results clearly show 
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the reduction in delay and increase in area for architectures using CLA over RCA. The adder size 

also affects the timing and area of the multiplier. Delay is more for multiplier architecture using 

17-bit adders due to the increase in complexity and the area reduces with the adder size.  

Table 6 shows the RTL, gate-level and post layout power of booth multiplier using 

different adder architectures. RCA 17-bit adder is giving lowest power.  The best architecture 

depends on the application, for a low power application the best option is the multiplier using 17-

bit adders. If the speed is considered then the combination of 31-bit CSA and CLA will be the 

better option. If area is considered as constraint, the multiplier with the combination of 17-bit 

CSA and 31-bit RCA excel other architectures.  

  

Table 7 Timing Analysis and Area Calculated 

Adder Architecture T1(µs) T2(µs) AREA (µm
2
) 

RCA 31-bit 6.03 1.15  6249.600098 

CLA 31-bit 5.41 1.17  7600.680176 

CSA 31-bit RCA 31-bit 5.66 1.11  5680.080078 

CSA 31-bit CLA 31-bit 3.92 1.09  5873.040039 

RCA 17-bit 7.15 1.02  4931.640137 

CLA 17-bit 5.77 1.04  5533.560059 

CSA 17-bit RCA 31-bit 5.14 1.06  4883.760254 

CSA 17-bit CLA 31-bit 3.95 1.02  4920.840332 

     

In VLSI design, there is always tradeoff between area, power and speed.  By careful 

observation of the results, it can be concluded that CSA-17 bit RCA 31-bit multiplier is best, 

when it comes to area. RCA 17-bit and CSA 17-bit, CLA 31-bit are best multipliers with respect 

to speed.  For power, CSA 17-bit CLA31-bit gives the best post-layout power.  But RCA 17-bit 

gives best gate–level switching power. Booth multiplier with cs-17 bit RCA 31-bit is used for 

performing multiplication in  Discrete Wavelet Transform implementation due to its least area 

and better performance for timing and power analysis. 
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Verilog HDL is a hardware description language that can be used to model a digital system 

at many levels of abstraction ranging from the algorithmic-level to gate-level to the switch-level. 

Image compression being a complex procedure, algorithmic-level coding in verilog HDL is 

suitable. The verilog code for the image compression encoder is implemented using two parts 

namely, discrete wavelet transform and the encoding of the transform coefficients. An Image 

Compression Encoder with a two level discrete wavelet transform with encoding is realised here. 

Discrete Wavelet Transform 
The discrete wavelet transform is performed by row-wise convolution followed by column-

wise convolution. The image to be transformed is serially inputted, and saved as a two 

dimensional array of bit-vector. Once a row is completely obtained, the module corresponding to 

the row-wise convolution is activated using a signal. This signal will stay high till the row-wise 

convolution is completed. Once the row-wise convolution is finished, the control signal 

corresponding to the activation of column-wise convolution is made high.  After the completion 

of the column-wise convolution, four set of coefficients are obtained, approximation coefficients 

at the top left corner, vertical coefficients at the top right corner, horizontal coefficients at the 

bottom left corner and finally the diagonal coefficients at the bottom right corner. 

For the second level discrete wavelet transform, the approximation coefficients from above 

transform is again transformed with discrete wavelet in the fashion specified above. But the 

activation of row-wise convolution for second level discrete wavelet transform can be done when 

the column-wise convolution of first level reaches midway, for the reason that the approximation 

coefficients are generated at this point. 

During convolution, both row-wise and column-wise padding is required to avoid the wrap 

around error. The padding as specified earlier is done with, number of filter coefficients minus 

one elements, from the opposite edge of the image. The row-wise convolution is followed by a 

down sampling which will avoid alternate elements reducing the number of columns to half that 

of input, while the columns-wise convolution is followed by a down sampling reducing the 

number of rows to half of the input. Here the calculations corresponding to the deleted elements 

are unnecessary and is eliminated by customising the code. The convolution procedure involves 

a large number of multiplication and addition. A fixed point 16-bit  signed Booth multiplier used  
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Figure 24 Block Diagram 2-D DWT Algorithm 
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to find the product.  The algorithm followed for the Discrete Wavelet Transform is shown 

diagrammatically in Figure 24. 

Encoding 
The encoding technique implemented here is similar to embedded zero wavelet coefficient 

(EZW). After obtaining the wavelet transform coefficients, the encoding process is started. The 

encoding process takes in to consideration a tree like structure between the coefficients in 

consecutive levels of transforms as shown in the Figure 25.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The encoder will generate two streams of bits which will be saved in two registers namely, 

Flag Register and Data Register. The algorithm follows bitplane coding, starting with the 

bitplane corresponding to the MSB and moves down to LSB. In each bitplane the algorithm will 

search for a zero tree start from point 1 or points 2, 3, 4.  If a zero tree is encountered starting 

1 
2 

3 4 

5 

6 7 

Figure 25 Tree structure used Encoding 
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from point 1, a bit „1‟ is saved in the flag register corresponding to the point 1 position. In such a 

case a group of 16 bits is represented by a single bit. Another case is a zero tree starting from 

points 2, 3 or 4, i.e. the point 1 is having a non zero bit while all or some of the point 2, 3, 4 

forms a zero tree. In this case,  corresponding to the points 1 and non zero-tree points of 2, 3 & 4, 

flag registers will have „0‟ bit.  A „0‟ bit encountered in the flag register, implies data 

corresponding to the positions of that tree is stored in the data register. A zero tree at points 2, 3, 

4 will substitute five bits by a single bit. 

Output Waveform and Compression Ratio 
 

 

 

 

The output waveform shown in Figure 26 gives a clear picture of the order of operations 

performed with time. There are six different clocks. „clkin‟ is the input clock which synchronizes 

the serial input of the image. „clkrow_256‟ maintains a high level during row-wise convolution. 

Once the row-wise convolution is over, column-wise convolution begins as indicated by the high 

level of „clkcol_256‟. When the column-wise convolution reaches half way, the second level of 

DWT‟s row-wise convolution starts as is indicated by the signal „clkrow‟. The row-wise 

convolution of second level DWT is followed by column-wise convolution of second level 

DWT. The column-wise convolution of DWT for both the levels finishes at the same time. 

Having calculated all the transforms coefficients, the encoding process is initialised by making 

the „clk_encode‟ high. The compression ratio attained by the algorithm is 0.9895. 

 

Figure 26 Output waveform for 2-level DWT in Verilog HDL 
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Conclusions 
An image compression algorithm was simulated using Matlab to comprehend the process 

of image compression. Modifications on the padding style showed reduction in the error, because 

it offers a better reproduction of image at its edges. It also supports faithful reproduction of the 

image, keeping the size of the transform coefficient matrix equal to the image size.  

For the VLSI implementation of an image compression encoder, Verilog HDL was chosen. 

Understanding the importance of the multiplier in implementing a Discrete Wavelet 

Transform(DWT), fixed-point 16-bit signed Booth Multipliers were implemented in Verilog 

HDL for different architectures and a thorough analysis in terms of timing, power and area were 

carried out. Finally the Booth Multiplier architecture using 17-bit Carry Save Adder for adding 

partial products and a 31-bit Ripple Carry Adder for adding pseudo sum and carry vector was 

selected to perform the multiplication operation in DWT. Selection of this architecture was based 

on the least area and its better performance in timing and power analysis. The discrete wavelet 

transform was computed using a customised code to reduce the redundancy and to avoid the 

needless computation. The transform coefficients obtained after DWT is encoded by exploiting 

the presence of zero trees to obtain the compressed form of the image. The compressed image 

was stored using two bit streams namely, flag register and data register which complements each 

other to represent the image in a compressed form.  
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