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ABSTRACT 
 

Non-traditional machining has grown out of the need to machine exotic engineering metallic 

materials, composite materials and high tech ceramics having good mechanical properties and 

thermal characteristics as well as sufficient electrical conductivity. Electrochemical Machining 

developed in late 1950’s has been accepted worldwide as a standard process in manufacturing 

and is capable of machining geometrically complex or hard material components, that are precise 

and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, 

carbides, heat resistant steels etc. being widely used in die and mold making industries, 

aerospace, aeronautics and nuclear industries. The principle of anodic dissolution of metal theory 

is the most accepted mathematical model for evaluating material removal from electrodes during 

electrochemical process. If two suitable metal poles are placed in a conducting electrolyte and a 

direct current passed through them, the metal on the positive pole get depleted and its material is 

deposited on the negative pole. Keeping this in view, the present work has been undertaken to 

finding the material removal rate by electrochemical dissolution of an anodically polarized work 

piece with a U-shaped tubular copper electrode. In the experiment, AISI D2 steel is used as 

specimen. Experiments were carried out to study the influence of machining parameters such as 

feed rate, applied voltage, conductivity and flow rate on the over cuts in length, width and height 

of the specified cavity.   
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Chapter 1Chapter 1Chapter 1Chapter 1                                INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

 

1.1BACKGROUND: 

Electrochemical Machining (ECM) is a non-traditional machining (NTM) process belonging to 

electrochemical category. ECM is opposite of electrochemical or galvanic coating or deposition 

process. Thus ECM can be thought of a controlled anodic dissolution at atomic level of the work 

piece that is electrically conductive by a shaped tool due to flow of high current at relatively low 

potential difference through an electrolyte which is quite often water based neutral salt solution. 

The new concept of manufacturing uses non-conventional energy sources like sound, light, 

mechanical, chemical, electrical, electrons and ions. With the industrial and technological 

growth, development of harder and difficult to machine materials, which find wide application in 

aerospace, nuclear engineering and other industries owing to their high strength to weight ratio, 

hardness and heat resistance qualities has been witnessed. New developments in the field of 

material science have led to new engineering metallic materials, composite materials and high 

tech ceramics having good mechanical properties and thermal characteristics as well as sufficient 

electrical conductivity so that they can readily be machined by spark erosion. Non-traditional 

machining has grown out of the need to machine these exotic materials. The machining 

processes are non-traditional in the sense that they do not employ traditional tools for metal 

removal and instead they directly use other forms of energy. The problems of high complexity in 

shape, size and higher demand for product accuracy and surface finish can be solved through 

non-traditional methods. Currently, non-traditional processes possess virtually unlimited 
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capabilities except for volumetric material removal rates, for which great advances have been 

made in the past few years to increase the material removal rates. As removal rate increases, the 

cost effectiveness of operations also increase, stimulating ever greater uses of non traditional 

processes. 

Electrochemical Machining (ECM) is the controlled removal of metal by anodic dissolution in an 

electrolytic cell in which the work piece is the anode and the tool is cathode. The electrolyte is 

pumped through the gap between the tool and the work piece, while direct current is passed 

through the cell, to dissolve metal from the work piece. ECM is widely used in machining of 

jobs involving intricate shapes and to machine very hard or tough materials those are difficult or 

impossible to machine by conventional machining. It is now routinely used for the machining of 

aerospace components, critical deburring, Fuel injection system components, ordnance 

components etc. ECM is also most suitable for manufacturing various types of dies and moulds.  

For the first time ECM is developed for educational institutions, after years of experience and 

expertise demonstrating various aspects of electrochemical machining technology. The set up has 

robust construction, reliable and sophisticated technology, user friendly operation and is easy for 

maintenance. Extra care is taken while designing for operator safety by providing various 

protections. 

The job to be machined is fixed in the vice, in the machining chamber, that is sealed for any 

leakage of electrolyte and is corrosion resistant, having window to see machining operation. Tool 

is brought near the job with the help of press buttons provided on the control panel and table 

lifting arrangement, maintaining particular gap. The tool progress is observed vertically by servo 

motor and is governed by micro controller based programmable drive. Then the process 

parameters are set like tool feed rate, voltage, timer, auto/manual mode, etc.  
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The process is started in the presence of an electrolyte flow that is circulated with the help of 

special pump filling the gap between anode (job) and cathode (tool)shown in fig 1.1. Electrolyte 

flow is adjusted by flow control valve. The machining is achieved by sinking of tool forming its 

replica. During the operation sophisticated control panel takes care of any damage to the 

machine by over load and short circuit protections. After desired time interval hooter gives an 

indication of completion of the time / process. The small machining area with given power 

supply be machined within 30 mins to one hour. 

Prior procedures for cathode (tool) design in electrochemical machining have been plagued by 

limited applicability, inaccuracy, and no convergence. A least-squares minimization of the 

deviation of the simulated anode (work piece) shape from that desired is performed, yielding a 

set of parameters in a predefined representation which uniquely define an optimal cathode shape. 

Cathode shapes are designed to produce a variety of anode shapes; even anode profiles with 

nearly discontinuous slope have been obtained. 

        Fig1.1 ECM reaction 

Material removal rate in electrochemical machining is analyzed in context of over voltage and 

conductivity of the electrolyte solution. Electrolyte has three main functions in ECM: It carries 

the current between the tool and work piece; it removes the products of the reaction from the 

cutting region; and it removes heat produced in operation. Normal electrolyte used for ECM for 
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all common metals & alloys is solution of Sodium Chloride (NaCl) in water. When supply is 

switched on, the negative ions Cl migrate towards the anode. They react with the work piece and 

form a salt which dissolves in electrolyte. Thus if a job is steel (Fe) and electrolyte is common 

salt (NaCl) the following reacting takes place at the anode.  

 It is observed that over voltage is very sensitive to equilibrium gap and tool feed rate. Material 

removal rate decreases due to increase in over voltage and decrease in current efficiency, which 

is directly related to the conductivity of the electrolyte solution. It is observed that the corrected 

current density is always lower than the actual current. The calculated material removal rate 

efficiency is found to be 57%. 

 

1.2 PRINCIPLE OF ECM: 

Electrochemical machining is developed on the principle of Faradays and Ohm. In this process, 

an electrolyte cell is formed by the anode (work piece) and the cathode (tool) in the midst of a 

following electrolyte. The metal is removed by the controlled dissolution of the anode according 

to the well known Faradays law of electrolysis. when the electrode  are connected to about 20 v 

electric supply source, flow of current in the electrolyte is established due to positively charged 

ion being attracted towards cathode and vice-versa. Due to electrolysis process at cathode 

hydroxyl ion are released which combine with the metal ions of anode to form insoluble metal 

hydroxide. Thus the metal is removed in the form of sludge and precipitated in electrolytic cell. 

This process continues till the tool has produced its shape in the work piece. 

 

1.3 STEPS BY WHICH ECM PROCEEDS: 
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During ECM, there will be reactions occurring at the electrodes i.e. at the anode or work piece 

and at the cathode or the tool along with within the electrolyte.  Let us take an example of 

machining of low carbon steel which is primarily a ferrous alloy mainly containing iron. For 

electrochemical machining of steel, generally a neutral salt solution of sodium chloride (NaCl) is 

taken as the electrolyte. The electrolyte and water undergoes ionic dissociation as shown below 

as potential difference is applied. 

NaCl ↔ Na
+ 

+ Cl
- 

 

H
2
O ↔ H

 + 

+ (OH)
-

 

As the potential difference is applied between the work piece (anode) and the tool (cathode), the 

positive ions move towards the tool and negative ions move towards the work piece. Thus the 

hydrogen ions will take away electrons from the cathode (tool) and from hydrogen gas as:  

2H
+ 

+ 2e
- 

= H
2
↑ at cathode  

Similarly, the iron atoms will come out of the anode (work piece) as:  

Fe = Fe
+ + 

+ 2e
-

 

Within the electrolyte iron ions would combine with chloride ions to form iron chloride and 

similarly sodium ions would combine with hydroxyl ions to form sodium hydroxide.  

Na
+ 

+ OH
- 

= NaOH  

In practice FeCl
2 

and Fe (OH)
2 

would form and get precipitated in the form of sludge. In this 

manner it can be noted that the work piece gets gradually machined and gets precipitated as the 

sludge. Moreover there is not coating on the tool, only hydrogen gas evolves at the tool or 

cathode. Fig. 1.2 depicts the electro-chemical reactions schematically. As the material removal 
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takes place due to atomic level dissociation, the machined surface is of excellent surface finish 

and stress free.  

 

Fig. 1.2 Schematic representation of electro-chemical reactions 

 

 

REACTION AT ANODE:                              REACTION AT CATHOD: 

Fe ↔ Fe
2+

 + 2e                                                                   Na
+
 + e

-
 ↔ Na 

Fe
2+

 + 2Cl ↔ FeCl2                                                                                          Na + H2O ↔ Na (OH) + H
+
 

Fe
2+

 + 2OH↔ Fe (OH)2                                                                                2H
+
 + 2e

-
 ↔ H2↑ 

FeCl2 + 2 OH↔ Fe(OH)2 + 2 Cl
- 

2Cl
-
↔ Cl2 (g) + 2e

- 

2FeCl2 + Cl2 ↔2FeCl3 

H
+
 + Cl

- 
↔ HCl 

2Fe (OH)2 + H2O + O2 ↔2Fe(OH)3↓ 

Fe(OH)3 + 3HCl ↔FeCl3 + 3H2O 

FeCl3 + 3 NaOH ↔ Fe(OH)3↓+ 3NaCl 
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It shows that only hydrogen gas will evolve at cathode and there will be no deposition. 

 

1.4 CLASSIFICATION OF ECM PROCESS 

1.4.1 ELECTROCHEMICAL GRINDING PROCESS: 

          In the electrochemical grinding process metal is removed by electrochemical 

decomposition and abrasion of the metal. In this process electrode wheel revolved in the close 

proximity to the work piece. Wheel is made of fine diamond particles in metal matrix. The 

particle is slightly projecting out from the surface and come in contact with the work surface 

with very little pressure. Work piece is connected to the positive terminal and the wheel to the 

negative terminal. Thus current flow between the work and wheel. Wheel and its spindle are 

insulated from the rest of the machine. During the grinding process, a continuous stream of non 

corrosive salt solution is passed through work and tool and it acts both as electrolyte and coolant. 

This process is best suited for very precession  grinding of hard metal like tungsten carbide tool 

tips as the grinding pressure is very less due to which the defect like grinding cracks, tempering 

of works, transformation of layer and dimension control difficulties are eliminated. Accuracy of 

the order of 0.01mm can be achieved by proper selection of wheel grit size and abrasive 

particles. 

1.4.2ELECTROCHEMICAL TURNING PROCESS: 

In this process the machine has motion of lathe and metal removal tool is a cathode which is 

separated from the rotating work surface (anode) by a film of electrolyte. A suitably shaped tool 

can produce a desired form on a hard metal in a very short time. 

1.4.3 ELECTROCHEMICAL MILLING PROCESS: 

This is a form of etching process. In this process job is first cleaned properly. And then some sort 

of preventing coating is applied on the particular portion which is not to be machined. The 
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preventive coating is of vinyl plastic. This is applied with the help of a template. Then the job is 

exposed to the etching material. Times depend upon the metal to be removed and the strength of 

chemical reagent. The metal is removed by the chemical conversion of the metal in to metallic 

salt. Material removal rate is mainly dependent on the selected etchant. If the metal is removed at 

fast rate with certain etchant then under cutting increases, surface finish decreases and more 

heating takes place. The etch rate is therefore limited to 0.02 to 0.04mm per minute. This process 

can give complicated shaped pattern on work material. But much depend upon skill of operator. 

It is mostly used in aircraft industry. However depth of etching is very less otherwise long time 

will be required and at the same time surface finish will decreases. It is mainly used for 

embossing, coining, engraving operation. The tooling set up cost is low. Machining is done 

without production of burr. And even thin sheet of metal can be processed with ease without 

distortion. Material which are brittle in nature can be processed with ease. This process is best 

suited for production of printed circuit. Where the basic connection s of the circuit consists of 

thin metal strip attached to an insulating phase. These circuits are produced from insulating 

board faced with a thin layer of copper. The copper is coated with photosensitive resist and an 

imagine of the required circuit is printed photographically on the surface. Etching removed all 

the unwanted copper. The etching vapor is very corrosive in nature and therefore, the process 

equipment must be kept safe from the etching and other operating equipment. 

1.4.4 ELECTROCHEMICAL WIRE CUTTING: 

Electrochemical wire cutting process for removal of metal using a wire tool as cathode and work 

piece as anode. The work piece can be shaped by relative movement between it and the wire. 

The process is similar to wire discharge machining. This process is found to be best suited for 

cutting in one or two direction and fine drilling .rectangular wire appears to be better choice over 

circular section wire. This process has a limited feed rate compared with conventional ECM. The 



 

9 

 

feed rate is depending on the width of wire and the diameter of work piece. This process is best 

suited super finishing with higher surface finish up to 0.15µm. This process is very suitable with 

small work piece dimension. Surface finish is better for flat surface than cylindrical. The power 

consumption is low and tooling system is cheap. The material removal rate can be controlled 

precisely. The surface finish is affected by parameters like feed rate, work piece relation speed 

and electrolyte flow rate. 

 

1.5 ECM MACHINE STRUCTUREAND PARAMETERS: 

 Electrochemical Machining (ECM) is the controlled removal of metal by anodic dissolution in 

an electrolytic cell in which the work piece is the anode and the tool is cathode. The electrolyte is 

pumped through the gap between the tool and the work piece, while direct current is passed 

through the cell, to dissolve metal from the work piece.  ECM is widely used in machining of 

jobs involving intricate shapes and to machine very hard or tough materials those are difficult or 

impossible to machine by conventional machining. It is now routinely used for the machining of 

aerospace components, critical deburring, Fuel injection system components, ordnance 

components etc. ECM is also most suitable for manufacturing various types of dies and moulds.  

For the first time ECM is developed for educational institutions, after years of experience and 

expertise demonstrating various aspects of electrochemical machining technology. The set up has 

robust construction, reliable and sophisticated technology, user friendly operation and is easy for 

maintenance. Extra care is taken while designing for operator safety by providing various 

protections. 

1.5.1 SERVO SYSTEM: 
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The servo system controls the tool motion relative to the work piece to follow the desired path. It 

also controls the gap width within such a range that the discharge process can continue. If tool 

electrode moves too fast and touches the work piece, short circuit occurs. Short circuit 

contributes little to material removal because the voltage drop between electrodes is small and 

the current is limited by the generator. If tool electrode moves too slowly, the gap becomes too 

wide and electrical discharge never occurs. Another function of servo system is to retract the tool 

electrode when deterioration of gap condition is detected. The width cannot be measured during 

machining; other measurable variables are required for servo control. 

1.5.2 TOOL FEED RATE 

In ECM process gap about 0.01 to 0.07 mm is maintained between tool and work piece. For 

smaller gap, the electrical resistance between the tool and work is least and the current is 

maximum and accordingly maximum metal is removed. The tool is feed in to the work 

depending upon the how fast the metal is to be removed. The movement of the tool slide is 

controlled by a hydraulic cylinder giving some range of feed rate. 

 

1.5.3 ELECTROLYTE 

The electrolyte is essential for the electrolytic process to work. In addition to removing the heat 

generated in the cutting zone to the flow of high current, it also carries the high current and 

removes the product of machining. The electrolyte is pumped at about 14kg/cm
2
 and at speed of 

at lest 30 m/s in order to constantly replenish the solution, which must never be allowed to reach 

boiling point as it would disturb the current flow. The electrolyte should be of high electrical 

conductivity. And be chemically active enough to cause efficient metal removal, and not very 

corrosive. The electrolyte must have a good chemical stability. 
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1.5.4 TEMPERATURE CONTROL 

Since the conductivity of electrolyte varies with range in temperature, it must be held reasonably 

constant; otherwise the equilibrium of the machining gap will change. It may be noted that low 

electrolyte temperature result in low metal removal rate and high temperature leads to 

vaporization of the electrolyte .It is maintained around (25-60) 
ο
C. 

1.5.5 TOOL DESIGN 

As no tool wear takes place, any good conductor is satisfactory as a tool material, but it must be 

designed strong enough to withstand the hydrostatic force, caused by electrolyte being forced at 

high speed through the gap between tool and work. The tool is made hollow for drilling holes so 

that electrolyte can pass along the bore in tool. Cavitations, stagnation and vortex formation in 

electrolyte flow must be avoided because these result a poor surface finish. It should be given 

such a shape that the desired shape of job is achieved for the given machining condition. 

1.5.6MATERIAL REMOVAL RATE: 

It is a function of feed rate which dictates the current passed between the work and the tool. As 

the tool advances towards work, gap decreases and current increases which increases more metal 

at a rate corresponding to tool advance. A stable spacing between tool and work is thus 

established .It may be noted that high feed rate not only is productive but also produces best 

quality of surface finish. However feed rate is limited by removal of hydrogen gas and products 

of machining. Metal removal rate is lower with low voltage, low electrolyte concentration and 

low temperature. 

1.5.7 SURFACE FINISH: 

ECM can produce surface finish order of 0.4 µm by rotation of tool or work. Any defect on tool 

face produce replica on work piece. Tool surface should therefore be polished. The finish is 



 

12 

 

better in harder material. For optimum surface finish, careful electrode design, maximum feed 

rate, and surface improving additives in electrolyte are selected. Low voltage decreases the 

equilibrium machining gap and result in better surface finish and tolerance control. Low 

electrolyte concentration decreases the machining gap and gives the better surface finish. Low 

electrolytic temperature also promotes better surface finish. 

1.6 CHARACTERSTICS OF ELECTROCHEMICAL MACHINING        

PROCESS: 

Material removal mechanism controlled removal of metal by anodic dissolution in an electrolytic 

medium. It consists of advantage of ECM, Disadvantage of ECM and application of ECM. 

Table-1.1 ECM specification 

Tool Copper, brass or steel 

Power supply Constant voltage 5-30 DC volt  

Current 50-40,000 amp 

Material removal rate 1600 mm3/min 

Specific power consumption 7w/mm3/min 

Electrolytic solution Neutral salt, brine solution, 

Accuracy and surface finish 0.02 mm, 0.4µm 

Application Machining hard material 

Limitation High specific energy consumption 

Mechanical properties Stress free machining, reduce tool wear 

Surface properties No thermal damage 

 

1.6.1 ADVANTAGE OF ECM: 
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Electrochemical machining is a promising alternative if conventional mechanical manufacturing 

processes reach technical as well as economical limitations. Nowadays, ECM is established for 

burr removing, shape manufacturing and drilling of jet engine parts. Considering these 

advantages ECM is a suitable technique for machining mechanical hard to cut materials such as 

carbide metals or cermets. 

 

[1] No mechanical stress impact into the processed work piece. 

[2] No thermal impact of the work piece. 

[3] The removal rate is not determined by the hardness and toughness of the material. 

[4] No process related tool wear. 

[5] Great versatility for machining of geometrical complex shapes. 

[6] No burr formation.  

1.6.2DISADVANTEGE OF ECM: 

 
[1] High specific energy consumption. 

[2] Not suited for non-conducting pieces. 

[3] High initial and working cost. 

 

1.6.3 APPLICATION OF ECM: 

ECM technique removes material by atomic level dissolution of the same by electrochemical 

action. Thus the material removal rate or machining is not dependent on the mechanical or 

physical properties of the work material. It only depends on the atomic weight and valency of the 

work material and the condition that it should be electrically conductive. Thus ECM can machine 

any electrically conductive work material irrespective of their hardness, strength or even thermal 
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properties. Moreover as ECM leads to atomic level dissolution, the surface finish is excellent 

with almost stress free machined surface and without any thermal damage.  

 

ECM is used for: 

• Die sinking (Fig 1.3) 

 

• Profiling and contouring (Fig 1.4) 

 

• Trepanning (Fig 1.6) 

 

• Grinding  

 

• Drilling (Fig 1.5) 

 

• Micro-machining  

 

 

Fig 1.3   DIE SINKING 
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Fig1.4 3D profiling 

 

Fig1.5 Drilling 
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Fig1.6 Drilling and Trepanning  
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CHAPTER 2CHAPTER 2CHAPTER 2CHAPTER 2                    LITERATURE REVIEW:LITERATURE REVIEW:LITERATURE REVIEW:LITERATURE REVIEW:    

After going through all the selected paper related to MRR, we are broadly classified all the paper 

in to three different category, i.e. paper related to material removal rate and effect of parameters 

on MRR,  some paper related to tool design and rest of the paper related to micro ECM. 

 

2.1 Overview on MRR and effect of parameters on MRR: 

 

B. Bhattacharyya et.al [1] has reported that the electrochemical micro-machining (EMM) 

appears to be promising as a future micro-machining technique since in many areas of 

applications, it offers several advantages. A suitable micro-tool vibration system has been 

developed, which consists of tool-holding unit, micro-tool vibrating unit, etc. The developed 

system was used successfully to control material removal rate (MRR) and machining accuracy to 

meet the micro-machining requirements. Micro-holes have been produced on thin copper work 

piece by EMM with stainless-steel micro-tool. Experiments have been carried out to investigate 

the most effective values of process parameters such as micro-tool vibration frequency, 

amplitude and electrolyte concentration for producing micro-hole with high accuracy and 

appreciable amount of MRR.  

Jo ao Cirilo da Silva Neto et.al [2] shows a study of the intervening variables in 

electrochemical machining (ECM). The material removal rate (MRR), roughness and over-cut 

were studied in this paper. Four parameters were changed during the experiments: feed rate, 

electrolyte, flow rate of the electrolyte and voltage. Two electrolytic solutions were used: sodium 
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chloride (NaCl) and sodium nitrate (NaNO3). The results show that feed rate was the main 

parameter affecting the material removal rate. 

S K Mukherjee et.al [3] discusses about role of electrolyte [NaCl] in current-carrying processes 

in electrochemical machining of iron work piece has been analyses in light of Onsager equation 

of strong electrolyte. Over-voltage-calculated with respect to equilibrium gap and penetration 

rate, shows that only a narrow range of equilibrium gap and penetration rate are admissible. 

K. P. Rajurkar et.al [4] discussed about the main advantages of the electrochemical machining 

(ECM) process, such as high material removal rates and smooth, damage-free machined surface, 

are often offset by the poor dimensional control . This paper presents an ECM control model 

based on the basic ECM dynamics that accounts for the dynamic nature of the ECM process. The 

state space methodology is applied to transform it into the control model applicable to an ECM 

control system based on a digital computer. The simulations have been made for the model 

verification and controller design. 

S.K. Mukherjee et.al [5] defined that Material removal rate (MRR) of aluminum work piece has 

been obtained by electrochemical machining using NaCl electrolyte at different current densities 

and compared with the theoretical values. It is also concluded that resistance of the electrolyte 

solution decrease sharply with increasing current densities, and simultaneously the over-voltage 

of the system initially increases and then attains a saturation value with increasing current 

densities. 

V.K. Jain et.al [6] has reported that electrochemical spark machining (ECSM) process has been 

successfully applied for cutting of quartz using a controlled feed and a wedge edged tool. Only 

cathode works as a tool, i.e. ECSM with reverse polarity (ECSMWRP) as well as ECSM with 

direct polarity (ECSWDP) have been used to machine quartz plates. In ECSMWRP, deep crater 
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on the anode (as a tool) and work piece interface is formed because of chemical reaction. The 

cutting is possible even if we make auxiliary electrode of small size.  

K.L. Bhondwe et.al [7] in this paper attempts to develop a thermal model for the calculation of 

material removal rate (MRR) during ECSM. First, temperature distribution within zone of 

influence of single spark is obtained with the application of finite element method (FEM). The 

nodal temperature plays an important role estimating MRR. The developed FEM based thermal 

model is found to be in the range of accuracy with the experimental results. The increase in MRR 

is found to increase with increase in electrolyte concentration.  

S. Kumara et.al [8] discussed about the Material removal rate (MRR) of aluminum work piece 

has been obtained by electrochemical machining using NaCl electrolyte at different current 

densities.  Also resistance of the electrolyte solution decrease sharply with increasing current 

densities. The over-voltage of the system initially increases and then attains a saturation value 

with increasing current densities.  

V.K. Jain et.al [9] has shown that the electrochemical spark machining (ECSM) process has 

been useful for machining of low machine ability high-strength electrically non-conducting 

materials. In the present work, the electrochemical discharge is modeled as a phenomenon 

similar to that which occurs in arc discharge valves. The spark energy and the approximate order 

of hydrogen gas bubble diameter are computed by the proposed valve theory. Material removal 

rate is evaluated by modeling the problem as a 3-D unsteady state heat conduction problem. 

R V Rao et.al [10] discussed about the values of important process parameters of 

electrochemical machining processes such as the tool feed rate, electrolyte flow velocity, and 

applied voltage play a significant role in optimizing the measures of process performance. These 

include dimensional accuracy, tool life, material removal rate, and machining cost. In this paper, 
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a particle optimization algorithm is presented to find the optimal combination of process 

parameters for an electrochemical machining process. The objectives considered are dimensional 

accuracy, tool life, and the material removal rate.  

B. Bhattacharyya et.al [11] has highlighted that features of the development of mathematical 

model for correlating the interactive and higher-order influences of various machining 

parameters. I.e. the metal removal rate and the overcut phenomena, through response surface 

methodology (RSM), utilizing relevant experimental data as obtained through experimentation. 

This paper also highlights mathematical models for analyzing the effects of various process 

parameters on the machining rate and overcut phenomena. These parameters can be used in order 

to achieve maximization of the metal removal rate and the minimum overcut effects for optimal 

accuracy of shape features. 

2.2 Overview on tool design:  

Yuming Zhou et.al [12] discussed about the Prior procedures for cathode (tool) design in 

electrochemical machining. In this paper actually develop and test a new approach to this 

problem which overcomes these difficulties by employing a finite element method within an 

optimization formulation. A least-squares minimization of the deviation of the simulated anode 

(work piece) shape from that desired is performed, yielding a set of parameters in a predefined 

representation which uniquely define an optimal cathode shape. 

Jerzy Kozak et.al [13] discussed about the theoretical and experimental investigations of the 

relationship between the characteristic shape dimensions imported upon the anode-work piece 

surface by the micro-features of the cathode-tool electrode under given machining conditions are 

presented. This research included the study of electrochemical copying of slots, mini-holes, 

grooves and insulating groove features. The limiting conditions of micro-ECM are considered 
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from the point of view of copying and micro-shaping using non-profiled tool electrodes. For 

improving micro-machining capabilities of ECM processes, the application of ultra-short pulse 

current and ultra-small gap size is recommended. 

K.P. Rajurkar et.al [14] had shown that ECM process now increasingly being applied in other 

industries where parts with difficult-to-cut materials and complex geometry are required. In this 

paper the latest advances are discussed, and the principal issues in ECM development and related 

research are raised. Developments in tool design, pulse current, micro-shaping, finishing, 

numerically controlled, environmental concerns, hybrid processes, and recent industrial 

applications, are covered. 

J.A. Westley et.al [15] discussed about the study electrolyte flow. This paper tries to identify the 

factors, such as insulation requirements and machined face considerations that could relate to 

other ECM components. These observations would then be made use of when producing 

subsequent ECM electrodes. In this paper work has been carried out by adapting new electrodes 

for a casting gate removal process. 

Chunhua Sun et.al [16] highlighted about the accurate prediction of tool shape for 

electrochemical machining (ECM). This paper proposes an approach using finite element method 

(FEM) to design tool in ECM. This method is capable of designing three-dimensional freeform 

surface tool from the scanned data of known work piece. It possesses high computing efficiency, 

good accuracy and flexible boundary treatment without the need for iterative procedure. 

 

2.3 Overview on Micro ECM: 

H. Hocheng et.al [17] reported about the process to erode a hole of hundreds of micrometers on 

the metal surface. The paper also discusses the influence of experimental variables including 

time of electrolysis, voltage, molar concentration of electrolyte and electrode gap upon the 
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amount of material removal and diameter of machined hole. The results of experiment show the 

material removal increases with increasing electrical voltage, molar concentration of electrolyte.  

Anjali V. Kulkarni et.al [18] discussed about the current trends and techniques used for micro 

fabrication of parts. This paper tries to establish a viable, cost effective and fast micro fabrication 

process. Focus is on the use of Electrochemical spark (ECS) for layered manufacturing in 

micron. 

S. K. Mukherjee et.al [19] reported about the Material removal rate in electrochemical 

machining by using over voltage and conductivity of the electrolyte solution. It is observed that 

over voltage plays an important role equilibrium gap and tool feed rate. Material removal rate 

decreases due to increase in over voltage and decrease in current efficiency, which is directly 

related to the conductivity of the electrolyte solution.  

A. K. M. De Silva et.al [20] discussed about the Electrochemical machining (ECM), which is 

used to achieve accuracy better than 5 µm and surface finish 0.03ms µRa by using pulsed power 

of relatively short durations (1 - 10 µs) and narrow inter-electrode gaps (10 – 50 µm). The 

narrow gaps make the process much more complex than normal ECM. An empirical model is 

developed to predict and optimize the process parameters such as dissolution efficiency, current 

density, electrolyte concentration and pulse duration, in narrow gaps. 

K.L. Bhondwe et.al [21] written about the Electro-chemical spark machining (ECSM) and 

electro discharge machining (EDM). It shows like ECM and EDM, ECSM is capable of 

machining electrically non-conducting materials. This paper attempts to develop a thermal model 

for the calculation of material removal rate (MRR) by using ECS. The developed FEM based 

thermal model is found to be suitable for this experimental result. The increase in MRR is found 
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to increase with increase in electrolyte concentration due to ECSM of soda lime glass work piece 

material. 

Mohan Sen et.al  [22] discussed about the Electrochemical machining processes provide for 

drilling macro- and micro-holes with exceptionally smooth surface and reasonably acceptable 

taper in numerous industrial applications particularly in aerospace, electronic, computer and 

micro-mechanics industries. Also this paper highlights about the hole-drilling processes like jet-

electrochemical drilling have found acceptance in producing large number of quality holes in 

difficult-to-machine materials. This paper highlights the recent developments, new trends and the 

effect of key factors influencing the quality of the holes produced by these processes. 

B. H. Kim et.al [23] discussed about the Micro electrochemical machining (ECM) using ultra 

short pulses. 0.1 M sulfuric acid was used as electrolyte and 3D micro structures were machined 

on stainless steel. In this paper it shows how to prevent taper, by using a disk-type electrode. To 

improve productivity, multiple electrodes were applied and multiple structures were machined 

simultaneously. Since the wear of tool electrode is negligible in ECM 

Jerzy Kozak et.al [24] has reported that this research included the study of electrochemical 

copying of slots, mini-holes, grooves and insulating groove features. The limiting conditions of 

micro-ECM are considered from the point of view of copying and micro-shaping using non-

profiled tool electrodes. For improving micro-machining capabilities of ECM processes, the 

application of ultra-short pulse current and ultra-small gap size is recommended which is the 

main point of discussion in this paper. 

M.S. Hewidy et.al [25] discussed about the practical application of electrochemical machining. 

By using low frequency vibration to the tool electrode in electrochemical machining we can 

improve accuracy and quality of the machined surface. This paper presents an analytical 



 

24 

 

approach to establish mathematical model to asses the mechanism of metal removal for this 

novel and hybrid technique. The effect of input parameters and machining conditions on the 

effectiveness of tool vibration during ECM has been taken in to account. 

M. Kock et.al [26] has reported about the application of ultra short voltage pulses 

electrochemical reactions which can be used for nanometer accuracy, and allows for high 

precision machining of electrochemical active materials. Depending on the average potentials of 

tool and work piece, overall corrosion of the work piece and the location of the counter reaction 

of work piece dissolution can be controlled.  

Se Hyun Ahna et.al [27] discussed about the rare application of Electro-chemical machining in 

micro machining because the electric field is not localized. In this work, ultra short pulses with 

tens of nanosecond duration are used to localize dissolution area. The effects of voltage, pulse 

duration, and pulse frequency on the localization distance were studied. High quality micro hole 

with 8 µm diameter was drilled on 304 stainless steel foil with 20 µm thickness used as work 

piece. 

 

2.4 OBJECTIVE OF PRESENT WORK: 

The objective of present work is an attempt to finding out the feasibility of making blind cavity 

using U-shaped tubular copper electrode in electrochemical machining. The work piece material 

is AISI D2 steel and the machining parameters selected for study are feed rate, diameter of 

electrode, flow rate and electrolyte conductivity, with Taguchi design approach.   In my work, 

the voltage across the work piece-tool is kept constant.  
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CHAPTER 3 CHAPTER 3 CHAPTER 3 CHAPTER 3                     EXPERIMENTAL WORKEXPERIMENTAL WORKEXPERIMENTAL WORKEXPERIMENTAL WORK    

INTRODUCTION: 

In this chapter we are going to discuss about the experimental work which is consisting about 

experimental set up, selection of work piece of material, design of electrode, making of 

electrolytic solution and formation of factor level using Taguchi design. By taking all this 

information in account we will calculate the material removal rate. 

3.1 EXPERIMENTAL SET UP: 

For this experiment the whole work has been carried out by Electrochemical Machining set up 

from Metatech-Industry, Pune which is having Supply of - 415 v +/- 10%, 3 phase AC, 50 HZ. 

And consist of three major sub systems which are being discussed in this chapter. 

The set up consists of three major sub systems. 

1. Machining Cell 

2. Control Panel 

3. Electrolyte Circulation 

Machining Cell  

This electro-mechanical assembly is a sturdy structure, associated with precision 

machined components, servo motorized vertical up / down movement of tool, an electrolyte 

dispensing arrangement, illuminated machining chamber with see through window, job fixing 

vice, job table lifting mechanism and sturdy stand. All the exposed components, parts have 

undergone proper material selection and coating / plating for corrosion protection. 
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Technical Data 

• Tool area - 30 mm
2
. 

• Cross head stroke - 150 mm. 

• Job holder - 100 mm opening X 50 mm depth X 100 mm width. 

• Tool feed motor - DC Servo type. 

 

 

Fig 3.1 Schamatic diagram of ECM  
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Fig 3.2 ECM set up 

 

Control Panel  

The power supply is a perfect integration of, high current electrical, power electronics and 

precision programmable microcontroller based technologies. Since the machine operates at very 

low voltage, there are no chances of any electrical shocks during operation. Which shown in fig 

3.3. 
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Technical Data: 

• Electrical Out Put Rating - 0-300 Amps. DC at any voltage from 0 - 20 V. 

• Efficiency - Better than 80% at partial & full load condition. 

• Power Factor - Better than 85. 

• Protections - Over load, Short circuit, single phasing. 

• Operation Modes - Manual / Automatic. 

• Timer - 0 - 99.9 min. 

• Tool Feed - 0.2 to 2 mm / min. 

• Z Axis Control - Forward, reverse, auto forward / reverse, through micro controller. 

• Supply - 415 v +/- 10%, 3 phase AC, 50 HZ 

 

Fig 3.3 control panel 
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Electrolyte Circulation system:  

The electrolyte is pumped from a tank, lined by corrosion resistant coating with the help of 

corrosion resistant pump & is fed to the job. Spent electrolyte will return to the tank. The 

hydroxide sludge arising will settle at the bottom of the tank & can be easily drained out. 

Electrolyte supply shall be governed by flow control valve. Extra electrolyte flow is by- 

passed to the tank. Reservoir provides separate settling and siphoning compartments. All fittings 

are of corrosion resistant material or of S.S., as necessary. 

 

Fig 3.4 electrolyte chamber 
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Fig 3.5 Sample ECM tools 

3.2 MAKING OF BRINE SOLUTION OR ELECTROLYTE: 

In the ECM process the making of brine solution plays an important role in material removal 

rate. Brine solution is prepared by adding common salt with water by maintaining the 

conductivity of the water. So we have to take salt solution and with the help of conductivity 

meter instrument we have to calculate the conductivity of that solution. And we have to maintain 

it through out the end of the experiment in order to maintain the material removal rate correctly. 

For this experiment I have taken 37.5 gm of salt and 75 gm of salt sample in 1000 mL of water to 

measure the conductivity of the solution in room temperature. And the conductivity was found to 

be 63.28 mS/cm and 110mS/cm. After the measurement of conductivity the whole experiment 

was carried out. 
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3.3 SPECFICATION OF WORKPIECE MATERIAL: 

Work piece material: AISI D2 Tool Steel 

Electrochemical machining (ECM) employs anodic dissolution to shape metals and was 

developed as a method for machining high-strength, heat-resistant alloys which were extremely 

difficult to cut by any other established methods. The ECM process connects the work piece 

(anode) to the tool (cathode) via an electrolytic cell, through which an electrolyte is pumped 

when a potential difference is applied, current flows as the result of electrochemical reactions 

taking place at the surfaces of both electrodes. The reaction at the anode surface removes 

material by the oxidation of metal atoms, while the cathode surface is unaffected by the 

hydrogen reduction reaction typically occurring there. 

For my experiment we have chosen AISI D2 steel as work piece. Work piece is having 

dimension of 100 mm in diameter and 60 mm in thickness. I have taken 4 pieces of AISI D2 

material and carried out the experiment .In each work piece two cavities are done keeping the 

length of 35mm, width of 45mm, and height of 25mm in dimension. And the corresponding 

material removal rate is calculated by taking initial and final weight of work piece before and 

after the experiment. 

Table 3.1 Description of work piece material 

Category  Steel 

Class  Tool steel 

Type  High-carbon, high-chromium cold work steel 

Designations  Germany: DIN 1.2379  

Italy: UNI KU  

United Kingdom: B.S. BD 2  

United States: ASTM A681 , FED QQ-T-570 , SAE J437 , SAE J438 , 

UNS T30402  
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Table 3.2 Mechanical and Thermal Properties  

Parameter value 

Density (×1000 kg/m
3
) at 25 ° C 7.7 

Poisson's Ratio 0.27-0.30 

Elastic Modulus (GPa) 190-210  

  

Thermal Expansion (10
-6

/ºC) at 20-100 ° C 10.4  

 

Table3.3 Material composition   

Element  Weight %  

C  1.40-1.60  

Mn  0.60  

Si  0.60  

Cr  11.00-13.00  

Ni  0.30  

Mo  0.70-1.20  

V  1.10  

Co  1.00  

Cu  0.25  

P  0.03  

S  0.03  

 

 

3.4 METHODOLOGY OF MACHINING: 

STEP 1: 

After setting all the parameters in the control panel and setting work piece in the chamber cutting 

was started by using U-shaped electrode. In this step work piece kept in horizontal position, and 

by using a vertical U-shaped electrode cutting started from the centre position. We should be 

very much careful such that tip of the electrode should not touch the surface of the electrode. The 
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U-shaped electrode should penetrate up to the length of 25mm in the work piece. Then we have 

to stop the process, and we have to go for step 2. Fig. 3.6 describes the step 1. 

STEP 2: 

Again all the defined parameters are to be set in the control panel. Now the position of the work 

piece is being changed from horizontal to vertical position. In the same manner electrode also 

changed. In this step electrode cut the work piece in vertical manner, i.e. electrode comes from 

top position to bottom of the work piece. Here electrodes have to cut a length of 35 mm distance 

in the work piece. During the whole process the time of cutting of the work piece at certain feed 

rate is being noted down. And we have to go for step 3. Illustration of step 2 is given in Fig.3.7. 

STEP-3: 

Again after finishing step 2 all the parameters of the corresponding experiment again set in the 

control panel. We have to place in the work piece again in horizontal position to cut left portion 

of the work piece. Again vertical electrode is being used the work piece from the end position. 

Here the penetration of the electrode is less than the 1
st
 step and the corresponding time 

requirement also less than step 1. After the electrode penetrates about 25mm the cavity is being 

made in the work piece. A small piece is left after cutting is over .We had to measure the weight 

of the left piece. Then the final weight of the work piece is being measured. And MRR is 

calculated. The machining step 3 is given in Fig 3.8.  
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Figure 3.6 Step 1 

 

Figure 3.7 Step 2 
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Figure3.8 Step 3 

 

3.5 DESIGN OF ELECTRODE: 

In ECM generally tool which is cathode, is made out of non reacting material such as Copper. 

We want to study the tool design problem in ECM, only to determine a cathode shape which will 

machine a specified work piece shape.  

In this experiment we have taken cupper as electrode material at cathode. It is designed in U 

shape so as to cut the cavity in AISI D2 steel in the similar profile. A long hollow cupper pipe 

was taken having length of 70mm. The internal and external dia of that cupper pipe was taken 

8mm and 12 mm respectively. In one side of the copper pipe a thread was done up to 10mm with 

the help of threading die for M12 thread. After that a through hole is made by the help of drilling 

machine up to 60mm from the threading point. The pith of the thread was kept 2mm.From the 
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side of the cupper tube two through hole has been made in order o placed the U tube cupper pipe. 

The hole is made in the cupper pipe is of different dia of 4mm and 6mm. 

 For making U tube electrode shown in fig 3.9, other two cupper pipe was needed of dia 4mm 

and 6mm.It is then bent to make the shape of U tube. During bending of the cupper pipe we have 

to be careful so that internal dia should not be closed. This bend electrode then fitted to the 

cupper pipe in vertical and horizontal manner and brazing was done to make it properly closed. 

With the help of 2 mm drill bit 3 holes has been made in each U shaped cupper tube shown in fig 

3.10, to make the electrolyte freely flow to the work piece. In this way electrode design has been 

made. 

 

In order to making the cavity and calculating the material removal rate we have design a U –

shaped electrode using cupper as electrode material. A 70 mm electrode holder first designed 

which is having a thread in one end and a through hole was made up to a distance of 60mm.Then 

two side hole was made in the order of 4mm and 6mm.Then a special designed U-shaped 

electrode of the order of 4mm and 6mm inserted in that side hole and brazing was done to make 

it completely closed. In that U-shaped electrode 3 holes have been made using 2 mm drill bit in 

order to flow of electrolyte through it. By setting all the parameters in the proper way a cavity 

was made in the work piece. By measuring the corresponding weight the MRR is to be 

calculated. 
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Fig. 3.9 Electrode design for machining steps 1 & 3 
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Fig. 3.10 Electrode design for machining steps 2 
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Fig. 3.11 U-Shaped tubular electrode of dia 4mm & 6 mm for machining step 2 

 

Fig. 3.12 U-Shaped tubular electrode of dia 4mm & 6 mm for machining step 1 & 3 

3.6 Taguchi Design: 

Prof. Genichi Taguchi, a Japanese engineer, proposed several approaches to experimental 

designs that are sometimes called "Taguchi Methods." These methods utilize two-, three-, and 

mixed-level fractional factorial designs. Taguchi refers to experimental design as "off-line 

quality control" because it is a method of ensuring good performance in the design stage of 
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products or processes. The aim here is to make a product or process less variable (more robust) 

in the face of variation over which we have little or no control. 

 

Table- 3.4 Factor levels  

Levels Feed mm/min Flow Rate L/min Dia mm K mS/cm 

1.  0.21 3 4 63 

2.  0.32 6 6 118 

3.  0.45    

4.  0.54    

 

Table 3.5 L8 orthogonal array 

Run A-Feed mm/min B-Flow Rate 

L/min 

C-Dia mm D-Conductivity 

mS/cm 

1 1 1 1 2 

5 1 2 2 1 

2 2 1 1 1 

6 2 2 2 2 

3 3 2 1 2 

7 3 1 2 1 

4 4 2 1 1 

8 4 1 2 2 
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Table3.6 Observation Table 

run 

Feed  

mm/min 

Flow Rate  

L/min 

Dia  

Mm 

K  

mS/cm 

Initial wt 

Kg 

Final Wt  

kg 

Slug wt 

gm 

T1 

min 

T2 

min 

T3  

min 

Length  

Mm 

Width  

mm 

Height  

mm 

1 0.21 3 4 118 3.085 2.862 21.78 120 120 85 37.75 42.752 27.76 

2 0.32 3 4 63 2.721 2.504 16.70 78 78 56 37.52 42.522 26.73 

3 0.45 6 4 118 2.862 2.656 19.90 56 60 33 37.29 42.297 26.95 

4 0.54 6 4 63 2.504 2.303 20.15 46 46 28 36.43 41.432 26.63 

5 0.21 6 6 63 3.040 2.810 10.97 120 120 77 37.96 42.964 27.63 

6 0.32 6 6 118 2.906 2.642 15.64 78 75 49 37.82 42.823 27.13 

7 0.45 3 6 63 2.810 2.530 16.58 56 63 42 37.52 42.525 26.28 

8 0.54 3 6 118 2.642 2.378 18.97 46 50 32 36.81 41.814 26.28 
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Fig 3.13 Work piece after machining for run 1 and 2 

 

Fig 3.14work piece after machining for run 3and 4 
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Fig 3.15work piece after machining run 5 and 6 

 

Fig 3.16 work piece after machining run 7and 8 
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3.7 Sample Calculation 

MRR is calculated as given by the following formula  

321 TTT

wtfinalwtInitial
MRR

++

−
=        (3.1) 

MRR effective is calculated as given by the following formula  

321 TTT

wtSlugwtfinalwtInitial
effectiveMRR

++

+−
=     (3.2) 

Over-cut, GL is calculated as given by the following formula  

2

35

2

−
=

−
=

lengthlengthcutlength
GL      (3.3) 

Over-cut, GW is calculated as given by the following formula  

2

40

2

−
=

−
=

widthwidthcutwidth
GW      (3.4) 

Over-cut, GH is calculated as given by the following formula  

2

25

2

−
=

−
=

heightheightcutheight
GH      (3.5) 

 

Sample calculation for observation no 1 (run 1) is presented below and the results are shown in 

Table 3.6 

0.696154
85120120

2.862-3.085
=

++
=MRR       (3.6) 

MRR effective is calculated as given by the following formula  

0.763169
85120120

21.78/1000-2.862-3.085
=

++
=effectiveMRR    (3.7) 

Over-cut, GL is calculated as given by the following formula  



 

 

 

45 

1.375
2

35-37.75
==GL         (3.8) 

Over-cut, GW is calculated as given by the following formula  

376.1
2

40-42.752
==GW        (3.9) 

Over-cut, GH is calculated as given by the following formula  

380.125
2

27.76
=−=GH        (3.10) 
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Table 3.7 Response table 

Control parameters Responses 

run 

Feed  

mm/min 

Flow Rate 

L/min 

Dia  

mm 

K 

mS/cm 

Slug wt 

Gm 

MRR 

gm/min 

MRR effective 

gm/min 

GL  

Mm 

GW  

mm 

GH  

mm 

1 0.21 3 4 118 21.78 0.696154 0.763169 1.375 1.376 1.380 

2 0.32 3 4 63 16.70 1.023585 1.102358 1.260 1.261 0.865 

3 0.45 6 4 118 19.90 1.449664 1.583221 1.145 1.149 0.975 

4 0.54 6 4 63 20.15 1.775000 1.942917 0.715 0.716 0.815 

5 0.21 6 6 63 10.97 0.715552 0.750158 1.480 1.482 1.315 

6 0.32 6 6 118 15.64 1.306931 1.384356 1.410 1.412 1.065 

7 0.45 3 6 63 16.58 1.739130 1.842112 1.260 1.263 0.640 

8 0.54 3 6 118 18.97 2.015625 2.163828 0.905 0.907 0.640 
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3.8 CONCLUSION 

Experiments were conducted according to Taguchi method by using the machining set up and the 

designed U-shaped tubular electrodes.  The control parameters like feed, diameter of electrode, 

flow rate, and conductivity were varied to conduct 8 different experiments and the weights of the 

work piece and dimensional measurements of the cavity were taken for calculation of MRR and 

over cuts. 
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Chapter 4Chapter 4Chapter 4Chapter 4     RESULTS AND DISCUSSIONRESULTS AND DISCUSSIONRESULTS AND DISCUSSIONRESULTS AND DISCUSSION    

    

Introduction 

In this chapter, the responses such as MRR, MRR effective, slug wt and various over-cuts are 

calculated from the observation table, which are analyses and discussed.  

4.1 ANALYSIS OF EXPERIMENT AND DISCUSSION: 

Effect on MRR and effective MRR 

The machinability of ECM depends on the electrical conductivity of the electrolyte, feed rate of 

electrode, inter electrode gap and electrolyte flow rate [27, 3]. The influence of various 

machining parameters on MRR (means) are shown in Fig. 4.1. The electrode feed rate has 

enormous effect on MRR and it increases with increase in feed rate. This result was expected 

because the material removal rate increases with feed rate because the machining time decreases. 

MRR also increases with larger diameter of electrode; however, the effect is less than the feed 

rate on MRR. The electrolyte flow rate and conductivity has very little effect on MRR and 

doesn’t give any conclusive evidence of any impact on MRR. Similar trends are shown by the 

plot of main effects for SN ratios on MRR in Fig.4.2. In Table 4.2, the main effects of feed, 

diameter of electrode, flow rate, conductivity are 1.1895, 0.2082, 0.0568 and 0.0538, 

respectively, on MRR in gm/min, in order of significance. These results are in good agreement 

with the observations of many researchers. 
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Figure 4.1 Main effects of machining parameters on MRR (data means) 
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Figure 4.2 Main effects of machining parameters on MRR (SN ratios) 

Table 4.1 Taguchi analysis response table for MRR: larger is better 

 

 Level Feed Mm/min Flow Rate L/min Dia mm K mS/cm 

SN ratios 1 -3.027 1.988 1.316 1.771 

 2 1.264 1.907 2.578 2.123 

 3 4.016    

 4 5.536    

 Delta 8.563 0.081 1.262 0.352 

 Rank 1 4 2 3 

      

Means 1 0.7059 1.3686 1.2361 1.3133 

 2 1.1653 1.3118 1.4443 1.3671 

 3 1.5944    

 4 1.8953    

 Delta 1.1895 0.0568 0.2082 0.0538 

 Rank 1 3 2 4 
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Figure 4.3 Scatter plot of MRR effective, MRR vs. feed for various electrode diameters. 

 

Since, MRR effective is always more than MRR, for positive slug weight, the graph in Fig 4.3 

shows that with feed, both the MRR’s increases. The effect of electrode diameter on MRR 

effective is obvious as the projected area of electrode having fewer diameters is less than that of 

larger diameter electrode; the actual material removed under the projected area is less. Thus, with 

smaller electrode diameter, similar sized cavity can be made with lesser amount of material 

removed and saving energy.  The influence of various machining parameters on MRR effective 

(means) are shown in Fig. 4.4. The electrode feed rate has enormous effect on MRR effective 

and it increases with increase in feed rate. MRR effective also increases with larger diameter of 

electrode; however, the effect is less than the feed rate on MRR effective. The electrolyte flow 

rate and conductivity has very little effect on MRR and doesn’t give any conclusive evidence of 

any impact on MRR. Similar trends are shown by the plot of main effects for SN ratios on MRR 

effective in Fig.4.5. In Table 4.3, the main effects of feed, diameter of electrode, flow rate, 
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conductivity are 8.659, 1.020, 0.105 and 0.437, respectively, on MRR effective in gm/min, in 

order of significance. There is very less difference between the graph of MRR and Effective 

MRR. 

 

 

Fig 4.4 Main effects of machining parameters on MRR Effective 
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Fig 4.5 Main effects of machining parameters on MRR effective (SN ratios) 

 

Table-4.2 Taguchi analysis response table for MRR effective: larger is better 
 

 Level Feed Mm/min Flow Rate L/min Dia mm K mS/cm 

SN ratios 1 -2.422 2.627 2.065 2.356 

 2 1.836 2.522 3.085 2.793 

 3 4.649    

 4 6.237    

 Delta 8.659 0.105 1.020 0.437 

 Rank 1 4 2 3 

      

Means 1   0.7567   1.4679   1.3479   1.4094 

 2   1.2434   1.4152   1.5351   1.4736 

 3   1.7127    

 4   2.0534    

 Delta   1.2967   0.0527   0.1872   0.0643 

 Rank   1   4   2   3 
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4.2 Effect on slug wt: 

Similarly the influence of various machining parameters on slug wt (means) are shown in Fig. 

4.6. The electrode feed rate and conductivity has enormous effect on slug weight and it increases 

with increase in feed rate and conductivity. Slug wt also decreases with larger diameter of 

electrode; with increase of flow rate slug wt decreases. Similar trends are shown by the plot of 

main effects for SN ratios on Slug wt in Fig.4.7. In Table 4.3, the main effects of diameter of 

electrode, feed, conductivity, flow rate are 4.09, 3.39, 2.97 and 1.84, respectively, on slug wt in 

gm, in order of significance.  

 

 

Fig 4.6 Main effects of machining parameters on slug wt  
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Fig 4.7 Main effects of machining parameters on slug wt (SN ratios) 

 

Table 4.3 Taguchi analysis response table for slug weight: larger is better 

 Level Feed Mm/min Flow Rate L/min Dia mm K mS/cm 

SN ratios 1 23.78 25.29 25.82 23.93 

 2 24.17 24.19 23.66 25.55 

 3 25.18    

 4 25.82    

 Delta 2.04 1.10 2.16 1.61 

 Rank 2 4 1 3 

      

Means 1  16.38 18.51 19.63 16.10 

 2  16.17 16.67 15.54 19.07 

 3  18.24    

 4  19.56    

 Delta  3.39 1.84 4.09 2.97 

 Rank   2   4  1  3 
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4.3 Effect on over cut (GL): 

One of the major challenges in ECM is the control of the cavity oversize (or over cut). Over cut 

depends on the characteristics of electrolyte, e.g. concentration, flow rate, and its throwing power 

and sludge formation. In the machining area, just below the machining face of the tool, anodic 

reaction rate and conductivity of the electrolyte is constant. Away from the main machining 

zone, current density decreases asymptotically to zero with increasing distance along the work 

piece surface. Up to a certain distance, current density is sufficient for metal dissolution, which 

causes over cut. Due to the increase in electrolyte concentration, ions associated with the 

machining operation in the machining zone also increase. A Higher concentration of ions reduces 

the localization effect of electrochemical material removal reactions. This leads to the higher 

over cut of the work piece and thus reduces the machining accuracy. Removal of material by the 

stray current increases with the increase of electrolyte concentration. This stray current effect is 

more predominant at higher concentrations of electrolyte. Electrolyte temperature directly affects 

the conductivity of the electrolyte. A temperature increase results in over cut increase up to the 

point at which the electrolyte vaporizes in the machining gap [24].  

 

The effect of various machining parameters on over cut GL (means) are shown in Fig.4.8. The 

electrode feed rate has enormous effect on length over cut and it decreases with increase in feed 

rate. It is due to the fact that with increasing feed rate, the machining of cavity neighborhood is 

reduced. Over cut GL also increases with larger diameter of electrode. The electrolyte flow rate 

and conductivity has very little effect on length over cut and doesn’t give any conclusive 

evidence of any impact on length over cut. But the main effect of parameter on SN ratio on over 

cut is varying. With increase of feed rate over cut of length increases. But with increases of 

electrode dia length over cut decreases. Effect of conductivity and flow rate is very less. In Table 
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4.5, the main effects of feed, diameter of electrode, flow rate, conductivity are 0.6175, 0.1400, 

0.0125 and 0.0300, respectively, on GL in mm, in order of significance.  

 

Fig 4.8 Main effects of machining parameters on GL  
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Fig 4.9 Main effects of machining parameters on GL(SN ratio) 

 

Table 4.4 Taguchi analysis response table for GL: smaller is better 

 Level Feed Mm/min Flow Rate L/min Dia mm K mS/cm 

SN ratios 1 -3.0856 -1.4785 -0.7589 -1.1265 

 2 -2.4959 -1.1630 -1.8825 -1.5149 

 3 -1.5918    

 4 1.8905    

 Delta 4.9761 0.3155 1.1236 0.3883 

 Rank 1 4 2 3 

      

Means 1  1.4275 1.200 1.1238 1.1788 

 2  1.3350 1.1875 1.2638 1.2088 

 3  1.2025    

 4  0.8100    

 Delta  0.6175 0.0125 0.1400 0.0300 

 Rank   1 4 2 3 
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4.4Effect on overcut (GW): 

The influence of various machining parameters on Width over cut, GW (means) are shown in 

Fig. 5.0. The electrode feed rate has enormous effect on width over cut and it decreases with 

increase in feed rate. Width over cut also increases with larger diameter of electrode. The 

electrolyte flow rate and conductivity has very little effect on width over cut. Similarly width 

over cut increases significantly with increase of feed rate. Width over cut also gradually 

decreases with increase of diameter of the electrode. Effect of flow rate and conductivity has 

very little effect on width over cut. Trends are shown by the plot of main effects for SN ratios 

on width over cut in Fig.5.1. In Table 4.6 the main effects of feed, diameter of electrode, flow 

rate, conductivity are 0.6175, 0.1404, 0.0121 and 0.0304, respectively, on width over cut in mm, 

in order of significance. 

 

Figure 4.10 Main effects of machining parameters on GW 
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Fig. 4.10 Main effects of machining parameters on GW (SN ratios) 

Table 4.5 Taguchi analysis response table for slug weight: smaller is better 

 Level Feed Mm/min Flow Rate L/min Dia mm K mS/cm 

SN ratios 1 -3.0947 -1.4909 -0.7719 -1.1385 

 2 -2.5040 -1.1779 -1.8968 -1.5302 

 3 -1.6136    

 4 1.8748    

 Delta 4.9695 0.3130 1.1250 0.3916 

 Rank 1 4 2 3 

      

Means 1  1.4290 1.2016 1.1254 1.1804 

 2  1.3363 1.1895 1.2658 1.2108 

 3  1.2055    

 4  0.8115    

 Delta  0.6175 0.0121 0.1404 0.0304 

 Rank   1 4 2 3 
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4.5 Effect on over cut (GH): 

The influence of various machining parameters on height over cut, GH (means) are shown in 

Fig5.2. The electrode feed rate has enormous effect on height over cut and it gradually decreases 

increase in feed rate. Height over cut also increases with flow rate and conductivity. But height 

over cut decrease with increase of diameter of the electrode. Main effects for SN ratios height 

over cut are shown in Fig.5.3.The height over cut is gradually increases with increase of feed rate 

and diameter of the electrode. But with increases of conductivity and flow rate the height over 

cut decreases In Table 4.7 the main effects of feed, diameter of electrode, flow rate, conductivity 

are 0.6200, 0.0938, 0.1612 and 0.1063, respectively, on height over cut in mm, in order of 

significance. 

 

Fig 4.12 Main effects of machining parameters on GH 
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Fig 4.13 Main effects of machining parameters on GH (SN ratios) 

Table 4.6 Taguchi analysis response table for slug weight: smaller is better 

 Level Feed Mm/min Flow Rate L/min Dia mm K mS/cm 

SN ratios 1 -2.5880  1.5537 0.1147 1.1336 

 2 0.9650  1.0425 0.9150 1.0150 

 3 2.0486    

 4 2.8266    

 Delta 5.4147 1.7859 1.0921 0.9475 

 Rank 1 2 3 4 

      

Means 1  1.3475  0.8813 1.0088 0.9088 

 2  0.9650  1.0425 0.9150 1.0150 

 3  0.8075    

 4  0.7275    

 Delta  0.6200  0.1612 0.0938 0.1063 

 Rank   1 2 4 3 

 

Table 4.7 shows the ANOVA results of over cut GL and feed and diameter of electrode are 

found to be significant. The linear model has R
2
 fit value of 99.98 and R

2
(Adj) fit value of 99.84 
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which justify that the two significant factors contribute mostly for over cut GL. Similarly, in 

Table 4.8 and 4.9, the ANOVA tables for over cut GW and GH, respectively, are presented. 

These tables show that the feed and diameter are significant factors for controlling over cut.  

Table 4.7 Analysis of Variance for GL 

Source DF SeqSS AdjSS AdjMS F P 

Feed 3 0.443863 0.443863 0.147954 1315.15 0.020 

Flow Rate 1 0.000313 0.000313 0.000313 2.78 0.344 

Dia 1 0.039200 0.039200 0.039200 348.44 0.034 

K 1 0.001800 0.001800 0.001800 16.00 0.156 

Error 1 0.000113 0.000113 0.000113   

Total 7 0.485288     

S = 0.0106066                    R-Sq = 99.98%               R-Sq(adj) = 99.84% 

 

Table 4.8 Analysis of Variance for GW 

Source DF SeqSS AdjSS AdjMS F P 

Feed 3 0.443778 0.443778 0.147926 1120.39 0.022 

Flow Rate 1 0.000294 0.000294 0.000294 2.23 0.376 

Dia 1 0.039410 0.039410 0.039410 298.49 0.037 

K 1 0.001845 0.001845 0.001845 13.98 0.166 

Error 1 0.000132 0.000132 0.000132   

Total 7 0.485459     

S = 0.0114905                        R-Sq = 99.97%           R-Sq(adj) = 99.81% 

 

Table 4.9 Analysis of Variance for GH 

Source DF SeqSS AdjSS AdjMS F P 

Feed 3 0.454959 0.454959 0.151653 110.04 0.070 

Flow Rate 1 0.052003 0.052003 0.052003 37.73 0.103 

Dia 1 0.017578 0.017578 0.017578 12.76 0.174 

K 1 0.022578 0.022578 0.022578 16.38 0.154 

Error 1 0.001378 0.001378 0.001378   

Total 7 0.548497     

S = 0.0371231                  R-Sq = 99.75%            R-Sq(adj) = 98.24% 

 

Conclusion 

The work evaluates the feasibility of machining blind cavity on AISI D2 tool steel in ECM with 

U-shaped electrode. The performance parameters like MRR, MRR effective, slug weight and 
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various over cuts are studied under various machining parameters. The most significant factors 

for MRR and MRR effective are found to be feed and diameter of electrode. Both the response 

increases with increase in feed and electrode diameter.  Furthermore, the flow rate and 

electrolyte concentration has very little effect. The feed has positive effects the slug weight and 

diameter of electrode is inversely proportional to slug weight. The over cuts GL, GW, GH are 

influenced by feed and diameter of electrode. With feed over cuts reduce and diameter of 

electrode tends to increase the over cuts. 
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Chapter 5Chapter 5Chapter 5Chapter 5                                CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION    

The present work is an attempt to study the feasibility of machining blind cavity on AISI D2 tool 

steel in ECM with U-shaped electrode. The MRR, MRR effective, slug weight and various over 

cuts are studied with various setting of electrode feed rate, electrolyte flow rate, electrolyte 

concentration and diameter of electrode. The most significant factors for MRR and MRR 

effective are found to be feed and diameter of electrode. Both the response increases with 

increase in feed and electrode diameter.  Furthermore, the flow rate and electrolyte concentration 

has very little effect. The feed has positive effects the slug weight and diameter of electrode is 

inversely proportional to slug weight. The over cuts along length, width and height of cavity are 

influenced by feed and diameter of electrode. All these over cuts reduce with increase in feed 

and diameter of electrode tends to increase the over cuts. 
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