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Abstract 
   

 

In the optical communication in a backbone infra structure, flexibility means, for 

example, programmable bitrates requiring a PLL with robust operation over a wide range of 

frequency range. A wide range PLL could be used by different protocols and applications so that 

we maximize the reusability and reduce time to market. 

In this report we try to present an extended frequency CMOS monolithic VCO design. A 

negative feedback control algorithm is used to automatically adjust the VCO range according to 

control voltage. Based on this analog feedback control algorithm, the VCO achieves a wide 

range without any pre-register settings. 

         Here we discuss about different component of PLL (Phase Lock Loop), mainly on Phase 

Frequency Detectors and VCO (voltage controlled oscillator). Here we proposed different 

architecture of Phase frequency detectors and also of VCOs and designed many architecture in 

mentor graphics.   
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1. Introduction 

 

1.1 Phase locked loop 

 

High-performance digital systems use clocks to sequence operations and synchronize 

between functional units and between ICs. Clock frequencies and data rates have been increasing 

with each generation of processing technology and processor architecture. Within these digital 

systems, well-timed clocks are generated with phase-locked loops (PLLs) and then distributed 

on-chip with clock buffers. The rapid increase of the systems’ clock frequency poses challenges 

in generating and distributing the clock with low uncertainty and low power. This research 

presents innovative techniques at both system and circuit levels that minimize the clock timing 

uncertainty with minimum power and area overhead. 

With the exponential growth of no of internet nodes, the volume of data transported by its 

backbone continues to rise rapidly. Among the available transmission media, optical fibers have 

highest bandwidth with lower cost, serving an attractive solution for internet backbone. 

However, the electronic interface proves to be the bottleneck in designing high speed digital 

system. This fact, combined with the ever-shrinking time to market, indicates that designs based 

on flexible modules and macro cells have great advantages. In the optical communication in a 

backbone infra structure, flexibility means, for example, programmable bitrates requiring a PLL 

with robust operation over a wide range of frequency range. A wide range PLL could be used by 

different protocols and applications so that we maximize the reusability and reduce time to 

market. 

 

 

1.2 PLL Fundamentals 

 

Phase-locked loops (PLLs) generate well-timed on-chip clocks for various applications 

such as clock-and-data recovery, microprocessor clock generation and frequency synthesizer. 

The basic concept of phase locking has remained the same since its invention in the 1930s. 

However, design and implementation of PLLs continue to be challenging as design requirements 

of a PLL such as clock timing uncertainty, power consumption and area become more stringent. 

A large part of this research focuses on the design of a PLL for high-performance digital 

systems.  
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1.3 PLL Definition 

 
 

The basic block diagram of a PLL is shown in Figure. A PLL is a closed-loop feedback 

system that sets fixed phase relationship between its output clock phase and the phase of a 

reference clock. A PLL tracks the phase changes that are within the bandwidth of the PLL. A 

PLL also multiplies a low-frequency reference clock, CKref, to produce a high frequency clock, 

CKout.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The basic operation of a PLL is as follows. The phase detector (comparator) produces an 

error output signal based on the phase difference between the phase of the feedback clock and 

the phase of the reference clock. Over time, small frequency differences accumulate as an 

increasing phase error. The difference or error signal is low-pass filtered and drives the 

oscillator. The filtered error signal acts as a control signal (voltage or current) of the oscillator 

and adjusts the frequency of oscillation to align φfeedback with φref. The frequency of oscillation 

is divided down to the feedback clock by a frequency divider. The phase is locked when the 

feedback clock has a constant phase error and the same frequency as the reference clock. 

Because the feedback clock is a divided version of the oscillator’s clock frequency, the 

frequency of oscillation is N times the reference clock. 

 

 

1.4 PLL Component 

 
The block diagram of a charge-pump PLL is shown in Figure. A PLL comprises of 

several components: (1) phase or phase-frequency detector, (2) charge-pump current, (3) loop 

filter, (4) voltage-controlled oscillator, and (5) frequency divider. The functioning of each block 

is briefly described below. 

Basic PLL Block Diagram 
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1.4.1 Voltage Controlled Oscillator 

 

An oscillator is an autonomous system that generates a periodic output without any input. 

A CMOS ring oscillator shown in Figure is an example of an oscillator. So that the phase of a 

PLL is adjustable, the frequency of oscillation must be tunable. In the example of an inverter ring 

oscillator, the frequency could easily be adjusted with controlling the supply (voltage or current) 

of inverters. The slope of frequency versus control signal curve at the oscillation frequency is 

called voltage-to-frequency (current-to- frequency) conversion gain, KVCO;  VCO=dfVCO/dVctrl 

evaluated at fVCO. Since phase is the integral of frequency, the output phase of the oscillator is 

equal to ∫  ΦVCO =KVCO.Vctrl dt. In other words, the VCO in the frequency domain (s-domain), is 

modeled as  

                  ΦVCO/ Vctrl (s) = KVCO/S; 

 

Ideally, for the linear analysis to apply over a large frequency range, KVCO, needs to be 

relatively constant. 
 

 

 

 

 

 

 

Lead I 

Individual Blocks in PLL Diagram 

A five Stage Ring Oscillator 
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 1.4.2 Frequency Divider 

 

The PLL reference clock is generated from a crystal. The crystals typically operate from 

tens to a few hundreds of MHz’s On the other hand; VCOs for clocking and parallel link 

applications operate at a few GHz or even ten GHz. For proper functioning of the phase detector 

or phase-frequency detector, discussed in the next section, a frequency divider divides down the 

VCO frequency to the frequency of the reference clock. 
 

1.4.3 Phase Detector 

The phase detector (PD) compares the phase difference between two input signals and 

produces an error signal that is proportional to the phase difference. In the presence of a large 

frequency difference, a pure phase detector does not always generate the correct direction of 

phase error. Phase error accumulates rapidly and can oscillate between phase error of >180oand 

<180o from cycle to cycle. The average phase detector output contains little frequency 

information and no valuable phase information. Since the phase detector is insensitive to 

frequency difference at the input, upon start-up when the oscillator’s frequency divided by N1 is 

far from the reference frequency, the PLL may fail to lock. The problem is known as an 

inadequate acquisition range of the PLL. To remedy the problem, a phase-frequency detector 

(PFD) is used that can detect both phase and frequency differences. Figure 2.4 conceptually 

demonstrates the operation of a PFD for two cases: (a) the two input signals have the same 

frequency, and (b) one input has higher frequency than another input. In both cases, the DC 

contents of PFD’s outputs, UP and DN, provide information about phase or frequency difference 

 

 
Operation of a PFD: (a) fref=fCK, φref#φCk and (b) fref>fCK 



10 

 

1.4.4 Charge pump and loop filter 

 
 

The charge-pump circuit comprises of two switches that are driven with UP and DN 

outputs of PFD as shown in Figure 2.2. The charge-pump injects the charge into or out of the 

loop filter capacitor (CCP). The combination of charge-pump and CCP is an integrator that 

generates the average of UP (or DN) pulses. This average voltage adjusts the frequency of the 

subsequent oscillator circuit. Since the VCO introduces another integrator, the loop gain of a 

charge-pump PLL has two poles at origin; thus, the closed loop system is unstable. To stabilize 

the system, a zero, ωz = 1/RCCP, is introduced in the loop gain by adding a resistor, R, in series 

with CCP. The PFD, charge pump and filter are often modeled with a linear continuous-time 

model. In reality, the PFD acts as a pulse modulator system and drives the charge-pump for the 

duration of pulse width which is equal to PFD input phase difference, Δφ. The actual phase 

response is not linear because phase is cyclical. Furthermore, the phase information is discrete, 

sampled at the clock reference frequency. 
 

 

1.5 Noise and Power Considerations 

 

The primary goal to design a PLL for high-performance digital systems is to generate an 

output clock with minimum timing uncertainty. The timing uncertainty arises from mismatches 

in devices and noise sources present in the system. Device mismatches causes a static phase shift 

(or skew) in the PLL output clock from its desired phase. Skew can be minimized with a careful 

layout and increasing the device size. Skew is generally less critical than jitter because, due to its 

static nature, the system can compensate for the static errors. Dynamic noise causes a random 

phase shift (or jitter) in the PLL output clock. The noise sources in a PLL are device electronic 

noise such as thermal noise or flicker noise and power-supply or substrate noise. 

 

 

1.6 Band Width of PLL 

The bandwidth of a PLL is the measure of the PLL's ability to track the input clock and 

jitter. The closed loop gain 3-dB frequency of the PLL determined the PLL bandwidth. The 

bandwidth is approximately the unity gain point for PLL open loop response. 

     A high bandwidth PLL provides a fast lock time and tracks jitter on the reference clock 

source, passing it through to the PLL output. A low bandwidth PLL filters out reference clock 

jitter, but increase lock time. 
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1.7 Phase Noise and Its Causes 

 

Phase noise is the frequency domain representation of rapid, shot-term random 

fluctuation in the phase of a wave. The term phase noise is used to describe phase fluctuation due 

to random frequency fluctuation of a signal.  Phase noise can be caused by a number of 

conditions, but is mostly affected by an oscillator’s frequency stability. 

  The oscillator output is describe by  

 

                       V (t) =V0sin (2*pi*f*t+ph) 

 

                                 Where   f=oscillator frequency and ph=Phase angle 

 

Its instantaneous frequency = f+ (1/2*pi)*(d pi/d t) 

    If the instantaneous frequency is same as f then the tern (d ph/d t) is zero so phase noise 

is zero unless there is a phase noise. 

 

Causes of Phase noise 
 

a. The noise figure of active component such as transistors, integrated circuits, voltage 

regulator zeners etc. 

b. Thermal noise in passive component such as resistors. 

c. Flicker noise in active components. 

d. Noise process in the oscillator 

e. Higher Q crystal will improve lower offset frequencies of phase noise generally less than 

100 Hz offset. As the crystal frequency increases the 'Q' of the crystal decreases and the 

phase noise at lower frequency offset will increases. 

f. The crystal has a g-sensitivity that will degrade the phase noise under dynamic vibration 

conditions. 

g. Long-term frequency stability can be affected by a long term drift caused by the crystal 

and component aging assuming temperature remains same. 

h. Frequency Change due to temperature changes can also affect system stability. 
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2. Architecture of PLL 
 

A wide range PLL requires a wider tuning range of VCO. In this paper, a fully integrated 

CMOS VCO with an extended frequency range is described. In section-II, following a brief 

overview of conventional architecture for ring type based VCO design; the proposed 

architecture is described to solve the problems of conventional methods. A negative feedback 

control algorithm automatically adjusting VCO frequency range is used to extend the 

frequency range. Also circuits of this wide tuning range VCO are described.    

 

 

2.1 Phase frequency Detector 

In an analogue mixer a number of different frequencies are generated within the mixer 

namely the sum of the frequencies and the difference frequency (otherwise known as the beat 

note) when both input frequencies are the same is the phase difference is zero and the beat note is 

DC.  

Phase detectors are part of a Phase Locked Loop (PLL) and can be either analogue e.g. mixer or 

digital e.g. D-type flip-flop. When a mixer is used the output consists of the sum and difference 

frequencies.  

Most PLL circuits now use digital phase detectors formed from two D-type flip-flops as 

shown. 
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2.1.1 Edge Triggered  D-Flipflop 

 

 

 
 

 

2.1.2 Differentail Amplifier 

 
 

A differential amplifier is a type of electronic amplifier that multiplies the difference 

between two inputs by some constant factor (the differential gain). Many electronic devices use 

differential amplifiers internally. Given two inputs Vin
+
 and Vin

-
, a practical differential amplifier 

gives an output Vout: 

 

 
 

Where Ad is the differential-mode gain and Ac is the common-mode gain. 

A 
2 
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The common-mode rejection ratio is usually defined as the ratio between differential-

mode gain and common-mode gain: 

 

 

 

In the above equation, as Ac approaches zero, CMRR approaches infinity. Thus, for a 

perfectly symmetrical differential amplifier with Ac = 0, the output voltage is given by: 

 

 

 

 

Note that a differential amplifier is a more general form of amplifier than one with a 

single input; by grounding one input of a differential amplifier, a single-ended amplifier results. 

 

Some kinds of differential amplifier usually include several simpler differential 

amplifiers. For example, an instrumentation amplifier, a fully differential amplifier, a negative 

feedback amplifier, a instrument amplifier, or a isolation amplifier often includes several op-

amps; and those op-amps usually include a long-tailed pair. 

 

A differential amplifier is the input stage of operational amplifiers, or op-amps, and 

emitter coupled logic gates. 

 

Differential amplifiers are found in many systems that utilize negative feedback, where 

one input is used for the input signal, the other for the feedback signal. A common application is 

for the control of motors or servos, as well as for signal amplification applications. In discrete 

electronics, a common arrangement for implementing a differential amplifier is the long-tailed 

pair, which is also usually found as the differential element in most op-amp integrated circuits. 

                           
                                            Differential Amplifier 
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          Current source load Differential amplifier 

 

 

2.1.3 Current Starved Inverter 
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2.1.4 Current starved VCO 

 
VCOs are widely used in PLLs to provide a local clock signal that can be locked to the 

frequency and phase of a reference signal. Current-starved VCO topologies are commonly used 

because of their wide frequency range of operation, allowing for tunable designs that can easily 

accommodate the high-speed specifications in an RF application. 

 

 Description of VCO Circuit Topology 
 

The current-starved VCO, schematically represented in Fig. 1, includes two components: 

the input-bias stage and a ring oscillator (RO) structure designed using an odd number (N>5) of 

current-starved inverters, where N is the number of RO stages. The input voltage, Vinvco, sets the 

current through the input-bias stage and current mirrors, which subsequently control the current 

through the current-starved inverters and control the delay of each stage. The RO oscillates at a 

period of (Td*2N), where td is the delay time of an inverter stage. 
 

Design: 

 

 

 

 

 

 

In Inverter we take       

Both the NMOS and PMOS are designed for equal drive 

 i.e.  
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IDCentre =N* *Vdd*Fcentre 

Where N=total Number of inverters in series (must be odd) 

Fcenter =Centre frequency  

The W/L ratio for the N1 and N2 can be calculated from the following formula 

 

            

P1 and P2 and are same β as N1 and N2 

So W/L ratio for these MOS can be calculated from the following formula  
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2.2 Limited Range Problem Of conventional VCO 

 The most common used architecture for VCO in CMOS technology is voltage controlled 

ring type oscillator. It consists of several delay cells forming a closed loop as shown in figure. 

The output clock frequency is determined by the delay of each delay cell which in turn is 

controlled by control voltage. A wide frequency range of oscillator means a wide tuning range of 

each delay cell. The delay cell is usually a differential pair with a tail current and some active 

loading. The delay of each cell is controlled by the tail current. There are some difficulties 

associated with this architecture to achieve the wide tuning range. By using a single tail current, 

the tuning range is limited by the control voltage range. The control voltage is usually constraint 

by the power supply voltage, i.e. 0 ≤ Vcontrol ≤ Vdd .If we choose the small tail current, the tail 

current is still not large enough even that the control voltage reach the up limit so that the high 

end frequency range of VCO is small. On the other hand, if we choose the large tail current, the 

tail current is still large even that the control voltage reached the lower limit so that the lower end 

frequency range of VCO is large. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

0 

Ring type Oscillator 

Voltage controlled delay cell 
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2.3 Negative feedback architecture 

  In order to solve the limited range of conventional VCO architecture, the negative 

feedback controlled architecture is proposed. Figure shows a block diagram of the proposed 

architecture. This architecture includes three blocks: a negative feedback control voltage 

generator, a two-input voltage to current converter and delay cells. The negative feedback 

generator converts the control voltage which will be inputted to the voltage-to-current converter 

block. The two input voltage-to-current converter converts the two control voltage inputs VC and 

NVC to current IC which is supplied to the delay cell block. And finally the delay cell block 

delays the input signal to the output signal whose delay is controlled by controlled current IC.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 The negative feedback control voltage generator takes the control voltage VC (supplied 

by PLL) as an input and generates the negative feedback control voltage NVC. This block does 

not need any additional pre-settings such as register bits or reference voltages for comparators. 

The purpose of this block is that when the input control voltage VC is low, the output negative 

feedback control voltage should be high. On the other hand, when VC is high, NVC is low.  

 

 

 

0 

Block Diagram of proposed architecture 
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The relation between current and control voltage 

Negative feedback control voltage generator 
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2.4 Two input voltage to current converter 

 

 
 The two input voltage-to-current converter accepts the two control voltages VC and 

NVC as inputs and generates the control currents to each delay cell in the VCO. The purpose of 

this block is to generate the wide range currents with the limited range control voltage. The 

output is designed as the subtraction of two current sources controlled by the two input voltages. 

The output current is designed as the subtraction of he two current sources controlled by two 

input voltages: VC and NVC. The relations between Iout,I1 and I2 and the control voltage are 

shown in the diagram.I1 increase with increase in VC while I2 decreases. So when the control 

voltage VC is small, the effective output current Iout is small although the current controlled by 

VC is large. But when VC is high, the effective output current Iout is equal to I1 which is high 

because the current source I2 is 0 and doesn’t reduce Iout. So the current range is effectively 

expanded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Two input voltage-to-current converter 
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 2.5 Delay cell design 

 
The delay cell is a differential pair with loading and bias controls. The self biased 

techniques are used to reduce jitter and process variations. This arrangement for extended 

frequency range VCO results a large gain of the VCO. The above negative feedback scheme 

combined with advanced delay cell generates a wide frequency range and low phase noise VCO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Delay Cell circuit 
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A High Swing Low Power CMOS Differential Voltage Controlled Ring 

Oscillator. 

 
High Swing Low Power CMOS Differential 

Voltage-Controlled Ring Oscillator 
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                                                         Differential Amplifier Circuit with Positive Feedback 

           In the delay cells proposed in this work, we provide the necessary bias condition for the 

circuit to oscillate by means of using the positive partial feedback   generated by M1f and M2f, 

as depicted in above figure.. 

 

           In the upper portion of the circuit, we have M3 and M4 or M5 and M6, that implements a 

voltage controlled symmetrical load modifying the delay when the control voltage Vc is 

changed, together with the oscillation frequency. The use of this type of load allows diminishing 

the sensibility to variations in common mode and also the phase-noise of the circuit [8]. In the 

lower portion of the figure, a two-stage source follower buffer is implemented to drive the output 

load composed by pad and instrument capacitances isolating the VCO from these loads. 

 

           In the proposed VCO, the operation frequency is determined by the number of delay cells 

in the loop. The total capacitance and resistance associated to the output nodes depends on the 

operating regions of the transistors in the delay stages. The biasing scheme composed by 

transistors M8 to M13 provides a controlled bias current and a controlled voltage Vc ' in such a 

way that the transistors M4 and M5 stay in the saturation region for the whole control voltage 

range. Also this arrangement avoids the cells to loose gain maintaining a linear relation between 

the control voltage Vc and the tail current provided to the cells by M7. Transistor M10 allows 
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Establishing a minimum current for the delay cells even if the control voltage leaves its nominal 

values. 

 

If the transistors M4 and M5 are always in the saturation region, the small signal model of the 

transistors can be used to analyze the circuit, as stated in figure below. 

 

From figure one can derive the resistance and capacitance at the output node of the circuit 

 

The frequency behavior of the VCO is determined by the inverse relationship to the delay of 

each cell, which is τ = R*C. In this case, the action is taken in the R variable, modifying the 

output conductances of transistor M4 and M5 through the variation of voltage Vc’. 

 
 
 
 
 
 
 
 
 
 
 
 
 



26 

 

 
3. Circuit Design 

 

3.1 Phase frequency detector circuit 

 

 
 

 
Phase Frequency Detector Circuit Using D-flip-flop 
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D-Flip Flop (with clock and Reset) Using Nand Gates 
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Two Input Nand Gate Using CMOS 
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Three Input Nand Gate Using CMOS 
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Current Starved VCO 
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Differential Amplifier 
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3.1 Negative feedback  control voltage generator 

 

 The negative feedback control voltage generator is based on a common source amplifier. 

The transistor diagram is shown in the figure. There are two transistors N1 and N2 and one 

PMOS transistor P1. The input signal is connected to gate of N1 and the gate of N2 is connected 

to a bias voltage. The output signal is taken from the drain of N1. So when input VC is low, 

NMOS transistor N1 is in cut-off region, the drain of N1 will be pulled to a high voltage. On the 

other hand, when the input VC is high, N1is ON and pull the drain voltage almost to ground, i.e. 

the output voltage NVC will be very small. 

 

 

 
 

 Negative feedback voltage generator 
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3.2 Two input voltage to current converter circuit 

 
 The two input voltage to current converter circuit is shown in the figure. Control voltage 

VC controls the current source N1 which is mirrored by transistors N2, P1, P2. The output 

current Iout equal to I2 subtracted from I1. 

 

 

 
 

Current-to-voltage converter 
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3.3 Delay cell circuit 

 
 The delay cell circuit is shown in the figure. The delay cell is a differential pair with 

loading and bias controls. The self biased techniques are used to reduce jitter and process 

variations. 

 

 

 
 

Delay cell no feedback 
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Delay cell with feedback 

 
Proposed VCO 



36 

 

 

 

High Swing Low Power CMOS Differential 

Voltage-Controlled Ring Oscillator 
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Differential Amplifier Circuit with Positive Feedback 
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4. Results  
 

 
 

Phase detector Output 
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Edge Triggered D-Flip Flop Output 
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Two input Nand Gate Output 
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Three Input Nand Gate Output 
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Current starved VCO output 
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Differential Amplifier 
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Proposed VCO output 
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Figures for Differential amplifies used in the High Swing Low Power CMOS Differential 

Amplifier. 

 

 
                        VCO input bias Voltage=2V 
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     VCO input bias Voltage=2.5V 

 
                        VCO input bias Voltage=3V 

 

 

 
   DC Analysis of Diff. Amp (one input at ground)  
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Results for High swing Low power CMOS differential voltage controlled oscillator 

 
 

c=100pf,  vc=1    M1 and M2 at VSS 

 

 

 

 
 

c=10pf  vc=1    M1 and M2 at VSS 
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5. Conclusion 
 

In this report, we designed an extended frequency range CMOS monolithic voltage 

controlled oscillator (VCO) design. A negative feedback control algorithm is used to 

automatically adjust the VCO range according to the control voltage. Based on this analog 

feedback control algorithm, the VCO achieves a wide range without any pre-register settings.    

Low phase noise can be achieved by using both coarse and fine control in VCO. 

          The output of the current Starved VCO is in the range of mili volts. This is may be due to 

the improper W/L ratio of the MOSFETs. Because in the design we use very simple equations 

for describing the behaviors of the MOS but MOS doesn’t work according to these equations. 
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