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ABSTRACT 

 
Due to the reducing size of electronic equipments; the heat fluxes in them are increasing rapidly. 

As a result of the increased heat fluxes thermal management becomes indispensible for its 

longevity and hence it is one of the important topics of current research. The dissipation of heat 

is necessary for its proper function. The heat is generated by the resistance encountered by 

electric current. Unless proper cooling arrangement is designed, the operating temperature 

exceeds permissible limit. As a consequence, chances of failure get increased hazards.  

 

Different phenomena have been observed in various works indicating that the mechanisms of 

flow and heat transfer in microchannels are still not understood clearly. There is little 

experimental data and theoretical analysis in the literature to elucidate the mechanisms. It is 

reasonable to assume that, as the dimensions of flow channels approach the micro-level, viscous 

dissipation could be too significant to be neglected due to a high velocity gradient in the channel. 

Thus, deviations from predictions using conventional theory that neglects viscous dissipation 

could be expected.  
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INTRODUCTION 

 

Since the discovery of electronic devices and computer, the technology has come a long way. 

Faster and smaller computers have led to the development of faster, denser and smaller circuit 

technologies which further has led to increased heat fluxes generating at the chip and the 

package level. Over the years, significant advances have been made in the application of air 

cooling techniques to manage increased heat fluxes. Air cooling continues to be the most widely 

used method of cooling electronic components because this method is easy to incorporate and is 

cheaply available. Although significant heat fluxes can be accommodated with the use of liquid 

cooling, its use is still limited in most extreme cases where there is no choice available. 

 

In this study, the effects of viscous dissipation in microchannel flows are analyzed and examined 

theoretically. FORTRAN codes were used to solve the iterations. The values of temperature and 

velocity obtained; were used in calculating the nusselt’s number and the graphs for it were 

drawn. 

 

1.1 COOLING METHODS: 

Various cooling methods are available for keeping electronic devices within their operating 

temperature specifications. 

 

 



 
3 

 

1.1.1 VENTING 

Natural air currents flow within any enclosure. Taking advantage of this current saves on a long 

term component cost. Using a computer modeling package, a designer can experiment with 

component placement and the addition of enclosure venting to determine an optimum solution. 

When this solution fails to cool the device sufficiently, the addition of a fan is often the next step. 

 

1.1.2 ENCLOSURE FANS 

The increased cooling provided by adding a fan to a system makes it a popular part of many 

thermal solutions. Increased air flow also Increases the cooling efficiency of heat sinks, allowing 

a smaller or less efficient heat sink to perform adequately.  

 

The decision to add a fan to a system depends on number considerations. Mechanical operation 

makes fans inherently less reliable than a passive system. In small enclosures, the pressure drop 

between the inside and the outside of the enclosure can limit the efficiency of the fan. 

 

1.1.3 PASSIVE HEAT SINKS: 

Passive heat sinks use a mass of thermally conductive material to move heat away from the 

device into the air stream, where it can be carried away. Heat sink designs include fins or other 

protrusions to increase the surface area, thus increasing its ability to remove heat from the 

device.  
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1.1.4 ACTIVE HEAT SINKS: 

When a passive heat sink cannot remove heat fast enough, a small fan may be added directly to 

the heat sink itself, making the heat sink an active component. These active heat sinks, often 

used to cool microprocessors, provide a dedicated air stream for a critical device. Active heat 

sinks often are a good choice when an enclosure fan is impractical. 

 

1.1.5 HEAT PIPES: 

Heat pipes, a type of phase-change recalculating system, use the cooling power of vaporization 

to move heat from one place to another. Within a closed heat removal system, such as a sealed 

copper pipe, a fluid at the hot end (near a device) is changed into a vapor. Then the gas passes 

through a heat removal area, typically a heat removal area, typically a heat sink using either air 

cooling or liquid cooling techniques. The temperature reduction causes the fluid to recon dense 

into a liquid, giving off its heat to the environment. A heat pipe is a cost effective solution, and it 

spreads the heat uniformly throughout the heat sink condenser section, increasing its thermal 

effectiveness. 

 

1.1.6 METAL BACKPLANES: 

Metal-core primed circuit boards, stamped plates on the underside, of a laptop keyboard, and 

large copper pads on the surface of a printed circuit board all employ large metallic areas to 

dissipate heat. 
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1.1.7 THERMAL INTERFACES: 

The interface between the device and the thermal product used to cool it is an important factor in 

the thermal solution. For example, a heat sink attached to a plastic package using double sided 

tape cannot dissipate the same amount of heat as the same heat sink directly in contain with 

thermal transfer plate on a similar package.  

 

Microscopic air gaps between a semiconductor package and the heat sink, caused by surface 

non-uniformity, can degrade thermal performance. This degradation increases at higher operating 

temperature. Interface materials appropriate to the package type reduce the variability induced by 

varying surface roughness.  

 

Since the interface thermal resistance is dependent upon allied force, the contact pressure 

becomes an integral design parameter of the thermal solution. If a package device can withstand 

a limited amount of contact pressure, it is important that thermal calculations use the appropriate 

thermal resistance for that pressure. The chemical compatibility of the interface materials with 

the package type is another important factor. 

 

1.2 THERMAL OPTIONS FOR DIFFERENT PACKAGES: 

Many applications have different constraints that favor one thermal solution over another. Power 

devices need to dissipate large amount of heat. The thermal solution for microprocessors must 

take space constraints into account. Surface mount and ball grid array technologies have 

assembly considerations. Notebook computers require efficiency in every area, including space, 
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weight, and energy usage. While the optimum solution for anyone of these package types must 

be determined on a case-by-case basis, some solutions address specific issues, making them 

more suitable for a particular application. 

1.2.1 POWER DEVICES: 

Newer power devices incorporate surface mount compatibility into the power-hungry design. 

These devices incorporate a heat transfer plate on the bottom of the device, which can be wave 

soldered directly to the printed circuit board.  

 

Metal-core substrates offer a potential solution to power device cooling, provided there are no 

other heat-sensitive devices in the assembly, and the cost of the board can be justified.  

 

1.2.2 MICROPROCESSORS: 

As microprocessor technology advances, the system designer struggles to keep ahead of the 

increase in the thermal output of both (the voltage regulator and the microprocessor. The use of 

active heat sinks allows concentrated, dedicated cooling of the microprocessor, without severely 

impacting space requirements. For some applications, specially designed passive heat sinks 

facilitate the use of higher-powered voltage regulators in the same footprint, eliminating the need 

for board redesign. 

 

1.2.3 BGAs: 

While BGA-packaged devices transfer more heat to the board then leaded devices, the type of 

package can affect the ability to dissipate sufficient heat to maintain high device reliability. 
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All plastic packages insulate the top of the device making heat dissipation through top mounted 

heat sinks difficult and more expensive. Metal heat spreaders incorporated into the top of the 

package enhance the ability to dissipate power from the chip. 

  

For some lower power devices flexible copper spreaders attach to pre-applied double sided tape, 

offering a “quick-fix” for border line applications. As the need to dissipate more power increases, 

the optimum heat sink becomes heavier. To prevent premature failure caused by ball shear, well 

designed of the self heat sinks include spring loaded pins or clips that allow the weight of the 

heat sinks to be burn by the PC-board instead of the device. 
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Chapter 2 
 
 
 
 
                                              THEORY 
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THEORY 

 

2.1 HEAT TRANSFER 

Heat is defined as energy transferred by virtue of temperature difference or gradient. Being a 

vector quantity, it flows with a negative temperature gradient. In the subject of heat transfer, it is 

the rate of heat transfer that becomes the prime focus. The transfer process indicates the tendency 

of a system to proceed towards equilibrium. There are 3 distinct modes in which heat transfer 

takes place: 

 

2.1.1 CONDUCTION: 

Conduction is the transfer of heat between 2 bodies or 2 parts of the same body through 

molecules. This type of heat transfer is governed by Fourier`s Law which states that – “Rate of 

heat transfer is linearly proportional to the temperature gradient”. For 1-D heat conduction- 

 

dx
dTkqk −=

                                                           (2.1) 

 

2.1.2  RADIATION: 

Thermal radiation refers to the radiant energy emitted by the bodies by virtue of their own 

temperature resulting from the thermal excitation of the molecules. It is assumed to propagate in 
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the form of electromagnetic waves and doesn’t require any medium to travel. The radiant heat 

exchange between 2 gray bodies at temperature T1 and T2 is given by: 

)( 4
2

4
121121 TTFAQ −= −− σ

                               (2.2) 

 

2.1.3 CONVECTION: 

When heat transfer takes place between a solid surface and a fluid system in motion, the process 

is known as Convection. When a temperature difference produces a density difference that 

results in mass movement, the process is called Free or Natural Convection. 

When the mass motion of the fluid is carried by an external device like pump, blower or fan, the 

process is called Forced Convection. In convective heat transfer, Heat flux is given by: 

 

)()( ∞−= TThxq wx                                 (2.3) 

 

2.2 CONVECTION 

Convection in the most general terms refers to the internal movement of currents within fluids 

(i.e. liquids and gases). It cannot occur in solids due to the atoms not being able to flow freely. 

 

Convection may cause a related phenomenon called advection, in which either mass or heat is 

transported by the currents or motion in the fluid. A common use of the term convection relates 

to the special case in which adverted (carried) substance is heat. In this case, the heat itself may 

be an indirect cause of the fluid motion even while being transported by it. In this case, the 
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problem of heat transport (and related transport of other substances in the fluid due to it) may 

become especially complicated. 

Convection is of two types:- 

1. Forced convection 

2. Free Convection 

 

2.2.1 FORCED CONVECTION 

When the density difference is created by some means like blower or compressor and due to 

which circulation takes place then it is known as forced convection 

 

2.2.2 FREE CONVECTION 

Density variation happens naturally then it is called free convection 

Here we are concerned for Newtonian fluid only (fluid that follows Newton law of cooling) 

 

τ = µ                               (2.4) 

2.3 Nondimensionalization 

Nondimensionalization is the partial or full removal of units from a mathematical equation by a 

suitable substitution of variables. This technique can simplify and parameterize problems where 

measured units are involved. It is closely related to dimensional analysis. In some physical 

systems, the term scaling is used interchangeably with nondimensionalization, in order to suggest 

that certain quantities are better measured relative to some appropriate unit. These units refer to 
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quantities intrinsic to the system, rather than units such as SI units. Nondimensionalization is not 

the same as converting extensive quantities in an equation to intensive quantities, since the latter 

procedure results in variables that still carry units. 

To nondimensionalize a system of equations, one must do the following: 

1. Identify all the independent and dependent variables. 

2. Replace each of them with a quantity scaled relative to a characteristic unit of measure to be 

determined. 

3. Divide through by the coefficient of the highest order polynomial or derivative term. 

4. Choose judiciously the definition of the characteristic unit for each variable so that the 

coefficients of as many terms as possible become 1. 

5. Rewrite the system of equations in terms of their new dimensionless quantities.  

 

The last three steps are usually specific to the problem where nondimensionalization is applied. 

However, almost all systems require the first two steps to be performed. 

 

As an illustrative example, consider a first order differential equation with constant coefficients: 

 

1. In this equation the independent variable here is t, and the dependent variable is x.  

2. Set        .  

This results in the equation  
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3. The coefficient of the highest ordered term is in front of the first derivative term. Dividing by 

this gives  

 

4. The coefficient in front of χ only contains one characteristic variable tc, hence it is easiest to 

choose to set this to unity first:  

 

 Subsequently,   

 

5. The final dimensionless equation in this case becomes completely independent of any 

parameters with units: 

 

Some of the dimensionless numbers are: 

 

2.3.1 REYNOLDS NUMBER 

In fluid mechanics, the Reynolds number is the ratio of inertial forces (vsρ) to viscous forces 

( /L) and consequently it quantifies the relative importance of these two types of forces for given 

flow conditions. Thus, it is used to identify different flow regimes, such as laminar or turbulent 

flow. 

It is one of the most important dimensionless numbers in fluid dynamics and is used, usually 

along with other dimensionless numbers, to provide a criterion for determining dynamic 
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similitude. When two geometrically similar flow patterns, in perhaps different fluids with 

possibly different flow-rates, have the same values for the relevant dimensionless numbers, they 

are said to be dynamically similar. 

It is named after Osborne Reynolds (1842–1912), who proposed it in 1883. Typically it is given 

as follows: 

                (2.5) 

Where: 

vs - Mean fluid velocity, 

L - Characteristic length, 

µ - (Absolute) dynamic fluid viscosity, 

ν - Kinematic fluid viscosity: ν = µ / ρ , 

ρ - Fluid density. 

For flow in pipes for instance, the characteristic length is the pipe diameter, if the cross section is 

circular, or the hydraulic diameter, for a non-circular cross section. 

 

Laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is 

characterized by smooth, constant fluid motion, while turbulent flow, on the other hand, occurs 

at high Reynolds numbers and is dominated by inertial forces, producing random eddies, vortices 

and other flow fluctuations. 

The transition between laminar and turbulent flow is often indicated by a critical 
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Reynolds number (Recrit), which depends on the exact flow configuration and must be 

determined experimentally. Within a certain range around this point there is a region of gradual 

transition where the flow is neither fully laminar nor fully turbulent, and predictions of fluid 

behavior can be difficult. For example, within circular pipes the critical Reynolds number is 

generally accepted to be 2300, where the Reynolds number is based on the pipe diameter and the 

mean velocity vs within the pipe, but engineers will avoid any pipe configuration that falls within 

the range of Reynolds numbers from about 2000 to 3000 to ensure that the flow is either laminar 

or turbulent. 

For flow over a flat plate, the characteristic length is the length of the plate and the characteristic 

velocity is the free stream velocity. In a boundary layer over a flat plate the local regime of the 

flow is determined by the Reynolds number based on the distance measured from the leading 

edge of the plate. In this case, the transition to turbulent flow occurs at a Reynolds number of the 

order of 105
 or 106. 

 

2.3.2 NUSSELT NUMBER 

The Nusselt number is a dimensionless number that measures the enhancement of heat transfer 

from a surface that occurs in a 'real' situation, compared to the heat transferred if just conduction 

occurred. Typically it is used to measure the enhancement of heat transfer when convection takes 

place. 

                    (2.6) 

Where 
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L = characteristic length, which is simply Volume of the body divided by the Area of the body 

(useful for more complex shapes) 

kf = thermal conductivity of the "fluid" 

h = convection heat transfer coefficient 

Selection of the significant length scale should be in the direction of growth of the boundary 

layer. A salient example in introductory engineering study of heat transfer would be that of a 

horizontal cylinder versus a vertical cylinder in free convection. 

Several empirical correlations are available that are expressed in terms of Nusselt number in the 

elementary analysis of flow over a flat plate etc. Sieder-Tate, Colburn and many others have 

provided such correlations. 

For a local Nusselt number, one may evaluate the significant length scale at the point of interest. 

To obtain an average Nusselt number analytically one must integrate over the characteristic 

length. More commonly the average Nusselt number is obtained by the pertinent correlation 

equation, often of the form Nu = Nu (Ra, Pr). 

The Nusselt number can also be viewed as being a dimensionless temperature gradient at the 

surface. 

 

2.3.3 PRANDTL NUMBER 

The Prandtl number is a dimensionless number approximating the ratio of momentum diffusivity 

(viscosity) and thermal diffusivity. It is named after Ludwig Prandtl. 

It is defined as: 
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                      (2.7) 

 

Where: 

ν is the kinematic viscosity, ν = µ / ρ. 

α is the thermal diffusivity, α = k / (µ cp). 

Typical values for Pr are: 

• around 0.7 for air and many other gases, 

• around 7 for water 

• around 7×1021
 for Earth's mantle 

• between 100 and 40,000 for engine oil, 

• between 4 and 5 for R-12 refrigerant 

• around 0.015 for mercury 

For mercury, heat conduction is very effective compared to convection: thermal diffusivity is 

dominant. For engine oil, convection is very effective in transferring energy from an area, 

compared to pure conduction: momentum diffusivity is dominant. 

In heat transfer problems, the Prandtl number controls the relative thickness of the momentum 

and thermal boundary layers. 

The mass transfer analog of the Prandtl number is the Schmidt number. 
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2.3.4 BRINKMAN NUMBER 

The Brinkman Number is a dimensionless group related to heat conduction from a wall to a 

flowing viscous fluid, commonly used in polymer processing. There are several definitions; one 

is 

                                             (2.8) 

Where 

NBr (or Br)= the Brinkman Number  

η = fluid viscosity (dynamic) 

U = fluid velocity 

κ = thermal conductivity of fluid 

T0 = bulk fluid temperature 

Tw = wall temperature  

In, for example, a screw extruder, the energy supplied to the polymer melt comes primarily from 

two sources (i) viscous heat generated by shear between parts of the flow moving at different 

velocities (ii) direct heat conduction from the wall of the extruder. The former is supplied by the 

motor turning the screw, the latter by heaters. The Brinkman Number is a measure of the ratio of 

the two. 
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2.3.5 PECLET NUMBER 

The Peclet number is a dimensionless number used in calculations involving convective heat 

transfer.  It is the ratio of the thermal energy convected to the fluid to the thermal energy 

conducted within the fluid.  If Pe is small, conduction is important and in such a case, the major 

source of conduction could be down the walls of a tube.  The Peclet number is the product of the 

Reynolds number and the Prandtl number.  It depends on the heat capacity, density, velocity, 

characteristic length and heat transfer coefficient. 

                        (2.9) 

Where, 

 u = flow velocity 

 T = temperature 

 U = velocity scale 

 L = length scale 

 = thermal diffusivity. 

2.4 NAVIER STOKE`S EQUATIONS: 

The Navier Stoke`s equations are derived from conservation principles of 

 Mass. 
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 Energy. 

 Momentum. 

 Angular momentum. 

 Equation of continuity. 

 

Conservation of mass is written as: 

0.).( =∇+=∇+
∂
∂ V

Dt
DV

t
p ρρρ

                                                  (2.10) 

Where ρ is the mass density (mass per unit volume), and v is the velocity of the fluid. In the case 

of an incompressible fluid, ρ does not vary along a path-line and the equation reduces to: 

                                                                         (2.11)
 Conservation of Momentum equation for an incompressible fluid is: 

 

  
( )u

x
Pg

Dt
Du

x .2Δ+
∂
∂

−= μρρ
                                                   (2.12) 

 
The Navier-Stokes Continuity equation for cylindrical coordinates is: 

                             (2.13) 

Note that the Navier-Stokes equations can only describe fluid flow approximately and that, at 

very small scales or under extreme conditions, real fluids made out of mixtures of discrete 

molecules and other material, such as suspended particles and dissolved gases, will produce 
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different results from the continuous and homogeneous fluids modeled by the Navier-Stokes 

equations. 

  (2.14) 

Note that the Navier-Stokes equations can only describe fluid flow approximately and that, at 

very small scales or under extreme conditions, real fluids made out of mixtures of discrete 

molecules and other material, such as suspended particles and dissolved gases, will produce 

different results from the continuous and homogeneous fluids modeled by the Navier-Stokes 

equations. 

 

2.5 DISCRETIZATION METHODS: 

The stability of the chosen discretization is generally established numerically rather than 

analytically as with simple linear problems. Special care must also be taken to ensure that the 

discretization handles discontinuous solutions gracefully. The Euler equations and Navier-Stokes 

equations both admit shocks, and contact surfaces. 

Some of the discretization methods being used are: 

 

2.5.1 FINITE VOLUME METHOD: 

This is the "classical" or standard approach used most often in commercial software and research 

codes. The governing equations are solved on discrete control volumes. This integral approach 
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yields a method that is inherently conservative (i.e., quantities such as density remain physically 

meaningful): 

                                         (2.15) 

Where Q is the vector of conserved variables, F is the vector of fluxes (see Euler equations or 

Navier-Stokes equations), V is the cell volume, and is the cell surface area. 

 

2.5.2 FINITE ELEMENT METHOD: 

This method is popular for structural analysis of solids, but is also applicable to fluids. The FEM 

formulation requires, however, special care to ensure a conservative solution. The FEM 

formulation has been adapted for use with the Navier-Stokes equations. In this method, a 

weighted residual equation is formed: 

                                               (2.16) 

Where Ri is the equation residual at an element vertex i, Q is the conservation equation expressed 

on an element basis, Wi is the weight factor and Ve- is the volume of the element. 

 

2.5.3 FINITE DIFFERENCE METHOD: 

This method has historical importance and is simple to program. It is currently only used in few 

specialized codes. Modern finite difference codes make use of an embedded boundary for 

handling complex geometries making these codes highly efficient and accurate. Other ways to 
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handle geometries are using overlapping-grids, where the solution is interpolated across each 

grid. 

                                (2.17) 

Where Q is the vector of conserved variables, and F, G, and H are the fluxes in the x, y, and z 

directions respectively. 

Boundary element method: The boundary occupied by the fluid is divided into surface mesh. 

High resolution schemes are used where shocks or discontinuities are present. To capture sharp 

changes in the solution requires the use of second or higher order numerical schemes that do not 

introduce spurious oscillations. This usually necessitates the application of flux limiters to ensure 

that the solution is total variation diminishing. 

 

2.6 HYDRAULIC DIAMETER 

The hydraulic diameter  is commonly used when dealing with non-circular pipes, holes or 

ducts.  

The definition of the hydraulic diameter is:  

 

dh = 4 A / p                          (2.18) 



 
24 

 

 Where: 

dh = hydraulic diameter 

 A = area section of the duct 

p = wetted perimeter of the duct  

2.6.1 Use of hydraulic diameter: 

Estimating the turbulent length-scale: For fully-developed flow in non-circular ducts the 

turbulent length scale can be estimated as . This is as useful estimation for setting 

turbulence boundary conditions for inlets that have fully developed flow.  

 

Computing Reynolds number: The hydraulic diameter is often used when computing the 

dimensionless Reynolds number for non-circular ducts.  

 

2.6.2 Hydraulic diameters for different duct-geometries: 

Using the definition above the hydraulic diameter can easily be computed for any type of duct-

geometry. Below follows a few examples.  

Circular pipe: 

For a circular pipe or hole the hydraulic diameter is:  

                                                              (2.19) 
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Where d is the real diameter of the pipe. Hence, for circular pipes the hydraulic diameter is the 

same as the real diameter of the pipe.  

Rectangular tube: 

For a rectangular tube or hole with the width and the height the hydraulic diameter is:  

                                         (2.20) 

Coaxial circular tube: 

For a coaxial circular tube with an inner diameter and an outer diameter the hydraulic 

diameter is:  

                                     (2.21) 
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Chapter 3 
 
 
 
 
     MATHEMATICAL MODELLING 

 

 

 

 

 

 

 



 
27 

 

MATHEMATICAL MODELLING 
 

It is known that the viscous dissipation terms in the governing energy conservation equation are 

commonly and conveniently neglected for describing conventional flow situations. However, in 

microchannel flows, the existence of a large velocity gradient may result in significant errors by 

ignoring the effects of viscous dissipation. Therefore, in this analysis, the conventional theory 

will be employed taking into consideration the viscous dissipation effects to analyze the 

characteristics of microchannel flows. The governing equations used to analyze the diffusion 

effect in the microchannel flow are given by, 

                                                                      (3.1) 

                         (3.2) 

                      (3.3) 

                                (3.4) 

where Φ is the dissipation function due to the viscous diffusion, and is given by, 

                                       (3.5) 

U and v are the velocity components in the axial (x) and radial (r) directions respectively. P is the 

pressure, ρ is the density,μ is the viscosity of the fluid, and cp is the specific heat capacity at 

constant pressure. 
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Conservation of Thermal Energy Equation 

When the flow is fully developed, assuming constant thermophysical properties and including 

axial conduction and viscous dissipation, the equation for conservation of thermal energy can be 

written as,  

22 2

2 2

1 Br dUU
X Pe X Y Pe dY
θ θ θ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

    (3.6) 

X* (= X/Pe) is the normalized axial coordinate. X, Y, U, θ and Pe in Eq. (3.6) have been defined 

as X = x/Dh, Y = y/Dh, U = u/uavg, θ = (T – wT )/(Ti – wT ), Pe =  (uavg Dh)/α = Re Pr     

Re = (ρ uavg Dh)/μ and Pr = (μ Cp)/k 

Br is the Brinkman number. 

U, is given by,  

U = u/uavg = (3/2){1 – (4Y)2}       (3.7) 

 

Eq. (3.6) has been rewritten in terms of X* to facilitate evaluation of effect of axial conduction in 

the presence of viscous dissipation. Equation (3.6) takes the form,  

22 2

2 2 2
1

* *
dUU Br
dYX Pe X Y

θ θ θ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
     (3.8) 

Equation (3.8) is subjected to the boundary conditions including the downstream limiting 

conduction condition. The non-dimensional boundary conditions are as following. 

θ = 1      at X* = 0  for    –1/4 ≤ Y ≤ +1/4   

θ = – (1 – A)/(1 + A)  at Y = –1/4  for  all X*  > 0   (3.9) 

θ = (1 – A)/(1 + A)  at Y = 1/4  for  all X*  > 0 
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where A, termed the asymmetry parameter is defined by,  

A = ΔT2/ ΔT1                  (3.9a) 

 

where ΔT2 and ΔT1 are the excess wall temperatures relative to the fluid inlet temperature, Ti. 

Thus,  

ΔT2 = Tw2 – Ti             (3.9b) 

ΔT1 = Tw1 – Ti              (3.9c) 

θ = 4Y {(1 – A)/(1 + A)} – 192 Br Y4 + (3/4) Br        for X*≥ *
clX   (3.10a)  

OR for A =1,           

θ = –192 Br Y4 + (3/4) Br for X* ≥ *
clX      (3.10b) 

 

3.1 NUMERICAL SCHEME: SAR 

 

The basic philosophy of the SAR scheme is to guess a profile for each variable that satisfies the 

boundary conditions. Let the partial differential equation governing a variable, φ (X, Y), 

expressed in finite difference form be given by , 0M Nφ =  where (M, N) represent the nodal point, 

when the non-dimensional height and length of the channel are divided into a finite number of 

intervals MD, ND respectively. The guessed profile for the variable φ  at any mesh point, in 

general, will not satisfy the equation. Let the error in the equation at (M, N) and kth iteration be 

k

,M Nφ  

The (k+1)th approximation to the variable φ  is obtained from, 
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( ){ }k kk 1 k
, ,, , ,M N M NM N M N M Nφ φ ω φ φ φ+ = − ∂ ∂        (3.11) 

where ω is an acceleration factor which varies between 0 < ω < 2. ω < 1 represents under-

relaxation and ω > 1 represents over relaxation.  

 

The procedure of correcting the variable φ  at each mesh point in the entire region of interest is 

repeated until a convergence criterion is satisfied. The criterion is that, the normalized change in 

the variable at any mesh point between kth and (k+1)th approximation satisfies, 

( )k k 1
, ,1 M N M Nφ φ +− <  ε          (3.12) 

where ε, the error tolerance limit, is a prescribed small positive number. 

To correct the guessed profiles, each dependent variable has to be associated with one equation. 

It is natural to associate the equation for a variable that contains the highest order derivative of 

that variable. For example, conservation of energy equation is associated for correcting the 

temperature profile. 

 

3.2 Application of the SAR Scheme 

 

Let  MD  and  ND  be  the  number  of  divisions  in  X*  and  Y  directions respectively. The 

intervals ΔX* (in terms of the transformed coordinate) and ΔY are given by, 

 

ΔX* = *
fdX / MD        (3.13) 

ΔY = 1/ (2 ND)        (3.14) 
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*
fdX = Xfd/Pe where Xfd is the non-dimensional axial distance needed for the temperature field to 

be fully developed.  

 

According to the SAR scheme, the error θ  due to guessed values of θ at any mesh point (M, N) 

are obtained using the backward difference formula for convective term and central difference 

formula for the diffusion term in Eq. (3.8). The error θ  in finite difference form is as following. 

                         

(3.15) 

To correct the profile for θ according to Eq. (3.11) the following derivative becomes necessary, 

 

( ) ( )2 2 2
1 2 2M ,N M ,N

* *M ,N

U

X Pe YX

θ
θ Δ ΔΔ

⎛ ⎞
⎜ ⎟∂ ⎛ ⎞

= + +⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎜ ⎟
⎝ ⎠

        (3.16) 

Boundary conditions given by Eq. (3.9) on θ in finite difference form become, 

 

1,Nθ  = 1     at X*= 0  for    –1/4 ≤ Y ≤ +1/4 

1M ,θ  = – (1 – A)/(1 + A) at Y = –1/4  for  all X* > 0                                  (3.17) 

1M ,NDθ +  = (1 – A)/(1 + A) at Y = 1/4  for  all X*> 0   
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3.3 LOCAL NUSSELT NUMBER  

The defining equation for the local heat transfer coefficient at x, h1x, say, at the wall at y = – L/2 

is given by, 

( ) 1 1/ 2
( )x w by L

k T y h T T
= −

− ∂ ∂ = −         (3.18) 

In Eq. (3.18), Tb is the mixed mean temperature or the bulk mean temperature defined by,  

Tb = 
2

2

L /

L /
uTdy

−∫  /
2

2

L /

L /
udy

−∫          (3.19) 

From Eq. (3.18), it follows that Nu1x, the local Nusselt number at Y = –1/4, based on the 

hydraulic diameter is given by, 

1xNu  = ( )1x hh D k  = {1/(θ* – 1/ 4Yθ = −
 )} ( ) 1/ 4Y

Yθ
= −

∂ ∂      (3.20) 

Similarly, the local Nusselt number at Y = 1/4, the second wall is given by,  

2xNu  = ( )2x hh D k  = –{1/(θ* – 1/ 4Yθ =
 )} ( ) 1/ 4Y

Yθ
=

∂ ∂      (3.21) 

In Eqs. (3.20) and (3.21), θ*, the non-dimensional bulk mean temperature is given by,  

θ* = (Tb – wT )/(Ti – wT ) =
1 4 1 4

1 4 1 4

/ /

/ /
U dY UdYθ

− −∫ ∫       (3.22) 

When A = 1, noting 1/ 4Y = −θ  = 1/ 4Y =θ  = 0, Eqs. (3.20) and (3.21) yield,  

1xNu  = 2xNu  = xNu = (1/θ*) ( ) 1/ 4Y
Yθ

= −
∂ ∂  = –(1/θ*) ( ) 1/ 4Y

Yθ
=

∂ ∂    (3.22) 
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Chapter 4 
 
 
 
 
                     ABOUT THE PROJECT 
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ABOUT THE PROJECT 

 

4.1 Objective 
To analyze the thermal development of forced convection in a parallel plate channel filled by an 

incompressible fluid, with walls held at uniform temperature, and with the effects of axial 

conduction and viscous dissipation included. The analysis leads to expressions for the local 

Nusselt number, as a function of the dimensionless longitudinal coordinate and other parameters 

(Peclet number, Brinkman number). 

 

4.2 Channel Geometry 

 

X*=0 to 0.4                  for M =1 to 1001,             

Y=-0.25 to 0.25            for N=1 to 41, 

Step size: 

Δx =0.0004,                  Δy=0.0125 
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4.3 Procedure for evaluation of NuL,X 

 

1. Based on SAR scheme velocity and temperature values for all the mesh points(X=1 to 1001, 

Y=1 to 41) were calculated. 

2. Using trapezoidal rule; values for the bulk mean temperature were calculated.   

3. Using 3-point forward discretization; values of dθ/dy  were evaluated at the periphery of the 

channel(Y=0.25,-0.25). 

4. Local Nusselt number values were calculated for different X* values. 

5. Graph: Nu vs X was plotted for different peclet number values. 
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Chapter 5 
 
 
 
 
          RESULT AND DISCUSSION      
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5.1RESULT  
 

Nu1X(=Nu2X) for Pe=1 
 

Table: 1 

X*  Nu1X 

0.002  119.5044 
0.01  120.0414 
0.05  120.0414 
0.07  120.0414 
0.1  120.0414 
0.15  120.0414 
0.2  120.0414 
0.3  120.0414 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

     Figure: 1; A plot showing variation of local Nusselt number with X* for Pe=1, Br=1 
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Table: 2 

 
Nu1X(=Nu2X) for Pe=10 

            
 

X*  Nu1X 

0.002  11.05009 
0.01  7.768944 
0.05  7.518209 
0.07  7.518401 
0.1  7.519049 
0.15  7.52275 
0.2  7.539407 
0.3  7.94603 

                                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
                              
         Figure: 2; A plot showing variation of local Nusselt number with X* for Pe=10, Br=1 
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Table: 3 

 
Nu1X(=Nu2X) for Pe=20 

 
            

X*  Nu1X 

0.002  11.05009 
0.01  7.768944 
0.05  7.518209 
0.07  7.518401 
0.1  7.519049 
0.15  7.52275 
0.2  7.539407 
0.3  7.94603 

                                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure: 3; A plot showing variation of local Nusselt number with X* for Pe=20, Br=1 
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Table: 4 

 
Nu1X(=Nu2X) for Pe=50 

 
            

X*  Nu1X 

0.002  11.05009 
0.01  7.768944 
0.05  7.518209 
0.07  7.518401 
0.1  7.519049 
0.15  7.52275 
0.2  7.539407 
0.3  7.94603 

                                                           
 
 
 
 
 
 
 
 
 
 
 
 
        Figure: 4; A plot showing variation of local Nusselt number with X* for Pe=50, Br=1 
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5.2 DISCUSSION 
Analysing the effects of adding an axial conduction term and a viscous dissipation term to the 

thermal energy equation for the problem of forced convection in a parallel-plate channel, with 

the temperature held constant at the walls. The Brinkman number and Peclet number have a 

significant effect on the developing Nusselt number. 

Nusselt number for different X* and Peclet number (=1, 10, 20, 50) values was calculated. It was 

observed that Nusselt number attains a high value for small X* values and decreases almost 

asymptotically with rise in X* values. 

A sharp change in the nature of graph is obtained for Pe=1 and Pe=10.Rise in Peclet number 

(above Pe=10) doesn’t seem to have much impact on the Nusselt number values. 

5.3 CONCLUSION 

• Nusselt number decreases asymptotically with rise in the value of X*. 

• A slight increase in the value of Nusselt number is obtained as approaching the end of 

channel. 

• Small increments in Peclet number (above Pe=10), doesn’t seem to have much impact on the 

values of local Nusselt number. 
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