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ABSTRACT 

Image Compression addresses the problem of reducing the amount of data required to represent the 

digital image. Compression is achieved by the removal of one or more of three basic data redundancies: 

(1) Coding redundancy, which is present when less than optimal (i.e. the smallest length) code words are 

used; (2) Interpixel redundancy, which results from correlations between the pixels of an image; &/or 

(3) psycho visual redundancy which is due to data that is ignored by the human visual system (i.e. 

visually nonessential information). Huffman codes contain the smallest possible number of code 

symbols (e.g., bits) per source symbol (e.g., grey level value) subject to the constraint that the source 

symbols are coded one at a time. So, Huffman coding & Shannon Coding , which remove coding 

redundancies , when combined with the technique of image compression using Discrete Cosine 

Transform (DCT) & Discrete Wavelet Transform (DWT) helps in compressing the image data to a very 

good extent. 

For the efficient transmission of an image across a channel, source coding in the form of image 

compression at the transmitter side & the image recovery at the receiver side are the integral process 

involved in any digital communication system. Other processes like channel encoding, signal 

modulation at the transmitter side & their corresponding inverse processes at the receiver side along 

with the channel equalization help greatly in minimizing the bit error rate due to the effect of noise & 

bandwidth limitations (or the channel capacity) of the channel. 
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CHAPTER 01 

INTRODUCTION TO LOSSY IMAGE COMPRESSION 

Image has the quality of higher redundancy that we can generally expect in arbitrary data. For 

example, a pair of adjacent horizontal lines in an image is nearly identical (typically), while two 

adjacent lines in a book have no commonality. Images can be sampled & quantized sufficiently 

finely so that a binary data stream can represent the original data to an extent that is 

satisfactory to the most discerning eye. Since we can represent a picture by something 

between a thousand & a million bytes of data, we should be able to apply the techniques to the 

task of compressing that data for storage & transmission. 

                                        Another interesting point to note is that the human eye is very tolerant 

to approximation error in image. Thus, it may be possible to compress the image data in a 

manner in which the less important information (to the human eye) can be dropped. That is, by 

trading some of the quality of the image we might obtain a significantly reduced data size. This 

technique is called LOSSY COMPRESSION. By applying such techniques we can store or 

transmit all of the information content of a string of data with fewer bits then are in the source 

data. 

1.1 Using Disrete Cosine Transform 

The lossy image simplification step, which we call the image reduction, is based on the 

exploitation of an operation known as Discrete Cosine Transform (DCT), defined as follows: 

The DCT is the unitary discrete cosine transform (DCT) of each channel in the M-by-N input 

matrix, u. 

Summation ∑ (from m=1 to M) 

Y(K,L)= W(K) ∑ 4y(m,L) COS(π(K -1)(2m-1)/2M) ,     k=1,2,3……..M 

Where,        W (K) = 1/sqrt (M)    when K=1 

W (K) = sqrt (2/M)    when K=2……M 

Where input image is M-by-N pixel, y(i,j) is row i & column j, Y(K,L) is the DCT coefficient in 



row K & column l of the DCT matrix. All DCT multiplications are real. This lowers the number of 

required multiplication, as compared to the Discrete Fourier Transform. For most images, 

much of the signal energy lies at low frequencies, which appear at the upper left corner of the 

DCT. The lower right values represent higher frequencies, & are often small (usually small 

enough to be neglected with little visible distortion). 

In the image reduction process, the DCT is applied to 8X8 pixel blocks of image. Hence if the 

image is 256x256 pixels in size, we break it into 32X32 square blocks of 8X8 pixels & treat 

each one independently. The 64 pixel values in each block are transformed by the DCT into a 

new set of 64 values. These new 64 values, known also as the DCT coefficients represent the 

spatial frequency of the image sub-block. The upper left corner of the DCT matrix has low 

frequency components (see figure 1). The top left coefficient is called the DC coefficient. Its 

value is proportional to the average value of the 8X8 pixels. The rest era called the AC 

coefficients. 

Disrete Cosine Transform & Quantization followed by Zigzag traversing 

However due to the nature of most of the images, maximum energy (information) lies in low 

frequency as opposed to the high frequency. We can represent the high frequency 

components coarsely, or drop them altogether, without strongly affecting the quality of the 

resulting image reconstruction. This leads to a lot of compression (lossy). The JPEG lossy 

compression algorithm does the following operations: (see next page) 

1.     First the lowest weights are trimmed by setting them to zero. 

2. The remaining weights are quantized (that is, rounded of to some nearest of discrete code 

represented values), some more coarsely than others according to observed levels of 

sensitivity of viewers to these degradations. The accuracy of quantization depends on the 

number of quantization levels taken. 



 

FIGURE: 1 

Typical Discrete Cosine Transform Values for a 4X4 image block. 

 

 

FIGURE: 2 

An Example of Quantization followed by zigzag traversing 

We next look at the AC coefficients. We first quantize them, which transforms most of the high 

frequency coefficients to zero. We then use a zigzag coding as shown in figure 2. The purpose 

of zigzag coding is that we gradually move from the low frequency to high frequency, avoiding 

abrupt jumps in the values. Zigzag coding will lead to long run of 0‟s, which are ideal for 

Huffman coding. 

1.1.2 MATLAB Program for DCT & Quantization followed by Zigzag traversing in 
function form: 

function [sequence Highm maximum minimum Ro2 Co2 Do2]= 

dct_zigzag(yimu,Ro1,Co1,Do,dia,quantization_level1,block_size1); 

 

%----dct_zigzag--- is the name of function----- 

%--------------Variables-------------- 

% yimu : image Matrix having size Ro1 Co1 Do1 

% sequence : output linear data sequence after DCT, Quantization & ZigZag 

traversing 

% dia : no of diagonals whose values are considered during ZigZag traversing 

 

pad_row=mod(Ro1,block_size1); 



pad_col=mod(Co1,block_size1); 

 

%padding rows & columns for blocks 

if (pad_row~=0 && pad_col~=0) 

yim1=zeros(Ro1+block_size1-pad_row,Co1+block_size1-pad_col,Do); 

end 

if (pad_row~=0 && pad_col==0) 

yim1=zeros(Ro1+block_size1-pad_row,Co1,Do); 

end 

if (pad_row==0 && pad_col~=0) 

yim1=zeros(Ro1,Co1+block_size1-pad_col,Do); 

end 

if (pad_row==0 && pad_col==0) 

yim1=yimu; 

end 

 

yim1(1:Ro1,1:Co1,1:Do)=yimu; 

 

[Ro2 Co2 Do2]=size(yim1) 

 

n1=Ro2/block_size1; 

n2=Co2/block_size1; 

 

sequence=[]; 

for dd=1:Do2 

cell_image=mat2cell(yim1(:,:,dd),block_size1*ones(1,n1),block_size1*ones(1,n2)); 

 

for i=1:n1 

for j=1:n2 

image_block=[]; 

image_block=cell2mat(cell_image(i,j)); 

image_block_dct=dct(image_block); 

 

 

%-----------QUANTIZATION----------- 

 

minimum(i,j,dd)=min(image_block_dct(:)'); 

maximum(i,j,dd)=max(image_block_dct(:)'); 

Highm=2^quantization_level1-1; 

 

image_block_dct=round((image_block_dct-minimum(i,j,dd))*Highm/(maximum(i,j,dd)-

minimum(i,j,dd))); 

 

x=image_block_dct; 

x1=fliplr(x'); 

 

v=cell(2*block_size1-1,1); 

s=1; 

a=-(block_size1-1); 

b=block_size1+1; 

for k=a:b 

d = diag(x1,k); 

v(s,1)={d}; 

s=s+1; 

end 

 

ct=dia; 



seq1=[]; 

 

%-----------------ZIGZAG TRAVERSING------------------ 

for u=1:ct 

if mod((2*block_size1-u),2)==0 

seq1=[seq1 (cell2mat(v(2*block_size1-u))')]; 

else 

seq1=[seq1 fliplr(cell2mat(v(2*block_size1-u))')]; 

end 

end 

sequence1=[seq1 zeros(1,(block_size1*block_size1-length(seq1)))]; 

sequence=[sequence sequence1]; 

end 

end 

end 

 

1.1.3 Image recovery through IDCT & Inverse Quantization 

At the receiver‟s end, after Huffman/Shannon Decoding, following two operations are 

performed in order to recover the image: 

1. Inverse Discrete Cosine Transform (IDCT), corresponding to the DCT done at transmitters‟   

side. 

   Inverse Discrete Cosine Transform (IDCT) is defined below : 

   For an M-by-N matrix whose Lth column contains the length-M IDCT of the corresponding  

input column: 

    Summation ∑ (from K=1 to M) 

    Y(M,L)= ∑ W(K)* U(K,L) COS(π(K -1)(2m-1)/2M) ,     m=1,2,3……..M 

    Where,        W (K) = 1/sqrt (M)    when K=1 

    W (K) = sqrt (2/M)    when K=2……M 

2. De-quantization (or Inverse-quantization) corresponding to the quantization done at 

transmitters‟ side. 

3. Consturction of 8X8 block matrix from the linear sequence of data followed by formation of 

Image Matrix by combining all 8X8 bolcks. 

1.1.4 The Matlab Program including above three steps for Image recovery in function 
form 

function 

image_recov=idct_zigzag(string,diag1,max,min,High,Ro,Co,Do,block_size2,row,column,d

im) 

 



%------image_recov : recovered image------------- 

 

h=0; 

for di=1:Do 

 

cell_block=cell(Ro/block_size2,Co/block_size2); 

for i1=1:(Ro/block_size2) 

for j1=1:(Co/block_size2) 

 

 

R1=zeros(block_size2,block_size2); 

ru=[]; 

r=[]; 

ru=string((1+(block_size2*block_size2)*h):(block_size2*block_size2)*(h+1)); 

r=ru*((max(i1,j1,di)-min(i1,j1,di))/High)+ min(i1,j1,di); 

 

 

if block_size2==16 

c=[1 1;2 3;4 6;7 10;11 15;16 21;22 28;29 36;37 45;46 55;56 66;67 78;79 91;92 

105;106 120;121 136;137 151;152 165;166 178;179 190;191 201;202 211;212 220;221 

228;229 235;236 241;242 246;247 250;251 253;254 255;256 256]; 

end 

if block_size2==8 

c=[1 1;2 3;4 6;7 10;11 15;16 21;22 28;29 36;37 43;44 49;50 54;55 58;59 61;62 63;64 

64]; 

end 

if block_size2==4 

c=[1 1;2 3;4 6;7 10;11 13;14 15;16 16]; 

end 

if block_size2==2 

c=[1 1;2 3;4 4]; 

end 

 

for k=1:diag1 

if mod(k,2)==0 

R1=R1+diag(r(c(k,1):c(k,2)),k-block_size2); 

else 

R1=R1+diag(fliplr(r(c(k,1):c(k,2))),k-block_size2); 

end 

end 

 

R0=fliplr(R1'); 

Rtrd=R0'; 

Rtrdi = idct(Rtrd); 

cell_block(i1,j1)={Rtrdi}; 

h=h+1; 

end 

end 

 

y1(:,:,di)=cell2mat(cell_block); 

end 

 

image_recov=y1(1:row,1:column,1:dim); 

 

 



1.2 Using Discrete Wavelet Transform 

1.2.1 Image compression using Using Discrete Wavelet Transform 

Compression is one of the most important applications of wavelets. Like de-noising, the 

compression procedure contains three steps: 

1) Decomposiyion: Choose a wavelet, choose a level N. Compute the wavelet decomposition 

of the signal at level N. 

2) Threshold detail coefficients: For each level from 1 to N, a threshold is selected and hard 

thresholding is applied to the detail coefficients. 

3) Reconstruct: Compute wavelet reconstruction using the original approximation coefficients 

of level N and the modified detail coefficients of levels from 1 to N. 

 

Global Thresholding 

The compression features of a given wavelet basis are primarily linked to the relative 

scarceness of the wavelet domain representation for the signal. The notion behind 

compression is based on the concept that the regular signal component can be accurately 

approximated using the following elements: a small number of approximation coefficients (at a 

suitably chosen level) and some of the detail coefficients. 

 

n = 5;                                         % Decomposition Level 

w = 'sym8';                                % Near symmetric wavelet 

[c l] = wavedec2(x,n,w);         % Multilevel 2-D wavelet decomposition. 

 

In this first method, the WDENCMP function performs a compression process from the wavelet 

decomposition structure [c,l] of the image. 

 

opt = 'gbl';               % Global threshold 

thr = 20;                    % Threshold 

sorh = 'h';                 % Hard thresholding 

keepapp = 1;           % Approximation coefficients cannot be thresholded 

 

[xd,cxd,lxd,perf0,perfl2] = wdencmp(opt,c,l,w,n,thr,sorh,keepapp); 

 

image(x) 

title('Original Image') 

colormap(map) 



figure('Color','white'),image(xd) 

title('Compressed Image - Global Threshold = 20') 

colormap(map) 

wdencmp: WDENCMP De-noising or compression using wavelets. WDENCMP performs a 

de-noising or compression process of a signal or an image using wavelets. 

[XC,CXC,LXC,PERF0] =  WDENCMP('gbl',X,'wname',N,THR,SORH,KEEPAPP)   

returns a de-noised or compressed version XC of input signal X (1-D or 2-D) obtained by 

wavelet coefficients thresholding using global positive threshold THR. Additional output 

arguments [CXC,LXC] are the wavelet decomposition structure of XC,   PERF0  is  

compression scores in percentages. Wavelet decomposition is performed at level N and 

'wname' is a string containing the wavelet name. SORH ('s' or 'h') is for soft or hard 

thresholding.  If KEEPAPP = 1, approximation coefficients cannot be threshold, otherwise it is 

possible. 

 

Matlab Program for wdencmp 

function [xc,cxc,lxc,perf0] = wdencmp(o,varargin) 

 

% Get Inputs 

w    = varargin{indarg}; 

n    = varargin{indarg+1}; 

thr  = varargin{indarg+2}; 

sorh = varargin{indarg+3}; 

if (o=='gbl') , keepapp = varargin{indarg+4}; end 

 

% Wavelet decomposition of x 

[c,l] = wavedec2(x,n,w); 

 

% Wavelet coefficients thresholding. 

 

if keepapp 

% keep approximation. 

cxc = c; 

if dim == 1, inddet = l(1)+1:length(c); 

else, inddet = prod(l(1,:))+1:length(c); end 

% threshold detail coefficients. 

cxc(inddet) = c(inddet).*(abs(c(inddet)>thr));  % hard thresholding 

else 

% threshold all coefficients. 

cxc = c.*(abs(c)>thr);  % hard thresholding 

end 

 



lxc = l; 

% Wavelet reconstruction of xd. 

if dim == 1,xc = waverec(cxc,lxc,w); 

else xc = waverec2(cxc,lxc,w); 

end 

 

% Compute compression score. 

perf0 = 100*(length(find(cxc==0))/length(cxc)); 

 

wavedec2 Multilevel 2-D wavelet decomposition 

Syntax 

[C,S] = wavedec2(X,N,'wname') 

[C,S] = wavedec2(X,N,Lo_D,Hi_D) 

Description:  wavedec2 is a two-dimensional wavelet analysis function. 

[C,S] = wavedec2(X,N,'wname') returns the wavelet decomposition of the matrix X at level N, 

using the wavelet named in string 'wname' (see wfilters  for more information). 

Outputs are the decomposition vector C and the corresponding bookkeeping matrix S. 

N must be a strictly positive integer (see wmaxlev for more information). 

Instead of giving the wavelet name, you can give the filters. 

For [C,S] = wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass filter and Hi_D is 

the decomposition high-pass filter. 

Vector C is organized as 

C = [ A(N) | H(N) | V(N) | D(N) | ... 

H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ]. 

where A, H, V, D, are row vectors such that 

A = approximation coefficients,   H = horizontal detail coefficients, 

V = vertical detail coefficients,     D = diagonal detail coefficients 

Each vector is the vector column-wise storage of a matrix. 

Matrix S is such that: 

S(1,:) = size of app. coef.(N) 



S(i,:) = size of det. coef.(N-i+2) for i = 2,...,N+1 

and S(N+2,:) = size(X). 

Matlab Program for wavedec2 

function [c,s] = wavedec2(x,n,IN3) 

%   [C,S] = WAVEDEC2(X,N,'wname') returns the wavelet 

%   decomposition of the matrix X at level N, using the wavelet named in string 'wname' (see WFILTERS). 

%   Outputs are the decomposition vector C and the corresponding bookkeeping matrix S. 

 

s = [size(x)]; 

c = []; 

 

for i=1:n 

[x,h,v,d] = dwt2(x,Lo_D,Hi_D); % decomposition 

c = [h(:)' v(:)' d(:)' c];     % store details 

s = [size(x);s];               % store size 

 

end 

% Last approximation. 

c = [x(:)' c]; 

s = [size(x);s]; 

 

DWT2  Single-level discrete 2-D wavelet transform 

Syntax 

[cA,cH,cV,cD] = dwt2(X,'wname') 

[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D) 

Description 

The dwt2 command performs a single-level two-dimensional wavelet decomposition with 

respect to either a particular wavelet ('wname', see wfilters for more information) or particular 

wavelet decomposition filters (Lo_D and Hi_D) you specify. 

[cA,cH,cV,cD] = dwt2(X,'wname') computes the approximation coefficients matrix cA and 

details coefficients matrices cH, cV, and cD (horizontal, vertical, and diagonal, respectively), 

obtained by wavelet decomposition of the input matrix X. The 'wname' string contains the 

wavelet name. 

[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D) computes the two-dimensional wavelet decomposition 

as above, based on wavelet decomposition filters that you specify. 



Lo_D is the decomposition low-pass filter. 

Hi_D is the decomposition high-pass filter. 

Lo_D and Hi_D must be the same length. 

Algorithm 

For images, there exist an algorithm similar to the one-dimensional case for two-dimensional 

wavelets and scaling functions obtained from one- dimensional ones by tensorial product. 

This kind of two-dimensional DWT leads to a decomposition of approximation coefficients at 

level j in four components: the approximation at level j + 1, and the details in three orientations 

(horizontal, vertical, and diagonal). 

The following diagram describes the basic decomposition steps for images: 

 

 

FIGURE 3 

TWO-DIMENSIONAL DWT 



1.2.2  Matlab Program for Image Compression Using DWT 

close all; 

clear all; 

clc; 

X=imread('C:\Documents and Settings\Shrikant Vaishnav\My Documents\My Pictures\My Pictures\lena_dct.bmp'); 

x=rgb2gray(X); 

img=x; 

 

figure(3) 

imshow(x) 

map=colormap; 

 

figure(1) 

image(x) 

title('Original Image') 

colormap(map) 

 

n = 5;                   % Decomposition Level 

w = 'sym8';              % Near symmetric wavelet 

 

[Lo_D,Hi_D] = wfilters(w,'d'); 

 

% Initialization. 

a=x; 

l = [size(a)]; 

c = []; 

 

for i=1:n 

[a,h,v,d] = dwt2(a,Lo_D,Hi_D); % decomposition........a is approximation Matrix 

c = [h(:)' v(:)' d(:)' c];     % store details 

l = [size(a);l];               % store size 

 

end 

 

% Last approximation. 

c = [a(:)' c]; 

l = [size(a);l]; 

% In this first method, the WDENCMP function performs a compression process 

% from the wavelet decomposition structure [c,l] of the image. 

thr = 50;    % Threshold 

keepapp = 1; % Approximation coefficients cannot be thresholded 

 

% [cxd,perf0] = compress_dwt(c,l,thr,keepapp); 

 

if keepapp 

% keep approximation. 

cxd = c; 

inddet = prod(l(1,:))+1:length(c); 



cxd(inddet) = c(inddet).*(abs(c(inddet))>thr);  % threshold detail coefficients. 

else 

cxd   = c.*(abs(c)>thr);  % threshold all coefficients. 

End 

 

% Compute compression score. 

perf0 = 100*(length(find(cxd==0))/length(cxd)); 

 

Wavelet Reconstruction Or Data Recovery 
 

function xd = waverec2(cxd,l,w); 

 

rmax = size(l,1); 

nmax = rmax-2; 

 

[Lo_R,Hi_R] = wfilters(w,'r'); 

 

% Initialization. 

 

nl   = l(1,1); 

nc   = l(1,2); 

xd   = zeros(nl,nc); 

xd(:) = cxd_r(1:nl*nc); 

 

% Iterated reconstruction. 

 

rm   = rmax+1; 

for p=nmax:-1:1 

 

k     = size(l,1)-p; 

first = l(1,1)*l(1,2)+3*sum(l(2:k-1,1).*l(2:k-1,2))+1; 

add   = l(k,1)*l(k,2); 

 

last = first+add-1; 

h = reshape(cxd_r(first:last),l(k,:)); 

first = first+add; last = first+add-1; 

v = reshape(cxd_r(first:last),l(k,:)); 

first = first+add; last = first+add-1; 

d = reshape(cxd_r(first:last),l(k,:)); 

 

xd = idwt2(xd,h,v,d,Lo_R,Hi_R,l(rm-p,:)); 

end 

 

figure(2),image(xd) 

title('Compressed Image - Global Threshold = 20') 

colormap(map) 

 

 



OUTPUT: 

dwt_compression_score_in_percentage = perf0    % Compression score  

 

dwt_compression_ratio=100/(100-perf0)  % Compression ratio  
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CHAPTER 02 

Introduction to Lossless data Compression 

 Information Theory & Source Coding

The most significant feature of the communication system is its unpredictability or uncertainty. The 

transmitter transmits at random any one of the pre-specified messages. The probability of transmitting 

each individual message is known. Thus our quest for an amount of information is virtually a search for 

a parameter associated with a probability scheme. The parameter should indicate a relative measure 

of uncertainty relevant to the occurrence of each message in the message ensemble. 

The principle of improbability (which is one of the basic principles of the media world)--“if a dog bites a 

man, it’s no news, but if a man bites a dog, it’s a news”—helps us in this regard.                         Hence 

there should be some sort of inverse relationship between the probability of an event and the amount 

of information associated with it. The more the probability of an event, the less is the amount of 

information associated with it, & vice versa. Thus, 

I(xj)=f(1/p(Xj)),  where Xj  is an event with a probability  p(Xj) & the amount of information associated 

with it is I(xj).  

Now let there be another event  Yk  such that  Xj   & Yk  are independent . Hence probability of the 

joint event is p(Xj, Yk)= p(Xj) p(Yk) with associated information content   , 

I(Xj, Yk)=f(1/p(Xj, Yk))= f(1/p(Xj) (Yk)) 

The total information I(Xj, Yk) must be  equal to the sum of individual information I(Xj) & I(Yk),  where  

I(Yk)=f(1/p(Yk)).  Thus it can be seen that function  f must be a function which converts the operation 

of multiplication into addition. 

LOGARITHM is one such function. 

Thus, the basic equation defining the amount of information (or self-information) is, 

I(Xj) = log(1/P(Xi)= - log(P(Xi) , 

when base is 2 (or not mentioned)the unit is bit, when base is e the unit is nat, when base is 10 the unit 
is decit or Hertley. 

ENTROPY: Entropy is defined as the average information per individual message. 



Let there be L different messages m1, m2…….mL, with their respective probabilities of occurrences be 

p1, p2…….pL. Let us assume that in a long time interval, M messages have been generated. Let M be 

very large so that M>>L  The total amount of information in all M messages. 

The number of messages m1=M*p1, the amount of information in message m1= log2(1/P(Xi)), & thus 

the total amount of information in all m1 messages = M*p1* log2(1/P(Xi)). 

So, the total amount of information in all L messages will then be 

I= M*(P1)*log(1/P1)+ M*(P2)*log(1/P2) +………+  M*(PL)*log(1/PL); 

So, the average information per message, or entropy, will then be 

H=I/M=(P1)*log(1/P1)+ (P2)*log(1/P2) + ………+  (PL)*log(1/PL); 

Hence,  H(X) = -∑P(Xi) log2(P(Xi))  ,   summation i=1 to L 

The Entropy of a source in bits/symbol is given by 

H(X) = -∑P(Xi) log2(P(Xi))  ≤  log2L  ,   summation i=1 to L 

Where Xi  are the  symbols with probabilities P(Xi) ,  i=1,2,3………..L 

The equality holds when the symbols are equally likely. 

There are two types of code possible: 

1) Fixed Length Code : All code words are of equal length 

2) Variable Length Code: All code words are not of equal length. In such cases, it is important for the 

formation of uniquely decodable code that all the code words satisfy the PREFIX CCONDITION, 

which states that “no code word forms the prefix of any other code word”. 

 

The necessary & sufficient condition for the existence of a binary code with code words having lengths 

n1≤n2≤……………nL that satisfy the prefix condition is, 

 

∑ 2^(-nk) ≤ 1 ,   summation k = 1…………..L , 

 

which is known as KRAFT INEQUALITY 

 

SOURCE CODING THEORAM: 



Let X be ensemble of letters from a discrete memory less source with finite Entropy H(X)  & output 

symbols Xi  with probabilities P(Xi) , i=1,2,3………..L 

It is possible to construct a code that satisfies the prefix condition & has an average length R that 

satisfies the following inequality, 

 

H(x) ≤ R < H(x)+1, 

&  the efficiency of the prefix code is defined as  η= H(x)/R, 

where,  H(X) = -∑P(Xi) log2(P(Xi))  ,   summation i=1 to L 

&       R = -∑ni log2(P(Xi))  ,       summation i=1 to L 

Here  ni  denotes  the length of  ith  code word 

 

The source coding theorem tells us that for any prefix code used to represent the symbols from a 

source, the minimum number of bits required to represent the source symbols on an average must be 

at least equal to the entropy of the source. If we have found a prefix code that satisfies R=H(x) for a 

certain source X, we must abandon further search because we can not do any better. The theorem also 

tells us that a source with higher entropy (uncertainty) requires on an average, more number of bits to 

represent the source symbols in terms of a prefix code. 

 

PROOF: 

lower bound: 

First consider the lower bound of the inequality. For codewords that have length nk  , 1≤k≤L, the 

difference  H(x)-R can be expressed as 

H(x)-R = ∑P(Xk) log2(1/P(Xk))  - ∑P(Xk) nk   ,  summation K=1…………..L 

 H(x)-R = ∑P(Xk) log2(2^(- nk)/P(Xk))  , summation k=1……………L 

 H(x)-R ≤ (log2e) ∑P(Xk) { (2^(- nk)/P(Xk))-1} , summation k=1……L 

 H(x)-R ≤ (log2e) ∑ { (2^(- nk) } – 1  ,    summation k=1……..…L 

 H(x)-R ≤ 0   (using KRAFT’S INEQUALITY) 

 H(x) ≤ R 

 

Upper bound: 

Let us select a code word length nk such that 

2^(- nk)  ≤  P(Xk)  < 2^(- nk  + 1) 

First consider,   2^(- nk)  ≤  P(Xk) 

 ∑ 2^(-nk) ≤ ∑ P(Xk)  = 1 ,  summation k=1………….L 



Which is the Kraft’s inequality for which there exist a code satisfying the prefix condition 

Next consider,    P(Xk)  < 2^(- nk  + 1) 

 log2(P(Xk)) < (- nk   + 1) 

 nk  < 1 -  log2(P(Xk)) 

 

Multiply both sides by P(Xk) 

 ∑ P(Xk) nk  <  ∑ P(Xk)  + ∑ P(Xk) log2(P(Xk))  , summation k=1……..L 

 R < H(x)+1 

2.2 HUFFMAN CODING 

2.2.1 Huffman Coding Algorithm 

Huffman coding is an efficient source coding algorithm for source symbols that are not equally 

probable. A variable length encoding algorithm was suggested by Huffman in 1952, based on 

the source symbol probabilities P(xi), i=1,2…….,L . The algorithm is optimal in the sense that 

the average number of bits required to represent the source symbols is a minimum provided 

the prefix condition is met. The steps of Huffman coding algorithm are given below: 

1. Arrange the source symbols in increasing order of heir probabilities. 

2. Take the bottom two symbols & tie them together as shown in Figure 3. Add the 

probabilities of the two symbols & write it on the combined node. Label the two branches 

with a „1‟ & a „0‟ as depicted in Figure 3 

 

3. Treat this sum of probabilities as a new probability associated with a new symbol. Again 

pick the two smallest probabilities, tie them together to form a new probability. Each time 

we perform the combination of two symbols we reduce the total number of symbols by one. 

Whenever we tie together two probabilities (nodes) we label the two branches with a „0‟ & a 

„1‟. 



4. Continue the procedure until only one procedure is left (& it should be one if your addition is 

correct). This completes the construction of the Huffman Tree. 

5. To find out the prefix codeword for any symbol, follow the branches from the final node 

back to the symbol. While tracing back the route read out the labels on the branches. This 

is the codeword for the symbol. 

 

The algorithm can be easily understood using the following example : 

TABLE 1 

Symbol Probability Codeword Code length 

X1 0.46 1 1 

X2 0.30 00 2 

X3 0.12 010 3 

X4 0.06 0110 4 

X5 0.03 01110 5 

X6 0.02 011110 6 

X7 0.01 011111 6 

 

 

FIGURE: 4 

Huffman Coding for Table 1 

 

 



The Entropy of the source is found to be 

 

H(X) = -∑P(Xi) log2(P(Xi))  ,   summation i=1 to 7 

 H(X) = 1.9781 

&       R = -∑ni log2(P(Xi))  ,       summation i=1 to 7 

 R = 1(0.46)+2(0.30)+3(0.12)+4(0.06)+5(0.03)+6(0.02)+6(0.01) 

 R = 1.9900 

Efficiency,  η= H(x)/R = (1.9781/1.9900)= 0.9944 

Had the source symbol probabilities been 

2^(-1),  2^(-2),  2^(-3),  2^(-4),  2^(-5), 2^(-6), 2^(-6)   respectively 

then , R=H(x) which gives Efficiency η=1 

 

Huffman Coding for Table 1 

2.2.2 MATLAB Program for Huffman Coding in the form of function named   
“huffman_compression” 

function [im_compressed data_length str_code data] = huffman_compression 

(signal,Probability,Ro,Co,Do,High1) 

 

%---------huffman_compression-----is the name of function------------ 

%--------variables--------------- 

%------signal: input sequence whose Huffman coding is to be done------- 

%------im_compressed : output Huffman's coded data sequence(binary)---- 

 

lp=length(Probability); 

py=round(1000000*Probability); 

pyo=zeros(1,lp); 

pyo=(py); 

pr=fliplr(sort((pyo))); 

 

bit=zeros(1,length(pr)); 

 

for ar=1:High1+1 

if pr(ar)==0; 

data_length=ar-1; 

break; 

else data_length=ar; 

end 

 

end 

 

pr1=zeros(1,data_length); 



for j=1:data_length 

pr1(j)=pr(j); 

end 

 

 

a=data_length; 

d=ones(a,a); 

 

for h=1:a 

d(h,1)=h; 

end 

 

 

for e=1:a 

t=[]; 

ph=zeros(a,a); 

 

for n=1:length(pr1) 

ph(n,:)=pr1(n); 

end 

 

i=0; 

for x=2:a 

y=ph((length(pr1)-i),x-1)+ ph((length(pr1)-i-1),x-1); 

 

g=0; 

for j=1:a 

 

if(g~=1) 

if((d(e,x-1)==(length(pr1)-i))||(d(e,x-1)==(length(pr1)-i-1))) 

if (y<=(ph(j,x-1))) 

ph(j,x)= ph(j,x-1); 

 

else 

ph(j,x)=y; 

d(e,x)=j; 

for k=(j+1):(a-1) 

ph(k,x)=ph(k-1,x-1); 

end 

g=1; 

end 

else 

if (y<=ph(d(e,x-1),x-1)); 

d(e,x)=d(e,x-1); 

else 

d(e,x)=d(e,x-1)+1; 

end 

 

if (y<=(ph(j,x-1))) 

ph(j,x)= ph(j,x-1); 

else 

ph(j,x)=y; 

for k=(j+1):(a-1) 

ph(k,x)=ph(k-1,x-1); 

end 

g=1; 

end 



end 

 

end 

 

end 

i=i+1; 

end 

 

end 

d; 

 

bit=5*ones(a,a-1); 

 

for x=1:a 

j=0; 

for i=1:a-1 

j=j+1; 

if (d(x,i)-(a+1-j))==0 

bit(x,i)=0; 

else 

if (d(x,i)-(a+1-j))==(-1) 

bit(x,i)=1; 

end 

end 

end 

 

bit(x,:)=fliplr(bit(x,:)); 

end 

 

bit; 

 

str_code=cell(a,1); 

 

for i=1:a 

h=1; 

dt=[]; 

for j=1:a-1 

if(bit(i,j)==0) 

dt(h)=0; 

h=h+1; 

else 

if (bit(i,j)==1) 

dt(h)=1; 

h=h+1; 

end 

end 

end 

dt; 

str_code(i)=({dt});  %notice { } sign, for conversion to cell type, 

end 

 

 

ph; 

 

xm=[]; 

 

for i=1:High1+1 



u=0; 

for j=0:(High1) 

if (round(1000000*Probability(j+1))==round(pr(i))) 

len(j+1)=round(Ro*Co*pr(i)/1000000); 

u=u+len(j+1); 

if(length(find(xm==j))==0) 

xm=[xm j]; 

end 

end 

end 

i=i+u; 

end 

 

data=zeros(1,data_length); 

for j=1:data_length 

data(j)=xm(j); 

end 

 

lcomp=0; 

tra=signal; 

compr=zeros(1,2000000); 

for f=1:Ro*Co*Do 

for g=1:data_length 

if (data(g)==tra(f)) 

lstrg=length(cell2mat(str_code(g))); 

compr(lcomp+1:lcomp+lstrg)=cell2mat(str_code(g)); 

lcomp=lcomp+lstrg; 

forming_compressed_string = lcomp 

break 

end 

end 

end 

 

im_compressed=compr(1:lcomp); 

 

2.2.3 HUFFMAN DECODING 

The Huffman Code in Table 1 & FIGURE 4 is an instantaneous uniquely decodable block 

code. It is a block code because each source symbol is mapped into a fixed sequence of code 

symbols. It is instantaneous because each codeword in a string of code symbols can be 

decoded without referencing succeeding symbols. That is, in any given Huffman code, no 

codeword is a prefix of any other codeword. And it is uniquely decodable because a string of 

code symbols can be decoded only in one way. Thus any string of Huffman encoded symbols 

can be decoded by examining the individual symbols of the string in left to right manner. 

Because we are using an instantaneous uniquely decodable block code, there is no need to 

insert delimiters between the encoded pixels. 

For Example consider a 19 bit string 1010000111011011111 which can be decoded uniquely 



as  x1 x3 x2 x4 x1 x1 x7. 

A left to right scan of the resulting string reveals that the first valid code word is 1 which is a 

code symbol for, next valid code is 010 which corresponds to x1, continuing in this manner, we 

obtain a completely decoded sequence given by x1 x3 x2 x4 x1 x1 x7. 

2.2.4  MATLAB Program for Huffman Decoding in the function form: 

Function recov = recover_data (string1, data_length1, compressed1, padding1, 

data1,length_quant1) 

 

%---------variables---------------- 

%  string1 : set of all different codes corresponding to different probability 

%  data1 : all symbols whose codes are given 

%  recov : recovered symbols in the sequence that were transmitted after dct & 

quantization 

 

le=[1]; % number of discrete codes 

k=2; 

 

for x=1:data_length1 

ck=1; 

w=length(cell2mat(string1(x))); 

for jj=1:length(le) 

if(le(jj)==w) 

ck=0; 

end 

end 

if (ck==1) 

le=[le w]; 

k=k+1; 

end 

end 

 

if padding1==0 

truncate=0 

else 

truncate=40-padding1; 

end 

 

 

str=0; 

reci=1; 

recov=zeros(1,length_quant1); 

while(str<(length(compressed1)-truncate)) % notice :- '-40+pdg' to compensate 

padding 

[number position] = recover_num (str, string1, compressed1, data1, le, 

data_length1);  % le is number of discrete codes 

% calling a function which recovers single symbol at a time, one after the other 

recov(reci)=number; 

str=position; 

reci=reci+1; 

end 

Recovering_compressed_string = 0 



 

recov; 

 

function 

[number position]=recover_num(st1,stri,compressed2,data2,le2,data_length2) 

 

%--------"number" is the one recovered symbol with its last bit's "position"--- 

 

number=[]; 

 

if compressed2(st1+1)==cell2mat(stri(1)) 

number=data2(1); 

position=st1+length(cell2mat(stri(1))); 

Recovering_compressed_string = length(compressed2)-position + 1 

return 

else 

 

for c=2:length(le2) 

v=compressed2((1+st1):(le2(c)+st1)); 

for h=1:data_length2 

if(length(cell2mat(stri(h)))==length(v)) 

if(cell2mat(stri(h))==v) 

number=data2(h); 

position=st1+length(cell2mat(stri(h))); 

Recovering_compressed_string = length(compressed2)-position + 1 

return 

end 

end 

end 

 

if(c==length(le2)) 

error('Data too much corrupted to be decoded') 

end 

end 

 

end 

 

2.3 SHANNON CODING 

2.3.1 SHANNON CODING Algorithm 

Shannon coding is yet another coding algorithm, which follows PREFIX Condition & can 

achieve compression performance close to that of Huffman coding. 

Following are the steps to obtain the codewords by using Shannon Coding Algorithm: 

1. Arrange the symbols along with their Probability in decreasing order of Probabilities. 

2. Select all those symbols on one side whose probabilities is closest to half of the sum of 
probabilities of all symbols, & remaining symbols on the other side & assign the values 
0 & 1 (first bit of their codeword) respectively to all the symbols in each of the two 
groups. 



3. Select the group having 0 assigned to each of its symbol in step 2 & repeat step 2 for 
this group. Repeat the same task for the other group (whose symbols have been 
assigned 1 in the step 2) 

4. Repeat step 3 till a group remains to exist like above having more than one symbol. 

   Diagram(Figure 5) & Table (Table2) in Next Page clearly elaborates the above steps: 

 

FIGURE 5 

 

TABLE 2 

Symbol Probability Codeword Code length 

X1 0.46 1 1 

X2 0.30 01 2 

X3 0.12 001 3 

X4 0.06 0001 4 

X5 0.03 00001 5 

X6 0.02 000001 6 

X7 0.01 000000 6 

The Entropy of the source is found to be 

 

H(X) = -∑P(Xi) log2(P(Xi))  ,   summation i=1 to 7 

 H(X) = 1.9781 

&       R = -∑ni log2(P(Xi))  ,       summation i=1 to 7 

 R = 1(0.46)+2(0.30)+3(0.12)+4(0.06)+5(0.03)+6(0.02)+6(0.01) 

 R = 1.9900 

Efficiency,  η= H(x)/R = (1.9781/1.9900)= 0.9944 



2.3.2 MATLAB program for Shannon coding in the function form: 
 

function [sf_code data_length str_code 

data]=sha_fan(signal,Probability,High1) 

  

lp=length(Probability); 

pyo=Probability; 

pr=fliplr(sort((pyo))); 

  

for ar=1:High1+1 

    if pr(ar)==0; 

        data_length=ar-1; 

        break; 

    else data_length=ar; 

    end 

   

end 

  

pr1=zeros(1,data_length); 

for j=1:data_length 

     pr1(j)=pr(j); 

end 

data_length; 

pr1; 

  

code=5*ones(length(pr1),length(pr1)+1); 

   

t=[1 data_length+1];    

  

temp=[]; 

  

i=1; 

while((length(t)-1)<length(pr1)) 

  

    if i+1>length(t) 

        i=1; 

    end 

     

    diff(i)=t(i+1)-t(i)-1; 

    if diff(i)>0 

  

        ss=sum(pr1(t(i):(t(i+1)-1)))/2 ; 

  

     for k=t(i):(t(i+1)-1) 

     

         if (sum(pr1(t(i):k))<(ss)) 

         else 

          k; 

          h=1; 

              for r=(t(i)):k 

                   

               while((code(r,h)==0)||(code(r,h)==1)) 

                   h=h+1; 

               end 

                 

                   code(r,h)=0;    



              end 

       

              for rr=k+1:(t(i+1)-1) 

                  code(rr,h)=1;               

              end 

                temp=k+1; 

              break; 

            end 

end 

      

     t=[t temp]; 

     t=sort(t); 

  

    end 

  

i=i+1; 

     

end 

 

a=length(pr1); 

str_code=cell(a,1); 

  

for i=1:a 

     h=1; 

        dt=[]; 

           for j=1:a 

             if(code(i,j)==0) 

               dt(h)=0; 

               h=h+1; 

             else 

                 if (code(i,j)==1) 

                    dt(h)=1; 

                    h=h+1; 

                 end 

             end 

           end 

           dt; 

      str_code(i)=({dt});   

end 

  

xm=[]; 

  

for i=1:High1+1 

    u=0; 

      for j=0:(High1) 

        if ((Probability(j+1))==(pr(i))) 

              len(j+1)=round(length(signal)*pr(i)); 

              u=u+len(j+1); 

              if(length(find(xm==j))==0) 

                xm=[xm j];  

              end 

        end 

      end 

      i=i+u; 

end 

  

data=zeros(1,data_length); 



for j=1:data_length 

     data(j)=xm(j); 

end 

  

lcomp=0; 

tra=signal; 

compr=zeros(1,2000000); 

for f=1:length(tra) 

    for g=1:data_length 

        if (data(g)==tra(f)) 

            lstrg=length(cell2mat(str_code(g))); 

            compr(lcomp+1:lcomp+lstrg)=cell2mat(str_code(g)); 

            lcomp=lcomp+lstrg; 

            forming_compressed_string = lcomp 

            break 

        end 

    end 

end 

    

sf_code=compr(1:lcomp); 

 

 
2.3.3 Decoding Process for Shannon Code 
 
The Decoding Process of Shannon Codes is identical to that of Huffman Codes as it also 

satisfies Prefix Condition & forms uniquely decodable code. 

2.3.4 MATLAB Program for Shannon Decoding in the function form: 

function recov = recover_data_sh 

(string1,data_length1,compressed1,padding1,data1,length_quant1) 

  
%---------variables---------------- 
% string1 : set of all different codes corresponding to different probability 

%  data1 : all symbols whose codes are given 
%  recov : recovered symbols in the sequence that were transmitted after dct 

& quantization 

  
data1; 
le=[1]; % number of discrete codes 
k=2; 

  
for x=1:data_length1 
    ck=1; 
    w=length(cell2mat(string1(x))); 
    for jj=1:length(le) 
        if(le(jj)==w) 
            ck=0; 
        end 
    end 
    if (ck==1) 
        le=[le w]; 
        k=k+1; 
    end 



end 

  
if padding1==0  
    truncate=0; 
else 
    truncate=40-padding1;   
end   

  

  
str=0; 
reci=1; 
recov=zeros(1,length_quant1); 
while(str<(length(compressed1)-truncate)) % notice :- '-40+pdg' to compensate 

padding 
[number position]   

=recover_num_sh(str,string1,compressed1,data1,le,data_length1);   

% le is number of discrete codes 
% calling a function which recovers single symbol at a time, one after the 

other 

 
recov(reci)=number; 
str=position; 
reci=reci+1; 
end 
Recovering_compressed_string = 0 

  
recov; 
function [number position] = 

recover_num_sh(st1,stri,compressed2,data2,le2,data_length2) 

  
%--------"number" is the one recovered symbol with its last bit's "position"-

-- 

  
number=[]; 

  
for c=1:length(le2)  
             v=compressed2((1+st1):(le2(c)+st1)); 
       for h=1:data_length2 
           if(length(cell2mat(stri(h)))==length(v)) 
               if(cell2mat(stri(h))==v) 
                   v; 
                   number=data2(h); 
                   position=st1+length(cell2mat(stri(h))); 
                Recovering_compressed_string = length(compressed2)-position + 

1 
                   return 
               end 
           end 
       end 

        
       if(c==length(le2)) 
           error('Data too much corrupted to be decoded') 
       end 
end 
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CHAPTER 01 

CHANNEL CODING 

All real life channels are affected by noise. Noise causes discrepancies (errors) between the 

input & the output data sequences of a digital communication system. In order to achieve 

reliability we have to resort to the use of channel coding. The basic objective of channel coding 

is to increase the resistance of the digital communication system to channel noise. This is 

done by adding redundancies in the transmitted data stream in a controlled manner. In channel 

coding we map the incoming data sequence to a channel input sequence. This encoding 

procedure is done by the channel encoder. The encoded sequence is then transmitted over 

the noisy channel. The channel output sequence at the receiver is inversely mapped to an 

output data sequence. This is called the decoding procedure, and is carried out by the 

channel decoder. 

Channel coding is also referred to as Error Control Coding. It is interesting to note here that the 

source coder reduces redundancy to improve efficiency, where as the channel coder adds 

redundancy, in a controlled manner, to improve reliability. 

1.1 BLOCK CODING & HAMMING CODES 

Consider a message source can generate M equally likely messages. Then initially we 

represent each message by k binary digits with 2^k=M. These k bits are the information 

bearing bits. We next add to each k  bit message, r redundant bits (parity check bits). Thus 

each message has been expanded into a codeword of length n bits with n=k+r. The total 

number of possible n bit codeword is 2^n while the total number of possible messages is 2^k. 

There are therefore  2^n - 2^k  possible n bit words which do not represent possible messages. 

Codes formed by taking a block of k information bits & adding r (= n-k) redundant bits to form a 

codeword are called block codes & designated as (n,k) codes. 

ENCODING: 

The generation of a block code starts with a selection of the number r of parity bits to be added 

& thereafter with the specification of H matrix known as Parity Check Matrix. 



 

<----------------------Parity Check Matrix H-------------------------------> 

 

The h sub matrix of H is such that its elements are either 0 or 1 & no row of H‟ matrix (where H‟ 

represent transpose of H) can have all zero elements, and no two rows of H‟ matrix can be 

identical. 

To generate a codeword T [t1 t2 t3…………tn-k]  from the uncoded word A [a1 a2 

a3………ak], we form a generator matrix G such that:  GH‟=0, and the codeword T will be 

given by T=AG. 

Consider the block coding technique called Hamming code. The number n of bits in 

codeword, the number k of bits in the uncoded word & the number r of parity bits are related by 

n=2^r-1 

k=2^r-1-r 

for r=3 we have a (7,4) code & for r=4 we have a (15,11) code. 

 

For example taking r=3 

The H matrix (Parity Check Matrix) can be taken as 

 

So the Generator matrix will be given by: 



 

1.2  MATLAB Program for Hamming Codes  
 

function encoded1 = ch_encoding(comp2) 

 

% comp2 : compressed data whose encoding is to be done 

% encoded1 : encoded data of the compressed data 

 

size1=length(comp2); 

n1=size1/4; 

encoded1=[]; 

 

for cnt=1:n1 

for x=1:4 

di(x)=comp2((cnt-1)*4 + x); 

end 

 

G=[1 0 0 0 1 1 1; 

0 1 0 0 1 1 0; 

0 0 1 0 1 0 1; 

0 0 0 1 0 1 1]; 

 

 

for j=1:7 

ci(j)=0; 

for i=1:4 

ci(j)=xor ((di(i)*G(i,j)),ci(j)) ; 

end 

end; 

ci; 

encoded1=[encoded1 ci]; 

end 

 

1.3 Detecting the Error & decoding the received codeword 

Let R be the received message which may or may not be the transmitted codeword. We find 

the value of HR‟ (R‟ is transpose of R). If HR‟ = 0, then R is the transmitted codeword, but if 

HR‟ ≠ 0, we know that R is not the possible message & one or more bits are in error. 

Considering again the block coding technique called Hamming code in which single error can 

be corrected. 



For r=3  & H matrix (Parity Check Matrix) again taken as 

 

Then for R= [1 0 0 0 0 1 1] 

Let the syndrome vector be S=HR‟ 

Clearly S is obtained to be S = [1 0 0] 

Comparing S with H’ (transpose of H) we find that 5th row from top of H’ is same as S as 
shown below: 

 

So vector R also has the error in 5th bit from left i.e the transmitted codeword was T=[1 0 0 0 1 

1 1]. Hence the error is detected & received code word is correctly decoded by extracting the 

1st  k (=4) information bit from T which is given by A=[1 0 0 0]. 

1.4 MATLAB Program for Error Detection & Channel Decoding in Function 
form 

function decoded1=ch_decoding(demodulated2) 

 

%---------demodulated2 : demodulated data whose decoding is to be done-- 

%---------decoded1 : obtained decoded data--------- 

decoded1=[]; 

size5=length(demodulated2); 

n5=round(size5/7); 

 

for cnt=1:n5 

 

 

for x=1:7 

cd(x)=demodulated2((cnt-1)*7 + x); 

end 

 

% ----test for ERROR--- 

 



H=[1 1 1 0 1 0 0; 

1 1 0 1 0 1 0; 

1 0 1 1 0 0 1]; 

 

T=H'; 

 

for j=1:3 

S(j)=0; 

for i=1:7 

S(j)=xor ((cd(i)*T(i,j)),S(j)) ; 

end 

end; 

S; 

e=0; 

for i=1:7 

if S == T(i,:) 

e=i; 

end 

end 

 

 

% ------error Correction----- 

 

R=[];  % initialization 

 

for i=1:7 

R(i)=cd(i); 

end 

 

if e==0 

else 

 

for j=1:3 

S1(j)=0; 

for i=1:7 

S1(j)=xor ((cd(i)*T(i,j)),S1(j)) ; 

end 

end; 

S1; 

 

e1=0; 

for i=1:7 

if S1 == T(i,:) 

e1=i; 

end 

end 

 

if e1==0 

R=cd; 

else 

R(e1)=1-R(e1); 

R; 

end 

 

end   % for "if e==0" 

 

% -----Channel Decoding-------- 



d=[]; 

 

d(1,:)=[0 0 0 0]; 

d(2,:)=[0 0 0 1]; 

d(3,:)=[0 0 1 0]; 

d(4,:)=[0 0 1 1]; 

d(5,:)=[0 1 0 0]; 

d(6,:)=[0 1 0 1]; 

d(7,:)=[0 1 1 0]; 

d(8,:)=[0 1 1 1]; 

d(9,:)=[1 0 0 0]; 

d(10,:)=[1 0 0 1]; 

d(11,:)=[1 0 1 0]; 

d(12,:)=[1 0 1 1]; 

d(13,:)=[1 1 0 0]; 

d(14,:)=[1 1 0 1]; 

d(15,:)=[1 1 1 0]; 

d(16,:)=[1 1 1 1]; 

 

 

G=[1 0 0 0 1 1 0; 

0 1 0 0 0 1 1; 

0 0 1 0 1 0 1; 

0 0 0 1 1 1 1]; 

 

 

for x=1:16 

for j=1:7 

c1(x,j)=0; 

for i=1:4 

c1(x,j)=xor ((d(x,i)*G(i,j)),c1(x,j)) ; 

end 

end; 

end 

n=0; 

for j=1:16 

if R==c1(j,:) 

n=j; 

end 

end 

 

n; 

c1(n,:); 

d(n,:); 

 

decoded1=[decoded1 d(n,:)]; 

 

end 
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CHAPTER 02 

SIGNAL MODULATION 

2.1 SIGNAL MODULATION USING BINARY PHASE SHIFT KEYING (BPSK) 

In binary phase shift keying (BPSK) the transmitted signal is a sinusoid of fixed amplitude. It 

has one fixed phase when the data is at one level & when the data is at the other level the 

phase is different by 180 degree. If the sinusoid is of amplitude A. The transmitted signal is 

either A*cos(wt) or –A*cos(wt). In BPSK, the data b(t) is a stream of binary digits with voltage 

levels which as a matter of convenience, we take to be at +1V or -1V. When b(t)=1V we say it 

is at logic level 1 & when b(t) = -1V we say it is at logic level 0. Hence V(bpsk) can be written, 

with no loss of generality, as 

V(bpsk)=b(t)*Acos(wt) 

2.2 MATLAB Program for BPSK modulation in Function form  

function modulated1=bpsk_modulation(encoded1) 

 

%---encoded1 : encoded data which modulates the carrier---- 

%--- modulated1 :  modulated carrier-------- 

 

modulated1=[]; 

size2=length(encoded1);   % size + 3*(size/4)= 70 

 

n2=size2/10; 

 

for cnt=1:n2 

 

 

for x=1:10 

b(x)=encoded1((cnt-1)*10 + x); 

end 

 

T1=1;       %sinewave of Time Period T1 

x1=linspace(0,10*(T1),100);     %sine period with 10 periods, 10 points per period 

y1=sin(((2*pi)/T1)*x1); 

 

 

y=[]; 

 

for i=1:10 

 

t =0.01 : 0.1  : 1 ;   % T(bit)= T(carrier) 

 

y2 = b(i)*((1+(square(2*pi*0.5*t)))/2) ; % square wave with a period of 2,  0.5 Hz 

 

y=[y y2]; 



end 

 

y=2*(y-(1/2)); 

t=0.01:0.1:1; 

 

%---------------MODULATION------------------- 

 

t=0.01:0.1:1; 

 

vm=[]; 

vm=y.*y1; 

 

modulated1=[modulated1 vm]; 

 

end 

 

2.3 RECEPTION OF BPSK  

The received signal has the form V(bpsk)=b(t)*Acos(wt+$). Here $ is the phase shift 

corresponding to the time delay which depends on the length of the path from transmitter to 

receiver & the phase shift produced by the amplifiers in the front end of the receiver preceding 

the demodulator. The original data b(t) is recovered in the demodulator. The demodulation 

technique usually employed is called synchronous demodulation & requires that there be 

available at the demodulator the wave form cos(wt + $). A scheme for generating the carrier at 

the demodulator & for recovering the baseband signal is shown in Figure 6 

 

FIGURE 6 

Scheme to recover the baseband signal in BPSK 



The received signal is squared to generate the signal 

(Cos(wt+$))^2 = ½(1 + cos(wt+$)) 

The dc component is removed by the bandpass filter whose passband is centered around 2fo 

& we then have the signal whose waveform is that of cos2(wt + $). A frequency divider 

(composed of a flip-flop & a narrow band filter tuned at fo) is used to regenerate the wave form 

cos(wt+$).Only the waveforms of the signals at the outputs of the squarer, filter & divider are 

relevant to our discussion & not their amplitudes. Accordingly in Figure 5, we have arbitrarily 

taken each amplitude to be unity. In practice the amplitude will be determined by features of 

these devices which are of no present concern. In any event, the carrier having been 

recovered, it is multiplied with the received signal to generate 

b(t)*A((cos (wt+$))^2) = b(t)*A½(1 + cos(wt+$)) 

which is then applied to an integrator as shown in Figure 5 

We have included in the system a bit synchronizer. This device precisely recognizes the 

moment which corresponds to the end of the time interval allocated to one bit and the 

beginning of the next. At that moment it closes the switch Sc very briefly to discharge(dump) 

the integrator capacitor & leaves the switch Sc open during the entire course of the ensuing bit 

interval, closing switch again very briefly at the end of the next bit time. This circuit is called an 

integrate & dump circuit. 

The output signal of interest to us is the integrator output at the end of a bit interval but 

immediately before the closing of switch Sc. The output signal is made available by switch Ss 

which samples the output voltage just prior to dumping the capacitor.For simplicity the bit 

interval Tb is equal to the duration of an integral number n of cycles of the carrier frequency fo, 

that is n.2π=wTb. 

In this case the output voltage Vo(kTb) at the end of a bit interval extending from time (k-1)Tb 
to kTb is : 

Vo(kTb) = A*b(kTb)* ∫1/2dt + A*b(kTb)* ∫1/2*cos2(wt+$)dt 

= b(kTb)*(A/2)Tb 

Since the integral of a sinusoid over a whole number of cycles has the value zero. Thus we 

see that our system reproduces at the demodulator output the transmitted bit stream b(t). 



2.4 MATLAB Program for BPSK demodulation in Function form 

function demodulated1=bpsk_demodulation(equalized2) 

 

%---equalized : equalized data to be demodulated--- 

%----demodulated1 : demodulated data-------- 

 

demodulated1=[]; 

size4=length(equalized2); 

n4=size4/100; 

 

for cnt=1:n4 

 

for x=1:100 

v(x)=equalized2((cnt-1)*100 + x); 

end 

 

T1=1; %sinewave of Time Period To 

x1=linspace(0,10*(T1),100);  %sine period with 10 periods, 25 points per period 

y1=sin(((2*pi)/T1)*x1); 

 

f=[]; 

f=v.*y1; 

 

Tb=1; 

 

n=100; 

h=Tb/n; 

 

for k=1:10 

s1=0; 

s2=0; 

for i=(10*(k-1))+1 : k*10 

if mod(i,3)==0 

s1=s1+f(i); 

else 

s2=s2+f(i)-f(k*10); 

end 

end 

 

vdm(k*Tb)=3*h/8*(f(k*10)+3*(s2)+2*(s1)); 

end 

 

vdm=2*vdm; 

vdmb=[]; 

 

for i=1:10 

if vdm(i)<0 

vdmb(i)=0; 

else 

vdmb(i)=1; 

end 

end 

 

demodulated1=[demodulated1 vdmb]; 

end 
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CHAPTER 03 

CHANNEL EQUALIZATION 

The basic idea of linear equalization is then to remove the effect of the ISI using the 

equalization filter C(z). Roughly this means designing an inverse filter to remove the effect of 

H(z). More specifically, the optimization of the equalizer C(z) depends on (i) the optimization 

criterion, e.g., Zero-Forcing (ZF) or Mean-Squared-Error (MSE) and (ii) the available 

computational resources. The idea of ZF is to minimize ISI (without thinking the additive noise 

at all) whereas the idea of MSE is to minimize the square error between the output of the 

equalizer Qk and transmitted symbol Ak. Obviously, the MSE criterion takes both the ISI and 

noise into account, yet the both methods (ZF and MSE) being equal in the high SNR case. In 

other words, when SNR increases and if computational resources (equalizer length) are 

sufficient, C(z) approaches “1/H(z)”. 

 
the equalizer output Qk, as shown in figure 6, is given by Qk = C'Rk 
 

 
 

FIGURE 7 
Calculating the Equalizer Coefficients Iteratively –LMS Approach 

 

3.1  Channel Equalization using LMS technique 

Equalizer coefficients can also be calculated iteratively using the LMS (least -mean-square) 

approach as 

c(k+1)=c(k)+β*E(k)rk* 

where E(k) is the error signal given by E(k) = A(k)-Q(k) = A(k)-C‟R(k) 

&  β is the step size 

 

3.2 The MATLAB Program for channel Equalizer in function form 
 
function equalized1 = equalizer(modulated2,filter_cf,snr) 

 

%------modulated 2 : modulated data which is to be passed through channel-- 

%-----channel is an FIR filter with filter coefficients given by "filter_cf" 



%-----equalized1 : data after passing through filter & its' equalizer---- 

equalized1=[]; 

 

size3=length(modulated2); 

 

n3=size3/5; 

 

for cnt=1:n3 

cnt; 

a=[]; 

rv=[]; 

for x=1:5 

a(x)=modulated2((cnt-1)*5 + x); 

end 

 

%------- ADDITION OF NOISE--------- 

 

s = cov(a); 

n = s/(10^((snr))); 

amp = sqrt(n/2); 

noise= amp*randn(1,5); 

 

a=a+noise; 

 

 

for r=1:3 

a=[a a]; 

end 

 

Rk=filter(filter_cf,1,a);  % Received Signal 

if cnt<10 

beta=0.1;% step Size of the algorithm 

else 

beta=0.25; 

end 

c=zeros(5,1);  % equalizer coefficients 

 

 

for i=1:length(Rk)-4, 

rk=flipud(Rk(i:i+4).');   % received Signal Vector 

 

Error(i)=a(i)-c.'*rk; % Error signal, we assume a known symbol sequence 

c=c+beta*Error(i)*rk;   % LMS update 

 

end 

 

for i=31:length(Rk)-5, 

rk=flipud(Rk(i:i+4).');   % received Signal Vector 

 

Error(i)=a(i)-c.'*rk; % Error signal, we assume a known symbol sequence 

rv(i-30)=c.'*rk; 

end 

 

equalized1=[equalized1 rv]; 

 

end 
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CHAPTER 04 
 

Digital Communication System Implementation 
 

 
Figure 8 

Digital Communication System 
 

4.1 The MATLAB Program to implement the Digital Communication 
system  

 
clear all; 

clc; 

close all; 

 

x=imread('D:\My Pictures\s.bmp'); 

 

image=double(x)/255; 

[Rows Columns Dimensions]=size(image); 

 

figure(1) 

imshow(image) 

 

t0=cputime; 

 

%-------Finding The Discrete Cosine Transform------------ 

 

%-------finding the transform------------ 

 

block_size=input('Size of blocks  '); 

 



diagonals=input('Number of diagonals to be considered ZigZag traversing '); 

quantization_level=input('Number of quantization_levels  '); 

 

[quant_image High max min Ro Co Do]= 

dct_zigzag (image,Rows,Columns,Dimensions,diagonals,quantization_level,block_size); 

 

 

length_quant=length(quant_image); 

 

%-------huffman---encodinig----------------- 

 

%--finding the probability-- 

 

Probability=zeros(1,High+1); 

for i=0:High 

Probability(i+1)=length(find(quant_image==i))/(Ro*Co); 

end 

 

[compressed data_length codes data] 

= huffman_compression(quant_image,Probability,Ro,Co,Do,High); 

 

%--------Data Transmission------------ 

%--------channel encoding----Modulation(bpsk)------channel Equalization----- 

%--------Demodulation--------channel Decoding----------------------------- 

 

[compressed_padded padding n0]=data_padding(compressed); 

%-----Padding the data with sufficient number of bits so that a block of 40 

% bits is taken at a time for processing, one after the other -------- 

% n0 is the total number of such 40 bit blocks formed--------- 

 

seconds=0; 

comprd=[]; 

for count=1:n0 

 

In_Enco__BPSK__Ch_Equa = n0-count 

 

seconds=(cputime-t0); 

 

comp1=zeros(1,40); 

for x=1:40 

comp1(x)=compressed_padded((count-1)*40 + x); 

end 

 

% -----------Channel Encoding---------------- 

 

[encoded] = ch_encoding(comp1); 

 

% -------------Modulation---------------- 

 

modulated=bpsk_modulation(encoded); 

 

%-----------Channel Equalization------------- 

 

filter_coeff=fir1(8,0.6); 

snr=4; 

 

equalized=equalizer(modulated,filter_coeff,snr); 



 

% ------------DEMODULATION--------------------- 

 

demodulated=bpsk_demodulation(equalized); 

 

 

% ----------CHANNEL DECODING------------------- 

 

decoded=ch_decoding(demodulated); 

 

comprd=[comprd decoded]; 

 

end 

 

compressed_pro=comprd; 

 

% % when channel not used 

% compressed_pro=compressed; 

% padding=0; 

 

 

% ----------DATA RECOVERY------OR------HUFFMAN DECODING------------- 

 

recovered_data = recover_data (codes, data_length, compressed_pro, padding, data, 

length_quant); 

 

 

%------------------IMAGE--RECOVERY---------------- 

%----------------IDCT---&--Zigzag Decoding------- 

 

recovered_image=idct_zigzag(recovered_data,diagonals,max,min,High,Ro,Co,Do,block_si

ze,Rows,Columns,Dimensions); 

 

%---------------------OUTPUT-------------------- 

 

figure(4) 

imshow(recovered_image); 

 

MSE=sqrt(sum(((recovered_image(:)-image(:)).^2))/(Ro*Co*Do)); 

SNR=sqrt((sum((recovered_image(:)).^2))/(Ro*Co*Do))/MSE; 

 

RUN_TIME_IN_MINUTES=(cputime-t0)/60 

 

quantization_level 

 

Size_of_Block_taken_for_DCT = block_size 

 

Nmber_of_diagonals = diagonals 

 

COMPRESSION_RATIO = 8*Ro*Co*Do/length(compressed) 

 

SNR 
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CHAPTTER 05 
 

RESULTS (OBSERVATION) 
 

5.1 Compression with Discrete Cosine Transform 

Different output parameters like SNR & Compression Ratio determine the efficiency of system. 

These parameters in turn depend mainly on different input parameters like number of 

quantization levels, number of diagonals considered for Zigzag traversing (or simply, the 

percentage of pixels neglected), size of blocks taken from image matrix for DCT transform & in 

some cases various other parameters like Signal to Noise Ratio (snr) in the transmission 

channel. 

Grey Images Of Same Size 

 

  Original Image     Block size 8X8         Block size 8X8         Block size 8X8 

                                Diagonals=8             Diagonals=8             Diagonals=9 

                                CR=3.061                  CR=2.46                    CR=3.90 

                                Quant_level=4          Quant_level=5          Quant_level=3 

                                SNR=7.74                  SNR=8.30                 SNR=6.48 

 

 

   block size 8X8    block size 16X16     block size 16X16   block size 16X16 

   Diagonals=11     Diagonals=16           Diagonals=18       Diagonals=24 

   CR=3.59              CR=4.51                    CR=4.22                CR=3.71 

   Quant_level=3    Quant_level=3          Quant_level=3     Quant_level=3 

   SNR=6.59            SNR= 4.91                 SNR=4.901           SNR=4.59 

 



The values of corresponding input & output parameters for different sized gray 

images by varying the Block size taken for DCT & number of coefficients 

selected for transmission are tabularized as shown. Quantization Level is fixed 

for the entire observation. 

                                                TABLE 3 
 
Image Size Block Size 

taken for DCT 
Diagonals 
taken 

Quantization 
Level 

SNR 
(received Image) 

Compression 
Ratio 

      
128x128 4X4 4 3 8.00 3.99 

128x128 4X4 5 3 9.27 3.55 

128x128 4X4 6 3 10.20 3.36 

      

128x128 8X8 9 3 6.48 3.90 

128x128 8X8 10 3 6.59 3.59 

128x128 8X8 11 3 6.68 3.33 

      

128x128 16X16 16 3 4.91 4.51 

128x128 16X16 18 3 4.91 4.22 

128x128 16X16 24 3 4.60 3.71 

128x128 16X16 27 3 4.49 3.58 

      

      

256x256 4X4 4 3 9.01 4.37 

256x256 4X4 5 3 10.27 4.21 

256x256 4X4 6 3 10.80 4.07 

      

256x256 8X8 9 3 7.61 4.20 

256x256 8X8 10 3 7.73 3.66 

256x256 8X8 11 3 8.19 3.21 

      

256x256 16X16 16 3 6.01 4.51 

256x256 16X16 18 3 6.22 4.21 

256x256 16X16 24 3 6.64 3.34 

256x256 16X16 27 3 6.81 3.02 

 
 



The values of corresponding input & output parameters for different sized gray 

images by varying the Quantization Level & Block size taken for DCT are 

tabularized as shown. Number of Coefficients selected for transmission is kept 

fixed for the entire observation. 

                                                   TABLE 4 
 
Image  
Size 

Block Size 
taken for DCT 

Diagonals 
taken 

Quantization 
Level 

SNR 
(received Image) 

Compression 
Ratio 

      
128x128 4X4 6 3 8.00 3.99 

128x128 4X4 6 4 9.27 3.55 

128x128 4X4 6 5 10.20 3.36 

128x128 4x4 6 6 11.16 3.27 

      

128x128 8X8 8 4 7.74 4.10 

128x128 8X8 8 5 8.30 3.76 

128x128 8X8 8 6 9.22 3.19 

128x128 8x8 8 7 9.64 3.08 

      

128x128 16X16 11 5 7.46 5.51 

128x128 16X16 11 6 7.91 5.64 

128x128 16X16 11 7 8.11 5.91 

128x128 16X16 11 8 8.54 6.04 

      

256x256 4X4 6 3 8.80 4.91 

256x256 4X4 6 4 9.87 4.55 

256x256 4X4 6 5 10.96 4.36 

256x256 4x4 6 6 11.91 4.17 

      

256x256 8X8 8 4 8.94 5.10 

256x256 8X8 8 5 9.30 4.66 

256x256 8X8 8 6 9.82 4.39 

256x256 8x8 8 7 10.44 4.28 

      

256x256 16X16 11 5 8.46 6.11 

256x256 16X16 11 7 9.11 5.81 

256x256 16X16 11 8 9.98 5.66 



COLOURED IMAGES OF DIFFERENT SIZE 
 
Now for coloured image taking 8X8 as the block size for DCT, the SNR & the Compression 

Ratio obtained for different number of diagonals taken for some 256X256 Images are as 

follows: 

256X256 Original Image 

 
 

 
        Diagonals taken = 5                   Diagonals taken = 8             Diagonals taken = 9 
              SNR = 1.59                                   SNR = 13.52                          SNR = 16.41 
        Compr. Ratio = 5.62                   Compr. Ratio = 3.70             Compr Ratio = 3.27 

 
Where as continuing same technique (8X8 block, 10 diagonals) but for a 

512X512 Image yields: 

 



The values of corresponding input & output parameters for different sized 

coloured Images by taking fixed Quantization level is tabularized as shown 

below: 

                                              TABLE 5 
 
Image Size Block Size 

taken for DCT 
Diagonals 
taken 

Quantization 
Level 

SNR 
(received Image) 

Compression 
Ratio 

      
128x128 4X4 4 3 9.00 4.89 

128x128 4X4 5 3 9.87 4.55 

128x128 4X4 6 3 11.20 4.36 

      

128x128 8X8 9 3 7.48 4.20 

128x128 8X8 10 3 7.79 4.09 

128x128 8X8 11 3 8.88 3.93 

      

128x128 16X16 16 3 5.71 5.51 

128x128 16X16 18 3 5.90 5.28 

128x128 16X16 24 3 6.10 5.11 

128x128 16X16 27 3 6.19 4.98 

      

      

256x256 4X4 4 3 9.51 4.97 

256x256 4X4 5 3 10.17 4.61 

256x256 4X4 6 3 10.40 4.37 

      

256x256 8X8 9 3 8.41 4.20 

256x256 8X8 10 3 8.70 3.66 

256x256 8X8 11 3 8.99 3.21 

      

256x256 16X16 16 3 6.71 5.61 

256x256 16X16 18 3 6.92 5.34 

256x256 16X16 24 3 7.34 4.89 

256x256 16X16 27 3 7.71 4.62 

 
 

 



The values of corresponding input & output parameters for different sized 

coloured images by varying the Quantization Level & Block size taken for DCT 

are tabularized as shown. Number of Coefficients selected for transmission is 

kept fixed for the entire observation.                                    

                                                    TABLE 6 
 
Image Size Block Size 

taken for DCT 
Diagonals 
taken 

Quantization 
Level 

SNR 
(received Image) 

Compression 
Ratio 

      
128x128 4X4 6 3 9.30 4.96 

128x128 4X4 6 4 9.77 4.55 

128x128 4X4 6 5 10.90 4.16 

128x128 4x4 6 6 11.76 3.97 

      

128x128 8X8 8 4 8.79 5.22 

128x128 8X8 8 5 9.30 4.92 

128x128 8X8 8 6 9.92 4.67 

128x128 8x8 8 7 10.64 4.58 

      

128x128 16X16 11 5 8.79 6.41 

128x128 16X16 11 6 9.31 6.30 

128x128 16X16 11 7 8.91 6.17 

128x128 16X16 11 8 9.54 6.04 

      

256x256 4X4 6 3 9.20 5.79 

256x256 4X4 6 4 10.37 5.65 

256x256 4X4 6 5 11.16 5.46 

256x256 4x4 6 6 12.01 5.27 

      

256x256 8X8 8 4 10.69 5.10 

256x256 8X8 8 5 11.34 4.66 

256x256 8X8 8 6 11.92 4.39 

256x256 8x8 8 7 12.44 4.28 

      

256x256 16X16 11 6 10.51 6.85 

256x256 16X16 11 7 10.91 6.51 

256x256 16X16 11 8 11.48 6.34 



5.2 Compression with Discrete Wavelet Transform 

Output parameters like compression score, compression ratio determines the efficiency of 

system. These parameters in turn depend mainly on different input parameters like number of 

decomposition levels, threshold, size of image matrix etc. 

 

Grey Image Of size 256x256: 

   
                                                     Decomposition Level:5       Decomposition Level: 5      Decomposition Level: 5 

                                                          Threshold:  40                       Threshold:  50                      Threshold:  65 

           Original Image                    Compression_score: 92.5   Compression_score: 93.9   Compressionscore: 95.3   

                                                         Compression_ratio: 13.29  Compression_ratio: 13.29  Compression_ratio: 13.29 

 

 
                                                   Decomposition Level: 5        Decomposition Level: 5     Decomposition Level: 5 

                                                       Threshold:  40                          Threshold:  50                      Threshold:  65 

           Original Image                 Compression_score: 91.6      Compression_score: 93.1  Compressionscore: 94.5 

                                                       Compression_ratio: 11.86    Compression_ratio: 14.48  Compression_ratio: 18.37 

It can be observed that for a fixed Decomposition Level, the increase in value of Threshold 

results in greater compression. While for a fixed value of Threshold, compression score/ratio 

decreases with increase in Decomposition Level. Also better compression results are obtained 

for images of larger size. All these observations are also verified by the table shown in next 

page. 



Image Compression Using “sym4” wavelet 

(Image Size: 256x256) 

 

      Original Image 22         Compression Ratio: 27  Compression Ratio: 29.1 

                                                    SNR: 11.4                                 SNR: 10.3 

 

 

Compression Ratio: 30.1  Compression Ratio: 34.5  Compression Ratio: 39 

            SNR: 9.2                              SNR: 8.7                               SNR:8.1 

 

 



The values of corresponding input & output parameters using “sym4” wavelet for 

various size images are tabularized as shown: 

 

TABLE 7 

 

Size 
of Image 

Decomposition  
Level 

Threshold Compression_score 
(in_percentage) 

Compression 
ratio 

     

128x128 3 30 86.0 5.97 

128x128 3 45 91.0 9.15 

128x128 5 20 78.2 4.59 

128x128 5 30 83.3 6.32 

128x128 5 45 87.4 8.12 

128x128 9 20 72.1 4.41 

128x128 9 30 77.1 4.96 

128x128 9 45 84.2 5.78 

     

200x200 3 20 92.1 9.24 

200x200 3 30 94.1 12.15 

200x200 3 45 95.2 15.21 

200x200 5 20 89.2 8.29 

200x200 5 30 91.5 11.03 

200x200 5 45 93.6 14.50 

200x200 9 20 84.7 7.15 

200x200 9 30 88.9 8.65 

200x200 9 45 90.5 10.46 

     

332x268 7 40 97.6 36.13 

332x268 7 50 98.4 39.64 

332x268 7 65 98.7 47.01 

332x268 9 40 96.2 35.39 

332x268 9 50 97.7 38.50 

332x268 9 65 98.5 45.51 

332x268 7 40 97.3 33.22 

332x268 7 50 97.9 37.60 

332x268 7 65 94.4 42.05 

 



Image Compression Using “sym8” wavelet 

(Image Size: 256x256) 

 

           Original Image         Compression Ratio: 10.2    Compression Ratio: 15 

                                                           SNR: 21.3                           SNR:19.1 

 

 

   Compression Ratio: 18    Compression Ratio: 22  Compression Ratio: 29.8 

                SNR: 18.2                           SNR: 15.7                          SNR:13.1 



The values of corresponding input & output parameters using “sym8” wavelet for 

various size images are tabularized as shown 

                                                       TABLE 8 

 

Size 

of Image 

Decomposition 

Level 

Threshold Compression_score 

(in percentage) 

Compression 

ratio 

128x128 5 20 74.1 3.89 

128x128 5 30 80.3 5.13 

128x128 5 45 85.7 7.02 

128x128 9 20 68.7 3.21 

128x128 9 30 74.8 3.97 

128x128 9 45 80.3 5.08 

     

200x200 5 20 87.0 7.69 

200x200 5 30 90.1 10.13 

200x200 5 45 92.6 13.50 

200x200 9 20 83.7 6.15 

200x200 9 30 86.9 7.62 

200x200 9 45 89.5 9.46 

     

256x256 7 40 91.6 11.86 

256x256 7 50 93.1 14.48 

256x256 7 65 94.5 18.37 

256x256 9 40 90.4 10.40 

256x256 9 50 91.9 12.40 

256x256 9 65 93.4 15.22 

     

332x268 7 40 96.6 29.43 

332x268 7 50 97.1 34.68 

332x268 7 65 97.7 43.05 

 

 



Image Compression Using  “db1” wavelet 

(Image Size: 256x256) 

 

          Original Image         Compression Ratio: 19.2    Compression Ratio: 18 

                                                       SNR: 24.3                           SNR:22.1 

 

 

  Compression Ratio: 27   Compression Ratio:34.2   Compression Ratio: 37.1 

         SNR: 16.4                              SNR: 15.4                              SNR: 13.3 

 

 



The values of corresponding input & output parameters using “daubechie1” 

Or “db1” wavelet for various size images are tabularized as shown: 

                                                      TABLE 9 

 

Size 

of Image 

Decomposition 

Level 

Threshold Compression_score 

(in_percentage) 

Compression  

ratio 

128x128 5 20 79.2 4.99 

128x128 5 30 84.3 6.53 

128x128 5 45 89.2 7.92 

128x128 9 20 69.9 4.81 

128x128 9 30 77.8 5.67 

128x128 9 45 87.0 6.18 

     

200x200 5 20 89.0 8.60 

200x200 5 30 93.1 11.43 

200x200 5 45 95.6 14.56 

200x200 9 20 85.7 7.25 

200x200 9 30 89.9 8.92 

200x200 9 45 92.5 10.96 

     

256x256 7 40 93.1 15.61 

256x256 7 50 94.1 17.18 

256x256 7 65 96.3 20.47 

256x256 9 40 92.7 14.10 

256x256 9 50 93.2 15.10 

256x256 9 65 95.3 19.2 

     

332x268 7 40 97.9 38.22 

332x268 7 50 98.1 40.69 

332x268 7 65 98.8 51.01 

332x268 9 40 96.4 31.21 

332x268 9 50 96.8 34.55 

332x268 9 65 97.9 40.21 



The values of corresponding input & output parameters using “db15” wavelet for 

various size images are tabularized as shown 

                                                       TABLE 10 

 

Size 

of Image 

Decomposition  

Level 

Threshold Compression_score 

(in_percentage) 

Compression  

ratio 

128x128 5 20 78.3 4.29 

128x128 5 30 82.6 5.73 

128x128 5 45 87.6 6.97 

128x128 9 20 77.5 4.81 

128x128 9 30 79.1 5.67 

128x128 9 45 86.0 6.39 

     

200x200 5 20 88.3 7.66 

200x200 5 30 92.4 10.13 

200x200 5 45 94.2 13.26 

200x200 9 20 84.1 7.05 

200x200 9 30 88.0 8.91 

200x200 9 45 91.6 9.51 

     

256x256 7 40 91.1 14.51 

256x256 7 50 93.3 16.38 

256x256 7 65 95.4 19.07 

256x256 9 40 91.2 13.10 

256x256 9 50 91.9 13.98 

256x256 9 65 94.8 18.92 

     

332x268 7 40 95.9 37.42 

332x268 7 50 96.7 39.19 

332x268 7 65 97.4 45.07 

332x268 9 40 93.8 30.01 

332x268 9 50 94.8 35.95 

332x268 9 65 96.6 38.21 



5.3 Comparison between DCT & DWT methods of compression: 

Comparison between compression ratios for different sized images obtained 

using DCT & DWT methods of Lossy image compression for particular SNR 

value of the recovered image are shown in the table below 

 

                                                      TABLE 11 

Size 

of Image 

 SNR 

 (Recovered Image) 

Compression  

Ratio using DCT 

Compression  

Ratio using DWT 

    

128x128 8.5 3.58 11.11 

128x128 10 3.55 10.96 

128x128 12 3.36   9.94 

    

200x200 8.5 5.02 21.8 

200x200 10 4.87 19.4 

200x200 12 4.42 18.9 

    

256x256 8.5 6.23 24.2 

256x256 10 5.91 23.7 

256x256 12 5.65 22.3 

    

332x268 8.5 7.83 36.1 

332x268 10 7.07 32.5 

332x268 12 6.76 30.1 

 

 

 



5.4 Comparison between Huffman & Shannon coding 
 

Comparison between compression ratios for different sized images obtained 

using Huffman & Shannon coding methods of Lossless data compression 

combined with respective methods of Lossy Image compression are shown in the 

table below: 

 

                                                      TABLE 12 

 

Size 

of Image 

Compression  

Ratio using  

Huffman Codes 

Compression  

Ratio using  

Shannon codes 

Method of Lossy 

compression it 

followed 

    

100x100 3.21 3.10 DCT 

128x128 3.42 3.31 DCT 

    

100x100 3.60 3.49 DWT 

128x128 3.88 3.71 DWT 

    

    

200x200 4.21 3.92 DCT 

256x256 4.82 4.57 DCT 

    

200x200 4.68 4.59 DWT 

256x256 5.01 4.91 DWT 

    

    

300x300 4.45 4.33 DCT 

332x268 4.59 4.45 DCT 

    

300x300 4.68 4.47 DWT 

332x268 5.12 4.97 DWT 
 



5.5 Channel Equalizer Performance 

The SNR value of the signal obtained after being passed through the channel 

equalizer for the input signal with a fixed value of SNR (due to noise present in 

the channel). 

 

Variation in parameters like step size for updating weights coefficient & number 

of iterations done using LMS algorithm for weights update results in different 

value of SNR of the output signal. 

 

                                                        TABLE 13 

 

Step size Number of Iterations 

Using LMS Algorithm 

SNR of the  

Input  signal (dB) 

SNR of the  

Output signal (dB) 

    

0.005 50 8 9.21 

0.005 80 8 9.90 

0.005 100 8 10.29 

0.005 200 8 12.11 

0.005 300 8 12.16 

    

0.01 50 6 10.89 

0.01 80 6 12.01 

0.01 100 6 13.35 

0.01 200 6 14.21 

0.01 300 6 14.17 

    

0.03 50 9 11.31 

0.03 80 9 13.49 

0.03 100 9 13.44 

0.03 200 9 13.47 

0.03 300 9 13.41 



 

Limiting value for noise: 

Limiting value of the minimum SNR value of the input signal (or correspondingly 

the maximum value of noise in the channel) that can be handled by the channel 

equalizer for the proper functioning of the Channel Encoder-Decoder system for 

variation in different parameters is shown below: 

 

The weight coefficients of the filter used for channel equalization are updated 

using least mean Square (LMS) Algorithm 

 

                                                      TABLE 14 

 

Step size Number of Iterations 

Using LMS Algorithm 

SNR of the  

Input  signal (dB) 

SNR of the  

Output signal (dB) 

    

0.005 80 3.10 3.81 

0.005 100 2.76 4.10 

0.005 200 2.91 3.96 

0.005 300 2.82 3.93 

    

0.01 50 2.66 3.91 

0.01 80 2.47 4.01 

0.01 100 2.19 4.13 

0.01 200 2.07 3.91 

0.01 300 1.98 3.99 

    

0.03 50 3.03 4.31 

0.03 80 2.88 4.49 

0.03 100 2.61 4.44 

0.03 200 2.61 4.47 
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CHAPTER 6 
 

CONCLUSION 

Thus we see that the SNR (of received image) & the compression ratio are directly affected by 

changes in quantization level & number of diagonals. As expected the SNR increases & 

compression ratio decreases by increasing the number of diagonals & number of quantization 

levels, though the effect of quantization level is more pronounced. Apart from such obvious 

results, it can also be noticed that SNR decreases & compression ratio increases with the 

increase in the block size taken for DCT (keeping the percentage of pixels taken to be almost 

constant with respect to block sizes). This behavior can be explained on the fact that a longer 

string of continuous zeros can be obtained (after neglecting the similar percentage of pixels) by 

increasing the block size. One more behavior worth analyzing is that when the block size taken 

for DCT is increased to 16X16, then on increasing the participating number of diagonals 

compression ratio is decreased as expected but the SNR also reduces (though very slightly). 

This again can be explained on the basis of the fact that an increasing number of symbols are 

being quantized by the same number of quantization level resulting an increase in quantization 

error. So, in this case SNR can be increased by increasing the number of quantization levels. 

                                            Where as in case of compression using Discrete Wavelet 

Transform, it can be observed that for a fixed Decomposition Level, the increase in value of 

Threshold results in greater compression. While for a fixed value of Threshold, compression 

score/ratio decreases with increase in Decomposition Level. Also better compression results 

are obtained for images of larger size. 

Scope of Improvement 

The system designed above faces the shortcoming of sometimes not recovering the image at 

all if any of the received bit is erroneous with respect to the bits transmitted after redundancy 

reduction though DCT or DWT followed by Huffman Coding, i.e. the distortion due to 

transmission channel have to be reduced properly by channel equalization & bit errors, if 

present, should be accurately detected & corrected by Channel Decoding. Thus system can be 

modified & designed in such a way that it is able to decode the part of compressed transmitted 

data which is errors free, thereby identifying & either correcting or leaving the erroneous data. 
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