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Abstract

The S transform, a hybrid of the Short Time Fourier Transform and Wavelet transform,

has a time frequency resolution which is far from ideal. This thesis proposes a modified

S transform, which offers better time frequency resolution compared to the original S

transform. The improvement is achieved through the introduction of a new scaling rule for

the Gaussian window used in S transform. The S transform analysis of financial time series

revealed the presence of business cycles, which could help forecasting economic booms

and recessions. A noisy time series, with both signal and noise varying in frequency and

in time, presents special challenges for improving the signal to noise ratio. The modified

S-transform time-frequency representation is used to filter a synthetic time series in a

two step filtering process. The filter method appears robust within a wide range of

background noise levels. The new filtering approach developed was successfully applied

for the identification of Post Glacial rebound in Eastern Canada.
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INTRODUCTION

A time series is a sequence of data points, measured typically at successive times. A

time series x(t) , t = 1, 2, . . . is called a stationary time series if its statistical properties

do not change with time t. Spectral Analysis using the Fourier transform is a powerful

tool for stationary time series analysis. But for non-stationary time series, the statistical

properties changes with time and hence the time averaged amplitude spectrum obtained

using Fourier transform is inadequate to track the changes in the signal magnitude,

frequency or phase. The advent of time frequency analysis techniques using Short Time

Fourier Transform (STFT) and Wavelet Transform made the analysis of non stationary

signals simpler. The fixed resolution of the STFT and the absence of phase information

in the Wavelet transform led to the development of the S transform, which retains the

absolute phase information, in the mean while, have good time frequency resolution for all

frequencies. Even though the S transform has better time frequency resolution compared

to STFT, the resolution if far from ideal. The resolution needs improvement.

Integrating the S transform over time results in the Fourier transform. This direct

relation to the Fourier transform makes the inversion to time domain an easy task. This

property of the S transform led to the development of S transform filters, which uses an

analysis-weighting-synthesis procedure. The extra time dimension in the time frequency

filters gives the designer an enhanced opportunity to clearly define the pass bands and stop

bands. Current literature on time frequency filters using S transform uses a regular shaped

pass band or stop band (e.g. Rectangular), which makes the filtering intricate when

the signal and the noise exists in an irregular intermixed pattern in the time frequency

domain.

The objective of this work is to improve the time frequency resolution of S transform,

develop a simple in-band filtering approach using S transform and to use the filtering

technique for analysis of Geophysical time series. The thesis is organized as follows.

Chapter 2 gives an introduction to time series analysis. It also includes a brief review

of the signal processing tools like the Fourier transform, Short Time Fourier transform and

the Wavelet transform. The short comparison between the advantages and disadvantages

of each method is presented.

Chapter 3 presents the S transform, which is a new time frequency analysis technique.

A modified S transform is proposed , which has better time frequency resolution compared

to the original S transform. The improvement in resolution is demonstrated using a set

of synthetic time series.

In Chapter 4, the S transform is used for the analysis of Business cycles. Stock price

indices are used as an indicator of the business cycles. Valuable information that are

2



INTRODUCTION

obvious neither from the time series nor from the Fourier analysis of business data are

obtained using S transform time frequency analysis.

A novel time frequency filtering approach is introduced in Chapter 5. Image process-

ing algorithms are combined with S transform to perform filtering of noisy time series,

with both signal and noise varying in frequency and in time. The filtering procedure is

validated using synthetic signals.

The time frequency filtering procedure introduced in Chapter 5, is applied to real data

in Chapter 6. In Chapter 6, time frequency filters are applied to filter Global Positioning

System (GPS) time series collected for Eastern Canada. The study reveals the presence

of a post glacial rebound. The results are in close match with the Post Glacial Rebound

models for Eastern Canada.

Conclusions are drawn in Chapter 7. Future work has also been discussed in this

chapter.

3
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TIME SERIES ANALYSIS

2.1 Introduction

A time-series is a set of data recorded over a length of time. It is normally an output

of a measuring instrument. Most time series patterns can be described in terms of two

basic classes of components: trend and seasonality. Trend is a general systematic linear

or nonlinear component that changes over time and does not repeat or at least does not

repeat within the time range of the time series. Seasonality is similar to trend but it

repeats itself in systematic intervals over time. These two general classes of time series

components may coexist in real-life data.
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Figure 2.1: Series ‘G’

The two components of a time series are clearly visible from the G series [1],which

shows the monthly international airline passenger totals (measured in thousands) in

twelve consecutive years from 1949 to 1960. The plot shows a clear linear trend which

shows that there was an obvious growth of airline passengers with year. The monthly

figures follow an almost identical pattern each year, which refers to the seasonality factor.

i.e. More people travel during vacations.
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2.2 Trend Analysis

There is no well laid out rule or technique to calculate trend in a time series. If the trend is

either a monotonically increasing or decreasing one, its computation may not be difficult.

If the time series data contain considerable error, then the first step in the process of

trend identification is smoothing. Smoothing normally involves a form of local averaging

of data such that the non systematic components of simultaneous observations cancel each

other out. The most common technique is moving average smoothing which replaces each

element of the series by either the simple or weighted average of N surrounding elements,

where N is the width of the smoothing ‘window’ [1]. Medians can be used instead of

means. The main advantage of median as compared to moving average smoothing is that

its results are less biased by outliers (within the smoothing window). Thus, if there are

outliers in the data, median smoothing typically produces smoother curves than moving

average based on the same window width. The main disadvantage of median smoothing

is that in the absence of clear outliers it may produce more ‘jagged’ curves than moving

average and it does not allow for weighting. A normal trend identification involves a

lower order polynomial, exponential or logarithmic curve fitting to the time series after

removing non linear components by smoothing.

2.3 Seasonality Analysis

Seasonality is defined as correlational dependency of order k between each ith element

of the series and the (i− k)th element and measured by autocorrelation. The parameter

k is usually called the lag. If the time series is devoid of outliers and large measurement

errors, seasonality can be visually identified in the series as a pattern that repeats every

k elements. The seasonality of a time series can be analyzed using a correlogram, which

displays graphically and numerically the autocorrelation function , that is, serial correla-

tion coefficients for consecutive lags in a specified range of lags. Serial dependency for a

particular lag of k can be removed by differencing the series, that is converting each ith

element of the series into its difference from the (i− k)th element. There are two major

reasons for such transformations. First, one can identify the hidden nature of seasonal

dependencies in the series. The second reason for removing serial dependency is to make

the time series stationary (constant mean, variance, and autocorrelation through out the

full length of the time series).

6
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2.4 Spectral Analysis

Spectral Analysis is a third type of analysis that can be done on a time series. It is used

to study the cyclic nature of a time series apart from the seasonality.

2.4.1 Fourier Transform

Fourier Transform is one of most common spectral analysis technique. It transforms a

time domain signal to a frequency domain signal, which is an alternate representation of

a signal. In most cases the frequency domain shows certain features of the signal that

were not visible in the time domain. Fourier transform changes the delta basis function

in the time domain to infinitely long sinusoidal basis functions in the frequency domain.

The sinusoidal basis functions are the solutions to the mathematical equation describing

a small perturbation of a physical system about a stable equilibrium point [2].

The Fourier transform X(f) of a time series x(t) is given by

X(f) =

∫
∞

−∞

x(t)e−i2πftdt (2.1)

and its inverse relationship is given by

x(t) =

∫
∞

−∞

X(f)ei2πftdf (2.2)

The discrete version of the Fourier Transform called the Discrete Fourier Transform

(DFT) of a time series of length N is given by

X
[ n

NT

]
=

1

N

N−1∑

k=0

x(kT )e−( i2πnk
N ) (2.3)

where T is the sampling interval of the time series. The inversion relationship is

x(kT ) =
N−1∑

n=0

X
[ n

NT

]
e(

i2πnk
N ) (2.4)

Study of the function [X(f)]2 is called Periodogram Analysis. Even though Fourier

transform can estimate all integer frequencies to a certain extend, it has several disad-

vantages :

• Fourier Transform cannot estimate fractional frequencies. The Fourier Transform

of signals with fractional frequencies, results in spreading of the spectrum to other

7
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(a) Amplitude Spectrum of 5Hz sinusoidal time-series
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(b) Amplitude Spectrum of 5.5Hz sinusoidal time-series

Figure 2.2: Fourier Amplitude Spectrum : Fractional Frequencies

frequencies that are not actually present in the original time-series (Figure 2.2).

• For non stationary time series, the spectral content changes with time and hence the

time averaged amplitude spectrum computed using Fourier Transform is inadequate

to track the changes. No information can be induced from the Fourier Amplitude

spectrum on when a particular frequency components exists in a signal (Figure

2.3,2.4). The time information of the spectral elements are hidden in the phase

spectrum.

• If a particular frequency signal exists for a very small duration in a long time series,

the short duration frequency will not be noticeable in the amplitude spectrum

(Figure 2.5).
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(a) A 4Hz sinusoidal time-series added with an 8Hz si-
nusoidal time-series
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(b) Amplitude Spectrum of the above time series

Figure 2.3: Fourier Amplitude Spectrum : Stationary Signal

The solution to most of the above mentioned difficulties of Fourier Transform is the

Time-Frequency spectral analysis.

2.4.2 Short Time Fourier Transform(STFT)

STFT was one of the first Time-Frequency representation technique. It multiplies the

time series with a series of shifted time windows and calculates the Fourier transform of

that multiplied signal [3]. STFT of a signal x(t) is given by:

STFT (τ, f) =

∫
∞

−∞

x(t)w(t− τ)e−i2πftdt (2.5)
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(a) Time series with 4Hz sinusoidal for first 500 samples
and with an 8Hz sinusoidal for the next 500 samples
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(b) Amplitude Spectrum of the above time series

Figure 2.4: Fourier Amplitude Spectrum : Non Stationary Signal

where w(t) is an arbitrarily chosen window function. The window size is chosen in such

a way to make sure that the windowed signal segment can be assumed to be stationary.

The windowing results in a localization in time and hence the spectrum thus obtained is

called a local spectrum. This localizing window is moved in time along the entire length

of the time series and localized spectrum is calculated. The 2D representation of this

spectrum is called Spectrogram.

Time resolution is defined as how well a transform can resolve rapid variations in the

time domain and frequency resolution refers to how well the changes in frequencies of a

signal can be tracked. The time and frequency resolution are dependent directly on the

width of the window used in time frequency analysis. Frequency resolution is proportional
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Figure 2.5: Amplitude Spectrum of a 4Hz sinusoidal signal of 1000 samples with a 40Hz
signal for a short duration of 30 samples

to the bandwidth of the windowing function while time resolution is proportional to the

length of the windowing function. Thus a short window is needed for good time resolution

and a wider window offers good frequency resolution.

The limitation of the time frequency resolution is due to the Heisenberg-Gabor in-

equality that states that

∆t.∆f ≥ K (2.6)

where ∆t is the time resolution, ∆f is the frequency resolution and K is a constant

that depends on the type of window used. Therefore to attain good time resolution as

well as frequency resolution, one has to go for a pair of STFT, one with a narrow window

(which gives good time resolution) and another with a wider window (good frequency

resolution). Figure 2.6(a) shows a test time series, which contains three frequencies. The

first 64 samples of the time series have a frequency of 6Hz, the next 64 samples are of a

frequency of 25Hz. A short duration signal of 52Hz have been added to the samples from

20 to 30. The three different frequencies are visible in the time frequency representation

(Figure 2.6(b)) obtained using STFT. The window used is a Gaussian window with a

standard deviation of 8. The frequency resolution is not good for the lower frequency

signal components and the short duration high frequency signal does not have a good

energy concentration.
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(b) Short Time Fourier Transform : Test Series

Figure 2.6: Short Time Fourier Transform

2.4.3 The Wavelet Transform

A wavelet is a continuous time signal that satisfies the following properties

∫
∞

−∞

ψ(t)dt = 0 (2.7)

∫
∞

−∞

|ψ(t)|2 dt <∞ (2.8)

where ψ(t) is defined as the mother wavelet [4]. The continuous wavelet transform
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W (a, b) =

∫
∞

−∞

y(t)ψ∗

a,b(t)dt (2.9)

where y(t) is any square integrable function,a is the dilation parameter, b is the trans-

lation parameter and ψ∗

a,b(t) is the dilation and translation(asterik denotes the complex

conjugate) of the mother wavelet defined as

ψ∗

a,b(t) =
1√
|a|
ψ

(
t− b

a

)
(2.10)
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Figure 2.7: Mexican Hat Wavelet

The signal y(t) can be reconstructed from the continuous wavelet transform provided

the mother wavelet satisfies the admissibility condition,

C =

∫
∞

−∞

|Ψ(ω)|2
|ω| dw <∞ (2.11)

where Ψ(ω) is the Fourier Transform of ψ(t). The reconstructed signal y(t) is given as

y(t) =
1

C

∫
∞

a=−∞

∫
∞

b=−∞

1

|a|2
W (a, b)ψa,b(t)dadb (2.12)

The Continuous Wavelet transform (CWT) is two dimensional. It is obtained by

the inner product of the signal and dilations and translations of the mother wavelet.

CWT is represented as a time scale plot, where scale is the inverse of frequency. At a

13
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low scale (high frequency), CWT offers high time resolution and at higher scales (lower

frequencies) CWT gives high frequency resolution. The interpretation of the time scale

representations produced by the wavelet transform require the knowledge of the type of

the mother wavelet (e.g. Mexican Hat (Figure 2.7),Gaussian etc.) used for the analysis.

Thus the visual analysis of the wavelet transform is intricate.
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Figure 2.8: The Wavelet Transform

Figure 2.8 shows the time frequency representation of the test series (Figure 2.6(a))

using a Gaussian mother wavelet with scales 1 to 10. The short duration 52Hz signal is

visible as a disturbance at the lower scales. The other two signals can be identified but

direct reading of the frequency of the signal as well as its frequency components from the

time scale plot is difficult.

2.5 Discussion

Frequency analysis of signals gives information about the signals that cannot be inferred

from the time domain signal. Fourier spectral analysis is a good tool for stationary

signal analysis. But when the signal has time varying statistical parameters, the signals

need to be analyzed in time frequency domain. STFT and Wavelet transforms are two

candidates for time frequency analysis. STFT has fixed time frequency resolution and

the interpretation of the time scale plots obtained in Wavelet transforms are difficult to

interpret.
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MODIFIED S TRANSFORM

3.1 Introduction

The field of time frequency analysis got an impetus with the development of the Short

Time Fourier Transform (STFT). The STFT is a localized time frequency representation

of a time series. It uses a windowing function to localize the time and the Fourier

transform to localize the frequency. On account of the fixed width of the window function

used, STFT has poor time frequency resolution. The Wavelet Transform (WT) on the

other hand uses a basis function which dilates and contracts with frequency. The WT does

not retain the absolute phase information and the visual analysis of the time scale plots

that are produced by the WT is intricate. A time frequency representation developed

by Stockwell [5], which combines the good features of STFT and WT is called the S

transform. It can be viewed as a frequency dependent STFT or a phase corrected Wavelet

transform.

3.2 Stockwell Transform

Given a time series h(t), the local spectrum at time t = τ can be determined by multi-

plying h(t) with a Gaussian located at t = τ . Thus the ‘Stockwell Transform 1’ is given

by

S(f, τ, σ) =

∫
∞

−∞

h(t)g(t− τ)e−i2πftdt (3.1)

The most convenient way of looking at the integral is to define

p1(t, f) = h(t)e−i2πft (3.2)

Substituting in (3.1), we get

S(f, t, σ) =

∫
∞

−∞

p1(t, f).g(t− τ)dt (3.3)

= p1(t, f) ∗ g(t, σ) (3.4)

1Lecture notes on Stockwell Transform : Dr. Lalu Mansinha, The University of Western Ontario,
Canada.
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where ∗ denote the convolution operation. Let S(f, τ, σ) ↔ B(f, α, σ), where B(f, α, σ)

is the Fourier transform of S(f, τ, σ). Thus

S(f, τ, σ) =

∫
∞

−∞

B(f, α, σ)e−i2πατdα (3.5)

From convolution theorem, we know that

{p1(t, f) ∗ g(t, σ)} ↔
∫

∞

−∞

P1(f, α)e−2παtdα (3.6)

Since p1(f, t) = h(t).ei2πft,

P1(f, α) = H(α) ∗ δ(α− f) (3.7)

B(f, α, σ) = [H(α) ∗ δ(α− f)] .G(α, σ) (3.8)

S(f, τ, σ) =

∫
∞

−∞

{[H(α) ∗ δ(α− f)] .G(α, σ)} e−i2πατdα (3.9)

B(f, α, σ) =

∫
∞

−∞

S(f, τ, σ)ei2πατdτ (3.10)

B(f, α, σ) = [H(α) ∗ δ(α− f)] .G(α, σ) (3.11)

[H(α) ∗ δ(α− f)] =
B(f, α, σ)

G(α, σ)
(3.12)

Since H(α) ∗ δ(α − f) is the forward translation of H(α), we can perform a backward

translation to recover H(α) from H(α) ∗ δ(α− f).

H(α) ∗ δ(α− f) = H(α− f) (3.13)

H(α− f) =
B(f, α, σ)

G(α, σ)
(3.14)

H(α− f) ∗ δ(α, f) =

[
B(f, α, σ)

G(α, σ)

]
∗ δ(α+ f) (3.15)

H(α) =
B(f, α+ f, σ)

G(α+ f, σ)
(3.16)

Therefore S(f, τ, σ) is the transform of h(t) at t = τ and σ represents the width of

the Gaussian g(t). The sequence of operations for the calculation of S transform is
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MODIFIED S TRANSFORM

1. Determine

H(α) ↔ h(t)

G(α, σ) ↔ g(t, σ)

2. Calculate H(α) ∗ δ(α− f), which is H(α) translated to f .

3. Multiply G(α, σ) and shifted H(α)

4. Take the inverse Fourier Transform

For the original S transform, Stockwell and Mansinha made σ, the dilation parameter

a function of frequency f .

σ =
1

f
(3.17)

Thus the Gaussian window

g(t, σ) =
1√
2πσ

e−
t2

2σ2 (3.18)

with σ = 1

f
becomes

g(t, σ) =
f√
2πσ

e−
t2f2

2 (3.19)

and

G(α, f) = e
−

2π2α2

f2 (3.20)

Equation 3.20 is derived from the Fourier Transform pair,

e−at2 ↔
√
π

a
e−

ω2

4a (3.21)

which for a Gaussian function

g(t, σ) =
1√
2πσ

e−
t2

2σ2 (3.22)

becomes

1√
2πσ

e−
t2

2σ2 ↔ 1√
2πσ

√
π2σ2e−

ω2

4
2σ2

(3.23)

↔ e−
ω2σ2

2 (3.24)
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The S-Transform can be defined as a CWT with a specific mother wavelet multiplied

by a phase factor.

S(τ, f) = ei2πftW (τ, d) (3.25)

where

W (τ, d) =

∫
∞

−∞

h(t)w(t− τ)dt (3.26)

is the Wavelet Transform of a function h(t) with a mother wavelet w(t, f), defined as

w(t, f) =
|f |√
2π
e−

t2f2

2 e−i2πft (3.27)

The S transform separates the mother wavelet into two parts,the slowly varying en-

velope (the Gaussian function) which localizes in time,and the oscillatory exponential

kernel e−2πft which selects the frequency being localized. It is the time localizing Gaus-

sian that is translated while the oscillatory exponential kernel remains stationary. By

not translating the oscillatory exponential kernel, the S-Transform localizes the real and

the imaginary components of the spectrum independently, localizing the phase spectrum

as well as the amplitude spectrum. This is referred to as absolutely referenced phase

information. The ST produces a time frequency representation instead of the time scale

representation developed by the WT. Figure 3.1 pictures the time frequency representa-

tion of the test time series described in Chapter 2. The time and frequency locations of

the time series in the time frequency plane can be directly read out from the plot.

The S-transform is a method of spectral localization. It can be applied to fields that

require the calculation of event initiation. It has found applications in many fields [6]

including Geophysics [2][7] , Biomedical Engineering [8][9], Genomic Signal Processing,

Power transformer protection [10][11][12].

3.3 Comparison of S Transform and CWT

In [13], Stockwell compares the S transform and the Continuous Wavelet transform. The

major differences between the S transform and CWT are :

1. Frequency Sampling : The discrete Fourier transform has a very definite sam-

pling of the frequencies, in order to be both complete and orthonormal. The discrete

ST has the identical sampling of the frequency space. It also retains the sampling
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Figure 3.1: S Transform TFR of test time series

of the time series. On the other hand WT has a loosely defined scaling. It normally

employs an octave scaling for frequencies,which results in an oversampled represen-

tation at the low frequencies and an under sampled representation at the higher

frequencies.

2. Direct Signal Extraction : The amplitude, frequency and phase at any time

instant can be directly measured from the S transform. A time domain signal can

be extracted form the above measurements.

Signal(t) = A(t)cos(2 ∗ pi ∗ f(t) ∗ t+ φ(t)) (3.28)

where A(t),f(t) and φ(t) are the amplitude, frequency and phase at any time instant

t.This direct extraction of a signal is due to the combination of absolutely referenced

phase information and frequency invariant amplitude of the S-transform, and such

direct extraction cannot be done with Wavelet methods.

3. ST Phase : The ST retains the absolute phase information, where as the phase

information is lost in the WT. The absolutely referenced phase of the S-transform

is in contrast to a wavelet approach, where the phase of the wavelet transform is

relative to the center (in time) of the analyzing wavelet. Thus as the wavelet trans-

lates, the reference point of the phase translates. In ST, the sinusoidal component
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of the basis function remains stationary, while the Gaussian envelope translates in

time. Thus the reference point for the phase remains stationary.

4. ST Amplitude : The unit area localizing function (the Gaussian) preserves the

amplitude response of the S-transform and ensures that the amplitude response of

the ST is invariant to the frequency. In much the same way that the phase of the

ST means the same as the phase of the Fourier transform, the amplitude of the ST

means the same as the amplitude of the Fourier transform. On the other hand, WT

diminishes the higher frequency components.

3.4 Generalized S Transform

McFadden et al. [14] and later Pinnegar and Mansinha [15] introduced a generalized

S-transform which has a greater control over the window function. The generalized S

transform is given by

S(τ, f, β) =

∫
∞

−∞

h(t)w(τ − t, f, β)e−j2πftdt (3.29)

where w is the window function of the S transform and β denotes the set of parameters

that determine the shape and property of the window function. τ is a parameter that

controls the position of the Generalized window w on the time axis. For the Gaussian

window wGS [16], γ is the only parameter in β and it controls the width of the window

w(τ − t, f, γ) =
|f |

γ
√

2π
exp

[
−f

2(τ − t)2

2γ2

]
(3.30)

If the generalized window w satisfies the following normalization criteria,

∫
∞

−∞

w(τ − t, f, β)dτ = 1 (3.31)
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then

∫
∞

−∞

S(τ − t, f, β)dτ =

∫
∞

−∞

∫
∞

−∞

h(t)e−i2πftw(τ − t, f, β)dtdτ (3.32)

=

∫
∞

−∞

h(t)e−i2πft

∫
∞

−∞

w(τ − t, f, β)dτdt (3.33)

=

∫
∞

−∞

h(t)e−i2πftdt (3.34)

= H(f) (3.35)

where H(f) is the Fourier transform of the signal h(t).

Frequency (f)

γ

 

 

b

Slope
= η

Figure 3.2: Scaling function γ

3.5 Modified S Transform

In the modified S transform, we are using a different scaling rule for the Gaussian window.

The scaling function γ is made a linear function of frequency.

γ(f) = ηf + b (3.36)

where η is the slope and b is the intercept. The resolution in time and in frequency

depends on both η and b. We have determined usable values of η and b by trial and error.
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The modified S transform becomes

S(τ, f, η, b) =

∫
∞

−∞

h(t)w(τ − t, f, η, b)e−j2πftdt (3.37)

where w denotes the window function of the modified S transform, denoted by

w(τ − t, f, η, b) =
|f |√

2π(ηf + b)
e
−

(τ−t)2f2

2(ηf+b)2 (3.38)

Using (3.37) and (3.38),

S(τ, f, η, b) =

∫
∞

−∞

h(t)
|f |√

2π(ηf + b)
e
−

(τ−t)2f2

2(ηf+b)2 e−j2πftdt (3.39)

The modified S transform also satisfies the normalization condition for S transform

windows and hence is invertible.

∫
∞

−∞

|f |√
2π(ηf + b)

e
−

(τ−t)2f2

2(ηf+b)2 dτ = 1 (3.40)
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Figure 3.3: Variation of window width with γ for a particular frequency(25Hz)

The parameter γ represents the number of periods of the Fourier sinusoid that can be

contained within one standard deviation of the Gaussian window. The time resolution

i.e. the event onset and offset time and frequency smearing is controlled by the factor
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γ. If γ is too small the Gaussian window retains very few cycles of the sinusoid. Hence

the frequency resolution degrades at low frequencies. If γ is too high the window retains

more sinusoids within it and as a result the time resolution degrades at high frequencies.

It indicates that the γ value should be varied with care for better energy distribution in

the time-frequency plane.

Typical range of η is 0.25 − 0.5 and b is 0.5 − 3. The variation of width of window

with γ for a particular frequency component (25 Hz) is illustrated in Fig. 3.3. The value

of η and b need to be selected depending on the type and nature of the signal under

consideration.
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(a) Example 1 - TFR Using S Transform
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(b) Example 1 - TFR Using Modified S Transform

Figure 3.4: Example 1 - TFR Using S Transform and Modified S Transform
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3.6 Simulation and Discussion

The time frequency resolution characteristics of the modified S transform is tested using

a set of test signals.

3.6.1 Example 1

The first test signal is a linear chirp signal. The instantaneous frequency of a linear chirp

signal varies linearly with time. The instantaneous frequency is given by

fi(t) = f0 + κt (3.41)

where

κ = (f1 − f0)/t1 (3.42)

κ ensures that the desired frequency breakpoint f1 at time t1 is maintained. f1 and f0

are two frequency points through which the signal traverses. For this example, the time

t is made to vary from -1 to 1.99 with a sampling period of 0.01 . The test signal can be

generated in MATLAB using the following commands.

t = −1 : 0.01 : 1.99;

h = chirp(t, 10, 1, 20);

Figure 3.4 shows the difference in time frequency resolution using S transform and

modified S transform with η = 0.25 and b = 1.9.

3.6.2 Example 2

The second test signal that is a combination of a linear and a quadratic chirp signal.

The frequency of the quadratic chirp increases quadratically. The linear chirp has a

frequency characteristics, that decreases linearly with time. The instantaneous frequency

of a quadratic chirp signal is given by

fi(t) = f0 + κt2 (3.43)

where

κ = (f1 − f0)/t
2

1
(3.44)
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(a) Example 2 - TFR Using S Transform
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(b) Example 2 - TFR Using Modified S Transform

Figure 3.5: Example 2 - TFR Using S Transform and Modified S Transform

κ ensures that the desired frequency breakpoint f1 at time t1 is maintained. f1 and

f0 are two frequency points through which the signal traverses. If f0 > f1, the chirp

signal will have a convex frequency behavior and if f1 > f0, the signal will have a concave

frequency pattern. The test signal can be generated in MATLAB using the following

commands

t = −1 : 0.01 : 1.99;

h = chirp(t, 10, 1, 15, ‘quadratic′) + chirp(t, 25, 1, 15);

Figure 3.5 depicts the TFR using original S transform and Modified S transform (η = 0.25

and b = 1.9). We can clearly see that the TFR using modified S transform has better
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time frequency resolution compared to the original S transform.

3.7 Conclusion

The effective variation of the width of the Gaussian window can give better control

over the energy concentration for the S-transform. This is achieved by introducing an

additional parameter in the window which varies with frequency and thereby modulates

the S-transform kernel efficiently with the progress of frequency. The proposed scheme is

evaluated and compared with the standard S-transform by using a set of synthetic test

signals. The comparison shows that the proposed method is superior to the standard one,

providing a better time and frequency resolution. Hence the proposed S-transform can

be widely used for analysis of all kinds of signal that need more time as well as frequency

resolution.
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4.1 Introduction

According to Parkin and Bade’s text “Foundations of Economics” [17],a business cycle

is the periodic but irregular up-and-down movements in economic activity, measured by

fluctuations in real GDP and other macroeconomic variables. A business cycle is not a

regular, predictable, or repeating phenomenon like the swing of the pendulum of a clock.

Its timing is random and, to a large degrees, unpredictable. A business cycle is identified

as a sequence of four phases:

• Contraction - A slowdown in the pace of economic activity

• Trough - The lower turning point of a business cycle, where a contraction turns into

an expansion

• Expansion - A speedup in the pace of economic activity

• Peak - The upper turning of a business cycle

A severe contraction is called a recession. A particularly long-lasting and painful

recession is known as a depression.

4.2 Causes of Business cycles

Just as there is no regularity in the timing of business cycles, there is no reason why cycles

have to occur at all[18]. The prevailing view among economists is that there is a level of

economic activity, often referred to as full employment, at which the economy could stay

forever. Full employment refers to a level of production in which all the inputs to the

production process are being used, but not so intensively that they wear out, break down,

or insist on higher wages and more vacations. When the economy is at full employment,

inflation tends to remain constant; only if output moves above or below normal does

the rate of inflation systematically tend to rise or fall. If nothing disturbs the economy,

the full-employment level of output, which naturally tends to grow as the population

increases and new technologies are discovered, can be maintained forever. There is no

reason why a time of full employment has to give way to either an inflationary boom or

a recession.

Business cycles do occur, however, because disturbances to the economy of one sort

or another push the economy above or below full employment. Inflationary booms can
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be generated by surges in private or public spending. For example, if the government

spends a lot to fight a war but does not raise taxes, the increased demand will cause

not only an increase in the output of war matriel, but also an increase in the take-home

pay of defense workers. The output of all the goods and services that these workers

want to buy with their wages will also increase, and total production may surge above

its normal, comfortable level. Similarly, a wave of optimism that causes consumers to

spend more than usual and firms to build new factories may cause the economy to expand

more rapidly than normal. Recessions or depressions can be caused by these same forces

working in reverse. A substantial cut in government spending or a wave of pessimism

among consumers and firms may cause the output of all types of goods to fall.

Another possible cause of recessions and booms is monetary policy. The Federal

Reserve System strongly influences the size and growth rate of the money stock, and thus

the level of interest rates in the economy. Interest rates, in turn, are a crucial determinant

of how much firms and consumers want to spend. A firm faced with high interest rates

may decide to postpone building a new factory because the cost of borrowing is so high.

Conversely, a consumer may be lured into buying a new home if interest rates are low and

mortgage payments are therefore more affordable. Thus, by raising or lowering interest

rates, the Federal Reserve is able to generate recessions or booms. The following section

discusses the Economic indicators [19], which are parameters that are directly or indirectly

related to the economy and could possibly help in the analysis of business cycles.

4.3 Economic Indicators

An economic indicator is any economic statistic, such as the unemployment rate, GDP,

or the inflation rate, which indicate how well the economy is doing and how well the

economy is going to do in the future[18]. There are three major attributes each economic

indicator has:

1. Relation to business cycles

(a) Procyclic - A procyclic economic indicator is one that moves in the same

direction as the economy. So if the economy is doing well, this number is

usually increasing, whereas if we’re in a recession this indicator is decreasing.

The Gross Domestic Product (GDP) is an example of a procyclic economic

indicator.
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(b) Countercyclic - A countercyclic economic indicator is one that moves in the

opposite direction as the economy. The unemployment rate gets larger as the

economy gets worse so it is a countercyclic economic indicator.

(c) Acyclic - An acyclic economic indicator is one that has no relation to the

health of the economy and is generally of little use.

2. Frequency of the Data

In most countries GDP figures are released quarterly (every three months) while

the unemployment rate is released monthly. Some economic indicators, such as the

Dow Jones Index, are available immediately and change every minute.

3. Timing

Economic Indicators can be leading, lagging, or coincident which indicates the

timing of their changes relative to how the economy as a whole changes.

(a) Leading - Leading economic indicators are indicators which change before

the economy changes. Stock market returns are a leading indicator, as the

stock market usually begins to decline before the economy declines and they

improve before the economy begins to pull out of a recession. Leading economic

indicators are the most important type for investors as they help predict what

the economy will be like in the future.

(b) Lagged - A lagged economic indicator is one that does not change direc-

tion until a few quarters after the economy does. The unemployment rate

is a lagged economic indicator as unemployment tends to increase for 2 or 3

quarters after the economy starts to improve.

(c) Coincident - A coincident economic indicator is one that simply moves at

the same time the economy does. The Gross Domestic Product is a coincident

indicator.

4.4 Types of business cycles

In [20], Schumpeter classifies business cycles based on their duration to five different

classes.

• Seasonal cycles - within a year
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• Kitchin cycles - 3 years

• Juglar cycles - 9-10 years

• Kuznets cycles - 15-20 years

• Kondratiev cycles - 48-60 years

He also defines a ‘cycle’ as a loop of four stages : boom-recession-depression-recovery.

Starting from the mean, a boom is a rise which lasts until the peak is reached; a recession

is the drop from the peak back to the mean; a depression is the slide from the mean down

to the trough; a recovery is the rise from the trough back up to the mean. From the

mean, we then move up into another boom and thus the beginning of another four-phase

cycle. In a sense, any cycle of whatever duration can be described as going through these

four phases.

4.4.1 Kondratiev cycles

Kondratiev or K-waves are regular, sinusoidal cycles in the modern world economy. Av-

eraging fifty and ranging from approximately forty to sixty years in length, the cycles

consist of alternating periods between high sectoral growth and periods of slower growth.

Simon Kuznets,(1901-1985) classifies Kondratiev cycles or long waves into four major

classes.

• The Industrial Revolution (1787-1842)- The industrial revolution cycle is the

most famous Kondratiev wave. The boom began in about 1787 and turned into a

recession at the beginning of the Napoleonic age in 1801 and, in 1814, deepened

into a depression. The depression lasted until about 1827 after which there was

a recovery until 1842. As is obvious, this Kondratiev rode on the development of

textile, iron and other steam-powered industries.

• The Bourgeois Kondratiev (1843-1897): After 1842, the boom reemerged and

a new Kondratiev wave began, this one as a result of the development of road and

rail networks in Northern Europe and America and the accompanying expansion

in the coal and iron industries. The boom ended approximately in 1857 when it

turned into a recession. The recession turned into a depression into 1870, which

lasted until about 1885. The recovery began after that and lasted until 1897.
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• The Neo-Mercantilist Kondratiev (1898-1950): The boom began about 1898

with the expansion of electric power and the automobile industry and lasted until

about 1911. The recession which followed turned into depression in about 1925

which lasted until around 1935.

• The Fourth Kondratiev (1950- 2000) : There has been much debate among

econometricians on the dating the Fourth Wave - largely because of the confusions

generated by the low fluctuation in price levels and the issue of Keynesian policies

and hence this debate is yet to be resolved. Perhaps the most acceptable set of

dates is that the boom began around 1950 and lasted until about 1974 wherein

recession set in. In and around 1981 there was a depression followed by a recovery

that lasted upto around 1992.
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Figure 4.1: Monthly Average Closing Price - DJIA

All economic time series are generally non stationary in nature. This makes time

frequency analysis, one of the most suitable methods for the analysis of econometric

data. In the following section, the S transform discussed in Chapter 3 is applied to

different economic indicators to study the cyclic behavior of business cycles.
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4.5 Analysis and Discussion
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Figure 4.2: Monthly Average Closing Price - S&P 500

Since Second World War, the US economy has experienced several important institutional

changes. These institutional changes have likely had important impact on the structure of

the US economy. The US economy has also experienced several unprecedented shocks that

may also have brought deep structural adjustment to the economy. The oil price shock

during the early 70s, for example, could have resulted in a fundamental reorganization of

the input-output structure in the economy, especially with regard to the energy-intensive

industries.

As explained in section 4.3, stock market is a leading economic indicator(indicators

that change before the economy changes). For the analysis of business cycles, two sets

of stock market data from the Unites States are taken. One from the Dow Jones Indus-

trial Average (DJIA), USA, and the other from the Standards & Poors 500 Index (S&P

500),USA. The time series data of all the stock indices (monthly data) were collected

from January 1950 to January 2006. Thus there were 673 data patterns for both DJIA

and S&P 500 index. Applying the S transform based time frequency analysis on the two

independent stock indices in the United States, the following conclusions can be inferred

on the business cycles.
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Figure 4.3: S Transform - DJIA

Figure 4.4: S Transform - SNP

1. A long cycle exists through out the time series. It reflects the slow pace of structural

changes in the economy.

2. There have been three major short duration business cycles since 1960. The first
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Figure 4.5: Percentage Unemployed (U.S)

occurred in 1961, triggered by a sharp external impulse during that year. The 1961

cycle has a frequency of 30 months per cycle and is short lived.

3. The second major cycle took place in 1973, apparently triggered by two impulses

during 1972 and 1973, and was greatly intensified by another impulse near 1975

[21]. This business cycle lasted about 3-4 years and peaked at the frequency of

about 70 months per cycle).

4. The third major cycle occurred during 1982-1984, apparently triggered by a shock

in 1982. This cycle lasted about 3 years and peaked also at a frequency similar to

the 1973 cycle.

5. There exists a short-lived business cycle in 1966 triggered by an external impulse.

According to International Monetary Fund (IMF) working paper on the evolution

of business cycles [22] , the nature of world business cycles has changed over time due

to ‘globalization’, which is often associated with rising trade and financial linkages. It

is indeed the case that globalization has picked up momentum in recent decades. For

example, the cumulative increase in the volume of world trade is almost three times

larger than that of world output since 1960. More importantly, there has been a striking

increase in the volume of international financial flows during the past two decades as
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Figure 4.6: S Transform TFR - Unemployment

these flows have jumped from less than 5 percent to approximately 20 percent of GDP of

industrialized countries. Recent empirical studies are also unable to provide a concrete

explanation for the impact of stronger trade and financial linkages on the nature of

business cycles.

Similar to the stock prices, percentage unemployed in a country is a direct indicator

of the condition of an economy. In order to study the behavior of unemployment, a time

frequency analysis was done on the United States Percentage Unemployed data. The

data was collected from January 1950 to January 2006, the same period of study of the

stock market time series. The unemployment rate time series (Figure 4.5) show a cyclic

behavior, but the frequency of the cycle cannot be inferred directly from the time domain

signal. Figure 4.6 depicts the time frequency representation of the unemployment rate

time series using S transform. There exists a low frequency cycle at around 0.02 (nor-

malized frequency).Time period of the unemployment cycle = 1/0.02 = 50 months,which

turns out to be very close to the presidential tenure in the United States (4 years).

Oil price is an economic indicator which can directly affect the state of the world

economy. The rise in oil price can lead to economic crisis. Figure 4.7 shows the oil

price in US dollars/barrel from January 1950 to January 2006 (673 data samples). The

time frequency analysis of oil price (Figure 4.8) reveals that there is repetitive cycle of

around 0.1 (Normalized Frequency), which repeats itself in 1974,1981,1983,1986,1990-
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Figure 4.7: Oil Price (US Dollars/barrel)

Figure 4.8: S Transform TFR - Oil Price
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91 and 2001. The possible reason(s) for the 0.1 frequency cycle is pictured in Table

4.1,where the cycles are in close match with the oil price peaks observed by Walter Labys

[23]. There also exists another low frequency component that exists almost through out

the duration of study. The low frequency is around 50 months which is coinciding with

both the unemployment cycle, which in turn almost matches with the US presidency

cycle.

Table 4.1: Oil Price Peaks

Year Possible Reason

1974 Arab oil production embargo

1979 Fall of the Shah of Iran

1981 Afghan War

1983 Afghan War

1986 Iran-Iraq War

1991 Gulf War

2001 Iraq-US War

4.6 Conclusion

The time frequency analysis of economic indicators have revealed the existence of business

cycles of different durations in an econometric time series. The relation between unem-

ployment, oil price and the economic situation of a country could be identified from the

study. The analysis results can be combined with other economic indicators to forecast

the behavior of global economy.
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TIME FREQUENCY FILTERING

- AN ALTERNATE APPROACH

5.1 Introduction

Standard frequency domain filtering approaches have a fixed stop band and pass band

for the entire time duration.Since most of the natural time series are non-stationary,

there is a need for filters with variable pass bands and stop bands. Linear time-varying

(LTV) filter is such type of a filter which have a dynamic cutoff frequency. i.e. The

cutoff frequency varies with time. LTV filters have important applications including

non-stationary statistical signal processing (signal detection and estimation, spectrum

estimation, etc.) and communications over time-varying channels (interference excision,

channel modeling, estimation, equalization, etc.). LTV filters are particularly useful for

weighting, suppressing or separating non-stationary signal components[24].

The input output relation for a linear time varying filter, H, is given by

y(n) = H.x(n) (5.1)

where x(n) is the filter input and y(n) is the LTV filter output.

Time Frequency (TF) representations can be used to implement a LTV filter, when

either x(n), y(n) or H is non-stationary. The need for a time varying filter can be

explained using Figure 5.1. The figure represents the time frequency representation of

a synthetic signal. The synthetic signal is composed of two time series. One is a noise

component, which is represented by the black region of the TF representation. The

grey region shows the signal component of the composite signal. A filter need to be

designed to remove the noise component of the composite signal without affecting the

signal component. The filter H should pass the signal components and should block the

noise components. These type of signals cannot be filtered using a Fourier domain filter

as the cutoff frequency is different at different time locations (i.e. varying with time). A

possible solution is the time varying filter, whose cutoff frequency varies with time. The

specification of the filter H can be expressed as a TF weighting function, M (τ, f), which

is effectively ‘1’ over the signal regions and is ‘0’ for the noise regions.

The two different general approaches to designing a Linear Time Varying filters are -

1. Explicit Design - The LTV filter H is designed to closely match the weighing

function,M(τ, f). The filtering is performed in the time domain using (5.1).

2. Implicit Design - The LTV filter H is designed implicitly during the filtering,

which is an analysis-weighting-synthesis procedure. A linear TF representation of

the input signal x[n] is first calculated. The TF representation is multiplied by the
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Figure 5.1: Need for LTV filters

TF weighing function M (τ, f). The resulting TF representation, is inverted to the

time domain to recover the time domain filtered signal y[n].

5.2 Literature Survey

Time Frequency filters are similar in concept to Fourier domain filters, except the addition

of a second dimension to the filter. The TF filters converts the time domain signal to the

time frequency distribution, followed by a selective excision of the stop band regions, and

a re-transformation to the time domain using the corresponding inverse time frequency

transform. In [25], Saleh and Subotic used Wigner Distribution (WD) and Short Time

Fourier Transform (STFT) as the time frequency distribution. The WD gives good

time frequency resolution, except that WD produces cross terms that are problematic in

filtering. They also tried the TF filtering using STFT. STFT uses the same analyzing

window for all the frequencies and hence have poor time frequency resolution.

In [26], Pinnegar used S transform as the time frequency distribution for TF filtering.

The S transform, which is a modified STFT, gives good time frequency resolution com-

pared to STFT. S Transform is a linear transform and hence has no cross term artifacts.

The S transform of a signal x[n] is given by

S[τ, f ] =
N−1∑

n=0

x[n]w[τ − n, f ]exp

[−i2πfn
N

]
(5.2)
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where n and f are integer time and frequency indices. If T represents the sampling

interval, nT gives the time in seconds and f/NT gives the frequency in Hz. The position of

the S transform window w, is given by τ . The major difference between the STFT and the

S transform is in the window function used. In STFT, a sliding window is used, whereas

in S transform, a sliding window which scales in amplitude and width with frequency

is used. A Gaussian window with an inverse relation between standard deviation σ and

frequency f is normally used. The window function w[τ − n, f ] is presented in 5.3.

w[τ − n, f ] =
|f |

N
√

2π
exp

[
f 2(τ − n)2

2N2

]
(5.3)

The width of the Gaussian part of w, as measured between the peak and the point

having 1/
√
e the peak amplitude, is equal to N/ |f || , the wavelength of the fth Fourier

sinusoid. Thus, at any f , w always retains the same number of Fourier cycles[26]. The S

transform is an invertible time frequency transform. The invertibility of the S transform

depends on the window used in the analysis. For the S transform to be invertible, the

window w should satisfy the normalization condition given by

N−1∑

τ=0

w [τ − n, f ] = 1 (5.4)

When summed over all values of τ , the S transform (5.2) collapses to the Discrete

Fourier Transform(DFT), X(f).

X[f ] =
N−1∑

τ=0

S[τ, f ] (5.5)

An inverse DFT recovers the original time domain signal from the time frequency

representation of S transform. The inverse S transform is given by

x[n] =
1

N

N/2−1∑

f=−N/2

N−1∑

τ=0

S[τ, f ]exp

[
i2πft

N

]
(5.6)

Pinneger [26] introduced a ‘boxcar’ type filter which sets part of an S transform matrix

equal to zero and keep all other values intact. The time frequency filter was tapered in

the frequency direction to reduce artifacts due to sharp filters. These type of ‘regular

shaped’ pass bands and stop bands are not practical when the pass band and stop band

are very close together in the time frequency plane and when they are of ‘irregular’ shapes

as in Figure 5.1. Another drawback of Pinneger’s time frequency filter is that it cannot
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remove background noise (Additive white Gaussian (AWG) Noise) , if any, present in the

signal. The AWG noise in the time domain is usually spread across the complete time

frequency plane, including the pass band. The filter in [26][27] can remove the AWG

noise in the stop band as the complete signal in the stop band is removed. But it is not

the case with the pass band. The AWG noise in the pass band of the filter remains in

the filtered signal and hence is difficult to remove. The above mentioned two problems

can be solved to a great extend using the following filtering approach.

5.3 The Proposed Filtering Approach

This novel filtering process is performed in two stages. In the first phase, the background

noise is removed and then in the second stage the time limited and band limited noise

components of the time series is removed. The filtering process kicks off with a time

frequency representation of a time series using the modified S transform developed in

Chapter 2. The modified S transform is used instead of the normal S transform as it

gives better energy concentration than the original S transform.

5.3.1 Background Noise Removal

A low order ‘best fit’ surface is first developed by least square fitting of the |S(τ, f)| . This

surface acts as a reference for removing background noise. The difference between the S

transform plane and the best fit quadratic surface is derived to form an intermediate sur-

face. All data on the intermediate surface, which are less than three standard deviations

of the Fourier transform are considered as part of the background noise spectrum and

are removed from the S transform plane. For time series with very high signal amplitude

compared to the background noise, a two stage fitting process is executed. An initial

surface fitting is used to remove the highly prominent signal components from the time

frequency plane. Another surface is fitted on the new time frequency plane obtained,

which represents the true nature of the background noise, and is used as the reference

surface for excision of background noise.

5.3.2 Localised Noise Filtering

The S transform plane obtained after background noise removal can be used as a foun-

dation for filtering out localized unwanted signal elements. The ST plane is converted

to a gray scale image, and the edges of the image are determined using a ‘Laplacian for
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Gaussian’ edge detection technique. The Laplacian is a 2-D isotropic measure of the 2nd

spatial derivative of an image. The Laplacian of an image highlights regions of rapid

intensity change. The Laplacian is applied to the image after smoothing the image with

a spatial Gaussian filter in order to reduce its sensitivity to noise. If I(x, y) denote the

pixel intensity values of an image, the Laplacian, L(x, y) can be calculated as:

L(x, y) =
∂2I

∂x2
+
∂2I

∂y2
(5.7)

This operation produces an image that shows the edges of the signal and noise area

as closed loops. The signal signatures which needed to be retained are ‘whiteouted’ using

image filling techniques. Morphological dilation [28] is applied on the image to slightly

‘grow’ the signal regions in all directions on the image. The growth is intentionally made

more prominent in the frequency direction of the S transform plane to reduce the artifacts

of boxcar type filtering. The image after dilation forms a filter mask which is essentially

the weighing function M (τ, f) described in Section 5.1. The product of the S transform

surface and the filter mask removes the noise signatures. An Inverse S transform of the

newly obtained S transform plane using (5.6) gives the filtered signal.
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Figure 5.2: Example 1 - Input Signal
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5.4 Simulation and Discussions

The performance of the filtering approach was tested using two different types of exam-

ples.

5.4.1 Example 1
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Figure 5.3: Example 1 - S Transform of the input signal

Figure 5.2 shows the first time series that was taken for the performance evaluation. The

time series consists of four sets of sinusoidals at three different frequencies. The first

sinusoidal is a 20Hz sinusoidal signal, which extends across the full length of the time

series. The second signal is a 35Hz signal, which extends from samples 50 to 125 and

from 150 to 225. The fourth set consists of a 50Hz sinusoidal signal which is time limited

from 100 to 200 samples.

Figure 5.3 depicts the S transform contour plot of the test signal using the modified

S transform with the parameters η = 0.25 and b = 1.9. The change in the S transform

contour with the addition of Additive White Gaussian Noise (AWGN)can be clearly seen

in Figure 5.4, which is the S transform contour of the test signal with a signal to noise

ratio (SNR) of 10dB. A single stage quadratic surface (Figure 5.6) fitting was used for

the first example to remove background noise. The 35Hz signal from samples 150 to
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Figure 5.4: Example 1 - S transform of the input signal (SNR=10dB)

225 is considered here as an inband noise (i.e: 35Hz sinusoidal is part of the pass band

from samples 50 to 125 and is part of the stop band from samples 150 to 225. The same

frequency is present in the pass band and stop band).

Figure 5.5: Example 1 - Weighing Function

Using the image based techniques described in Section 5.3.2, a weighing function as

shown in Figure 5.5 is obtained and is multiplies with the S transform surface to remove

the inband noise. Figure 5.7 shows the desired filter output time series and the actual

filter output time series. The filtering efficiency was quantitatively measured using the

mean squared error (MSE).
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Figure 5.6: Example 1 - Noise Base
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Figure 5.7: Example 1 - Filter Output

MSE =

∑
N [x(n) − x̃(n)]2

N
(5.8)

where x(n) is the original time series, x̃(n) is the filtered time series and N is the length
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of the time series. Table 5.1 shows the MSE for different values of SNR for the first

example.

Table 5.1: Error Analysis : Example 1

SNR (dB) MSE

10 0.0400

20 0.0293

30 0.0286

40 0.0277

5.4.2 Example 2

The second test series (Figure 5.8) contains two quadratic chirp signals: one is a time

localized chirp and the other one is present across the full length of the time series. The

time series is corrupted by AWGN.

0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

In
te

ns
ity

Figure 5.8: Example 2 - Input Signal

Figure 5.9 shows the TFR of the original time series , using the modified S transform
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with the parameters η = 0.25 and b = 1.9. Figure 5.10 depicts the TFR of the test series

corrupted with AWGN at an SNR of 10dB. On the TFR there appears a low magnitude

background t-f spectrum (AWGN), with visible high magnitude spectral t-f components,

which are the two chirp waveforms.
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Figure 5.9: Example 2 - TFR using modified S transform
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Figure 5.10: Example 2 - TFR of noisy signal using modified S transform
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Figure 5.11: Example 2 - Reference surface for filtering out background noise

Since the test series has different amplitudes at different regions of time, a two stage

curve fitting technique is employed. In the first stage fitting a quadratic ‘best fit’ surface

is fitted to |S(τ, f)|, the absolute value of the S transform matrix. This surface is used

as a reference surface to remove the high amplitude signal components.
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Figure 5.12: Example 2 - TFR after single surface fitting
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The S transform matrix after removing the higher amplitude components is again

fitted by a second quadratic surface, which acts as the ultimate reference surface for

background noise removal as in Section 5.3.2. Figure 5.12 and Figure 5.13 shows the

TF plane obtained after single stage and two stage surface fitting respectively. The

background noise removal after dual stage fitting removes the background noise to a

greater extend compared to single stage processing.
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Figure 5.13: Example 2 - TFR after double surface fitting

The time frequency plane after background noise excision, is converted to an image

and using the procedure explained in Section 5.3.2, a time frequency weighing plane

is developed. The product of the S transform surface and the filter mask removes the

noise signatures. An Inverse S transform of the newly obtained S transform plane using

(5.6) gives the filtered signal. The results of this two stage filtration are checked with

the S transform of the filtered signal (Figure 5.14). From the TFR, it is clear that the

background noise as well as the time limited and band limited noise that were present in

the test signal have been successfully removed and no extra signal components have been

introduced.
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Figure 5.14: Example 2 - TFR of filtered signal

A second check is through the Mean Square Error (MSE) with the difference of the

original and the filtered time series (Table 5.2).

Table 5.2: Error Analysis : Example 2

SNR (dB) MSE

10 0.0203

20 0.0071

30 0.0063

40 0.0059

5.5 Conclusion

This chapter successfully demonstrated a new filtering scheme to remove background

noise and localized noise from noisy time series. More work needs to be done to make

this method operate for highly noisy signals.
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6.1 Introduction

Geophysics is the study of the Earth’s subsurface and motions on its surface by the

quantitative observation of its physical properties. Geophysical data are used to observe

tectonic plate motions, study the internal structure of the Earth, supplement data pro-

vided by geologic maps, and to nondestructively observe shallow deposits. Geodesy is

a field of geophysics, which is scientific discipline that deals with the measurement and

representation of the Earth in a three-dimensional time-varying space. Points on the

Earth’s surface change their location due to a variety of mechanisms:

• Plate tectonics : It describes the large scale motions of Earth’s lithosphere. The

lithosphere is broken up into what are called tectonic plates. In the case of Earth,

there are eight major and many minor plates. The lithospheric plates ride on the

asthenosphere. These plates move in relation to one another at one of three types

of plate boundaries: convergent, divergent or transform boundaries. Earthquakes,

volcanic activity, mountain-building, and oceanic trench formation occur along plate

boundaries.

• Periodic effects due to Earth tides

• Postglacial land uplift : It is rise of land masses that were depressed by the huge

weight of ice sheets during the last glacial period.

Every motion estimation problem requires a reference point. A reference point on

Earth cannot be used to calculate the relative motion of a point on the surface on the

Earth. A possible solution is a reference point in space. The Global positioning satellites

comes as a handy solution in determining the relative motion of a point on the surface

of Earth.

6.2 Basic Concept of GPS

The Global Positioning System (GPS) is a global navigation satellite system (GNSS)

developed by the United States Department of Defence and managed by the United

States Air Force 50th Space Wing. It uses a constellation of between 24 and 32 medium

Earth orbit satellites that transmit precise radiowave signals, which allow GPS receivers

to determine their current location, the time, and their velocity [29].
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A GPS receiver calculates its position by precisely timing the signals sent by the GPS

satellites high above the Earth. Each satellite continually transmits messages containing

the time the message was sent, precise orbital information , and the general system health

and rough orbits of all GPS satellites. The receiver measures the transit time of each

message and computes the distance to each satellite. Geometric trilateration (A method

for determining the intersections of three sphere surfaces given the centers and radii of

the three spheres) is used to combine these distances with the location of the satellites to

determine the receiver’s location. The position is obtained as a latitude, longitude and

elevation [30].

Three satellites are are enough to calculate the position. However a very small clock

error multiplied by the very large speed of light (the speed at which satellite signals

propagate) results in a large positional error. The receiver uses a fourth satellite to solve

for x,y, z, and t which is used to correct the receiver’s clock.

The GPS system consists of three segments [31]:

• Space segment

• Control segment

• User segment

All these parts operate together to provide accurate three-dimensional positioning, timing

and velocity data to users worldwide.

6.2.1 Space segment

The GPS system constellation has 24 satellites in six 55o orbital planes, with four satellites

in each plane, with room for spares. The orbit period of each satellite is approximately

12 hours at an altitude of 20,183 kilometers. With this constellation, a user receiver has

at least six satellites in view from any point on earth.

6.2.2 Control segment

The GPS control segment consists of a master control station,base stations and data

up-loading stations in locations round the globe. Other configurations are possible for

other satellite navigation systems. The base stations track and monitor the satellites via

their broadcast signals. These signals are passed to the master control station where
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orbital parameters and timing corrections are computed. The resulting corrections are

transmitted back to the satellites via the data up-loading stations.

6.2.3 User Segment

An user segment consists of an equipment which track and receive the satellite signals.

User segment must be capable of simultaneously processing the signals from a minimum

of four satellites to obtain accurate position, velocity and timing measurements.

6.3 The Structure of the GPS signal

The principle of position determination by GPS and the accuracy of the positions strongly

depend on the nature of the signals. GPS satellites transmit two low power radio signals,

designated L1 and L2 [31]. Civilian GPS uses the L1 frequency of 1575.42 MHz in

the UHF band. The signals travel by line of sight, meaning they will pass through

clouds, glass and plastic but will not go through most solid objects such as buildings and

mountains. A GPS signal contains three different bits of information a pseudorandom

code, ephemeris data and almanac data. The pseudorandom code is simply an I.D.

code that identifies which satellite is transmitting information. Ephemeris data, which is

constantly transmitted by each satellite, contains important information about the status

of the satellite (healthy or unhealthy), current date and time. This part of the signal is

essential for determining a position. The almanac data tells the GPS receiver where each

GPS satellite should be at any time throughout the day. Each satellite transmits almanac

data showing the orbital information for that satellite and for every other satellite in the

system.

6.3.1 Modulation of the carrier signals

C/A and P-Code

The carrier phases are modulated by three different binary codes: first there is the C/A

code (coarse acquisition). This code is a 1023 ‘chip’ long code, being transmitted with a

frequency of 1.023 MHz. A ‘chip’ in the same as a ‘bit’, and is described by the numbers

‘one’ or ‘zero’. The name ‘chip’ is used instead of ‘bit’ because no information is carried

by the signal. By this code the carrier signals are modulated and the bandwidth of the

man frequency band is spread from 2 MHz to 20 MHz (spread spectrum). Thus the

57



APPLICATION TO GEOPHYSICS

interference liability is reduced. The C/A code is a pseudo random code (PRN) which

looks like a random code but is clearly defined for each satellite. It is repeated every 1023

bits or every millisecond. Therefore each second 1023000 chips are generated. Taking

into account the speed of light the length of one chip can be calculated to be 300 m.

Pseudo Random Numbers (PRNs)

The satellites are identified by the receiver by means of PRN-numbers. Real GPS satel-

lites are numbered from 1 − 32. These PRN-numbers of the satellites appear on the

satellite view screens of many GPS receivers. For simplification of the satellite network

32 different PRN-numbers are available, although only 24 satellites were necessary. The

mentioned PRN-codes are only pseudo random. If the codes were actually random, 21023

possibilities would exist. Of these many codes only few are suitable for the auto correla-

tion or cross correlation which is necessary for the measurement of the signal propagation

time. The 37 suitable codes are referred to as GOLD-codes. For these GOLD-codes the

correlation among each other is particularly weak, making an unequivocal identification

possible.

The C/A code is the base for all civil GPS receivers. The P code ( precise) modulates

the L1 as well as the L2 carrier frequency and is a very long 10.23 MHz pseudo random

code. The code would be 266 days long, but only 7 days are used.For protection against

interfering signals transmitted by an possible enemy, the P-code can be transmitted

encrypted. During this anti-spoofing (AS) mode the P-code is encrypted in a Y-code.

The encrypted code needs a special AS-module for each receiving channel and is only

accessible for authorized personnel in possession of a special key. The P-code and Y-code

are the base for the precise (military) position determination.

6.4 Errors in GPS

6.4.1 Satellite Geometry

Satellite geometry describes the position of the satellites to each other from the view

of the receiver. If a receiver sees 4 satellites and all are arranged for example in the

north-west, this leads to a ‘bad’ geometry. In the worst case, no position determination

is possible at all, when all distance determinations point to the same direction. Even if

a position is determined, the error of the positions may be up to 100150m. If, on the
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other hand, the 4 satellites are well distributed over the whole firmament the determined

position will be much more accurate.

6.4.2 Satellite Orbits

Although the satellites are positioned in very precise orbits, slight shifts of the orbits are

possible due to gravitation forces. Sun and moon have a weak influence on the orbits.

The orbit data are controlled and corrected regularly and are sent to the receivers in the

package of ephemeris data. Therefore the influence on the correctness of the position

determination is rather low, the resulting error being not more than 2m.

6.4.3 Multipath Effect

The multipath effect is caused by reflection of satellite signals on objects. For GPS signals

this effect mainly appears in the neighborhood of large buildings or other elevations. The

reflected signal takes more time to reach the receiver than the direct signal. The resulting

error typically lies in the range of a few meters.

6.4.4 Atmospheric effects

Another source of inaccuracy is the reduced speed of propagation in the troposphere and

ionosphere. While radio signals travel with the velocity of light in the outer space, their

propagation in the ionosphere and troposphere is slower. In the ionosphere (80400km

above Earth’s surface) a large number of electrons and positive charged ions are formed

by the ionizing force of the sun. The electrons and ions are concentrated in four conductive

layers in the ionosphere (D, E, F1, and F2 layer). These layers refract the electromagnetic

waves from the satellites, resulting in an elongated runtime of the signals. These errors

are mostly corrected by the receiver by calculations.

Electromagnetic waves are slowed down inversely proportional to the square of their

frequency while passing the ionosphere. This means that electromagnetic waves with

lower frequencies are slowed down more than electromagnetic waves with higher frequen-

cies. If the signals of higher and lower frequencies which reach a receiver are analyzed

with regard to their differing time of arrival, the ionospheric runtime elongation can be

calculated. Military GPS receivers use the signals of different known frequencies which

are influenced in different ways by the ionosphere and are able to eliminate another

inaccuracy by calculation.
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The tropospheric effect is a further factor elongating the runtime of electromagnetic

waves by refraction. The reasons for the refraction are different concentrations of water

vapour in the troposphere, caused by different weather conditions. The error caused that

way is smaller than the ionospheric error, but can not be eliminated by calculation. It

can only be approximated by a general calculation model.

6.4.5 Relativistic effects

The time is a relevant factor in GPS navigation and must be accurate to 20−30 nanosec-

onds to ensure the necessary accuracy. Therefore the fast movement of the satellites

themselves (nearly 12000 km/h) must be considered. According to the theory of relativ-

ity , time runs slower during very fast movements. For satellites moving with a speed of

3874 m/s, clocks run slower when viewed from earth. This relativistic time dilation leads

to an inaccuracy of time of approximately 7.2 microseconds per day .

The theory of relativity also says that time moves the slower the stronger the field

of gravitation is. For an observer on the earth surface the clock on board of a satellite

is running faster (as the satellite in 20000 km height is exposed to a much weaker field

of gravitation than the observer). And this second effect is six times stronger than the

time dilation explained above. Altogether, the clocks of the satellites seem to run a little

faster. The shift of time to the observer on earth would be about 38 milliseconds per

day and would make up for an total error of approximately 10 km per day. In order that

those error do not have to be corrected constantly, the clocks of the satellites were set to

10.229999995453 MHz instead of 10.23 MHz but they are operated as if they had 10.23

MHz. By this trick the relativistic effects are compensated once and for all.

Another relativistic effect is the Sagnac-Effect and is caused by the movement of the

observer on the earth surface, who also moves with a velocity of up to 500m/s (at the

equator) due to the rotation of the globe. The influence of this effect is very small and

complicate to calculate as it depends on the directions of the movement. Therefore it is

only considered in special cases.

6.5 Literature Survey

GPS signals have been used by geophysicists to study the post seismic deformation follow-

ing an Earthquake. Post seismic deformation or deep earthquakes are small disturbances

that occur after a major Earthquake. The post seismic deformation information is hid-
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den deep inside the GPS signals due to the high amplitude seasonal and plate tectonic

signals. In [32], K. F. Tiampo et. al studied the post seismic deformation following the

Northridge Earth quake using Localized Hartley Transform Filter. Similar study have

been done for many Earthquakes around the globe [33],[34],[35].

6.5.1 Glacial Isostatic Adjustment (GIA)

Glacial Isostatic Adjustment (Post-glacial rebound) is the rise of land masses that were

depressed by the huge weight of ice sheets during the last glacial period, through a process

known as isostatic depression [36]. It is sometimes called continental rebound, isostatic re-

bound, isostatic adjustment or post-ice-age isostatic recovery. It affects northern Europe

, Canada, and the Great Lakes of Canada and the United States. For example, during

the last glaciation which lasted roughly from 100,000 yr to 8,000 yr BP (before present),

wide areas of North America and Scandinavia where covered by ice sheets extending over

thousands of km and having thicknesses of up to 4 km. These loads depressed the earth’s

surface vertically down by hundreds of meters. After these ice sheets had molten away,

the earth rebounded, but because the earth’s mantle reacts like a highly viscous fluid this

occurs rather slowly. These glacial loads are quite substantial.

Researchers have used the changes in the global tide height to measure Post glacial

rebound[37]. Mazotti [38] and Johansson [39] used the GPS measurements to study the

rebound effect. In this chapter we have used the GPS measurements from Eastern Canada

to study the Post Glacial rebound in those regions.

6.6 Region of Study

A subset of the Canadian Base Network (CBN), consisting of thirty-nine GPS stations lo-

cated throughout the region of seismicity of the lower Saint Lawrence valley, and stretches

south through New England, east into southern Ontario, and north was taken for the anal-

ysis . The time period for this analysis begins in June of 2001 and finishes in June of

2006.

While the area of study is currently in an intra-plate tectonic setting, it is the historic

location of several major tectonic events.Ice advanced over the Saint Lawrence valley

during the late Pleistocene, as far east as the Maritime Provinces and south into New

England. The weight of this ice depressed the lithosphere and the resulting viscoelastic

flow in the mantle caused a peripheral bulge. Between 10k and 20k, the ice sheets
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Figure 6.1: GPS Stations

began their retreat and the lithosphere began to rebound upward to regain isostatic

equilibrium while the peripheral bulge began to migrate inward toward the centre of uplift

as it gradually dissipated. This phenomenon is called Glacial Isostatic Adjustment(GIA)

[explained in Section 6.5.1] and it is ongoing today. Uplift rates approach 10mm/yr or

more at Hudson Bay and decrease with distance southward. Current GIA models forecast

that the hinge line between uplift to the north and subsidence to the south lies somewhere

near the Saint Lawrence valley in eastern Canada.

2002 2003 2004 2005 2006
−50

−40

−30

−20

−10

0

Year

D
is

p
la

c
e

m
e

n
t 

(m
m

)

Figure 6.2: GPS Time Series
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GPS time series is a time series showing the displacement in North-South (NS), East-

West (EW) and in the vertical directions of a GPS station as a function of time. Figure

6.2 shows a GPS time series (BAIE). The signal appears noisy and contains outlier points.

In order to analyze the movement of the Earth surface from the GPS time series, these

noises and outliers need to be eliminated.

6.7 S Transform Filtering

The CGPS data like most physical data is non-stationary. These signals have time de-

pendent frequency components. The purpose of noise smoothing is to reduce various

spurious effects in the data, often of a high-frequency nature, perhaps caused by features

such as noise in the data acquisition system, or noise arising as a result of transmission of

the data. The data acquired using the GPS techniques are no different. In most cases the

data are contaminated by high-frequency noise related to site effects such as monument

motion or multipath, as well as longer wavelength regional anthropogenic or seasonal

signals, and removing many of these effects remains a challenge.
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Figure 6.3: Synthetic Time Series

Since the noise in most geophysical signals are non stationary, a time frequency filter

need to be used for excision of noise. The S transform filter, discussed in Chapter 5, can be

used for the filtering. The filtering process includes a transformation of the time domain

signal into the time frequency domain, followed by a time frequency masking operation,

which removes the noise components. The TF space obtained after the filtering is inverted
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Figure 6.4: Need for Extended S Transform

back to the time domain using Inverse S transform. Before applying to a real GPS signal,

the efficiency and correctness of the filtering operation is checked using a synthetic signal.

Figure 6.3 shows a synthetic signal, which is a low frequency sinusoidal signal corrupted

with Additive White Gaussian Noise (AWGN).

Figure 6.4 shows the S-transform filter output obtained after a low pass filtering.

It has been observed that there is a drop in amplitude at the edges of the signal. At

the edges, the filtered signal tends to move towards the mean value of the signal. This

happens because of the edge effect in S transform as explained in Chapter 3. A possible

solution to this problem is an extended S transform filtering approach, which is explained

below.

6.7.1 Extended S Transform Filtering

The extended S transform filtering is a crude method of time frequency filtering. A

time series of length N is extended to a time series of length 3N , using the following

approach. The original time series is preserved in the extended time series from samples

N + 1 to 2N . The first sample of the original time series is repeated from samples 1 to

N and the last sample is repeated from samples 2N + 1 to 3N . If forg represents the

cutoff frequency for normal S transform low pass filtering of a time series, then the cutoff

frequency for the extended time series is taken as three times the cutoff frequency of the

original S transform filter (i.e. 3forg). After the time frequency masking of the extended

S transform, an inverse S transform of the S transform plane is used to recover a time
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series of length 3N . The first N and the last N samples of the recovered time series are

discarded to get back the filtered N sample time series. The low pass filtering output for

the synthetic signal using extended S transform filtering is portrayed in Figure 6.4.
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(a) BAIE NS: Original Time Series
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(b) BAIE NS: Time series after removing

Outliers
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Figure 6.5: BAIE : North South (NS) Time Series

65



APPLICATION TO GEOPHYSICS

6.8 Analysis and Discussion

The GPS time series for all the 39 GPS stations were filtered using the extended S

transform filtering method.

2002 2003 2004 2005 2006 2007
10

20

30

40

50

60

70

Year

D
is

pl
ac

em
en

t(
m

m
)

(a) BAIE EW: Original Time Series
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(b) BAIE EW: Time series after removing

Outliers
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(c) BAIE EW: Filtered Time series

Figure 6.6: BAIE : East West (EW) Time Series
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Most of the time series had outliers. An initial pre-processing was done on the time

series using statistical methods to remove the obvious outliers in the time series. The

time series after removing outliers was fed to the extended S transform filter to remove

the high frequency noise components.
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(a) BAIE Vertical: Original Time Series
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(b) BAIE Vertical: Time series after remov-

ing Outliers
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(c) BAIE Vertical: Filtered Time series

Figure 6.7: BAIE : Vertical Time Series
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Most of the filter outputs have a linear trend, either in the increasing or decreasing

direction. These filtered GPS time series were used as a reference for calculating the

velocities. A linear curve was fitted by least squares fitting to the filtered time series,

and the slope of that curve represents the velocity of the GPS station movement, which

in turn corresponds to the velocity of the Earth’s surface. The velocities for all the three

directions (North-South, East-West and Vertical) are tabulated in Table 6.1.
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(a) ESCU Vertical: Filtered Time Series

2005.4 2005.6 2005.8 2006 2006.2 2006.4 2006.6 2006.8 2007
−5

−4

−3

−2

−1

0

1

2

Year

D
is

pl
ac

em
en

t(
m

m
)

(b) LPOC Vertical: Filtered Time Series

Figure 6.8: Effect of drought at the Great Lakes

The Generic mapping tools (GMT) software was used to represent the velocities as a

set of vectors. These velocity vectors plot were plotted on the map of Eastern Canada.

Velocity map thus obtained is a plot of the magnitude and direction of the velocity at a

particular point on the surface of the earth. Figure 6.9 shows the vertical velocity map for

Eastern Canada. The length of the velocity vector indicates the magnitude of the velocity

in mm/year and the direction of the vector points to the direction of the motion of the

Earth’s surface at that GPS station. It can be seen that almost 90 percent of the velocity

vectors above a latitude of 44 degrees N are pointing in the vertical direction and most
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of the vectors below 44 degree N latitude points towards the downward direction. This

velocity map is in tally with the GIA observations for Canada and is a clear indication

of a hinge line around 44 degrees N approximately parallel to the St. Lawrence River in

the east [40]. The Earth above the hinge line have an uplift and those portions below the

hinge line have a subsidence.

Figure 6.9: Vertical Velocity Map

There exists some stations, which are near the Great Lakes (Lake Michigan, Lake

Huron, Lake Erie, Lake Ontario, Lake Superior), which behaved some what different
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from the GIA predictions. Figure 6.8 shows the filtered vertical GPS time series for

two stations (ESCU, LPOC). The most likely explanation for this discrepancy is the

recent persistent drought in the Great Lakes basin. This drought, which began in 1998

and continues, with some fluctuations, through 2007, has significantly lowered the lake

levels in Lake Michigan, Lake Huron, and Lake Erie, for example. This could potentially

lower the local groundwater levels, which subsequently lower the Earth’s surface (GPS

Stations).

Figure 6.10: Horizontal Velocity Map
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Table 6.1: Canada GPS : Velocities

Sl. Station NS EW Vertical No. of

No. Velocity Velocity Velocity Samples

1 ANNE 2.9504 0.1659 -0.5346 362

2 ATRI -0.0241 0.3611 1.9431 1892

3 BAIE -0.2707 0.5357 2.1227 1756

4 BARH 0.3271 0.2263 -0.2411 1858

5 BARN -0.0806 0.1585 0.0101 1848

6 BRU1 -0.1914 -0.0098 -0.3582 1849

7 CAGS -0.5344 0.4709 2.0352 1920

8 CAPL -0.0633 -0.3684 -0.8326 1423

9 CARM -0.4087 0.0642 -0.9071 753

10 CHIB -0.8788 0.3860 6.2858 1885

11 CHIC -0.2211 0.8833 2.9995 1745

12 ESCU 0.5883 0.0525 -0.8959 642

13 GEOR 0.2793 1.4597 -0.5386 1050

14 HLFX 0.5999 0.0773 -1.0641 1734

15 HSTP 0.1561 0.1847 1.0994 1691

16 HULL 0.2439 0.1776 0.5777 1648

17 KNGS -0.0220 0.7170 -0.1714 1559

18 LAMT 0.4143 0.1187 -0.0085 1559

19 LAUR 0.2034 0.3051 1.7789 691

20 LOUP 0.0687 0.7259 0.9810 608

21 LPOC -0.3813 0.5299 1.9020 479

22 MCTN 2.0515 1.5832 -3.5152 317

23 MONT 0.2184 0.2132 2.1237 1844

24 NPRI 0.4015 0.0518 -0.2831 1910

25 OSPA -0.1905 0.3143 0.0638 1460

continued on the next page . . .
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Canada GPS : Velocities (continued . . . )

Sl. Station NS EW Vertical No. of

No. Velocity Velocity Velocity Samples

26 PARY -0.3036 0.3250 0.0749 1551

27 POR4 -0.2635 -0.3419 -0.5409 1175

28 PSC1 -0.0125 0.2390 0.8094 1795

29 PWEL 0.0431 0.0190 -0.8270 1576

30 RIMO 0.1941 0.7381 -0.4514 716

31 ROUY -0.3199 -0.4370 4.6581 1881

32 SEPT -4.6846 3.8840 0.1307 350

33 SRBK -0.0664 0.4156 0.7720 1701

34 TRIV -0.3546 0.5916 1.6194 1768

35 UNB1 0.2406 0.0118 -0.3687 1833

36 VALD -0.7646 0.3641 5.2948 1690

37 VCAP -0.0293 0.1958 0.6592 1690

38 WES2 0.2854 0.3503 -0.8876 1753

39 WIL1 0.2626 0.0859 -0.3390 1878

A similar type of velocity map was developed for the horizontal velocities (resultant

velocity of the North South and the East West velocities) also. Figure 6.10 depicts the

horizontal velocity map. No regular pattern can be seen for the horizontal velocity as

observed for the vertical velocities. The horizontal velocity pattern is not definitive, in

part due to the short time periods for a significant number of the available stations.

6.9 Conclusion

This chapter introduced S transform filter as a tool for analysis of GPS time series. The

crustal velocities derived from the analysis reveal the presence of a post glacial rebound in

Eastern Canada. A hinge line was observed as predicted by the GIA models for Eastern

Canada.
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7.1 Conclusion

Fourier transforms are limited to the analysis of stationary time series. Time frequency

analysis techniques were developed to overcome this limitation. The Short Time Fourier

transform and the Wavelet transforms have several disadvantages. This led to the de-

velopment of the S transform, which is a hybrid of both the transforms. The original S

transform developed by Stockwell, Mansinha and Lowe suffered from poor time frequency

resolution. This thesis introduced a modified S transform with better time frequency res-

olution. The improvement is achieved through the introduction of a new scaling rule for

the S transform Gaussian window.

The S transform was used in Chapter 4 for the analysis of business cycles. The analysis

revealed the presence of short term cycles in the stock market time series, which were not

visible in the time domain. The business cycles could be used for forecasting economic

upswings and depressions. The analysis of global oil price brought out the occurrence of

short term cycles in oil price that repeats during the times of war.

Chapter 5 presented a new time frequency filtering approach. Image processing tech-

niques were combined with S transform time-frequency representation to design filters

that can remove even time limited and band limited noise through a two stage filtering

process. The filter method appears robust within a wide range of background noise levels.

More work needs to be done to make this method operate for highly noisy signals. The

filtering technique was applied in Chapter 6 for the detection of post glacial rebound

in Eastern Canada. The results obtained are in close agreement with the post glacial

rebound models available.

7.2 Scope for Future Work

Even though the time frequency resolution obtained in S transform and the modified S

transform proposed in this thesis are better than Short Time Fourier Transform, it is still

far from ideal. Heisenberg’s uncertainty principle offers a restriction on the achievable

time frequency resolution. Much remains to be done to achieve perfect time frequency

resolution. The gradient of the local variance can be used to calculate the frequency

trend of a time series, but it requires refinement and the development of a mathematical

basis. S transform can be applied for the analysis of time series from diverse areas. Even

though business cycles were analyzed in detail, more study is necessary on its relationship

to various other factors that affect the GDP of a country. The interest rate is one such
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factor that may be analyzed.

The S transform of a time series of length N produces an S matrix of size N ×N/2.

Each point in the S matrix is a complex number. Thus the S transform requires a good

amount of memory for storage of the 2D complex matrix. As the Gaussian window gets

wider in the frequency domain, in the higher frequency range, the incremental width of

the Gaussian window with an increase in frequency is often less than one sample interval.

This property of the window can be used to develop a compact S transform, which will

produce a sparse matrix as compared to the N×N/2 complex matrix produced by normal

S transform. Inverting techniques need to be developed to recover the original S transform

from the compact S transform.

The S transform has a frequency step computation procedure. i.e. The N/2 frequency

voices are computed separately one at a time. This increases the computation time of the

S transform. The S transform computation time can be improved by making use of the

properties of a Toeplitz matrix, which is a matrix in which each descending diagonal from

left to right is constant. Time Variance (TV) is another possible candidate for analysis

of a time series. The time variance analysis produces 2D representation of local variance

with time. TV analysis is expected to reveal more detailed information from a time series.

75



Bibliography

[1] Box G. E. P. and Jenkins G., Time Series Analysis: Forecasting and Control,

Holden-Day, 1976.

[2] Stockwell R. G. , S–Transform Analysis of Gravity Wave Activity, Ph.D.

Dissertation, Dept. of Physics and Astronomy, The University of Western

Ontario, London, Ontario, Canada, 1999.

[3] Michael R. Portnoff, Time–Frequency Representation of Digital Signals and

Systems Based on Short-Time Fourier Analysis, IEEE Transactions On

Acoustics, Speech, And Signal Processing, Vol. Asp–28, No. 1,(1980), pp:55–

69.

[4] Ingrid Daubechies, The Wavelet Transform, Time–Frequency Localization

and Signal Analysis, IEEE Trans. On Information Theory, Vol.36, No. 5,

(1990), pp:961–1005.

[5] Stockwell R.G, Mansinha L and Lowe RP Localisation of the complex spec-

trum: the S transform, IEEE Trans. Signal Processing, 44, (1996), pp:998-

1001.

[6] Eramian M., Schincariol R., Stockwell R., Lowe R. and Mansinha L., Re-

view of applications of 1D and 2D S–transforms, Wavelet Applications IV

3078,(1996), pp:558–568.

[7] Eramian M., Schincariol R., Mansinha L. and Stockwell, R., Generation of

aquifer heterogeneity maps using two–dimensional spectral texture segmenta-

tion techniques, Mathematical Geology 31, (1999), pp:327–348.

[8] Rakovi P. , Sejdic E., Stankovi L.J. and Jiang J., Time–Frequency Signal

Processing Approaches with Applications to Heart Sound Analysis, Comput-

ers in Cardiology, Vol:33, (2006), pp:197–200.

[9] Assous S., Humeau A., Tartas M., Abraham P., and LHuillier J., S–transform

applied to laser doppler flowmetry reactive hyperemia signals, IEEE Trans.

Biomed. Eng. 53, (2006), pp:1032-1037.



BIBLIOGRAPHY

[10] Dash P.K., Samantaray S.R., Panda G. and Panigrahi B.K., Power trans-

former protection using S-transform with complex window and pattern recog-

nition approach, IET Gener. Transm. Distrib., Vol. 1, (2007), pp:278–286.

[11] Dash P. K., Panigrahi B. K., Sahoo D. K., and Panda G., Power Quality Dis-

turbance Data Compression, Detection, and Classification Using Integrated

Spline Wavelet and S-Transform, IEEE Transactions On Power Delivery, Vol.

18, (2003), pp:595–600.

[12] Chien-Chun Huang, Sheng-Fu Liang, Ming-Shing Young and Fu-Zen Shaw,

A novel application of the S–transform in removing powerline interference

from biomedical signals, Physiological Measurement, 30, (2009), pp: 13–27.

[13] Stockwell R.G., Why use the S-Transform?, AMS Pseudo–differential op-

erators: partial differential equations and time–frequency analysis, Vol.

52,(2007), pp:279–309.

[14] McFadden P. D., Cook J. G. and Forster L. M., Decomposition of gear vibra-

tion signals by the generalized S-transform, Mechanical Systems and Signal

Processing, vol. 13, no. 5, (1999), pp:691–707.

[15] Robert Pinnegar C. and Lalu Mansinha, The S–transform with windows of

arbitrary and varying shape, Geophysics, Vol. 68, No. 1, (2003), pp:381-385.

[16] Mansinha L., Stockwell R. G. and Lowe R. P., Pattern analysis with

two-dimensional spectral localisation: Applications of two-dimensional S-

transforms, Physica A, 239, (1997), pp:286-295.

[17] Robin Bade and Michael Parkin, Foundations of Economics, 4th edition,

Addison Wesley, 2007.

[18] Christina D. Romer, Business Cycles, The Concise Encyclopedia of Eco-

nomics,Library of Economics and Liberty, 2008.

[19] Zarnowitz V., Business Cycles: Theory, History, Indicators, and Forecasting,

National Bureau of Economic Research, Studies in Business, 1992.

[20] Joseph A. Schumpeter, Business Cycles: A theoretical, historical and statis-

tical analysis of the Capitalist process, 1939.

77



BIBLIOGRAPHY

[21] Yogo and Motohiro, Measuring Business Cycles: A Wavelet Analysis of Eco-

nomic Time Series, Economics Letters, Vol. 100, No. 2, (2008), pp:208–212.

[22] Ayhan Kose M. , Christopher Otrok and Charles H. Whiteman1, Understand-

ing the Evolution of World Business Cycles, IMF Working Paper, (2005),

pp:1–36.

[23] Walter C. Labys, Globalization, Oil Price Volatility, and the US Econ-

omy,Research Paper, West Virginia University, (2006), pp:21–26.

[24] Antonia Papandreou-Suppappola, Applications in Time-Frequency Signal

Processing, CRC Press, 2003.

[25] Saleh B.E.A. and Subotic N.S., Time–variant filtering of signals in the mixed

time–frequency domain, IEEE Trans. ASSP 33, (1985), pp:1479-1485.

[26] Pinnegar C.R., Time-frequency and time-time filtering with the S-transform

and TT-transform, Digital Signal Processing 15, (2005), pp:604-620.

[27] Schimmel M. and Gallart J., The Inverse S-Transform in filters with Time–

Frequency Localization, IEEE Trans. Signal Processing 55 (11), (2005),

pp:4417-4422.

[28] R. M. Haralick ,S. R. Sternberg and X. Zhuang, Image analysis using math-

ematical morphology, IEEE Transactions on Pattern Analysis and Machine

Intelligence,9,(1987), pp: 532–550.

[29] Chris Rizos, Introduction to GPS, Lecture Notes – University of New South

Wales, 1999.

[30] Jay Farrell and Matthew Barth ,The global positioning system and inertial

navigation, McGraw-Hill, 1999.

[31] Sergey V Samsonov, Integration of differential INSAR and GPS measure-

ments for studying of surface deformation, Ph.D Thesis, University of West-

ern Ontario, 2007.

[32] Tiampo K. F., Dawit Assefa, Fernandez J., Mansinha L. and Rasmussen

H.,Postseismic Deformation Following the 1994 Northridge Earthquake Iden-

tified Using the Localized Hartley Transform Filter, Pure Applied Geophysics.

165, (2008), pp:1577-1602.

78



BIBLIOGRAPHY

[33] Andrea Donnellan, Jay W. Parker and Gilles Peltzer, Combined GPS and

InSAR Models of Postseismic Deformation from the Northridge Earthquake,

Pure appl. geophys., Vol-159,(2002), pp:2261-2270.

[34] Kuo-En Ching, Ruey-Juin Rau , Jian-Cheng Lee and Jyr-Ching Hu, Contem-

porary deformation of tectonic escape in SW Taiwan from GPS observations,

19952005, Earth and Planetary Science Letters 262, (2007), pp: 601-619.

[35] Reddy C. D. and Sanjay K. Prajapati, GPS measurements of postseismic

deformation due to October 8, 2005 Kashmir earthquake, Springer J Seismol,

(2008).

[36] Mitrovica, J.X., G.A. Milne and J.L. Davis, Glacial isostatic adjustment on

a rotating earth, Geophysical Journal International 147, (2001), pp: 562-578.

[37] Peltier W.R., Postglacial variations in the level of the sea: implications

for climate dynamics and solid–earth geophysics, Reviews of Geophysics 36,

(1998), pp: 603-689.

[38] Sella G.F., Stein S., Dixon T.H., Craymer M., James T.S., Mazzotti S. and

Dokka R.K, Observation of glacial isostatic adjustment in stable North Amer-

ica with GPS, Geophysical Research Letters 34, (2007), L02306.

[39] Johansson J.M., Continuous GPS measurements of postglacial adjustment in

Fennoscandia, Journal of Geophysical Research 107, (2002), pp: 21–57.

[40] Peltier W. R. , Global glacial isostatic adjustment: Palaeogeodetic and space–

geodetic tests of the ICE-4G (VM2) model, J. Quat. Sc., 17, (2002), pp:491–

510.

79


