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ABSTRACT 

Robots are developed to carry out certain task to help the human 

beings. A robot carrying out a particular needed task has promising 

applications for the betterment of human society. So the control of 

their motion remains a vital part for a robot. 

In this project, I have to develop the simulation of mobile agents 

(robots) in an arena of obstacles from a start point to a destination 

point without collision. So in a way this project deals with successful 

navigation of robots in prior known environment. 

This document presents a computer vision method and related 

algorithms for the navigation of a robot in a static environment. Our 

environment is a simple white coloured area with coloured obstacles 

(circle with white colour, rectangles with orange colour, triangle with 

green colour and hexagon with pink colour which helps in identifying 

the obstacle) and robot is in a rectangular form. The agents starting 

point is in blue colour and the destination point is in red colour. This 

environment is input by the user with the starting point and the 

destination point. The data acquired from here is then used as an input 

for the program which controls the robot drive motion in graphic 

control window. Robot then tries to reach its destination avoiding 

obstacles in its path. The algorithm presented in this paper uses the 

distance transform methodology to generate paths for the robot to 

execute which are written in C++ compiler. These paper 

developments can also be applied to vehicles for collision free 

driving. 
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INTRODUCTION 

 

            We know that we can make robot working and carry out 

assign task successfully with a little help in programming. 

    1.1 OBJECTIVE: The main scientific objective of the project is 

to add intelligence into robot artificial by using programming 

software. 

     1.2 NAVIGATION: The term navigation means the process of 

planning and directing the route or course of a robot or a vehicle. 

 

    1.3 ROBOT: A robot is an electro-mechanical device that can 

perform autonomous or pre-programmed task. A robot may act as 

under the direct control of human or autonomously under the control 

of a programmed computer. Robots may be used to perform tasks that 

are dangerous or difficult for humans to implement directly (e.g. 

nuclear waste cleanup), or may be used to automate repetitive tasks 

that can be performed with more precision by a robot than the 

employment of a human (e.g. automobile production). 

Robots may be controlled directly by a human, such as remotely                                           

controlled bomb disposal robots, robotic arms, or shuttles, or may act 

according to their own decision making ability, provided by Artificial 

Intelligence. However, the majority of robots fall between these 

extremes, being controlled by pre-programmed computers. Such 

robots may include feedback loops such that they can interact with 

their environment, but do not display actual intelligence. 
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1. 4 MOBILE ROBOTS: Mobile Robotics is an emerging field 

of robotics that studies the behaviour of robots under dynamic and 

challenging conditions to achieve its goal. 

               Mobile Robotics successfully incorporates all the constraints 

that the robot experiences in its due course of operation and induces 

behaviour of self-thinking to the robot by harnessing the power of 

optimisation and intelligent techniques like Artificial intelligence, 

Fuzzy-Logic, etc.  

                Mobile robots present special challenges. These robots can 

move their bodies around from place to place. Why is this capability 

difficult? Many more things can go wrong if your robot is free to 

move around rather than being bolted to one place. Being mobile 

multiplies the number of situations your robot needs to be able to 

handle.    

               Mobile robots actually come in two varieties: tethered and 

autonomous. A tethered robot "cheats" by dumping its power supply 

and brain overboard, possibly relying on a desktop computer and a 

wall outlet. Control signals and power are run through a bundle of 

wires (the tether) to the robot, which is free to move around, at least 

as far as the tether will allow. 

Autonomous mobile robots are even more challenging. These robots 

need to bring everything along with them, including a power supply 

and a brain. The power supply is typically an array of batteries, which 

adds a lot of weight to the robot. The brain is also constrained because 

it has to fit on the robot, not weigh a ton, and be frugal about sucking 

power out of the batteries. 
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1.5 INTELLIGENCE STRATEGY: Intelligence Strategy 

making is a part of Artificial Intelligence (AI) technology which 

provides techniques for developing computer programs for carrying 

out a variety of tasks, simulating the intelligent way of problem 

solving by humans. The problems that humans solve in their day-to-

day life are of a wide variety in different domains. Though the 

domains are different and also the method, AI technology provides a 

set of formalisms to represent the problems and also the techniques 

for solving them. In this intelligent strategy making we have to plan 

the path for autonomous robot by programming. Different people 

working in this topic for many years have proposed different 

definitions. According to Rich, Intelligent strategy is the study of how 

to make computers do things at which humans are better at. It is 

observed that it is equally difficult to define human intelligence. 

          Users can create complex virtual worlds and simulate their 

robots within these environments. A complete programming library is 

provided to allow users to program the robots C++ compiler. From 

the controller programs, it is possible to read input values and show 

the required simulation in a graphic window. 

 

                             

 
 

    MOBILE        

AGENT 

 

 

 

 

OBSTACLE 
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C++ Compiler  

                        It provides an environment for programming. Due to 

its functions and syntaxes it more versatile and faster programming 

language. It is very popularly used for writing the codes for artificial 

intelligence. For bigger and complicated programs C++programming 

software provides much more quicker results than other softwares. 

The space consumption by this software is also quiet less. C++ 

compiler also provides very good hardware interfacing between 

computer and machine (in this case robot). 

 

Graphics Window     

                                   It is very crucial for the display of the output on the 

window screen. Graphic is a tool to draw figure and set into then 

required colours and patterns. In graphic window we can create 

different obstacles set them colours also. The simulation of the 

navigation is seen on a graphic window.  
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LITERATURE SURVEY 

 

 
              Location estimation is essential for guidance of autonomous 

vehicles in many indoor navigation applications. A widely adopted 

approach is the vision-based technique. Most existing vision-based, 

Wua[1] techniques deal only with frontal scenes acquired by 

traditional cameras and are easily interfered by unexpected objects 

around the vehicle. A feasible solution to this problem is to use an 

omni-directional camera which looks upward at certain target shapes, 

called landmarks usually, attached on the ceiling. This solution has 

the unique advantage of providing wide-angle views with fewer 

objects appearing in the field of view, thus reducing the guidance 

error coming from landmark occlusion, noise inference, etc. This is 

important for applications of intelligence robots such as cleaning 

robots, pet robots, tour guide robots, etc., which must work among 

humans or objects at close distances.  

            In order to test the effectiveness of the proposed location 

estimation method a study has been made which includes two parts 

(1)using computer simulations to test if the circular shape of the 

landmark in the acquired images taken with omni-directional cameras 

with different shapes of hyperboloidal mirrors can be detected by the 

proposed ellipse approximation method; (2) using real images to 

determine the precision of the estimated vehicle locations relative to 

the landmark. For measurement of the estimation precision, we define 

a distance error ratio and an orientation error as follows: 

distance error ratio=(real distance-estimated distance)/(real distance)                                         
orientation error = real orientation-estimated orientation 

So this new approach provides a way to location estimation of an 

autonomous vehicle for navigation guidance in an indoor environment 

using a circular-shaped landmark on the ceiling by omni-directional 

vision techniques.  
 

          Cooperative behaviours, Parhi [2] using a colony of robots are 

becoming more and more significant in industrial, commercial and 

scientific application. Applications in the area of service robotics 
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demand a high degree of system autonomy, which robots without 

learning capabilities will not be able to meet? Problems such as co-

ordination of multiple robots, motion planning and co-ordination of 

multiple robotic systems are generally approached having a central 

(hierarchical) controller in mind.  
           Here by using Rule base technique and petri net modelling to 

avoid collision among robots one model of collision free path 

planning has been proposed. The second model incorporates rule 

based fuzzy-logic technique and both the models are compared. It has 

been found that the rule-based technique has a set of rules obtained 

through rule induction and subsequently with manually derived 

heuristics. This technique employs rules and takes into account the 

distances of the obstacles around the robots and the bearing of the 

targets in order to compute the change required in steering angle. 

With the use of Petri net model the robots are capable of negotiate 

with each other. It has been seen that, by using rule-based-neuro-

fuzzy technique the robots are able to avoid any obstacles (static and 

moving obstacles), escape from dead ends, and find targets in a highly 

cluttered environments. Using these techniques as many as 1000 

mobile robots can navigate successfully neither colliding with each 

other nor colliding with obstacles present in the environment. It was 

observed that the rule-based-neuro-fuzzy technique is the best 

compared to the rule-based technique for navigation of multiple 

mobile robots.   

 

       A paper by Fainekos et al.[3] provides a tractable solution to the 

RTL motion planning problem for dynamics models of mobile robots. 
Temporal logic motion planning problem for mobile robots are 

modelled by second order dynamics. Temporal logic specifications 

can capture the usual control specifications such as reach ability and 

invariance as well as more complex specifications like sequencing 

and obstacle avoidance.  An automatic framework for the solution of 

the temporal logic motion planning problem for dynamic mobile 

robots has been presented here. The framework is based on 

hierarchical control, the notion of approximate bisimulation relations 

and a new definition of robustness for temporal logic formulas. In the 

process of building this new framework two intermediate results have 
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been derived. First, an automatic framework for the solution of the 

temporal logic motion planning problem for kinematic models has 

been presented. Second, how to construct a more robust solution to 

the above problem, which can account for bounded errors in the 

trajectories of the systems has been shown. This paper presents the 

first computationally tractable approach. 

 

        Temporal logics such as Linear Temporal Logic (LTL) (Pnueli, 

1977) and its continuous time version propositional temporal logic 

over the reals (RTL) (Reynolds, 2001) have the expressive power to 

describe a conditional sequencing of goals under a well-defined 

formal framework. 

         Such a formal framework can provide us with the tools for 

automated controller synthesis and code generation. Beyond the 

provably correct synthesis of hybrid controllers for path planning 

from high level specifications, temporal logics have one more 

potential advantage when compared to other formalisms, e.g., regular 

languages (Koutsoukos, Antsaklis, Stiver, & Lemmon, 2000). That is 

to say, temporal logics were designed to bear a resemblance to natural 

language. Along the same lines, one can develop computational 

interfaces between natural language and temporal logics (Kress-Gazit, 

Fainekos, & Pappas, 2007). This fact alone makes temporal logics a 

suitable medium for our daily discourse with future autonomous 

agents. 

         Gurman has described in detail the neural network models 

RuleNet and its extension. RuleNet is a feed forward network model 

with a supervised learning algorithm, a dynamic architecture, and 

discrete outputs. He has achieved results in the simulation and 

experimental environment. Li et al. have presented neuro-fuzzy 

system architecture for behaviour-based control of a mobile robot in 

unknown environments. The simulation experiments show that the 

proposed neuro-fuzzy system can improve navigation performance in 

complex and unknown environments. Barfoot and Ibrahim have 

discussed a newly developed adaptive fuzzy behavioural control 

system. That has been designed for use with an autonomous mobile 

robot. They have shown their results on both experimental and 

industrial applications in which their new control system was applied.               
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Their results have shown that the robot can avoid simple obstacles 

only. Experiment results done on a single mobile robot confirms their 

technique. Jelena has considered a rule-based fuzzy controller and a 

learning procedure based on the stochastic approximation method. 

They have considered the radial basis function neural network and 

have shown that a modified form of this network is identical with the 

fuzzy controller, which they claim it as a neuro-fuzzy controller. 

Acosta et al. have used a neuro-fuzzy technique to steer a mobile 

robot. The results of the approach are satisfactory (i.e., avoiding the 

obstacles when the mobile robot is steered to the target).Marichal et 

al. have presented a neuro-fuzzy approach in order to guide a mobile 

robot. They have shown that such a neuro-fuzzy system is successful 

in the control of a single mobile robot only. 

  

        Althoefer et al. have reported a navigation system for robotic 

manipulators. The navigation method is a combination of fuzzy logic 

and neural networks. They successfully applied this technique to 

robot arms in different environments. Nefti et al. have applied neuro-

fuzzy inference system for mobile robot navigation in partially 

unknown environment. The experimental results confirm the 

meaningfulness of the elaborated methodology when dealing with 

navigation of a mobile robot in partially unknown environment. 

Tunstel et al. have discussed operational safety and health monitoring 

of critical matters for autonomous field mobile robots. de Souza and 

Ferreira have proposed a reusable architecture for rule-based systems 

described through design patterns. The aim of these patterns is to 

constitute a design catalogue that can be used by designers to 

understand and create new rule-based systems. A hybrid control 

architecture combining behaviour-based reactive navigation and 

model based environment classification has been developed by Na 

and Oh. The effectiveness of the proposed architecture has been 

verified through both computer simulation and an actual robot called 

MORIS (mobile robot as an intelligent system). Dietrich et al. have 

discussed a general architecture for rule-based agents and described 

the method to realise the navigation control with the help of semantic 

web languages. McIntosh et al. have described a simple „proof of 

concept‟ rule- based system. They have developed to contribute 
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methodologically to management-oriented modelling of vegetated 

landscapes. They have not specifically used rule-based technique for 

navigation of mobile robot. Pradhan et al. have discussed about the 

fuzzy control technique for navigation of robots. 

      

         Fraichard and Garnier, Abdessemed et al. used manually 

designed fuzzy logic controller (FLC) for planning collision-free 

motion of a car-like robot. As the performance of an FLC depends on 

the selection of membership function distributions (known as 

database) and its rule base (RB), some investigators tried to optimize 

both the RB as well as database, either separately or simultaneously. 

In this connection, the work of Song and Sheen, Li et al. are worth 

mentioning. However, the effectiveness of their optimized FL-based 

systems was studied in a static environment. In most of the fuzzy 

control systems, fuzzy if–then rules were designed by human experts, 

who may sometimes find it difficult to express their actions or may 

decide on a subconscious level. Thus, some attempts were made by 

Marichal et al., Pratihar and Bibel and others to develop the RB of the 

FLC automatically, using an NN and/or a GA. Hui and Pratihar also 

developed a method for automatic design of FLC, inwhich the whole 

task of designing it, was given to a GA. The GA evolves a suitable 

knowledge base (KB) of that FLC through the interactions between 

the robot and the environment. 

The main advantage of this method lies in the fact that the designer 

may not need to have a complete knowledge of the problem to be 

solved. Moreover, the entire optimization process is normally carried 

out off-line and once trained, the FLC might be suitable for on-line 

implementations. 

         NNs had also been used by some investigators for solving the 

said problem. In this connection, work of Yang and Meng, Floreano 

and Mondada , Pal and Kar , Gu and Hu are important to mention. 

However, the performance of an NN depends on its architecture and 

connecting synaptic weights, the optimal selection of which is a 

tedious job. A variety of tools, namely supervised and reinforcement 

learning algorithms, back propagation algorithm, simulated annealing 

(SA), genetic programming (GP), GA were utilized by some 

researchers for the said purpose. 
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         Zielin[4] et al taking into account the utilised principle of 

communication two extreme classes of multi-robot (multi-agent) 

systems exist. The first category uses explicit communication, where 

the robots communicate directly between themselves (e.g., using 

wireless or network technology). The second category uses implicit 

communication, where each robot observes the actions of the others 

or the results of their activity in the environment (i.e., stigmergy). In 

the former case the problem at hand is subdivided into tasks. In the 

latter case, rather than decomposing the problem into tasks, 

investigations focus on the definition of elementary behaviours of 

individuals. The approach to the design of those categories of systems 

differs considerably. The first relies on task decomposition (this 

results in a top down approach) while the second relies on the 

definition of elementary behaviours and lets them interact freely (this 

produces a bottom up approach) – in this case the resultant behaviour 

of the system emerges as a consequence of those interactions. 

Between those extremes spreads the realm of hybrid systems utilising 

both implicit and explicit communication mechanisms. 

 

        Explicit communication usually requires problem decomposition 

into tasks and subsequently allocation of those tasks to robots. The 

task allocation problem depends on the requirements of the tasks and 

the capabilities of robots. Hence the tasks and robots are subdivided 

into categories. Tasks can either be executed by single robots, thus SR 

tasks, or need many robots, thus multiple-robot (MR) tasks. The 

robots can either execute a single task at a time (i.e., ST robots) or 

several tasks simultaneously (i.e., MT – multiple task robots). 

Moreover, all tasks to be executed can be known in advance – this 

produces an instantaneous assignment (IA) problem, or the tasks can 

appear randomly as the time passes – this results in time-extended 

assignment (TA). In the former case no planning for the future is 

necessary, while in the latter case future requirements have to be 

taken into account. If there are more tasks than robots or vice versa 

optimal allocation of tasks requires some criterion of judging the 

result. Usually utility is defined as a difference between quality of the 
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obtained result and the cost of producing it. In the simplest case utility 

depends only on the robot and the task it has to execute. However, 

utility might also depend on the sequence of task execution, number 

of robots executing the task, other tasks that the robot has already 

executed, the tasks that the other robots have executed etc.  

 

        Implicit communication is used to solve a wide variety of 

problems, e.g., path planning, object sorting, building structures, self-

assembly, cooperative transport, surveillance, prey hunting. Many of 

such systems are biologically inspired – frequently they rely on 

mimicking insect social behaviour. Social insects (i.e., insects living 

in colonies, e.g., ants, bees, wasps, termites) draw our attention, 

because each insect exhibits simple behaviour, yet the colony as a 

whole produces useful and complex output. Thus limited perceptual 

and cognitive capabilities, through mutual interactions, both between 

the individuals and between an individual and the environment, result 

in attaining a complex goal. This is termed as emergent behaviour. 

The attractiveness of emergent behaviour, where individual 

elementary behaviours are simple and the communication is limited to 

individual‟s perception, is even more underscored by the fact that 

explicit communication faces a scaling problem which is absent in the 

implicit case. In the explicit case with the increase of the number of 

robots the organisation of communication between them becomes 

ever more difficult. On the other hand, although implicit 

communication systems tend to be robust (immune to the failure of 

some individuals or changes in the environment), the emergent result 

is difficult to predict, hence program. The difficulty arises from the 

fact that the result is not only based on each individual‟s behaviour, 

but also on the interactions between them and the environment, which 

are hard to foresee. 

        

       In some cases, as the individuals do not have the knowledge 

about the global goal, this can lead to stagnation (deadlock). 

However, the advantages of those systems prevail over their 

disadvantages, if only the above disclosed drawbacks are dealt with 

appropriately. Although in reality it will be probably necessary to 

design hybrid systems, it is important to find out to what extent they 
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can rely on autonomous behaviour of individual agents. The greater 

the extent of autonomy of an agent the more robust will the system as 

a whole be. Especially the immunity to failure of individuals will be 

greatly enhanced. 

 

       Thus this paper mainly focuses on the method of defining and 

implementing behaviours of individual agents neglecting to a large 

extent the benefits of explicit communication. However, the presented 

method of defining autonomous activity of agents is elaborated in 

such a way that behaviours can also utilise information communicated 

to them directly by the other agents. 

 
        Bio-inspired[5] vision system is a particularly good candidate for 

navigation of mobile robots and vehicles because of its computational 

advantages, e.g., low power dissipation and compact hardware. 

Previously, we had designed a mixed analog�digital integrated vision 

system for collision detection inspired by a locust neuronal circuit 

model. The response of the system was, however, susceptible to the 

luminance of approaching objects and the vibratory self-motion of a 

car when it was installed on a miniature mobile car. In the present 

study, we developed a new collision detection algorithm to overcome 

these problems based on robust image-motion detection and applied 

the algorithm to control a miniature mobile car. 

          

        Visually guided real-time collision avoidance requires expensive 

computation of the conventional machine vision systems comprising 

charge-coupled device (CCD) cameras and digital processing systems 

operating with serial algorithms. In this regard, the bio-inspired vision 

systems are suitable for navigation of autonomous robots because of 

their highly efficient computation of visual information. 

Bio-inspired algorithms for collision avoidance, mimicking the 

response of the lobula giant movement detector (LGMD) of locusts, 

have been implemented on a personal computer as well as a digital 

very large-scale integrated (VLSI) vision chip based on a neural 

circuit model proposed by Rind and Bramwell. 
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         In this case designed a model with parallel computational 

architecture inspired by the LGMD neuron and implemented it with a 

compact hardware system comprising a resistive network and field-

programmable gate array (FPGA) circuits so as to take advantage of 

the real-time analog computation and programmable digital 

processing. This system computes image expansion in real time using 

an analog resistive network in order to detect approaching objects. 

This mixed analog digital model is designed to minimize proliferated 

wirings between neural layers, which communicate with the 

duplicated connection pattern in the original model, and therefore, can 

achieve real-time computation with a high computational efficiency. 

The system responded to virtual approaching objects, which were 

created on a computer and presented on a liquid crystal display (LCD) 

monitor, only at close range. The response of the system was, 

however, susceptible to the luminance of approaching objects and the 

vibratory self-motion of a car when it was installed on a miniature 

mobile car in real-world situations. 

 

         In this work, we are particularly interested in the action 

selection and coordination for joint multi-robot tasks, motivated by a 

prototype environment of robot soccer[6]. We have successfully 

applied Case-Based Reasoning (CBR) techniques to model the action 

selection of a team of robots within the robot soccer domain. 

However, our previous approach did not address the dynamic 

intentional aspect of the environment, in particular, in robot soccer, 

the presence of adversaries. Many efforts aim at modelling the 

opponents in particular when the perception is centralized. Instead, we 

address here a robot soccer framework in which the robots are fully 

distributed, without global perception nor global control, and can 

communicate. 

 

         We follow a CBR approach where cases are recorded and model 

the state of the world at a given time and prescribe a successful action 

A case can be seen as a recipe that describes the state of the 

environment (problem description) and the actions to perform in that 

state (solution description). Given a new situation, the most similar 

past case is retrieved and its solution is reused after some adaptation 
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process to match the current situation. We model the case solution as 

a set of sequences of actions, which indicate what actions each robot, 

should perform. Our case-based approach is novel in the sense that 

our cases represent a multi-robot situation where the robots are 

distributed in terms of perception, reasoning, and action, and can 

communicate. Our case-based retrieval and reuse phases are therefore 

based on messages exchanged among the robots about their internal 

states, in terms of beliefs and intentions. 

         Our case representation ensures that the solution description in 

the cases indicates the actions the robots should perform; that the 

retrieval process allocates robots to actions; and finally, with the 

coordination mechanism, that the robots share their individual 

intentions to act. Our approach allows for the representation of 

challenging rich multi-robot actions, such as passes in our robot 

soccer domain, which require well synchronized positioning and 

actions. 

 

         The results obtained both in simulation and with the real robots, 

confirm that the Case-Based Reasoning approach is better than the 

reactive approach, not only on placing a higher percentage of balls 

close to the opponent‟s goal, but also achieving a lower percentage of 

out balls. More precisely, the results obtained in the third scenario 

with the real robots confirms the simulation results. In the fourth 

scenario, once again the average of balls out is higher for the reactive 

approach, which confirms that the defence had more chances to steal 

the ball. 

 

          Hui[7] et al. had made a comparative study of various robot 

motion planning schemes has been made in the present study. Two 

soft computing (SC)-based approaches, namely genetic-fuzzy and 

genetic-neural systems and a conventional potential field method 

(PFM) have been developed for this purpose. Training to the SC-

based approaches is given off-line and the performance of the optimal 

motion planner has been tested on a real robot. Results of the SC-

based motion planners have been compared between themselves and 

with those of the conventional PFM. Both the SC-based approaches 

are found to perform better than the PFM in terms of travelling time 
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taken by the robot. Moreover, the performance of fuzzy logic based 

motion planner is seen to be comparable with that of neural network-

based motion planner. 

         Comparisons among all these three motion planning schemes 

have been made in terms of robustness, adaptability, goal reaching 

capability and repeatability. Both the SC-based approaches are found 

to be more adaptive and robust compared to the PFM. It may be due 

to the fact that there is no in-built learning module in the PFM and 

consequently, it is unable to plan the velocity of the robot properly. 

Building an autonomous and intelligent robot that requires minimal or 

no human interactions, has become a thrust area in robotic research. It 

should have a real-time sensing assembly, an intelligent decision 

maker and precise actuators. The present paper deals with design and 

development of adaptive motion planner of a car-like robot navigating 

among some moving obstacles. Both algorithmic as well as soft 

computing (SC)-based approaches of robot motion planning were 

developed by various investigators [8]. Latombe [9] provides an 

extensive survey on various algorithmic methods of robot motion 

planning. A large number of algorithmic approaches, such as tangent 

graph [10], path velocity decomposition method [11], accessibility 

graph [12], space–time concept [13], incremental planning [14], 

relative velocity approach [15], potential field method (PFM) [2], 

reactive control scheme [16], curvature-velocity method [17], 

dynamic window approach [18], randomized kinodynamic planning 

[19] are available in the literature. However, these algorithmic 

approaches suffer from the following drawbacks: (i) not all the 

approaches are computationally tractable and thus, they may not be 

suitable for on-line implementations, (ii) one method may be suitable 

for solving a particular type of problem and no versatile technique is 

available, (iii) most of the approaches do not have any in-built 

optimization module and as a result of which, the generated path may 

not be optimal in any sense. Out of all the algorithmic approaches, 

PFM is found to be the most popular one, due to its elegant 

mathematical analysis and simplicity. However, it has the following 

disadvantages [20]: (i) it may not be able to yield local minima-free 

path, when the robot navigates among concave obstacles, (ii) it may 

not find any feasible path for the robot, when it moves among closely 
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spaced obstacles, (iii) a dead-lock situation may occur, when the 

attractive potential balances the repulsive potential. Several modified 

versions of the PFM are also available in the literature. Interested 

readers may refer to for the same. However, none of these methods 

could plan the motion of the robot in an optimal way, as there is no 

in-built optimization module in it.  

  

          Ahuactzin et al.[21] has formulated a genetic algorithm for 

motion planning of robots which shows that the path planning 

problem can be expressed as an optimization problem and thus solved 

with a genetic algorithm. We illustrate this approach by building a 

path planner for a planar arm with two degree of freedom, and then 

we demonstrate the validity of the method by planning paths for a 

holonomic mobile robot. 

 
        The ability to acquire a representation of the spatial environment 

and the ability to localize within it are essential for successful 

navigation in a-priori unknown environments[22] .This paper briefly 

reviews the relevant neurobiological and cognitive data and their 

relation to computational models of spatial learning and localization 

used in mobile robots. The resulting model allows a robot to learn a 

place-based, metric representation of space in a-priori unknown 

environments and to localize itself in a stochastically optimal manner. 

 
         Autonomous Cross-Country Navigation[23] requires planning 

algorithms which supports rapid traversal of challenging terrain while 

maintaining vehicle safety. The planning system uses a recursive 

trajectory generation algorithm, which generates spatial trajectories 

and then heuristically modifies them to achieve safe paths around 

obstacles. Velocities along the spatial trajectory are then set to ensure 

a dynamically stable traversal.   

    

         In this paper we describe a robot path planning algorithm that 

constructs a global skeleton of free-space[24] by incremental local 

methods. The curves of the skeleton are the loci of maxima of an 

artificial potential field that is directly proportional to [the] distance of 
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the robot from the obstacles.  Our method has the advantage of fast 

convergence of local methods in uncluttered environments, but it also 

has a deterministic and efficient method of escaping local external 

points of the potential function.  

  

        In a paper, Cherif [25] we address the problem of motion 

planning for a mobile robot moving on a hilly three dimensional 

terrain, and subject to dynamic and physical interaction constraints. A 

mixed planning method based upon a two-level approach combining a 

discrete search strategy operating on a subset of the configuration 

space of the robot, and a continuous motion generation  technique 

considering the kinematic and dynamic constraints of the task. 

 

        Najera[26] et al. presents an approach to plan motion strategies 

for robotics tasks constrained by uncertainty in position, orientation 

and control. Our approach operates in a (x, y, theta) configuration 

space and it combines two local functions: a contact-based attraction 

function and an exploration function. Compliant motions are used to 

reduce the position/orientation uncertainty. An explicit geometric 

model for the uncertainty is defined to evaluate the reachability of the 

obstacle surfaces when the robot translates in free space. 

 

        The path planning problem for arbitrary devices[27] is first and 

foremost a geometrical problem. For the field of control theory, 

advanced mathematical techniques have been developed to describe 

and use geometry. In this paper, we use the notations of the flow of 

vector fields and geodesics in metric spaces to formalize and unify 

path planning problems. A path planning algorithm based on flow 

propagation is briefly discussed. Applications to the theory to motion 

planning for a robot arm, a maneuvring car, and Rubik's Cube are 

given. These very different problems (holonomic, non-holonomic and 

discrete, respectively) are solved by the same unified procedure.   

  

      Egbert et al.[28] present a technique for automatically providing 

animation and collision avoidance in a general-purpose computer 

graphics system. The technique, which relies on an expanded notion 
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of vector fields, allows users to easily set up and animate objects, then 

prevents objects from colliding as the animation proceeds.  
   

        LaValle[29] et al. introduces a visibility-based motion planning 

problem in which the task is to coordinate the motions of one or more 

robots that have omni-directional vision sensors, to eventually "see" a 

target that is unpredictable, has unknown initial position, and is 

capable of moving arbitrarily fast. A visibility region is associated 

with each robot, and the goal is to guarantee that the target will 

ultimately lie in at least one visibility region. A complete algorithm 

for computing the motion strategy of the robots is also presented.  

        Zelinsky[30] presents an algorithm for path planning to a goal 

with a mobile robot in an unknown environment. The robot maps the 

environment only to the extent that is necessary to achieve the goal. 

Paths are generated by treating unknown regions in the environment 

as free space. As obstacles are encountered en route to a goal, the 

model of the environment is updated and a new path to the goal is 

planned and executed. The algorithm presented in this paper makes 

use of the quadtree data structure to model the environment and uses 

the distance transform methodology to generate paths for the robot to 

execute.   

  

 

        Jönsson[31] describes an algorithm for approximately finding the 

fastest route for a vehicle to travel between two points in a digital 

terrain map, avoiding obstacles along the way. The enemies are 

avoided by staying out of their line of sight. However, the general 

results of this paper should be feasible for a much wider range of 

applications ranging from complex GIS [Geographic Information 

Systems] systems to home computer games. The approach taken in 

this work is to translate the problem into a least cost path graph 

problem with an associated cost function on the graph edges.   
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                               Chapter 2 

 

 

CURRENT WORK DONE 

 

1. Algorithm of The Programme 

2. My First Programme 

3. Obstacles and The Arena 

4. Final Programme 
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 3.1 WORK ANALYSIS 

 

Algorithm of Path Planning of Mobile Robots: 
 User will be asked to input the type of obstacle .Depending on 

the type of obstacle number of sides if it is a polygon. 

 Then depending on the type of obstacle it asks to enter the co-

ordinate of the vertices if it is a polygon and the co-ordinate of 

centre and the radius if it is a circle. 

 User has the flexibility to add any number of obstacles in the 

arena. The arena has a co-ordinate system which ranges from 0 

to 700 in the horizontal axis (x-axis) and from 0 to 500 in the 

vertical axis(y- axis).  

 After inserting the obstacles it will ask to enter the starting point 

and the destination point of the mobile agent. 

 In the programme the starting point co-ordinates are taken as a 

and b and the destination point is taken as(x1, y1). 

 For shortest distance path the robot has to travel to the 

destination along a straight line. So the slope of the line joining 

(a, b) and (x1, y1) is mo=(y1-b)/(x1-a). The  equation of the 

line in which the robot has to move:  yi=(mo)*(xi-a)+b. 

 Now “for loop” for the programme will be start incrementing 

the value of xi by1 and getting the value of yi from the above 

mentioned equation. 

 According to the value of the co-ordinates given to the obstacles 

the equation and the range of their side or curves are obtained. 

  While the “for loop” is running the values of xi and yi were 

continuously being checked with the equations of sides or 

curves (circle) of the obstacles. 

 If the value of xi and yi satisfies the preset values of equation 

then the robot will move till the end point of that side with the 

same slope as that of side in order to avoid collision.  
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3.2 My First Program: 
  

#include <graphics.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include<iostream.h> 

#include <conio.h> 

#include<dos.h> 

#include<math.h> 

void main() 

{ 

 

int x1,y1,a=30,b=450; 

int 

ans=1,a1=0,b1=0,a2=0,b2=0,a4=0,b4=0,a5=0,b5=0,a6=0,b6=0; 

line4: if(ans==2) 

{ 

int 

k,a11=152,b11=330,a12=120,b12=110,a14=317,b14=87,a15=5

20,b15=205,a16=490,b16=470; 

int cas1; 

line1: cout<<"if you want to change triangle 1 enter1 , to change 

rectangle 1 enter 2, to change the circle enter3, to change 

triangle2 enter 4, to change rectangle2 enter 5, to change 

rectangle3 enter 6\n"; 

cin>>k; 

a=30; 

b=450; 

switch(k) 

{ 

case 1: 

{ 

cout<<"Enter the new centriod in x,y currently(152,330)\n"; 

cin>>a11>>b11; 

a1=a11-152; b1=b11-330; 

break; 

} 
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case 2: 

{ 

cout<<"Enter the new centriod in x,y currently(120,110)\n"; 

cin>>a12>>b12; 

a2=a12-120;  b2=b12-110; 

break; 

} 

case 3: 

{ 

cout<<"Enter the new centriod in x,y currently(280,210)\n"; 

//  cin>>a13>>b13; 

//  a3=a13-280; b3=b13-210; 

break; 

} 

case 4: 

{ 

cout<<"Enter the new centriod in x,y currently(317,87)\n"; 

cin>>a14>>b14; 

a4=a14-317; b4=b14-87; 

break; 

} 

case 5: 

{ 

cout<<"Enter the new centriod in x,y currently(520,205)\n"; 

cin>>a15>>b15; 

a5=a15-520; b5=b15-205; 

break; 

} 

case 6: 

{ 

cout<<"Enter the new centriod in x,y currently(490,470)\n"; 

cin>>a16>>b16; 

a6=a16-490; b6=b16-470; 

break; 

} 

} 
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cout<<"Do you want to make subsequent changes if yes enter 1 

otherwise enter 2"; 

cin>>cas1; 

if(cas1==1) 

{ 

goto line1; 

} 

if(cas1==2) 

{ 

goto line3; 

} 

} 

 

 

line3: cout<<"Set the target point"; 

cin>>x1>>y1; 

clrscr(); 

/* request auto detection */ 

int gdriver = DETECT, gmode, errorcode; 

 

/* initialize graphics mode */ 

initgraph(&gdriver, &gmode, "c:\\tc\\bgi"); 

/* read result of initialization */ 

errorcode = graphresult(); 

 

if (errorcode != grOk)  /* an error occurred */ 

{ 

printf("Graphics error: %s\n", grapherrormsg(errorcode)); 

printf("Press any key to halt:"); 

line(5, 5, 30, 30); 

getch(); 

exit(1);             /* return with error code */ 

} 

 

//instruction for drawing a hexagon// 

int poly[14],tr1[7],tr2[7],r1[9],r2[9],r3[9]; 

poly[0]=480; 



30 

 

 

poly[1]=300; 

poly[2]=532; 

poly[3]=330; 

poly[4]=532; 

poly[5]=390; 

poly[6]=480; 

poly[7]=420; 

poly[8]=428; 

poly[9]=390; 

poly[10]=428; 

poly[11]=330; 

poly[12]=poly[0]; 

poly[13]=poly[1]; 

drawpoly(7,poly); 

// instruction for drawing a triangle 1// 

tr1[0]=170+a1; 

tr1[1]=230+b1; 

tr1[2]=240+a1; tr1[3]=380+b1; tr1[4]=45+a1; tr1[5]=380+b1; 

tr1[6]=tr1[0]; 

tr1[7]=tr1[1]; 

drawpoly(4,tr1); 

//instruction for drawing rectangle 1 // 

r1[0]=50+a2; r1[1]=40+b2; r1[2]=190+a2; r1[3]=40+b2; 

r1[4]=190+a2; r1[5]=180+b2; r1[6]=50+a2; r1[7]=180+b2; 

r1[8]=r1[0]; 

r1[9]=r1[1]; 

drawpoly(5,r1); 

//instruction for drawing a circle// 

//  circle(280+a3, 210+b3, 60); 

// instruction for drawing a triangle 2// 

tr2[0]=300+a4; 

tr2[1]=20+b4; 

tr2[2]=400+a4, tr2[3]=120+b4, tr2[4]=250+a4, tr2[5]=120+b4; 

tr2[6]=tr2[0]; 

tr2[7]=tr2[1]; 

drawpoly(4,tr2); 
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//instruction for drawing rectangle 2 // 

r2[0]=440+a5, r2[1]=150+b5, r2[2]=600+a5, r2[3]=150+b5, 

r2[4]=600+a5,r2[5]=260+b5, r2[6]=440+a5, r2[7]=260+b5; 

r2[8]=r2[0]; 

r2[9]=r2[1]; 

drawpoly(5,r2); 

//instruction for drawing rectangle 3 // 

r3[0]=400+a6, r3[1]=450+b6, r3[2]=580+a6, r3[3]=450+b6, 

r3[4]=580+a6,r3[5]=490+b6, r3[6]=400+a6, r3[7]=490+b6; 

r3[8]=r3[0]; 

r3[9]=r3[1]; 

drawpoly(5,r3); 

 

// line3: cout<<"Set the target point"; 

//    cin>>x1>>y1; 

// start of main program// 

int i,y=0,p1; 

for(i=30;i<=x1;i++)                                                           // 

equation of line of travel// 

{ 

line5:   y=(((y1-b)*(i-a))/(x1-a))+b; 

int w=0,m=0,s=0; 

m=(y1-b)/(x1-a); 

if(m>7) 

{ 

s=10; 

} 

else 

{ 

s=0; 

} 

if(i>40+a1 && i<171+a1)                                                      //for 

triangle1 

{ 

if(y>=(220+b1) && y<=(385+b1)) 

{ 

p1=y+(1.2*(i+7))-434-b1-(1.2*a1); 
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if(p1>=-15&&p1<=15) 

{ 

if(y1>y) 

{ 

outtextxy(i,y,"*"); 

} 

else 

{ 

if(y<=385+b1 && y>=225+b1) 

{ 

y=434-(1.2*(i+7-a1))+b1; 

{ 

outtextxy(i,y,"*"); 

w=1; 

} 

} 

} 

} 

} 

} 

int p2; 

if(i<=250+a1 && i>=170+a1) 

{ 

if(y<=381+b1 && y>=220+b1) 

{ 

p2=y-2.15*(i-240-a1)-380-b1; 

if(p2<=20 && p2>=-20) 

{ 

y=2.15*(i-240-a1)+380+b1; 

outtextxy(i,y,"*"); 

w=1; 

} 

} 

} 

if(i>=40+a1 && i<=250+a1) 

{ 

if(y>387+b1 && y<392+b1) 
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{ 

if(x1<120 && y1>250) 

{ 

for(i=a;i>=25;i--) 

{ 

outtextxy(i,y,"*"); 

w=1; 

delay(40); 

} 

} 

else 

{ 

for(i=a;i<=250+a1;i++) 

{ 

outtextxy(i,390+b1,"*"); 

w=1; 

y=390+b1; 

delay(40); 

} 

} 

} 

} 

if(i>=39+a2 && i<=200+a2)                 // for rectangle1// 

{ 

if(y>=30+b2 && y<=190+b2) 

{ 

if(i==40+a2) 

{ 

if(y<=189+b2) 

{ 

for(y=b;y>=30+b2;y--) 

{ 

w=1; 

outtextxy(40+a2,y,"*"); 

delay(40); 

} 

// break;// 
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} 

} 

} 

} 

if(i>40+a2) 

{ 

if(y<192+b2+s && y>175+b2-s) 

{ 

for(i=a;i<=195+a2;i++) 

{ 

outtextxy(i,190+b2,"*"); 

y=190+b2; 

w=1; 

delay(40); 

} 

} 

} 

if(i>=39+a2 && i<=200+a2) 

{ 

if(y>=32+b2-s && y<40+b2+s) 

{ 

for(i=a;i<=200+a2;i++) 

{ 

outtextxy(i,y,"*"); 

w=1; 

delay(40); 

} 

} 

} 

if(y>30+b2 && y<190+b2) 

{ 

if(i==195+a2) 

{ 

for(y=b;y>=30+b2;y--) 

{ 

outtextxy(i,y,"*"); 

w=1; 
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delay(40); 

} 

} 

} 

 

 

if(i>240+a4 && i<310+a4)                               //for triangle 4// 

{ 

if(y<125+b4 && y>15+b4) 

{ 

y=-(11/7)*(i-240-a4)+125+b4; 

outtextxy(i,y,"*"); 

w=1; 

} 

} 

if(i>=245+a4 && i<=410+a4) 

{ 

if(y>125+b4-s && y<132+b4+s) 

{ 

for(i=a;i<=410+a4;i++) 

{ 

outtextxy(i,130+b4,"*"); 

w=1; 

y=130+b4; 

delay(40); 

} 

} 

} 

if(i==430+a5)                                     // for rectangle 2// 

{ 

if(y<270+b5 && y>=140+b5) 

{ 

for(y=b;y>140+b5;y--) 

{ 

outtextxy(430+a5,y,"*"); 

w=1; 

delay(40); 



36 

 

 

} 

} 

} 

if(i>435+a5 && i<605+a5) 

{ 

if(y>260+b5 && y<270+b5) 

{ 

if(x1<=605+a5) 

{ 

outtextxy(i,y,"*"); 

w=1; 

} 

else 

{ 

y=270+b5; 

for(i=a;i<610+a5;i++) 

{ 

outtextxy(i,y,"*"); 

w=1; 

delay(40); 

} 

} 

} 

if(y>140+b5 && y<150+b5) 

{ 

y=140+b5; 

for(i=a;i<610+a5;i++) 

{ 

outtextxy(i,y,"*"); 

w=1; 

delay(40); 

} 

 

} 

} 

if(i==608+a5) 

{ 
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if(y<270+b5 && y>140+b5) 

{ 

for(y=b;y>140+b5;y--) 

{ 

outtextxy(i,y,"*"); 

w=1; 

delay(40); 

} 

} 

} 

if(i==390+a6)                               //for rectangle3// 

{ 

if(y<500+b6 && y>=440+b6) 

{ 

for(y=b;y>440+b6;y--) 

{ 

outtextxy(390+a6,y,"*"); 

w=1; 

delay(40); 

} 

} 

} 

if(i>395+a6 && i<585+a6) 

{ 

if(y>490+b6 && y<500+b6) 

{ 

y=500+b6; 

for(i=a;i<585+a6;i++) 

{ 

outtextxy(i,y,"*"); 

w=1; 

delay(40); 

} 

} 

if(y>=440+b6 && y<450+b6) 

{ 

if(x1<585+a6) 
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{ 

outtextxy(i,y,"*"); 

w=1; 

} 

else 

{ 

y=440+b6; 

for(i=a;i<585+a6;i++) 

{ 

outtextxy(i,y,"*"); 

w=1; 

delay(40); 

} 

} 

} 

} 

if(i==584+a6) 

{ 

if(y<495+b6 && y>455+b6) 

{ 

for(y=b;y>455+b5;y--) 

{ 

outtextxy(i,y,"*"); 

w=1; 

delay(40); 

} 

} 

} 

if(i>=423 && i<480)           //hexagon// 

{ 

if(y<=290 && y>=360) 

{ 

if(y<=360 && y>330) 

{ 

i=423; 

for(y=b;y>=330;y--) 

{ 
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outtextxy(423,y,"*"); 

w=1; 

delay(40); 

} 

} 

if(y<=330 && y>=295) 

{ 

int q3; 

q3=y-330+.614*(i-423); 

if(q3>=0) 

{ 

y=-.614*(i-423)+330; 

outtextxy(i,y,"*"); 

w=1; 

} 

} 

} 

//hexagon 2nd // 

if(y<=360 && y>=420) 

{ 

if(y<=390 && y>360) 

{ 

i=423; 

for(y=b;y<=390;y++) 

{ 

outtextxy(423,y,"*"); 

w=1; 

delay(40); 

} 

} 

if(y<=425 && y>=390) 

{ 

int q4; 

q4=y-425-(.614*(i-480)); 

if(q4<=0) 

{ 

y=.614*(i-480)+425; 
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outtextxy(i,y,"*"); 

w=1; 

} 

} 

} 

} 

//hexagon 3rd// 

if(i>=480 && i<538) 

{ 

if(y<=290 && y>=360) 

{ 

if(y<=360 && y>330) 

{ 

i=537; 

for(y=b;y>=330;y--) 

{ 

outtextxy(537,y,"*"); 

w=1; 

delay(40); 

} 

} 

if(y<=330 && y>=295) 

{ 

int q5; 

q5=y-295-.614*(i-480); 

if(q5>=0) 

{ 

y=.614*(i-480)+295; 

outtextxy(i,y,"*"); 

w=1; 

} 

} 

} 

// hexagon 4th// 

if(y<=360 && y>=420) 

{ 

if(y<=390 && y>360) 
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{ 

i=537; 

for(y=b;y<=390;y++) 

{ 

outtextxy(537,y,"*"); 

w=1; 

delay(40); 

} 

} 

if(y<=425 && y>=390) 

{ 

int q6; 

q6=y-425+(.614*(i-480)); 

if(q6<=0) 

{ 

y=-.614*(i-480)+425; 

outtextxy(i,y,"*"); 

w=1; 

} 

} 

} 

} 

if(w==0) 

{ outtextxy(i,y,"*"); 

 

} 

a=i; 

b=y; 

delay(40); 

if(a>x1) 

{ 

i=i-1; 

goto line5; 

} 

 

} 

ans=2; 
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int z1; 

cout<<" do you want to continue then press 1 "; 

cin>>z1; 

if(z1==1) 

{ 

goto line4; 

} 

else 

{ 

exit; 

} 

getch(); 

} 
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3.3 OBSTACLES AND THE ARENA 

 

 
 

            Figure shows Obstacles and the Arena enclosing them     
 

 

                OBSTACLES 
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OUTPUT AND RESULTS  

 

   

 
 

Figure shows the Programme asking for Input for the Target Point 

after Completing the Obstacles 
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Figure shows the Path Traced by the Mobile Agent for Destination 

(530, 40) 
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Figure shows the Path Traced by the Mobile Agent for Destination 

(280, 60) 
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Figure shows the Path Traced by the Mobile Agent for Destination 

(600, 280) 
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3.4 FINAL PROGRAM 
 

Till of now the programme is only limit to show only one mobile 

robot at a time and the obstacles were also predefined. So the 

following program shows the path traced by any number of mobile 

robots having different starting point and searching for different target 

points. For this the study of artificial intelligence is very much 

required because I have to incorporate decision taking power in robot 

to choose between different target points basing on some principles. 

The program shown below related to adding flexibility for user 

defined obstacles and collision free navigation of mobile robot i.e., an 

unknown environment. 

 

  

#include<iostream.h> 

#include<stdio.h> 

#include<math.h> 

#include<conio.h> 

#include<dos.h> 

#include<stdlib.h> 

#include<graphics.h> 

void main() 

{ 

clrscr(); 

int po=0,io=0,k,poi=0; 

line1: cout<<"Enter the type of obstacle you want to insert accod. to 

the following:\n"; 

cout<<"for line enter '1', for triangle enter'2', for rectangle enter '3',for 

hexagon enter'4', for circle enter'5', for an U shape enter'6'\n"; 

cin>>k; 

int n=0,cx[6],cy[6],cr[6],c[20]; 

switch(k) 

{ 

case 1: 

{ 



49 

 

 

poi++; 

n=4; 

c[poi]=0; 

po++; 

break; 

} 

case 2: 

{ 

poi++; 

n=6; 

c[poi]=1; 

po++; 

break; 

} 

case 3: 

{ 

poi++; 

n=8; 

c[poi]=1; 

po++; 

break; 

} 

case 4: 

{ 

poi++; 

n=12; 

c[poi]=1; 

po++; 

break; 

} 

case 5: 

{ 

io++; 

n=0; 

cout<<"enter the (x,y) coordinate of the circle center and its radius for 

circle"<<io; 

cin>>cx[io]>>cy[io]>>cr[io]; 



50 

 

 

// c[poi]=0; 

break; 

} 

case 6: 

{ 

poi++; 

n=8; 

c[poi]=0; 

po++; 

break; 

} 

} 

cout<<"Enter the co-ordinates of the figure interms of (x,y)"; 

int i,fi[10][20],ni[10]; 

for(i=0;i<n;i++) 

{ 

cin>>fi[po][i]; 

if(c[poi]==1) 

{ 

if(i==n-1) 

{ 

fi[po][i+1]=fi[po][0]; 

fi[po][i+2]=fi[po][1]; 

ni[po]=(n/2)+1; 

} 

} 

if(c[poi]==0) 

{ 

ni[po]=n/2; 

} 

} 

int ki; 

cout<<"Do you want to add one more figure if yes enter 1 \n"; 

cin>>ki; 

if(ki==1) 

{ 

goto line1; 
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} 

int no, mo, a[10],b[10],e[10],d[10], nt, x1[10], y1[10], x2, y2; 

cout<<"Enter the no. of mobile agent"; 

cin>>no; 

cout<<"Enter the starting points of "<<no<<"target points in the form 

of (x,y)\n"; 

for(i=0;i<no;i++) 

{ 

cin>>a[i]>>b[i]; 

} 

cout<<"Enter the number of target points"; 

cin>>nt; 

cout<<"Enter the target point co-ordinates in (x,y) form"; 

int j, di[10], ds=0, dk,ko,mp, si, ap, bp; 

for(j=0;j<nt;j++) 

{ 

cin>>x1[j]>>y1[j]; 

} 

clrscr(); 

 

/* request auto detection */ 

int gdriver = DETECT, gmode, errorcode; 

 

/* initialize graphics mode */ 

initgraph(&gdriver, &gmode, "c:\\tc\\bgi"); 

/* read result of initialization */ 

errorcode = graphresult(); 

 

if (errorcode != grOk)  /* an error occurred */ 

{ 

printf("Graphics error: %s\n", grapherrormsg(errorcode)); 

printf("Press any key to halt:"); 

// line(5, 5, 30, 30); 

// getch(); 

// exit(1);             /* return with error code */ 

} 
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int pu; 

for(pu=1;pu<=po;pu++) 

{ 

switch(ni[pu]) 

{ 

case 4: 

{ 

setcolor(1); 

setfillstyle(2,1); 

break; 

} 

case 5: 

{ 

setcolor(2); 

setfillstyle(1,2); 

break; 

} 

case 7: 

{ 

setcolor(3); 

setfillstyle(1,3); 

break; 

} 

} 

drawpoly(ni[pu],fi[pu]); 

} 

int ic; 

for(ic=1;ic<=io;ic++) 

{ 

setcolor(4); 

setfillstyle(1,4); 

circle(cx[ic],cy[ic],cr[ic]); 

} 

getch(); 

for(j=0;j<nt;j++) 

{ 

for(i=0;i<no;i++) 



53 

 

 

{ 

ds=ds+sqrt(pow((x1[j]-a[i]),2)+pow((y1[j]-b[i]),2)); 

} 

di[j]=ds; 

} 

dk=di[0]; 

for(j=0;j<nt;j++) 

{ 

if(dk>=di[j]) 

{ 

dk=di[j]; 

ko=j; 

} 

} 

x2=x1[ko]; 

y2=y1[ko]; 

int x[12],y[12],ku[12]={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, ks1[12]={ 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, tj, tjn,mk[20],ksx[15]; 

line14:  int k2c=0,klc=0,tpy,tny,p,ky1,kx1,ky2,kx2,yp,yn,lac,yrp,yrn; 

for(j=0;j<no; j++) 

{ 

x[j]=a[j]; 

y[j]=b[j]; 

if(x[j]!=x2 || y[j]!=y2) 

{ 

if (ku[j]==4) 

{ 

switch(ksx[j]) 

{ 

case 1: 

{ 

goto line8; 

} 

case 2: 

{ 

goto line9; 

} 
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case 3: 

{ 

goto line10; 

} 

case 4: 

{ 

goto line11; 

} 

} 

} 

if(x2<a[j]) 

{ 

goto line8; 

} 

else 

{ 

goto line9; 

} 

 

//if(x[j]>x2) 

line8:x[j]--; 

tj=0; 

if(ks1[j]==1) 

{ 

mk[j]=((y2-b[j])/(x2-a[j]))*10; 

y[j]=(mk[j]*(x[j]-a[j])+b[j])/10; 

} 

 

for(si=1;si<=po;si++) 

{ 

for(i=0;i<(2*ni[si]);i++) 

{ 

if(i%2==0) 

{ 

if(fi[si][i+3]>fi[si][i+1]) 

{ 

ky1=fi[si][i+3]; 
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ky2=fi[si][i+1]; 

} 

else 

{ 

ky1=fi[si][i+1]; 

ky2=fi[si][i+3]; 

} 

if(fi[si][i]>fi[si][i+2]) 

{ 

kx1=fi[si][i]; 

kx2=fi[si][i+2]; 

} 

else 

{ 

kx1=fi[si][i+2]; 

kx2=fi[si][i]; 

} 

int mxy; 

if(x[j]>(kx2-10) && x[j]<(kx1+10)) 

{ 

if(y[j]>(ky2-10) && y[j]<(ky1+10)) 

{ 

bp=fi[si][i+3]-fi[si][i+1]; 

ap=fi[si][i+2]-fi[si][i]; 

if(bp==0) 

{ 

int ku[10]; 

y[j]=b[j]; 

outtextxy(x[j],y[j],"*"); 

delay(10); 

//getch(); 

tj=1; 

klc++; 

ku[j]=4; ks1[j]=2; 

goto line6; 

} 

if(ap==0) 
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{ 

if(b[j]<d[j]) 

{ 

p=-1; 

} 

if(b[j]>d[j]) 

{ 

p=1; 

} 

x[j]=a[j]; 

y[j]=b[j]+p; 

outtextxy(x[j],y[j],"*"); 

delay(10); 

//getch(); 

ku[j]=4; 

klc++; 

ks1[j]=2; 

tj=1; 

goto line6; 

} 

mxy= ((fi[si][i+3]-fi[si][i+1])/(fi[si][i+2]-fi[si][i]))*100; 

p=(y[j]-(mxy*(x[j]-fi[si][i])/100)-

fi[si][i+1])/(sqrt(1+(pow((mxy/100),2)))); 

if(p<10) 

{ 

 

lac=100*(sqrt(1+(pow((mxy/100),2)))); 

yrp=(lac/10)+(mxy/100)*(x[j]-fi[si][i])+fi[si][i+1]; 

yrn=((mxy/100)*(x[j]-fi[si][i]))+fi[si][i+1]-(lac/10); 

yp=b[j]-yrp; 

yn=b[j]-yrn; 

if(yp<0) 

{ 

yp=(-1)*yp; 

} 

if(yn<0) 

{ 
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yn=(-1)*yn; 

} 

if(yp>yn) 

{ 

y[j]=yrn; 

} 

else 

{ 

y[j]=yrp; 

} 

outtextxy( x[j], y[j], "*"); 

delay(10); 

ku[j]=4;ks1[j]=2; 

tj=1; 

} 

} 

} 

} 

line6: 

e[j]=a[j]; 

d[j]=b[j]; 

a[j]=x[j]; 

b[j]=y[j]; 

if(tj==0) 

{ 

ku[j]=1; 

ks1[j]=1; 

} 

else 

{ 

ksx[j]=1; 

} 

} 

} 

if(tj==0) 

{ 

outtextxy( x[j], y[j],"*"); 
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delay(5); 

} 

goto line7; 

//if(x[j]<x2) 

//{ 

line9: x[j]++; 

tjn=0; 

if(ks1[j]==1) 

{ 

mk[j]=((y2-b[j])/(x2-a[j]))*100; 

y[j]=(mk[j]/100)*(x[j]-a[j])+b[j]; 

} 

//tsi=tsi++; 

for(si=1;si<=po;si++) 

{ 

for(i=0;i<(2*ni[si]);i++) 

{ 

if(i%2==0) 

{ 

int ky1,kx1, ky2, kx2; 

if(fi[si][i+3]>fi[si][i+1]) 

{ 

ky1=fi[si][i+3]; 

ky2=fi[si][i+1]; 

} 

else 

{ 

ky1=fi[si][i+1]; 

ky2=fi[si][i+3]; 

} 

if(fi[si][i]>fi[si][i+2]) 

{ 

kx1=fi[si][i]; 

kx2=fi[si][i+2]; 

} 

else 

{ 
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kx1=fi[si][i+2]; 

kx2=fi[si][i]; 

} 

if(x[j]>=(kx2-10) && x[j]<=(kx1+10)) 

{ 

if(y[j]>=(ky2-10) && y[j]<=(ky1+10)) 

{ 

bp=fi[si][i+3]-fi[si][i+1]; 

ap=fi[si][i+2]-fi[si][i]; 

//mp=(bp/ap)*100; 

if(bp==0) 

{ 

int pqs; 

pqs=(y[i]-fi[si][i+1]); 

 

if(pqs<0) 

{ 

pqs=pqs*(-1); 

} 

if(pqs<10) 

{ 

int p; 

y[j]=b[j]; 

outtextxy(x[i],y[j],"*"); 

delay(5); 

klc++; 

ku[j]=4; ks1[j]=2; 

tjn=1; 

goto line12; 

} 

} 

if(ap==0) 

{ 

int pqs; 

pqs=x[i]-fi[si][i]; 

if(pqs<0) 

{ 
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pqs=pqs*(-1); 

} 

if(pqs<10) 

{ 

if(b[j]<d[j]) 

{ 

p=-1; 

} 

if(b[j]>d[j]) 

{ 

p=1; 

} 

x[j]=a[j]; 

y[j]=b[j]+p; 

outtextxy(x[j],y[j],"*"); 

delay(5); 

//getch(); 

ku[j]=4; ks1[j]=2; 

klc++; 

tjn=1; 

goto line12; 

} 

} 

int mxy,pl; 

mxy=((fi[si][i+3]-fi[si][i+1])/(fi[si][i+2]-fi[si][i]))*100; 

pl=(y[j]-(mxy*(x[j]-fi[si][i])/100)-

fi[si][i+1])/(sqrt(1+(pow((mxy/100),2)))); 

if(pl<10) 

{ 

//int mt; 

//mt=((y[j]-ky1)/(x[j]-kx2-18))*100; 

lac=100*(sqrt(1+(pow((mxy/100),2)))); 

yrp=(lac/10)+(mxy/100)*(x[j]-fi[si][i])+fi[si][i+1]; 

yrn=((mxy/100)*(x[j]-fi[si][i]))+fi[si][i+1]-(lac/10); 

yp=b[j]-yrp; 

yn=b[j]-yrn; 

if(yp<0) 
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{ 

yp=(-1)*yp; 

} 

if(yn<0) 

{ 

yn=(-1)*yn; 

} 

if(yp>yn) 

{ 

y[j]=yrn; 

} 

else 

{ 

y[j]=yrp; 

} 

outtextxy( x[j], y[j],"*"); 

delay(10); 

//getch(); 

ku[j]=4; ks1[j]=2; 

tjn=1; 

} 

} 

} 

} 

line12: 

e[j]=a[j]; 

d[j]=b[j]; 

a[j]=x[j]; 

b[j]=y[j]; 

if(tjn==0) 

{ 

ku[j]=1; 

ks1[j]=1; 

} 

else 

{ 

ksx[j]=2; 
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} 

} 

} 

if(tjn==0) 

{ 

outtextxy( x[j], y[j],"*"); 

delay(10); 

} 

goto line7; 

if(x[j]==x2) 

{ 

if(y[j]>(y2+5) || y[j]<(y2-5)) 

{ 

if(y[j]>y2) 

{ 

line10: 

int tny=0; 

y[j]--; 

if(ks1[j]==1) 

{ 

mk[j]=((y2-b[j])/(x2-a[j]))*100; 

x[j]=a[j]+((y[j]-b[j])/(mk[j]/100)); 

} 

for(si=1;si<=po;si++) 

{ 

for(i=0;i<(2*ni[si]);i++) 

{ 

if(i%2==0) 

{ 

int ky1,kx1,ky2,kx2; 

if(fi[si][i+3]>fi[si][i+1]) 

{ 

ky1=fi[si][i+3]; 

ky2=fi[si][i+1]; 

} 

else 

{ 
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ky1=fi[si][i+1]; 

ky2=fi[si][i+3]; 

} 

if(fi[si][i]>fi[si][i+2]) 

{ 

kx1=fi[si][i]; 

kx2=fi[si][i+2]; 

} 

else 

{ 

kx1=fi[si][i+2]; 

kx2=fi[si][i]; 

} 

int mxy; 

if(x[j]>(kx2-10) && x[j]<(kx1+10)) 

{ 

if(y[j]>(ky2-10) && y[j]<(ky1+10)) 

{ 

bp=fi[si][i+3]-fi[si][i+1]; 

ap=fi[si][i+2]-fi[si][i]; 

if(bp==0) 

{ 

int ku[10]; 

y[j]=b[j]; 

if(a[j]<e[j]) 

{ 

p=-1; 

} 

if(a[j]>e[j]) 

{ 

p=1; 

} 

x[j]=a[j]+p; 

outtextxy(x[j],y[j],"*"); 

tny=1; 

klc++; 

ku[j]=4; ks1[j]=2; 
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goto line13; 

} 

if(ap==0) 

{ 

x[j]=a[j]; 

y[j]=b[j]; 

outtextxy(x[j],y[j],"*"); 

ku[j]=4; 

klc++; 

ks1[j]=2; 

tny=1; 

goto line13; 

} 

mxy= ((fi[si][i+3]-fi[si][i+1])/(fi[si][i+2]-fi[si][i]))*100; 

int p; 

p=(y[j]-(mxy*(x[j]-fi[si][i])/100)-

fi[si][i+1])/(sqrt(1+(pow((mxy/100),2)))); 

if(p<10) 

{ 

lac=100*(sqrt(1+pow(mxy,2))); 

yrp=(y[j]+((mxy/100)*fi[si][i])-fi[si][i+1]-(lac/10))/(mxy/100); 

yrn=(y[j]+((mxy/100)*fi[si][i])-fi[si][i+1]+(lac/10))/(mxy/100); 

yp=a[j]-yrp; 

yn=a[j]-yrn; 

if(yp<0) 

{ 

yp=(-1)*yp; 

} 

if(yn<0) 

{ 

yn=(-1)*yn; 

} 

if(yp>yn) 

{ 

x[j]=yrn; 

} 

else 
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{ 

x[j]=yrp; 

} 

outtextxy( x[j], y[j],"*"); 

ku[j]=4; 

ks1[j]=2; 

tny=1; 

} 

} 

} 

} 

line13: 

e[j]=a[j]; 

d[j]=b[j]; 

a[j]=x[j]; 

b[j]=y[j]; 

if(tny==0) 

{ 

ku[j]=1; 

ks1[j]=1; 

} 

else 

{ 

ksx[j]=3; 

} 

} 

} 

if(tny==0) 

{ 

outtextxy( x[j], y[j],"*"); 

} 

} 

if(y[j]<y2) 

{ 

line11: 

int tpy=0; 

y[j]++; 
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if(ks1[j]==1) 

{ 

mk[j]=((y2-b[j])/(x2-a[j]))*100; 

x[j]=a[j]+((y[j]-b[j])/(mk[j]/100)); 

} 

for(si=1;si<=po;si++) 

{ 

for(i=0;i<(2*ni[si]);i++) 

{ 

if(i%2==0) 

{ 

int ky1,kx1,ky2,kx2; 

if(fi[si][i+3]>fi[si][i+1]) 

{ 

ky1=fi[si][i+3]; 

ky2=fi[si][i+1]; 

} 

else 

{ 

ky1=fi[si][i+1]; 

ky2=fi[si][i+3]; 

} 

if(fi[si][i]>fi[si][i+2]) 

{ 

kx1=fi[si][i]; 

kx2=fi[si][i+2]; 

} 

else 

{ 

kx1=fi[si][i+2]; 

kx2=fi[si][i]; 

} 

int mxy; 

if(x[j]>(kx2-10) && x[j]<(kx1+10)) 

{ 

if(y[j]>(ky2-10) && y[j]<(ky1+10)) 

{ 
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bp=fi[si][i+3]-fi[si][i+1]; 

ap=fi[si][i+2]-fi[si][i]; 

if(bp==0) 

{ 

int ku[10]; 

y[j]=b[j]; 

if(a[j]<e[j]) 

{ 

p=-1; 

} 

if(a[j]>e[j]) 

{ 

p=1; 

} 

x[j]=a[j]+p; 

outtextxy(x[j],y[j],"*"); 

tpy=1; 

klc++; 

ku[j]=4; ks1[j]=2; 

goto line17; 

} 

if(ap==0) 

{ 

x[j]=a[j]; 

y[j]=b[j]; 

outtextxy(x[j],y[j],"*"); 

ku[j]=4; 

klc++; 

ks1[j]=2; 

tpy=1; 

goto line17; 

} 

mxy= ((fi[si][i+3]-fi[si][i+1])/(fi[si][i+2]-fi[si][i]))*100; 

int p; 

p=(y[j]-(mxy*(x[j]-fi[si][i])/100)-

fi[si][i+1])/(sqrt(1+(pow((mxy/100),2)))); 

if(p<10) 
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{ 

lac=100*(sqrt(1+pow(mxy,2))); 

yrp=(y[j]+((mxy/100)*fi[si][i])-fi[si][i+1]-(lac/10))/(mxy/100); 

yrn=(y[j]+((mxy/100)*fi[si][i])-fi[si][i+1]+(lac/10))/(mxy/100); 

yp=a[j]-yrp; 

yn=a[j]-yrn; 

if(yp<0) 

{ 

yp=(-1)*yp; 

} 

if(yn<0) 

{ 

yn=(-1)*yn; 

} 

if(yp>yn) 

{ 

x[j]=yrn; 

} 

else 

{ 

x[j]=yrp; 

} 

outtextxy( x[j], y[j],"*"); 

ku[j]=4; 

ks1[j]=2; 

tpy=1; 

} 

} 

} 

} 

line17: 

e[j]=a[j]; 

d[j]=b[j]; 

a[j]=x[j]; 

b[j]=y[j]; 

if(tpy==0) 

{ 
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ku[j]=1; 

ks1[j]=1; 

} 

else 

{ 

ksx[j]=4; 

} 

} 

} 

if(tpy==0) 

{ 

outtextxy( x[j], y[j],"*"); 

} 

} 

line7: 

if(x[j]!=x2 || y[j]!=y2) 

{ 

k2c=1; 

} 

} 

getch(); 

} 

if(k2c==1) 

{ 

goto line14; 

} 

else 

{ 

goto line15; 

} 

} 

} 

line15: 

getch(); 

} 

 

 



70 

 

 

3.5 RESULTS 

It is found that the robots are successfully avoiding the obstacles and 

the other robots and follows an optimal path to reach the target point.   

“point 1” is the starting point and “point 2” is the target point 
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CONCLUSION  
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CONCLUSION: 

 

 

                The program written in C++ for the simulation of path 

traced by mobile robots works successfully. The diagram shown in 

the previous pages is the arena where the robot is placed. The robot 

moves from start point and goes along the path shown in the figure 

avoiding obstacles to red colour point which is the destination point. 

When the robot was moving along its path it had some problems to 

navigate when there exist obstacles more than one. The C++ compiler 

was a very effective mode because of its fastness and good hardware 

interfacing.  

 

 

Applications:  

1. This type of system can be used in automobiles for collision free 

driving.  

2. It can also be used handling waste material in nuclear reactions 

where mobile robots have to perform the work accurately.    

3. It can be used in transportation in industries. 
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