
CONTROLING OF MOBILE AGENTS USING

INTELLIGENT STRATEGY

AN INTERIM REPORT SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

Bachelor of Technology

In

Mechanical Engineering

By

Sanmay Satpathy
(ROLL.NUMBER: 10503038)

Under The Guidance of

Prof D.R.K.Parhi

Department of Mechanical Engineering

National Institute of Technology

Rourkela

2008-09

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53187033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

National Institute of Technology

Rourkela

CERTIFICATE

 This is to certify that the project entitled, “Controlling of an

Agent using Intelligent Strategy” submitted by Sanmay Satpathy in

partial fulfilment of the requirements for the award of Bachelor of

Technology, Rourkela (Deemed University) is an authentic work

carried out by him under my supervision and guidance.

 To the best of my knowledge, the matter embodied in the

project has not been submitted to any other University / Institute for

the award of any Degree or Diploma.

Date: Dr.D.R.K.Parhi

Dept. of Mechanical Engineering

National Institute of Technology

Rourkela – 769008

Signature: India

2

National Institute of Technology

Rourkela

ACKNOWLEDGEMENT

 I would like to articulate my deep gratitude to my project guide

Prof.D.R.K.Parhi for their valuable guidance, immense motivation

and the kind of help to complete the project.

 An assemblage of this nature could never have been attempted

without reference to and inspiration from the works of others whose

details are mentioned in reference section. I acknowledge my

indebtedness to all of them.

 Last but not the least to all of my friends, who patiently extended

all sorts of help for accomplishing this undertaking.

Date: Sanmay Satpathy

Dept. of Mechanical Engineering

National Institute of Technology

Rourkela – 769008

Signature: India

3

Sl.No Topic Page

1. Certificate 1

2. Acknowledgement 2

3. Contents 3

4. Abstract 4

5. Chapter 1: Introduction

 1.1 Objective

 1.2 Navigation

 1.3 Robotics

 1.4 Mobile Robot

 1.5 Intelligent Strategy

5-9

6. Chapter 2: Literature Survey 10-24

7. Chapter 3: WORK ANALYSIS

 3.1 Algorithm of The Programme

 3.2 My First Programme

 3.3 Obstacles and The Arena

 3.4 Final Programme

 3.5 Results

25-71

8. Chapter 3: Conclusion 72-73

9. Reference 74-76

4

ABSTRACT

Robots are developed to carry out certain task to help the human

beings. A robot carrying out a particular needed task has promising

applications for the betterment of human society. So the control of

their motion remains a vital part for a robot.

In this project, I have to develop the simulation of mobile agents

(robots) in an arena of obstacles from a start point to a destination

point without collision. So in a way this project deals with successful

navigation of robots in prior known environment.

This document presents a computer vision method and related

algorithms for the navigation of a robot in a static environment. Our

environment is a simple white coloured area with coloured obstacles

(circle with white colour, rectangles with orange colour, triangle with

green colour and hexagon with pink colour which helps in identifying

the obstacle) and robot is in a rectangular form. The agents starting

point is in blue colour and the destination point is in red colour. This

environment is input by the user with the starting point and the

destination point. The data acquired from here is then used as an input

for the program which controls the robot drive motion in graphic

control window. Robot then tries to reach its destination avoiding

obstacles in its path. The algorithm presented in this paper uses the

distance transform methodology to generate paths for the robot to

execute which are written in C++ compiler. These paper

developments can also be applied to vehicles for collision free

driving.

5

Chapter 1

 INTRODUCTION

1.1 Objective

1.2 Navigation

1.3 Robotics

1.4 Mobile Robots

 1.5 Intelligence Strategy

6

INTRODUCTION

 We know that we can make robot working and carry out

assign task successfully with a little help in programming.

 1.1 OBJECTIVE: The main scientific objective of the project is

to add intelligence into robot artificial by using programming

software.

 1.2 NAVIGATION: The term navigation means the process of

planning and directing the route or course of a robot or a vehicle.

 1.3 ROBOT: A robot is an electro-mechanical device that can

perform autonomous or pre-programmed task. A robot may act as

under the direct control of human or autonomously under the control

of a programmed computer. Robots may be used to perform tasks that

are dangerous or difficult for humans to implement directly (e.g.

nuclear waste cleanup), or may be used to automate repetitive tasks

that can be performed with more precision by a robot than the

employment of a human (e.g. automobile production).

Robots may be controlled directly by a human, such as remotely

controlled bomb disposal robots, robotic arms, or shuttles, or may act

according to their own decision making ability, provided by Artificial

Intelligence. However, the majority of robots fall between these

extremes, being controlled by pre-programmed computers. Such

robots may include feedback loops such that they can interact with

their environment, but do not display actual intelligence.

7

1. 4 MOBILE ROBOTS: Mobile Robotics is an emerging field

of robotics that studies the behaviour of robots under dynamic and

challenging conditions to achieve its goal.

 Mobile Robotics successfully incorporates all the constraints

that the robot experiences in its due course of operation and induces

behaviour of self-thinking to the robot by harnessing the power of

optimisation and intelligent techniques like Artificial intelligence,

Fuzzy-Logic, etc.

 Mobile robots present special challenges. These robots can

move their bodies around from place to place. Why is this capability

difficult? Many more things can go wrong if your robot is free to

move around rather than being bolted to one place. Being mobile

multiplies the number of situations your robot needs to be able to

handle.

 Mobile robots actually come in two varieties: tethered and

autonomous. A tethered robot "cheats" by dumping its power supply

and brain overboard, possibly relying on a desktop computer and a

wall outlet. Control signals and power are run through a bundle of

wires (the tether) to the robot, which is free to move around, at least

as far as the tether will allow.

Autonomous mobile robots are even more challenging. These robots

need to bring everything along with them, including a power supply

and a brain. The power supply is typically an array of batteries, which

adds a lot of weight to the robot. The brain is also constrained because

it has to fit on the robot, not weigh a ton, and be frugal about sucking

power out of the batteries.

8

1.5 INTELLIGENCE STRATEGY: Intelligence Strategy

making is a part of Artificial Intelligence (AI) technology which

provides techniques for developing computer programs for carrying

out a variety of tasks, simulating the intelligent way of problem

solving by humans. The problems that humans solve in their day-to-

day life are of a wide variety in different domains. Though the

domains are different and also the method, AI technology provides a

set of formalisms to represent the problems and also the techniques

for solving them. In this intelligent strategy making we have to plan

the path for autonomous robot by programming. Different people

working in this topic for many years have proposed different

definitions. According to Rich, Intelligent strategy is the study of how

to make computers do things at which humans are better at. It is

observed that it is equally difficult to define human intelligence.

 Users can create complex virtual worlds and simulate their

robots within these environments. A complete programming library is

provided to allow users to program the robots C++ compiler. From

the controller programs, it is possible to read input values and show

the required simulation in a graphic window.

 MOBILE

AGENT

OBSTACLE

9

C++ Compiler

 It provides an environment for programming. Due to

its functions and syntaxes it more versatile and faster programming

language. It is very popularly used for writing the codes for artificial

intelligence. For bigger and complicated programs C++programming

software provides much more quicker results than other softwares.

The space consumption by this software is also quiet less. C++

compiler also provides very good hardware interfacing between

computer and machine (in this case robot).

Graphics Window

 It is very crucial for the display of the output on the

window screen. Graphic is a tool to draw figure and set into then

required colours and patterns. In graphic window we can create

different obstacles set them colours also. The simulation of the

navigation is seen on a graphic window.

10

 Chapter 2

LITERATURE SURVEY

11

LITERATURE SURVEY

 Location estimation is essential for guidance of autonomous

vehicles in many indoor navigation applications. A widely adopted

approach is the vision-based technique. Most existing vision-based,

Wua[1] techniques deal only with frontal scenes acquired by

traditional cameras and are easily interfered by unexpected objects

around the vehicle. A feasible solution to this problem is to use an

omni-directional camera which looks upward at certain target shapes,

called landmarks usually, attached on the ceiling. This solution has

the unique advantage of providing wide-angle views with fewer

objects appearing in the field of view, thus reducing the guidance

error coming from landmark occlusion, noise inference, etc. This is

important for applications of intelligence robots such as cleaning

robots, pet robots, tour guide robots, etc., which must work among

humans or objects at close distances.

 In order to test the effectiveness of the proposed location

estimation method a study has been made which includes two parts

(1)using computer simulations to test if the circular shape of the

landmark in the acquired images taken with omni-directional cameras

with different shapes of hyperboloidal mirrors can be detected by the

proposed ellipse approximation method; (2) using real images to

determine the precision of the estimated vehicle locations relative to

the landmark. For measurement of the estimation precision, we define

a distance error ratio and an orientation error as follows:

distance error ratio=(real distance-estimated distance)/(real distance)
orientation error = real orientation-estimated orientation

So this new approach provides a way to location estimation of an

autonomous vehicle for navigation guidance in an indoor environment

using a circular-shaped landmark on the ceiling by omni-directional

vision techniques.

 Cooperative behaviours, Parhi [2] using a colony of robots are

becoming more and more significant in industrial, commercial and

scientific application. Applications in the area of service robotics

12

demand a high degree of system autonomy, which robots without

learning capabilities will not be able to meet? Problems such as co-

ordination of multiple robots, motion planning and co-ordination of

multiple robotic systems are generally approached having a central

(hierarchical) controller in mind.
 Here by using Rule base technique and petri net modelling to

avoid collision among robots one model of collision free path

planning has been proposed. The second model incorporates rule

based fuzzy-logic technique and both the models are compared. It has

been found that the rule-based technique has a set of rules obtained

through rule induction and subsequently with manually derived

heuristics. This technique employs rules and takes into account the

distances of the obstacles around the robots and the bearing of the

targets in order to compute the change required in steering angle.

With the use of Petri net model the robots are capable of negotiate

with each other. It has been seen that, by using rule-based-neuro-

fuzzy technique the robots are able to avoid any obstacles (static and

moving obstacles), escape from dead ends, and find targets in a highly

cluttered environments. Using these techniques as many as 1000

mobile robots can navigate successfully neither colliding with each

other nor colliding with obstacles present in the environment. It was

observed that the rule-based-neuro-fuzzy technique is the best

compared to the rule-based technique for navigation of multiple

mobile robots.

 A paper by Fainekos et al.[3] provides a tractable solution to the

RTL motion planning problem for dynamics models of mobile robots.
Temporal logic motion planning problem for mobile robots are

modelled by second order dynamics. Temporal logic specifications

can capture the usual control specifications such as reach ability and

invariance as well as more complex specifications like sequencing

and obstacle avoidance. An automatic framework for the solution of

the temporal logic motion planning problem for dynamic mobile

robots has been presented here. The framework is based on

hierarchical control, the notion of approximate bisimulation relations

and a new definition of robustness for temporal logic formulas. In the

process of building this new framework two intermediate results have

13

been derived. First, an automatic framework for the solution of the

temporal logic motion planning problem for kinematic models has

been presented. Second, how to construct a more robust solution to

the above problem, which can account for bounded errors in the

trajectories of the systems has been shown. This paper presents the

first computationally tractable approach.

 Temporal logics such as Linear Temporal Logic (LTL) (Pnueli,

1977) and its continuous time version propositional temporal logic

over the reals (RTL) (Reynolds, 2001) have the expressive power to

describe a conditional sequencing of goals under a well-defined

formal framework.

 Such a formal framework can provide us with the tools for

automated controller synthesis and code generation. Beyond the

provably correct synthesis of hybrid controllers for path planning

from high level specifications, temporal logics have one more

potential advantage when compared to other formalisms, e.g., regular

languages (Koutsoukos, Antsaklis, Stiver, & Lemmon, 2000). That is

to say, temporal logics were designed to bear a resemblance to natural

language. Along the same lines, one can develop computational

interfaces between natural language and temporal logics (Kress-Gazit,

Fainekos, & Pappas, 2007). This fact alone makes temporal logics a

suitable medium for our daily discourse with future autonomous

agents.

 Gurman has described in detail the neural network models

RuleNet and its extension. RuleNet is a feed forward network model

with a supervised learning algorithm, a dynamic architecture, and

discrete outputs. He has achieved results in the simulation and

experimental environment. Li et al. have presented neuro-fuzzy

system architecture for behaviour-based control of a mobile robot in

unknown environments. The simulation experiments show that the

proposed neuro-fuzzy system can improve navigation performance in

complex and unknown environments. Barfoot and Ibrahim have

discussed a newly developed adaptive fuzzy behavioural control

system. That has been designed for use with an autonomous mobile

robot. They have shown their results on both experimental and

industrial applications in which their new control system was applied.

14

Their results have shown that the robot can avoid simple obstacles

only. Experiment results done on a single mobile robot confirms their

technique. Jelena has considered a rule-based fuzzy controller and a

learning procedure based on the stochastic approximation method.

They have considered the radial basis function neural network and

have shown that a modified form of this network is identical with the

fuzzy controller, which they claim it as a neuro-fuzzy controller.

Acosta et al. have used a neuro-fuzzy technique to steer a mobile

robot. The results of the approach are satisfactory (i.e., avoiding the

obstacles when the mobile robot is steered to the target).Marichal et

al. have presented a neuro-fuzzy approach in order to guide a mobile

robot. They have shown that such a neuro-fuzzy system is successful

in the control of a single mobile robot only.

 Althoefer et al. have reported a navigation system for robotic

manipulators. The navigation method is a combination of fuzzy logic

and neural networks. They successfully applied this technique to

robot arms in different environments. Nefti et al. have applied neuro-

fuzzy inference system for mobile robot navigation in partially

unknown environment. The experimental results confirm the

meaningfulness of the elaborated methodology when dealing with

navigation of a mobile robot in partially unknown environment.

Tunstel et al. have discussed operational safety and health monitoring

of critical matters for autonomous field mobile robots. de Souza and

Ferreira have proposed a reusable architecture for rule-based systems

described through design patterns. The aim of these patterns is to

constitute a design catalogue that can be used by designers to

understand and create new rule-based systems. A hybrid control

architecture combining behaviour-based reactive navigation and

model based environment classification has been developed by Na

and Oh. The effectiveness of the proposed architecture has been

verified through both computer simulation and an actual robot called

MORIS (mobile robot as an intelligent system). Dietrich et al. have

discussed a general architecture for rule-based agents and described

the method to realise the navigation control with the help of semantic

web languages. McIntosh et al. have described a simple „proof of

concept‟ rule- based system. They have developed to contribute

15

methodologically to management-oriented modelling of vegetated

landscapes. They have not specifically used rule-based technique for

navigation of mobile robot. Pradhan et al. have discussed about the

fuzzy control technique for navigation of robots.

 Fraichard and Garnier, Abdessemed et al. used manually

designed fuzzy logic controller (FLC) for planning collision-free

motion of a car-like robot. As the performance of an FLC depends on

the selection of membership function distributions (known as

database) and its rule base (RB), some investigators tried to optimize

both the RB as well as database, either separately or simultaneously.

In this connection, the work of Song and Sheen, Li et al. are worth

mentioning. However, the effectiveness of their optimized FL-based

systems was studied in a static environment. In most of the fuzzy

control systems, fuzzy if–then rules were designed by human experts,

who may sometimes find it difficult to express their actions or may

decide on a subconscious level. Thus, some attempts were made by

Marichal et al., Pratihar and Bibel and others to develop the RB of the

FLC automatically, using an NN and/or a GA. Hui and Pratihar also

developed a method for automatic design of FLC, inwhich the whole

task of designing it, was given to a GA. The GA evolves a suitable

knowledge base (KB) of that FLC through the interactions between

the robot and the environment.

The main advantage of this method lies in the fact that the designer

may not need to have a complete knowledge of the problem to be

solved. Moreover, the entire optimization process is normally carried

out off-line and once trained, the FLC might be suitable for on-line

implementations.

 NNs had also been used by some investigators for solving the

said problem. In this connection, work of Yang and Meng, Floreano

and Mondada , Pal and Kar , Gu and Hu are important to mention.

However, the performance of an NN depends on its architecture and

connecting synaptic weights, the optimal selection of which is a

tedious job. A variety of tools, namely supervised and reinforcement

learning algorithms, back propagation algorithm, simulated annealing

(SA), genetic programming (GP), GA were utilized by some

researchers for the said purpose.

16

 Zielin[4] et al taking into account the utilised principle of

communication two extreme classes of multi-robot (multi-agent)

systems exist. The first category uses explicit communication, where

the robots communicate directly between themselves (e.g., using

wireless or network technology). The second category uses implicit

communication, where each robot observes the actions of the others

or the results of their activity in the environment (i.e., stigmergy). In

the former case the problem at hand is subdivided into tasks. In the

latter case, rather than decomposing the problem into tasks,

investigations focus on the definition of elementary behaviours of

individuals. The approach to the design of those categories of systems

differs considerably. The first relies on task decomposition (this

results in a top down approach) while the second relies on the

definition of elementary behaviours and lets them interact freely (this

produces a bottom up approach) – in this case the resultant behaviour

of the system emerges as a consequence of those interactions.

Between those extremes spreads the realm of hybrid systems utilising

both implicit and explicit communication mechanisms.

 Explicit communication usually requires problem decomposition

into tasks and subsequently allocation of those tasks to robots. The

task allocation problem depends on the requirements of the tasks and

the capabilities of robots. Hence the tasks and robots are subdivided

into categories. Tasks can either be executed by single robots, thus SR

tasks, or need many robots, thus multiple-robot (MR) tasks. The

robots can either execute a single task at a time (i.e., ST robots) or

several tasks simultaneously (i.e., MT – multiple task robots).

Moreover, all tasks to be executed can be known in advance – this

produces an instantaneous assignment (IA) problem, or the tasks can

appear randomly as the time passes – this results in time-extended

assignment (TA). In the former case no planning for the future is

necessary, while in the latter case future requirements have to be

taken into account. If there are more tasks than robots or vice versa

optimal allocation of tasks requires some criterion of judging the

result. Usually utility is defined as a difference between quality of the

17

obtained result and the cost of producing it. In the simplest case utility

depends only on the robot and the task it has to execute. However,

utility might also depend on the sequence of task execution, number

of robots executing the task, other tasks that the robot has already

executed, the tasks that the other robots have executed etc.

 Implicit communication is used to solve a wide variety of

problems, e.g., path planning, object sorting, building structures, self-

assembly, cooperative transport, surveillance, prey hunting. Many of

such systems are biologically inspired – frequently they rely on

mimicking insect social behaviour. Social insects (i.e., insects living

in colonies, e.g., ants, bees, wasps, termites) draw our attention,

because each insect exhibits simple behaviour, yet the colony as a

whole produces useful and complex output. Thus limited perceptual

and cognitive capabilities, through mutual interactions, both between

the individuals and between an individual and the environment, result

in attaining a complex goal. This is termed as emergent behaviour.

The attractiveness of emergent behaviour, where individual

elementary behaviours are simple and the communication is limited to

individual‟s perception, is even more underscored by the fact that

explicit communication faces a scaling problem which is absent in the

implicit case. In the explicit case with the increase of the number of

robots the organisation of communication between them becomes

ever more difficult. On the other hand, although implicit

communication systems tend to be robust (immune to the failure of

some individuals or changes in the environment), the emergent result

is difficult to predict, hence program. The difficulty arises from the

fact that the result is not only based on each individual‟s behaviour,

but also on the interactions between them and the environment, which

are hard to foresee.

 In some cases, as the individuals do not have the knowledge

about the global goal, this can lead to stagnation (deadlock).

However, the advantages of those systems prevail over their

disadvantages, if only the above disclosed drawbacks are dealt with

appropriately. Although in reality it will be probably necessary to

design hybrid systems, it is important to find out to what extent they

18

can rely on autonomous behaviour of individual agents. The greater

the extent of autonomy of an agent the more robust will the system as

a whole be. Especially the immunity to failure of individuals will be

greatly enhanced.

 Thus this paper mainly focuses on the method of defining and

implementing behaviours of individual agents neglecting to a large

extent the benefits of explicit communication. However, the presented

method of defining autonomous activity of agents is elaborated in

such a way that behaviours can also utilise information communicated

to them directly by the other agents.

 Bio-inspired[5] vision system is a particularly good candidate for

navigation of mobile robots and vehicles because of its computational

advantages, e.g., low power dissipation and compact hardware.

Previously, we had designed a mixed analog�digital integrated vision

system for collision detection inspired by a locust neuronal circuit

model. The response of the system was, however, susceptible to the

luminance of approaching objects and the vibratory self-motion of a

car when it was installed on a miniature mobile car. In the present

study, we developed a new collision detection algorithm to overcome

these problems based on robust image-motion detection and applied

the algorithm to control a miniature mobile car.

 Visually guided real-time collision avoidance requires expensive

computation of the conventional machine vision systems comprising

charge-coupled device (CCD) cameras and digital processing systems

operating with serial algorithms. In this regard, the bio-inspired vision

systems are suitable for navigation of autonomous robots because of

their highly efficient computation of visual information.

Bio-inspired algorithms for collision avoidance, mimicking the

response of the lobula giant movement detector (LGMD) of locusts,

have been implemented on a personal computer as well as a digital

very large-scale integrated (VLSI) vision chip based on a neural

circuit model proposed by Rind and Bramwell.

19

 In this case designed a model with parallel computational

architecture inspired by the LGMD neuron and implemented it with a

compact hardware system comprising a resistive network and field-

programmable gate array (FPGA) circuits so as to take advantage of

the real-time analog computation and programmable digital

processing. This system computes image expansion in real time using

an analog resistive network in order to detect approaching objects.

This mixed analog digital model is designed to minimize proliferated

wirings between neural layers, which communicate with the

duplicated connection pattern in the original model, and therefore, can

achieve real-time computation with a high computational efficiency.

The system responded to virtual approaching objects, which were

created on a computer and presented on a liquid crystal display (LCD)

monitor, only at close range. The response of the system was,

however, susceptible to the luminance of approaching objects and the

vibratory self-motion of a car when it was installed on a miniature

mobile car in real-world situations.

 In this work, we are particularly interested in the action

selection and coordination for joint multi-robot tasks, motivated by a

prototype environment of robot soccer[6]. We have successfully

applied Case-Based Reasoning (CBR) techniques to model the action

selection of a team of robots within the robot soccer domain.

However, our previous approach did not address the dynamic

intentional aspect of the environment, in particular, in robot soccer,

the presence of adversaries. Many efforts aim at modelling the

opponents in particular when the perception is centralized. Instead, we

address here a robot soccer framework in which the robots are fully

distributed, without global perception nor global control, and can

communicate.

 We follow a CBR approach where cases are recorded and model

the state of the world at a given time and prescribe a successful action

A case can be seen as a recipe that describes the state of the

environment (problem description) and the actions to perform in that

state (solution description). Given a new situation, the most similar

past case is retrieved and its solution is reused after some adaptation

20

process to match the current situation. We model the case solution as

a set of sequences of actions, which indicate what actions each robot,

should perform. Our case-based approach is novel in the sense that

our cases represent a multi-robot situation where the robots are

distributed in terms of perception, reasoning, and action, and can

communicate. Our case-based retrieval and reuse phases are therefore

based on messages exchanged among the robots about their internal

states, in terms of beliefs and intentions.

 Our case representation ensures that the solution description in

the cases indicates the actions the robots should perform; that the

retrieval process allocates robots to actions; and finally, with the

coordination mechanism, that the robots share their individual

intentions to act. Our approach allows for the representation of

challenging rich multi-robot actions, such as passes in our robot

soccer domain, which require well synchronized positioning and

actions.

 The results obtained both in simulation and with the real robots,

confirm that the Case-Based Reasoning approach is better than the

reactive approach, not only on placing a higher percentage of balls

close to the opponent‟s goal, but also achieving a lower percentage of

out balls. More precisely, the results obtained in the third scenario

with the real robots confirms the simulation results. In the fourth

scenario, once again the average of balls out is higher for the reactive

approach, which confirms that the defence had more chances to steal

the ball.

 Hui[7] et al. had made a comparative study of various robot

motion planning schemes has been made in the present study. Two

soft computing (SC)-based approaches, namely genetic-fuzzy and

genetic-neural systems and a conventional potential field method

(PFM) have been developed for this purpose. Training to the SC-

based approaches is given off-line and the performance of the optimal

motion planner has been tested on a real robot. Results of the SC-

based motion planners have been compared between themselves and

with those of the conventional PFM. Both the SC-based approaches

are found to perform better than the PFM in terms of travelling time

21

taken by the robot. Moreover, the performance of fuzzy logic based

motion planner is seen to be comparable with that of neural network-

based motion planner.

 Comparisons among all these three motion planning schemes

have been made in terms of robustness, adaptability, goal reaching

capability and repeatability. Both the SC-based approaches are found

to be more adaptive and robust compared to the PFM. It may be due

to the fact that there is no in-built learning module in the PFM and

consequently, it is unable to plan the velocity of the robot properly.

Building an autonomous and intelligent robot that requires minimal or

no human interactions, has become a thrust area in robotic research. It

should have a real-time sensing assembly, an intelligent decision

maker and precise actuators. The present paper deals with design and

development of adaptive motion planner of a car-like robot navigating

among some moving obstacles. Both algorithmic as well as soft

computing (SC)-based approaches of robot motion planning were

developed by various investigators [8]. Latombe [9] provides an

extensive survey on various algorithmic methods of robot motion

planning. A large number of algorithmic approaches, such as tangent

graph [10], path velocity decomposition method [11], accessibility

graph [12], space–time concept [13], incremental planning [14],

relative velocity approach [15], potential field method (PFM) [2],

reactive control scheme [16], curvature-velocity method [17],

dynamic window approach [18], randomized kinodynamic planning

[19] are available in the literature. However, these algorithmic

approaches suffer from the following drawbacks: (i) not all the

approaches are computationally tractable and thus, they may not be

suitable for on-line implementations, (ii) one method may be suitable

for solving a particular type of problem and no versatile technique is

available, (iii) most of the approaches do not have any in-built

optimization module and as a result of which, the generated path may

not be optimal in any sense. Out of all the algorithmic approaches,

PFM is found to be the most popular one, due to its elegant

mathematical analysis and simplicity. However, it has the following

disadvantages [20]: (i) it may not be able to yield local minima-free

path, when the robot navigates among concave obstacles, (ii) it may

not find any feasible path for the robot, when it moves among closely

22

spaced obstacles, (iii) a dead-lock situation may occur, when the

attractive potential balances the repulsive potential. Several modified

versions of the PFM are also available in the literature. Interested

readers may refer to for the same. However, none of these methods

could plan the motion of the robot in an optimal way, as there is no

in-built optimization module in it.

 Ahuactzin et al.[21] has formulated a genetic algorithm for

motion planning of robots which shows that the path planning

problem can be expressed as an optimization problem and thus solved

with a genetic algorithm. We illustrate this approach by building a

path planner for a planar arm with two degree of freedom, and then

we demonstrate the validity of the method by planning paths for a

holonomic mobile robot.

 The ability to acquire a representation of the spatial environment

and the ability to localize within it are essential for successful

navigation in a-priori unknown environments[22] .This paper briefly

reviews the relevant neurobiological and cognitive data and their

relation to computational models of spatial learning and localization

used in mobile robots. The resulting model allows a robot to learn a

place-based, metric representation of space in a-priori unknown

environments and to localize itself in a stochastically optimal manner.

 Autonomous Cross-Country Navigation[23] requires planning

algorithms which supports rapid traversal of challenging terrain while

maintaining vehicle safety. The planning system uses a recursive

trajectory generation algorithm, which generates spatial trajectories

and then heuristically modifies them to achieve safe paths around

obstacles. Velocities along the spatial trajectory are then set to ensure

a dynamically stable traversal.

 In this paper we describe a robot path planning algorithm that

constructs a global skeleton of free-space[24] by incremental local

methods. The curves of the skeleton are the loci of maxima of an

artificial potential field that is directly proportional to [the] distance of

23

the robot from the obstacles. Our method has the advantage of fast

convergence of local methods in uncluttered environments, but it also

has a deterministic and efficient method of escaping local external

points of the potential function.

 In a paper, Cherif [25] we address the problem of motion

planning for a mobile robot moving on a hilly three dimensional

terrain, and subject to dynamic and physical interaction constraints. A

mixed planning method based upon a two-level approach combining a

discrete search strategy operating on a subset of the configuration

space of the robot, and a continuous motion generation technique

considering the kinematic and dynamic constraints of the task.

 Najera[26] et al. presents an approach to plan motion strategies

for robotics tasks constrained by uncertainty in position, orientation

and control. Our approach operates in a (x, y, theta) configuration

space and it combines two local functions: a contact-based attraction

function and an exploration function. Compliant motions are used to

reduce the position/orientation uncertainty. An explicit geometric

model for the uncertainty is defined to evaluate the reachability of the

obstacle surfaces when the robot translates in free space.

 The path planning problem for arbitrary devices[27] is first and

foremost a geometrical problem. For the field of control theory,

advanced mathematical techniques have been developed to describe

and use geometry. In this paper, we use the notations of the flow of

vector fields and geodesics in metric spaces to formalize and unify

path planning problems. A path planning algorithm based on flow

propagation is briefly discussed. Applications to the theory to motion

planning for a robot arm, a maneuvring car, and Rubik's Cube are

given. These very different problems (holonomic, non-holonomic and

discrete, respectively) are solved by the same unified procedure.

 Egbert et al.[28] present a technique for automatically providing

animation and collision avoidance in a general-purpose computer

graphics system. The technique, which relies on an expanded notion

24

of vector fields, allows users to easily set up and animate objects, then

prevents objects from colliding as the animation proceeds.

 LaValle[29] et al. introduces a visibility-based motion planning

problem in which the task is to coordinate the motions of one or more

robots that have omni-directional vision sensors, to eventually "see" a

target that is unpredictable, has unknown initial position, and is

capable of moving arbitrarily fast. A visibility region is associated

with each robot, and the goal is to guarantee that the target will

ultimately lie in at least one visibility region. A complete algorithm

for computing the motion strategy of the robots is also presented.

 Zelinsky[30] presents an algorithm for path planning to a goal

with a mobile robot in an unknown environment. The robot maps the

environment only to the extent that is necessary to achieve the goal.

Paths are generated by treating unknown regions in the environment

as free space. As obstacles are encountered en route to a goal, the

model of the environment is updated and a new path to the goal is

planned and executed. The algorithm presented in this paper makes

use of the quadtree data structure to model the environment and uses

the distance transform methodology to generate paths for the robot to

execute.

 Jönsson[31] describes an algorithm for approximately finding the

fastest route for a vehicle to travel between two points in a digital

terrain map, avoiding obstacles along the way. The enemies are

avoided by staying out of their line of sight. However, the general

results of this paper should be feasible for a much wider range of

applications ranging from complex GIS [Geographic Information

Systems] systems to home computer games. The approach taken in

this work is to translate the problem into a least cost path graph

problem with an associated cost function on the graph edges.

25

 Chapter 2

CURRENT WORK DONE

1. Algorithm of The Programme

2. My First Programme

3. Obstacles and The Arena

4. Final Programme

26

 3.1 WORK ANALYSIS

Algorithm of Path Planning of Mobile Robots:
 User will be asked to input the type of obstacle .Depending on

the type of obstacle number of sides if it is a polygon.

 Then depending on the type of obstacle it asks to enter the co-

ordinate of the vertices if it is a polygon and the co-ordinate of

centre and the radius if it is a circle.

 User has the flexibility to add any number of obstacles in the

arena. The arena has a co-ordinate system which ranges from 0

to 700 in the horizontal axis (x-axis) and from 0 to 500 in the

vertical axis(y- axis).

 After inserting the obstacles it will ask to enter the starting point

and the destination point of the mobile agent.

 In the programme the starting point co-ordinates are taken as a

and b and the destination point is taken as(x1, y1).

 For shortest distance path the robot has to travel to the

destination along a straight line. So the slope of the line joining

(a, b) and (x1, y1) is mo=(y1-b)/(x1-a). The equation of the

line in which the robot has to move: yi=(mo)*(xi-a)+b.

 Now “for loop” for the programme will be start incrementing

the value of xi by1 and getting the value of yi from the above

mentioned equation.

 According to the value of the co-ordinates given to the obstacles

the equation and the range of their side or curves are obtained.

 While the “for loop” is running the values of xi and yi were

continuously being checked with the equations of sides or

curves (circle) of the obstacles.

 If the value of xi and yi satisfies the preset values of equation

then the robot will move till the end point of that side with the

same slope as that of side in order to avoid collision.

27

3.2 My First Program:

#include <graphics.h>

#include <stdlib.h>

#include <stdio.h>

#include<iostream.h>

#include <conio.h>

#include<dos.h>

#include<math.h>

void main()

{

int x1,y1,a=30,b=450;

int

ans=1,a1=0,b1=0,a2=0,b2=0,a4=0,b4=0,a5=0,b5=0,a6=0,b6=0;

line4: if(ans==2)

{

int

k,a11=152,b11=330,a12=120,b12=110,a14=317,b14=87,a15=5

20,b15=205,a16=490,b16=470;

int cas1;

line1: cout<<"if you want to change triangle 1 enter1 , to change

rectangle 1 enter 2, to change the circle enter3, to change

triangle2 enter 4, to change rectangle2 enter 5, to change

rectangle3 enter 6\n";

cin>>k;

a=30;

b=450;

switch(k)

{

case 1:

{

cout<<"Enter the new centriod in x,y currently(152,330)\n";

cin>>a11>>b11;

a1=a11-152; b1=b11-330;

break;

}

28

case 2:

{

cout<<"Enter the new centriod in x,y currently(120,110)\n";

cin>>a12>>b12;

a2=a12-120; b2=b12-110;

break;

}

case 3:

{

cout<<"Enter the new centriod in x,y currently(280,210)\n";

// cin>>a13>>b13;

// a3=a13-280; b3=b13-210;

break;

}

case 4:

{

cout<<"Enter the new centriod in x,y currently(317,87)\n";

cin>>a14>>b14;

a4=a14-317; b4=b14-87;

break;

}

case 5:

{

cout<<"Enter the new centriod in x,y currently(520,205)\n";

cin>>a15>>b15;

a5=a15-520; b5=b15-205;

break;

}

case 6:

{

cout<<"Enter the new centriod in x,y currently(490,470)\n";

cin>>a16>>b16;

a6=a16-490; b6=b16-470;

break;

}

}

29

cout<<"Do you want to make subsequent changes if yes enter 1

otherwise enter 2";

cin>>cas1;

if(cas1==1)

{

goto line1;

}

if(cas1==2)

{

goto line3;

}

}

line3: cout<<"Set the target point";

cin>>x1>>y1;

clrscr();

/* request auto detection */

int gdriver = DETECT, gmode, errorcode;

/* initialize graphics mode */

initgraph(&gdriver, &gmode, "c:\\tc\\bgi");

/* read result of initialization */

errorcode = graphresult();

if (errorcode != grOk) /* an error occurred */

{

printf("Graphics error: %s\n", grapherrormsg(errorcode));

printf("Press any key to halt:");

line(5, 5, 30, 30);

getch();

exit(1); /* return with error code */

}

//instruction for drawing a hexagon//

int poly[14],tr1[7],tr2[7],r1[9],r2[9],r3[9];

poly[0]=480;

30

poly[1]=300;

poly[2]=532;

poly[3]=330;

poly[4]=532;

poly[5]=390;

poly[6]=480;

poly[7]=420;

poly[8]=428;

poly[9]=390;

poly[10]=428;

poly[11]=330;

poly[12]=poly[0];

poly[13]=poly[1];

drawpoly(7,poly);

// instruction for drawing a triangle 1//

tr1[0]=170+a1;

tr1[1]=230+b1;

tr1[2]=240+a1; tr1[3]=380+b1; tr1[4]=45+a1; tr1[5]=380+b1;

tr1[6]=tr1[0];

tr1[7]=tr1[1];

drawpoly(4,tr1);

//instruction for drawing rectangle 1 //

r1[0]=50+a2; r1[1]=40+b2; r1[2]=190+a2; r1[3]=40+b2;

r1[4]=190+a2; r1[5]=180+b2; r1[6]=50+a2; r1[7]=180+b2;

r1[8]=r1[0];

r1[9]=r1[1];

drawpoly(5,r1);

//instruction for drawing a circle//

// circle(280+a3, 210+b3, 60);

// instruction for drawing a triangle 2//

tr2[0]=300+a4;

tr2[1]=20+b4;

tr2[2]=400+a4, tr2[3]=120+b4, tr2[4]=250+a4, tr2[5]=120+b4;

tr2[6]=tr2[0];

tr2[7]=tr2[1];

drawpoly(4,tr2);

31

//instruction for drawing rectangle 2 //

r2[0]=440+a5, r2[1]=150+b5, r2[2]=600+a5, r2[3]=150+b5,

r2[4]=600+a5,r2[5]=260+b5, r2[6]=440+a5, r2[7]=260+b5;

r2[8]=r2[0];

r2[9]=r2[1];

drawpoly(5,r2);

//instruction for drawing rectangle 3 //

r3[0]=400+a6, r3[1]=450+b6, r3[2]=580+a6, r3[3]=450+b6,

r3[4]=580+a6,r3[5]=490+b6, r3[6]=400+a6, r3[7]=490+b6;

r3[8]=r3[0];

r3[9]=r3[1];

drawpoly(5,r3);

// line3: cout<<"Set the target point";

// cin>>x1>>y1;

// start of main program//

int i,y=0,p1;

for(i=30;i<=x1;i++) //

equation of line of travel//

{

line5: y=(((y1-b)*(i-a))/(x1-a))+b;

int w=0,m=0,s=0;

m=(y1-b)/(x1-a);

if(m>7)

{

s=10;

}

else

{

s=0;

}

if(i>40+a1 && i<171+a1) //for

triangle1

{

if(y>=(220+b1) && y<=(385+b1))

{

p1=y+(1.2*(i+7))-434-b1-(1.2*a1);

32

if(p1>=-15&&p1<=15)

{

if(y1>y)

{

outtextxy(i,y,"*");

}

else

{

if(y<=385+b1 && y>=225+b1)

{

y=434-(1.2*(i+7-a1))+b1;

{

outtextxy(i,y,"*");

w=1;

}

}

}

}

}

}

int p2;

if(i<=250+a1 && i>=170+a1)

{

if(y<=381+b1 && y>=220+b1)

{

p2=y-2.15*(i-240-a1)-380-b1;

if(p2<=20 && p2>=-20)

{

y=2.15*(i-240-a1)+380+b1;

outtextxy(i,y,"*");

w=1;

}

}

}

if(i>=40+a1 && i<=250+a1)

{

if(y>387+b1 && y<392+b1)

33

{

if(x1<120 && y1>250)

{

for(i=a;i>=25;i--)

{

outtextxy(i,y,"*");

w=1;

delay(40);

}

}

else

{

for(i=a;i<=250+a1;i++)

{

outtextxy(i,390+b1,"*");

w=1;

y=390+b1;

delay(40);

}

}

}

}

if(i>=39+a2 && i<=200+a2) // for rectangle1//

{

if(y>=30+b2 && y<=190+b2)

{

if(i==40+a2)

{

if(y<=189+b2)

{

for(y=b;y>=30+b2;y--)

{

w=1;

outtextxy(40+a2,y,"*");

delay(40);

}

// break;//

34

}

}

}

}

if(i>40+a2)

{

if(y<192+b2+s && y>175+b2-s)

{

for(i=a;i<=195+a2;i++)

{

outtextxy(i,190+b2,"*");

y=190+b2;

w=1;

delay(40);

}

}

}

if(i>=39+a2 && i<=200+a2)

{

if(y>=32+b2-s && y<40+b2+s)

{

for(i=a;i<=200+a2;i++)

{

outtextxy(i,y,"*");

w=1;

delay(40);

}

}

}

if(y>30+b2 && y<190+b2)

{

if(i==195+a2)

{

for(y=b;y>=30+b2;y--)

{

outtextxy(i,y,"*");

w=1;

35

delay(40);

}

}

}

if(i>240+a4 && i<310+a4) //for triangle 4//

{

if(y<125+b4 && y>15+b4)

{

y=-(11/7)*(i-240-a4)+125+b4;

outtextxy(i,y,"*");

w=1;

}

}

if(i>=245+a4 && i<=410+a4)

{

if(y>125+b4-s && y<132+b4+s)

{

for(i=a;i<=410+a4;i++)

{

outtextxy(i,130+b4,"*");

w=1;

y=130+b4;

delay(40);

}

}

}

if(i==430+a5) // for rectangle 2//

{

if(y<270+b5 && y>=140+b5)

{

for(y=b;y>140+b5;y--)

{

outtextxy(430+a5,y,"*");

w=1;

delay(40);

36

}

}

}

if(i>435+a5 && i<605+a5)

{

if(y>260+b5 && y<270+b5)

{

if(x1<=605+a5)

{

outtextxy(i,y,"*");

w=1;

}

else

{

y=270+b5;

for(i=a;i<610+a5;i++)

{

outtextxy(i,y,"*");

w=1;

delay(40);

}

}

}

if(y>140+b5 && y<150+b5)

{

y=140+b5;

for(i=a;i<610+a5;i++)

{

outtextxy(i,y,"*");

w=1;

delay(40);

}

}

}

if(i==608+a5)

{

37

if(y<270+b5 && y>140+b5)

{

for(y=b;y>140+b5;y--)

{

outtextxy(i,y,"*");

w=1;

delay(40);

}

}

}

if(i==390+a6) //for rectangle3//

{

if(y<500+b6 && y>=440+b6)

{

for(y=b;y>440+b6;y--)

{

outtextxy(390+a6,y,"*");

w=1;

delay(40);

}

}

}

if(i>395+a6 && i<585+a6)

{

if(y>490+b6 && y<500+b6)

{

y=500+b6;

for(i=a;i<585+a6;i++)

{

outtextxy(i,y,"*");

w=1;

delay(40);

}

}

if(y>=440+b6 && y<450+b6)

{

if(x1<585+a6)

38

{

outtextxy(i,y,"*");

w=1;

}

else

{

y=440+b6;

for(i=a;i<585+a6;i++)

{

outtextxy(i,y,"*");

w=1;

delay(40);

}

}

}

}

if(i==584+a6)

{

if(y<495+b6 && y>455+b6)

{

for(y=b;y>455+b5;y--)

{

outtextxy(i,y,"*");

w=1;

delay(40);

}

}

}

if(i>=423 && i<480) //hexagon//

{

if(y<=290 && y>=360)

{

if(y<=360 && y>330)

{

i=423;

for(y=b;y>=330;y--)

{

39

outtextxy(423,y,"*");

w=1;

delay(40);

}

}

if(y<=330 && y>=295)

{

int q3;

q3=y-330+.614*(i-423);

if(q3>=0)

{

y=-.614*(i-423)+330;

outtextxy(i,y,"*");

w=1;

}

}

}

//hexagon 2nd //

if(y<=360 && y>=420)

{

if(y<=390 && y>360)

{

i=423;

for(y=b;y<=390;y++)

{

outtextxy(423,y,"*");

w=1;

delay(40);

}

}

if(y<=425 && y>=390)

{

int q4;

q4=y-425-(.614*(i-480));

if(q4<=0)

{

y=.614*(i-480)+425;

40

outtextxy(i,y,"*");

w=1;

}

}

}

}

//hexagon 3rd//

if(i>=480 && i<538)

{

if(y<=290 && y>=360)

{

if(y<=360 && y>330)

{

i=537;

for(y=b;y>=330;y--)

{

outtextxy(537,y,"*");

w=1;

delay(40);

}

}

if(y<=330 && y>=295)

{

int q5;

q5=y-295-.614*(i-480);

if(q5>=0)

{

y=.614*(i-480)+295;

outtextxy(i,y,"*");

w=1;

}

}

}

// hexagon 4th//

if(y<=360 && y>=420)

{

if(y<=390 && y>360)

41

{

i=537;

for(y=b;y<=390;y++)

{

outtextxy(537,y,"*");

w=1;

delay(40);

}

}

if(y<=425 && y>=390)

{

int q6;

q6=y-425+(.614*(i-480));

if(q6<=0)

{

y=-.614*(i-480)+425;

outtextxy(i,y,"*");

w=1;

}

}

}

}

if(w==0)

{ outtextxy(i,y,"*");

}

a=i;

b=y;

delay(40);

if(a>x1)

{

i=i-1;

goto line5;

}

}

ans=2;

42

int z1;

cout<<" do you want to continue then press 1 ";

cin>>z1;

if(z1==1)

{

goto line4;

}

else

{

exit;

}

getch();

}

43

3.3 OBSTACLES AND THE ARENA

 Figure shows Obstacles and the Arena enclosing them

 OBSTACLES

44

OUTPUT AND RESULTS

Figure shows the Programme asking for Input for the Target Point

after Completing the Obstacles

45

Figure shows the Path Traced by the Mobile Agent for Destination

(530, 40)

46

Figure shows the Path Traced by the Mobile Agent for Destination

(280, 60)

47

Figure shows the Path Traced by the Mobile Agent for Destination

(600, 280)

48

3.4 FINAL PROGRAM

Till of now the programme is only limit to show only one mobile

robot at a time and the obstacles were also predefined. So the

following program shows the path traced by any number of mobile

robots having different starting point and searching for different target

points. For this the study of artificial intelligence is very much

required because I have to incorporate decision taking power in robot

to choose between different target points basing on some principles.

The program shown below related to adding flexibility for user

defined obstacles and collision free navigation of mobile robot i.e., an

unknown environment.

#include<iostream.h>

#include<stdio.h>

#include<math.h>

#include<conio.h>

#include<dos.h>

#include<stdlib.h>

#include<graphics.h>

void main()

{

clrscr();

int po=0,io=0,k,poi=0;

line1: cout<<"Enter the type of obstacle you want to insert accod. to

the following:\n";

cout<<"for line enter '1', for triangle enter'2', for rectangle enter '3',for

hexagon enter'4', for circle enter'5', for an U shape enter'6'\n";

cin>>k;

int n=0,cx[6],cy[6],cr[6],c[20];

switch(k)

{

case 1:

{

49

poi++;

n=4;

c[poi]=0;

po++;

break;

}

case 2:

{

poi++;

n=6;

c[poi]=1;

po++;

break;

}

case 3:

{

poi++;

n=8;

c[poi]=1;

po++;

break;

}

case 4:

{

poi++;

n=12;

c[poi]=1;

po++;

break;

}

case 5:

{

io++;

n=0;

cout<<"enter the (x,y) coordinate of the circle center and its radius for

circle"<<io;

cin>>cx[io]>>cy[io]>>cr[io];

50

// c[poi]=0;

break;

}

case 6:

{

poi++;

n=8;

c[poi]=0;

po++;

break;

}

}

cout<<"Enter the co-ordinates of the figure interms of (x,y)";

int i,fi[10][20],ni[10];

for(i=0;i<n;i++)

{

cin>>fi[po][i];

if(c[poi]==1)

{

if(i==n-1)

{

fi[po][i+1]=fi[po][0];

fi[po][i+2]=fi[po][1];

ni[po]=(n/2)+1;

}

}

if(c[poi]==0)

{

ni[po]=n/2;

}

}

int ki;

cout<<"Do you want to add one more figure if yes enter 1 \n";

cin>>ki;

if(ki==1)

{

goto line1;

51

}

int no, mo, a[10],b[10],e[10],d[10], nt, x1[10], y1[10], x2, y2;

cout<<"Enter the no. of mobile agent";

cin>>no;

cout<<"Enter the starting points of "<<no<<"target points in the form

of (x,y)\n";

for(i=0;i<no;i++)

{

cin>>a[i]>>b[i];

}

cout<<"Enter the number of target points";

cin>>nt;

cout<<"Enter the target point co-ordinates in (x,y) form";

int j, di[10], ds=0, dk,ko,mp, si, ap, bp;

for(j=0;j<nt;j++)

{

cin>>x1[j]>>y1[j];

}

clrscr();

/* request auto detection */

int gdriver = DETECT, gmode, errorcode;

/* initialize graphics mode */

initgraph(&gdriver, &gmode, "c:\\tc\\bgi");

/* read result of initialization */

errorcode = graphresult();

if (errorcode != grOk) /* an error occurred */

{

printf("Graphics error: %s\n", grapherrormsg(errorcode));

printf("Press any key to halt:");

// line(5, 5, 30, 30);

// getch();

// exit(1); /* return with error code */

}

52

int pu;

for(pu=1;pu<=po;pu++)

{

switch(ni[pu])

{

case 4:

{

setcolor(1);

setfillstyle(2,1);

break;

}

case 5:

{

setcolor(2);

setfillstyle(1,2);

break;

}

case 7:

{

setcolor(3);

setfillstyle(1,3);

break;

}

}

drawpoly(ni[pu],fi[pu]);

}

int ic;

for(ic=1;ic<=io;ic++)

{

setcolor(4);

setfillstyle(1,4);

circle(cx[ic],cy[ic],cr[ic]);

}

getch();

for(j=0;j<nt;j++)

{

for(i=0;i<no;i++)

53

{

ds=ds+sqrt(pow((x1[j]-a[i]),2)+pow((y1[j]-b[i]),2));

}

di[j]=ds;

}

dk=di[0];

for(j=0;j<nt;j++)

{

if(dk>=di[j])

{

dk=di[j];

ko=j;

}

}

x2=x1[ko];

y2=y1[ko];

int x[12],y[12],ku[12]={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, ks1[12]={ 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, tj, tjn,mk[20],ksx[15];

line14: int k2c=0,klc=0,tpy,tny,p,ky1,kx1,ky2,kx2,yp,yn,lac,yrp,yrn;

for(j=0;j<no; j++)

{

x[j]=a[j];

y[j]=b[j];

if(x[j]!=x2 || y[j]!=y2)

{

if (ku[j]==4)

{

switch(ksx[j])

{

case 1:

{

goto line8;

}

case 2:

{

goto line9;

}

54

case 3:

{

goto line10;

}

case 4:

{

goto line11;

}

}

}

if(x2<a[j])

{

goto line8;

}

else

{

goto line9;

}

//if(x[j]>x2)

line8:x[j]--;

tj=0;

if(ks1[j]==1)

{

mk[j]=((y2-b[j])/(x2-a[j]))*10;

y[j]=(mk[j]*(x[j]-a[j])+b[j])/10;

}

for(si=1;si<=po;si++)

{

for(i=0;i<(2*ni[si]);i++)

{

if(i%2==0)

{

if(fi[si][i+3]>fi[si][i+1])

{

ky1=fi[si][i+3];

55

ky2=fi[si][i+1];

}

else

{

ky1=fi[si][i+1];

ky2=fi[si][i+3];

}

if(fi[si][i]>fi[si][i+2])

{

kx1=fi[si][i];

kx2=fi[si][i+2];

}

else

{

kx1=fi[si][i+2];

kx2=fi[si][i];

}

int mxy;

if(x[j]>(kx2-10) && x[j]<(kx1+10))

{

if(y[j]>(ky2-10) && y[j]<(ky1+10))

{

bp=fi[si][i+3]-fi[si][i+1];

ap=fi[si][i+2]-fi[si][i];

if(bp==0)

{

int ku[10];

y[j]=b[j];

outtextxy(x[j],y[j],"*");

delay(10);

//getch();

tj=1;

klc++;

ku[j]=4; ks1[j]=2;

goto line6;

}

if(ap==0)

56

{

if(b[j]<d[j])

{

p=-1;

}

if(b[j]>d[j])

{

p=1;

}

x[j]=a[j];

y[j]=b[j]+p;

outtextxy(x[j],y[j],"*");

delay(10);

//getch();

ku[j]=4;

klc++;

ks1[j]=2;

tj=1;

goto line6;

}

mxy= ((fi[si][i+3]-fi[si][i+1])/(fi[si][i+2]-fi[si][i]))*100;

p=(y[j]-(mxy*(x[j]-fi[si][i])/100)-

fi[si][i+1])/(sqrt(1+(pow((mxy/100),2))));

if(p<10)

{

lac=100*(sqrt(1+(pow((mxy/100),2))));

yrp=(lac/10)+(mxy/100)*(x[j]-fi[si][i])+fi[si][i+1];

yrn=((mxy/100)*(x[j]-fi[si][i]))+fi[si][i+1]-(lac/10);

yp=b[j]-yrp;

yn=b[j]-yrn;

if(yp<0)

{

yp=(-1)*yp;

}

if(yn<0)

{

57

yn=(-1)*yn;

}

if(yp>yn)

{

y[j]=yrn;

}

else

{

y[j]=yrp;

}

outtextxy(x[j], y[j], "*");

delay(10);

ku[j]=4;ks1[j]=2;

tj=1;

}

}

}

}

line6:

e[j]=a[j];

d[j]=b[j];

a[j]=x[j];

b[j]=y[j];

if(tj==0)

{

ku[j]=1;

ks1[j]=1;

}

else

{

ksx[j]=1;

}

}

}

if(tj==0)

{

outtextxy(x[j], y[j],"*");

58

delay(5);

}

goto line7;

//if(x[j]<x2)

//{

line9: x[j]++;

tjn=0;

if(ks1[j]==1)

{

mk[j]=((y2-b[j])/(x2-a[j]))*100;

y[j]=(mk[j]/100)*(x[j]-a[j])+b[j];

}

//tsi=tsi++;

for(si=1;si<=po;si++)

{

for(i=0;i<(2*ni[si]);i++)

{

if(i%2==0)

{

int ky1,kx1, ky2, kx2;

if(fi[si][i+3]>fi[si][i+1])

{

ky1=fi[si][i+3];

ky2=fi[si][i+1];

}

else

{

ky1=fi[si][i+1];

ky2=fi[si][i+3];

}

if(fi[si][i]>fi[si][i+2])

{

kx1=fi[si][i];

kx2=fi[si][i+2];

}

else

{

59

kx1=fi[si][i+2];

kx2=fi[si][i];

}

if(x[j]>=(kx2-10) && x[j]<=(kx1+10))

{

if(y[j]>=(ky2-10) && y[j]<=(ky1+10))

{

bp=fi[si][i+3]-fi[si][i+1];

ap=fi[si][i+2]-fi[si][i];

//mp=(bp/ap)*100;

if(bp==0)

{

int pqs;

pqs=(y[i]-fi[si][i+1]);

if(pqs<0)

{

pqs=pqs*(-1);

}

if(pqs<10)

{

int p;

y[j]=b[j];

outtextxy(x[i],y[j],"*");

delay(5);

klc++;

ku[j]=4; ks1[j]=2;

tjn=1;

goto line12;

}

}

if(ap==0)

{

int pqs;

pqs=x[i]-fi[si][i];

if(pqs<0)

{

60

pqs=pqs*(-1);

}

if(pqs<10)

{

if(b[j]<d[j])

{

p=-1;

}

if(b[j]>d[j])

{

p=1;

}

x[j]=a[j];

y[j]=b[j]+p;

outtextxy(x[j],y[j],"*");

delay(5);

//getch();

ku[j]=4; ks1[j]=2;

klc++;

tjn=1;

goto line12;

}

}

int mxy,pl;

mxy=((fi[si][i+3]-fi[si][i+1])/(fi[si][i+2]-fi[si][i]))*100;

pl=(y[j]-(mxy*(x[j]-fi[si][i])/100)-

fi[si][i+1])/(sqrt(1+(pow((mxy/100),2))));

if(pl<10)

{

//int mt;

//mt=((y[j]-ky1)/(x[j]-kx2-18))*100;

lac=100*(sqrt(1+(pow((mxy/100),2))));

yrp=(lac/10)+(mxy/100)*(x[j]-fi[si][i])+fi[si][i+1];

yrn=((mxy/100)*(x[j]-fi[si][i]))+fi[si][i+1]-(lac/10);

yp=b[j]-yrp;

yn=b[j]-yrn;

if(yp<0)

61

{

yp=(-1)*yp;

}

if(yn<0)

{

yn=(-1)*yn;

}

if(yp>yn)

{

y[j]=yrn;

}

else

{

y[j]=yrp;

}

outtextxy(x[j], y[j],"*");

delay(10);

//getch();

ku[j]=4; ks1[j]=2;

tjn=1;

}

}

}

}

line12:

e[j]=a[j];

d[j]=b[j];

a[j]=x[j];

b[j]=y[j];

if(tjn==0)

{

ku[j]=1;

ks1[j]=1;

}

else

{

ksx[j]=2;

62

}

}

}

if(tjn==0)

{

outtextxy(x[j], y[j],"*");

delay(10);

}

goto line7;

if(x[j]==x2)

{

if(y[j]>(y2+5) || y[j]<(y2-5))

{

if(y[j]>y2)

{

line10:

int tny=0;

y[j]--;

if(ks1[j]==1)

{

mk[j]=((y2-b[j])/(x2-a[j]))*100;

x[j]=a[j]+((y[j]-b[j])/(mk[j]/100));

}

for(si=1;si<=po;si++)

{

for(i=0;i<(2*ni[si]);i++)

{

if(i%2==0)

{

int ky1,kx1,ky2,kx2;

if(fi[si][i+3]>fi[si][i+1])

{

ky1=fi[si][i+3];

ky2=fi[si][i+1];

}

else

{

63

ky1=fi[si][i+1];

ky2=fi[si][i+3];

}

if(fi[si][i]>fi[si][i+2])

{

kx1=fi[si][i];

kx2=fi[si][i+2];

}

else

{

kx1=fi[si][i+2];

kx2=fi[si][i];

}

int mxy;

if(x[j]>(kx2-10) && x[j]<(kx1+10))

{

if(y[j]>(ky2-10) && y[j]<(ky1+10))

{

bp=fi[si][i+3]-fi[si][i+1];

ap=fi[si][i+2]-fi[si][i];

if(bp==0)

{

int ku[10];

y[j]=b[j];

if(a[j]<e[j])

{

p=-1;

}

if(a[j]>e[j])

{

p=1;

}

x[j]=a[j]+p;

outtextxy(x[j],y[j],"*");

tny=1;

klc++;

ku[j]=4; ks1[j]=2;

64

goto line13;

}

if(ap==0)

{

x[j]=a[j];

y[j]=b[j];

outtextxy(x[j],y[j],"*");

ku[j]=4;

klc++;

ks1[j]=2;

tny=1;

goto line13;

}

mxy= ((fi[si][i+3]-fi[si][i+1])/(fi[si][i+2]-fi[si][i]))*100;

int p;

p=(y[j]-(mxy*(x[j]-fi[si][i])/100)-

fi[si][i+1])/(sqrt(1+(pow((mxy/100),2))));

if(p<10)

{

lac=100*(sqrt(1+pow(mxy,2)));

yrp=(y[j]+((mxy/100)*fi[si][i])-fi[si][i+1]-(lac/10))/(mxy/100);

yrn=(y[j]+((mxy/100)*fi[si][i])-fi[si][i+1]+(lac/10))/(mxy/100);

yp=a[j]-yrp;

yn=a[j]-yrn;

if(yp<0)

{

yp=(-1)*yp;

}

if(yn<0)

{

yn=(-1)*yn;

}

if(yp>yn)

{

x[j]=yrn;

}

else

65

{

x[j]=yrp;

}

outtextxy(x[j], y[j],"*");

ku[j]=4;

ks1[j]=2;

tny=1;

}

}

}

}

line13:

e[j]=a[j];

d[j]=b[j];

a[j]=x[j];

b[j]=y[j];

if(tny==0)

{

ku[j]=1;

ks1[j]=1;

}

else

{

ksx[j]=3;

}

}

}

if(tny==0)

{

outtextxy(x[j], y[j],"*");

}

}

if(y[j]<y2)

{

line11:

int tpy=0;

y[j]++;

66

if(ks1[j]==1)

{

mk[j]=((y2-b[j])/(x2-a[j]))*100;

x[j]=a[j]+((y[j]-b[j])/(mk[j]/100));

}

for(si=1;si<=po;si++)

{

for(i=0;i<(2*ni[si]);i++)

{

if(i%2==0)

{

int ky1,kx1,ky2,kx2;

if(fi[si][i+3]>fi[si][i+1])

{

ky1=fi[si][i+3];

ky2=fi[si][i+1];

}

else

{

ky1=fi[si][i+1];

ky2=fi[si][i+3];

}

if(fi[si][i]>fi[si][i+2])

{

kx1=fi[si][i];

kx2=fi[si][i+2];

}

else

{

kx1=fi[si][i+2];

kx2=fi[si][i];

}

int mxy;

if(x[j]>(kx2-10) && x[j]<(kx1+10))

{

if(y[j]>(ky2-10) && y[j]<(ky1+10))

{

67

bp=fi[si][i+3]-fi[si][i+1];

ap=fi[si][i+2]-fi[si][i];

if(bp==0)

{

int ku[10];

y[j]=b[j];

if(a[j]<e[j])

{

p=-1;

}

if(a[j]>e[j])

{

p=1;

}

x[j]=a[j]+p;

outtextxy(x[j],y[j],"*");

tpy=1;

klc++;

ku[j]=4; ks1[j]=2;

goto line17;

}

if(ap==0)

{

x[j]=a[j];

y[j]=b[j];

outtextxy(x[j],y[j],"*");

ku[j]=4;

klc++;

ks1[j]=2;

tpy=1;

goto line17;

}

mxy= ((fi[si][i+3]-fi[si][i+1])/(fi[si][i+2]-fi[si][i]))*100;

int p;

p=(y[j]-(mxy*(x[j]-fi[si][i])/100)-

fi[si][i+1])/(sqrt(1+(pow((mxy/100),2))));

if(p<10)

68

{

lac=100*(sqrt(1+pow(mxy,2)));

yrp=(y[j]+((mxy/100)*fi[si][i])-fi[si][i+1]-(lac/10))/(mxy/100);

yrn=(y[j]+((mxy/100)*fi[si][i])-fi[si][i+1]+(lac/10))/(mxy/100);

yp=a[j]-yrp;

yn=a[j]-yrn;

if(yp<0)

{

yp=(-1)*yp;

}

if(yn<0)

{

yn=(-1)*yn;

}

if(yp>yn)

{

x[j]=yrn;

}

else

{

x[j]=yrp;

}

outtextxy(x[j], y[j],"*");

ku[j]=4;

ks1[j]=2;

tpy=1;

}

}

}

}

line17:

e[j]=a[j];

d[j]=b[j];

a[j]=x[j];

b[j]=y[j];

if(tpy==0)

{

69

ku[j]=1;

ks1[j]=1;

}

else

{

ksx[j]=4;

}

}

}

if(tpy==0)

{

outtextxy(x[j], y[j],"*");

}

}

line7:

if(x[j]!=x2 || y[j]!=y2)

{

k2c=1;

}

}

getch();

}

if(k2c==1)

{

goto line14;

}

else

{

goto line15;

}

}

}

line15:

getch();

}

70

3.5 RESULTS

It is found that the robots are successfully avoiding the obstacles and

the other robots and follows an optimal path to reach the target point.

“point 1” is the starting point and “point 2” is the target point

71

 Chapter 3

CONCLUSION

72

CONCLUSION:

 The program written in C++ for the simulation of path

traced by mobile robots works successfully. The diagram shown in

the previous pages is the arena where the robot is placed. The robot

moves from start point and goes along the path shown in the figure

avoiding obstacles to red colour point which is the destination point.

When the robot was moving along its path it had some problems to

navigate when there exist obstacles more than one. The C++ compiler

was a very effective mode because of its fastness and good hardware

interfacing.

Applications:

1. This type of system can be used in automobiles for collision free

driving.

2. It can also be used handling waste material in nuclear reactions

where mobile robots have to perform the work accurately.

3. It can be used in transportation in industries.

73

REFERENCES

[1] Location estimation by omni-directional vision, Chih-JenWua,

Department of Computer Science, National Chiao Tung University,

Hsinchu 30010, Taiwan, Wen-Hsiang Tsai,Department of Computer

Science and Information Engineering, Asia University, Taichung,

41354, Taiwan. P.1-40

[2] The stable and precise motion control for multiple mobile robots,

Dayal Ramakrushna Parhi(a), Saroj Kumar Pradhan(b) , Anup Kumar

Panda(c), Rabindra Kumar Behera(d), (a)(d) Department of

Mechanical Engineering, N.I.T., Rourkela, Orissa,India (b)

Department of Mechanical Engineering, N.I.T., Hamirpur, H.P., India

(c)Department of Electrical Engineering, N.I.T., Rourkela, Orissa,

India.

[3] Temporal logic motion planning for dynamic robots, by Georgios

E. Fainekos
 a
, Antoine Girard

b
, Hadas Kress-Gazit

b
, George J.

Pappas
a
 .

a
3330 Walnut Street, GRASP Laboratory, University of

Pennsylvania, PA 19104, United States

b
Laboratoire Jean Kuntzmann, Université Joseph Fourier, France

[4] Stigmergic cooperation of autonomous robots, Cezary Zielin ski*,

Piotr Trojanek. Institute of Control and Computation Engineering,

Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665

Warsaw, Poland.

[5] A mixed analog-digital vision sensor for detecting objects

approaching on a collision course, Sigal Berman, Edna Schechtman ,

Yael Edan

[6] A case-based approach for coordinated action selection in robot

soccer, by Raquel Ros, Josep Lluís Arcos, Ramon Lopez de Mantaras

, Manuela Veloso.

74

[7] Study on some navigation schemes of a real robot tackling moving

obstacles(Nirmal Baran Hui, Dilip Kumar Pratihar)

[8] Pratihar DK. Algorithmic and soft computing approaches to robot

motionplanning. Machine Intelligence and Robotic Control

2003;5(1):1–16.

[9] Latombe J-C. Robot motion planning. Dordrecht: Kluwer

Academic Publisher; 1991.

[10] Liu YH, Arimoto S. Path planning using a tangent graph for

mobile robots among polynomial and curved obstacles. The

International Journal of Robotics Research 1992;11(4):376–82.

[11] Kant K, Zucker SW. Towards efficient planning: the path

velocity decomposition. The International Journal of Robotics

Research 1986;5(1):72–89.

[12] Fujimura K, Samet H. Accessibility: a new approach to path

planning amongmoving obstacles. In: Proceedings of IEEE

conference on computer vision andpattern recognition, Ann Arbor,

MI, 1988. p. 803–7.

[13] Lamadrid JG, Gini ML. Path tracking through uncharted moving

obstacles.IEEE Transactions on Systems, Man and Cybernetics

1990;20(6):1408–22.

[14] Slack MG, Miller DP. Path planning through time and space in

dynamic domains. In: Proceedings of the international joint

conference on artificial intelligence; 1987. p. 1067–70.

[15] Fiorini P, Shiller Z. Motion planning in dynamic environments

using the relative velocity paradigm. In: Proceedings of IEEE

conference on robotics and automation; 1993. p. 560–5.

[16] Brooks RA. A robust layered control system for a mobile robot.

IEEE Transactions on Robotics and Automation 1986;RA-2:14–23.

75

[17] Simmons R. The curvature-velocity method for local obstacle

avoidance. In: Proceedings of the international conference on robotics

and automation, vol.4; 1996. p. 2275–82.

[18] Fox D, Burgard W, Thrun S. The dynamic window approach to

collision avoidance. IEEE Robotics & Automation Magazine

1997;23:23–33.

[19] LaValle SM, Kuffner JJ. Randomized kinodynamic planning.

International Journal of Robotics Research 2001;20(5):378–400.

[20] Koren Y, Borenstein J. Potential field methods and their inherent

limitations for mobile robot navigation. In: Proceedings of the IEEE

conference on robotics and automation, Sacramento, CA, 1991. p.

1398–404.

[21] Using genetic algorithms for robot motion planning, Juan

Manuel Ahuactzin, El-Ghazali Talbi, Pierre Bessiere, and Emmanuel

Mazer .1-10.

[22] Spatial Learning and Localization in Animals: A Computational

Model and its Implications for Mobile Robots, by Karthik

Balakrishnan, Olivier Bousquet, and Vasant Honovar .p.1-50.

[23] Dynamic trajectory planning for cross-country navigator, by

Barry L. Brumitt, R. Craig Coulter, Anthony Stentz.

[24] An Opportunistic Global Path Planner, by John F. Canny and

Ming Chieh Lin.

[25] On All-Terrain Vehicle Motion Planning , by Moez Cherif.

[26] Robust Path Planning in the Plane, by Fernando De la Rosa,

Christian Laugier, and Jose Najera.

[27] The Geometrical Representation of Path Planning Problems, by

Leo Dorst, Indur Mandhyan, and Karen Trovato.

76

[28] Collision-Free Object Movement Using Vector Fields, by Parris

K. Egbert and Scott H. Winkler.

[29] Finding an Unpredictable Target in a Workspace with Obstacles,

by Steven LaValle, David Lin, Leonidas Guibas, Jean-Claude

Latombe, and Rajeev Motwani.

[30] A Mobile Robot Navigation Exploration Algorithm, by

Alexander Zelinsky.

[31] An optimal pathfinder for vehicles in real-world digital terrain

maps, by Frank Markus Jönsson

