
1

A

Project Report on

Cryptography using

Artificial Neural Networks

In partial fulfillment of the requirements of

Bachelor of Technology

In

Electronics & Instrumentation Engineering

Submitted By
Vikas Gujral Satish Kumar Pradhan

 10507027 10507033

Under the guidance of
Prof. G. S. Rath

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela-769008

Orissa

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

 National Institute of Technology
 Rourkela

 CERTIFICATE

This is to certify that that the work in this thesis report entitled “Cryptography using Artificial

Neural Networks” submitted by Vikas Gujral and Satish kumar Pradhan in partial fulfillment

of the requirements for the degree of Bachelor of Technology in Electronics & Instrumentation

Engineering, Session 2005-2009, in the Department of Electronics and Communication

Engineering, National Institute of Technology, Rourkela is an authentic work carried out by

them under my supervision and guidance.

To the best of my knowledge the matter embodied in the thesis has not been submitted to any

other University /Institute for the award of any degree.

Date: Prof. G. S. Rath

Department of Electronics and

Communication Engineering

 National Institute of Technology

 Rourkela - 769008

3

 ACKNOWLEDGEMENT

We owe a debt of deepest gratitude to our thesis supervisor, Prof. G. S. Rath, Department of

Electronics and Communication Engineering, for his guidance, support, motivation and

encouragement throughout the period this work was carried out. His readiness for consultation

at all times, his educative comments, his concern and assistance even with practical things have

been invaluable.

 We are grateful to Prof. S. K. Patra, Head of the Department, Electronics and

Communication Engineering for providing us the necessary opportunities for the completion of

our project. We also thank the other faculty and staff members of our department for their

invaluable help and guidance.

Vikas Gujral Satish kumar Pradhan

10507027 10507033

E.I.E. E.I.E.

4

 CONTENTS

Chapter Page No.

Certificate 2

Acknowledgement 3

List of figures 6

Abstract 7

Chapter 1 Introduction 8

1.1 Artificial Neural Networks 9

1.1.1 Introduction to ANN 9

 1.1.2 Biological Model 9

1.1.3 ANN structure 11

1.1.4 Network Architectures 14

1.1.5 Learning Processes 16

1.1.6 Training of ANNs 16

1.1.7 Back-propagation 17

1.1.8 Multi-layer Feed-forward Network 17

1.1.9 Generalized delta rule 17

1.2 Cryptography 19

 1.2.1 Introduction 19

 1.2.2 Types of cryptographic algorithms 19

Chapter 2 Application of Neural Network 21

2.1 Sequential Machine 22

 2.1.1 Serial Adder 22

 2.1.2 Sequential Detector 23

2.2 Combinational Logic 24

2.3 Cryptography 25

 2.3.1 Using Sequential machine 25

 2.3.2 Using chaotic neural network 26

Chapter 3 Implementation 28

3.1 Sequential machine implementation 29

5

3.2 Combinational logic implementation 31

3.3 Cryptography using ANN bases sequential machine 34

3.4 Cryptography using chaotic neural network 35

Chapter 4 Results and Conclusion 38

4.1 A general n-state sequential machine 39

4.2 Combinational logic 42

4.3 Cryptography using sequential machine 44

4.4 Cryptography using chaotic neural network 44

4.5 Conclusion 47

APPENDIX 1: Matlab Code 48

APPENDIX 2: References 59

6

LIST OF FIGURES

Fig. No. Title Page

1.1 Block Diagram of a Human Nervous System 10

1.2 Schematic Diagram of a biological neuron 11

1.3 Basic components of an Artificial Neural Network 12

1.4 Various activation signals for a unit 14

1.5 Single layer feed-forward network 15

1.6 Multi layer feed-forward network 16

1.7 Recurrent network 16

1.8 A multi layer network with l neurons 19

1.9 Different encryption algorithms 21

2.1 State diagram of serial adder 23

2.2 State diagram of sequential detector 24

3.1 Jordan Network 30

3.2 Types of network architectures 33

3.3 Program flow chart 34

4.1 Entering input data in the sequential machine 39

4.2 Plot of error function after learning process 40

4.3 Output of the serial adder 41

4.4 MSE of fully connected neural network Type 1 42

4.5 MSE of a one output per network Type 2 (bo) 42

4.6 MSE of a one output per network Type 2 (b1) 43

4.7 Output of sequential machine based encryption 44

4.8 Output of chaotic neural network based encryption 45

4.9 Output of chaotic neural network based decryption 46

7

Abstract

 A Neural Network is a machine that is designed to model the way in which

the brain performs a task or function of interest. It has the ability to perform

complex computations with ease. The objective of this project was to investigate

the use of ANNs in various kinds of digital circuits as well as in the field of

Cryptography. During our project, we have studied different neural network

architectures and training algorithms. A comparative study is done between

different neural network architectures for an Adder and their merits/demerits are

discussed.

 Using a Jordan (Recurrent network), trained by back-propagation

algorithm, a finite state sequential machine was successfully implemented. The

sequential machine thus obtained was used for encryption with the starting key

being the key for decryption process. Cryptography was also achieved by a

chaotic neural network having its weights given by a chaotic sequence.

8

Chapter 1

INTRODUCTION

Artificial Neural Network

Cryptography

9

 CHAPTER 1: Introduction

1.1 Artificial Neural Network

1.1.1 Introduction

Work on artificial neural network has been motivated right from its inception by the

recognition that the human brain computes in an entirely different way from the conventional

digital computer. The brain is a highly complex, nonlinear and parallel information processing

system. It has the capability to organize its structural constituents, known as neurons, so as to

perform certain computations many times faster than the fastest digital computer in existence

today. The brain routinely accomplishes perceptual recognition tasks, e.g. recognizing a

familiar face embedded in an unfamiliar scene, in approximately 100-200 ms, whereas tasks of

much lesser complexity may take days on a conventional computer.

A neural network is a machine that is designed to model the way in which the brain performs a

particular task. The network is implemented by using electronic components or is simulated in

software on a digital computer. A neural network is a massively parallel distributed processor

made up of simple processing units, which has a natural propensity for storing experimental

knowledge and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

Neural networks, with their remarkable ability to derive meaning from complicated or

imprecise data, can be used to extract patterns and detect trends that are too complex to be

noticed by either humans or other computer techniques. Other advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for

training or initial experience.

10

2. Self-Organization: An ANN can create its own organization or representation of the

information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and special

hardware devices are being designed and manufactured which take advantage of this

capability.

1.1.2 Biological Model

The human nervous system can be broken down into three stages that may be

represented as follows:

Fig 1.1: Block Diagram of a Human Nervous System.

The receptors collect information from the environment. The effectors generate interactions

with the environment e.g. activate muscles. The flow of information/activation is

represented by arrows. There is a hierarchy of interwoven levels of organization:

1. Molecules and Ions

2. Synapses

3. Neuronal microcircuits

4. Dendritic trees

5. Neurons

6. Local circuits

7. Inter-regional circuits

8. Central nervous system

There are approximately 10 billion neurons in the human cortex. Each biological neuron is

connected to several thousands of other neurons. The typical operating speed of biological

neurons is measured in milliseconds.

11

The majority of neurons encode their activations or outputs as a series of brief electrical

pulses. The neuron‟s cell body processes the incoming activations and converts the into

output activations. The neurons nucleus contains the genetic material in the form of DNA.

This exists in most types of cells. Dendrites are fibers which emanate from the cell body

and provide the receptive zones that receive activation from other neurons. Axons are fibers

acting as transmission lines that send activation to other neurons. The junctions that allow

signal transmission between axons and dendrites are called synapses.

Fig 1.2: Schematic diagram of a Biological Neuron

12

1.1.3 ANN Structure

An artificial neural network consists of a pool of simple processing units which communicate

by sending signals to each other over a large number of weighted connections. A set of major

aspects of ANN are:

 A set of processing units ('neurons,' 'cells');

 A state of activation yk for every unit, which equivalent to the output of the unit;

 Connections between the units. Generally each connection is defined by a weight wjk

which determines the effect which the signal of unit j has on unit k;

 A propagation rule, which determines the effective input sk of a unit from its external

inputs;

 An activation function Fk, which determines the new level of activation based on the

effective input sk(t) and the current activation yk(t) (i.e., the update);

 An external input (aka bias, offset) θk for each unit;

 A method for information gathering (the learning rule);

 An environment within which the system must operate, providing input signals and if

necessary error signals.

Fig 1.3: The basic components of an artificial neural network

13

a) Processing units

Each unit performs a relatively simple job: receive input from neighbors or external sources

and use this to compute an output signal which is propagated to other units. Apart from this

processing, a second task is the adjustment of the weights. The system is inherently parallel in

the sense that many units can carry out their computations at the same time. Within neural

systems it is useful to distinguish three types of units: input units (indicated by an index i)

which receive data from outside the neural network, output units (indicated by an index o)

which sends data out of the neural network, and hidden units (indicated by an index h) whose

input and output signals remain within the neural network. During operation, units can be

updated either synchronously or asynchronously. With synchronous updating, all units update

their activation simultaneously; with asynchronous updating, each unit has a (usually fixed)

probability of updating its activation at a time t, and usually only one unit will be able to do this

at a time. In some cases the latter model has some advantages.

b) Connections between units

In most cases we assume that each unit provides an additive contribution to the input of the unit

with which it is connected. The total input to unit k is simply the weighted sum of the separate

outputs from each of the connected units plus a bias or offset term θk :

 (1.1)

The contribution for positive wjk is considered as an excitation and for negative wjk as

inhibition. In some cases more complex rules for combining inputs are used, in which a

distinction is made between excitatory and inhibitory inputs. We call units with propagation

rule above as sigma units.

A different propagation rule, introduced by Feldman and Ballard, is known as the propagation

rule for the sigma-pi unit:

14

 (1.2)

c) Activation and the output rules

We also need a rule which gives the effect of the total input on the activation of the unit. We

need a function Fk which takes the total input sk(t) and the current activation yk(t) and produces

a new value of the activation of the unit k:

 (1.3)

Often, the activation function is a non decreasing function of the total input of the unit:

 (1.4)

although activation functions are not restricted to non decreasing functions. Generally, some

sort of threshold function is used: a hard limiting threshold function (a sgn function), or a linear

or semi-linear function, or a smoothly limiting threshold. For this smoothly limiting function

often a sigmoid (S-shaped) function like

 (1.5)

Fig 1.4: Various activation signals for a unit

15

In some cases, the output of a unit can be a stochastic function of the total input of the unit, the

activation is not deterministically determined by the neuron input, but the neuron input

determines the probability p that a neuron gets a high activation value:

 (1.6)

in which T is a parameter which determines the slope of the probability function.

1.1.4 Network Architectures

There are three fundamental different classes of network architectures:

1) Single-layer feed forward Networks

In a layered neural network the neurons are organized in the form of layers. In the

simplest form of a layered network, we have an input layer of source nodes that projects

onto an output layer of neurons, but not vice versa. This network is strictly a feed

forward type. In single-layer network, there is only one input and one output layer.

Input layer is not counted as a layer since no mathematical calculations take place at

this layer.

Fig 1.5: Single-layer Feed-forward Network

2) Multilayer feed forward Networks

The second class of a feed forward neural network distinguishes itself by the presence

of one or more hidden layers. The function of hidden neuron is to intervene between the

external input and the network output in some useful manner. By adding more hidden

layers, the network is enabled to extract higher order statistics. The input signal is

Output layer

Input layer

16

applied to the neurons in the second layer. The output signal of second layer is used as

inputs to the third layer, and so on for the rest of the network.

Fig 1.6: Multi-layer Feed-forward Network

3) Recurrent networks

A recurrent neural network has at least one feedback loop. A recurrent network may

consist of a single layer of neurons with each neuron feeding its output signal back to

the inputs of all the other neurons. Self-feedback refers to a situation where the output

of a neuron is fed back into its own input. The presence of feedback loops has a

profound impact on the learning capability of the network and on its performance.

Fig 1.7: Recurrent Network

Hidden

layer

Output layer

17

1.1.5 Learning Processes

By learning rule we mean a procedure for modifying the weights and biases of a

network. The purpose of learning rule is to train the network to perform some task.

They fall into three broad categories:

1. Supervised learning

The learning rule is provided with a set of training data of proper network

behavior. As the inputs are applied to the network, the network outputs are

compared to the targets. The learning rule is then used to adjust the weights and

biases of the network in order to move the network outputs closer to the targets.

2. Reinforcement learning

It is similar to supervised learning, except that, instead of being provided with

the correct output for each network input, the algorithm is only given a grade.

The grade is a measure of the network performance over some sequence of

inputs.

3. Unsupervised learning

The weights and biases are modified in response to network inputs only. There

are no target outputs available. Most of these algorithms perform some kind of

clustering operation. They learn to categorize the input patterns into a finite

number of classes.

1.1.6 Training of Artificial Neural Networks

A neural network has to be configured such that the application of a set of inputs produces

(either 'direct' or via a relaxation process) the desired set of outputs. Various methods to set the

strengths of the connections exist. One way is to set the weights explicitly, using a priori

knowledge. Another way is to 'train' the neural network by feeding it teaching patterns and

letting it change its weights according to some learning rule.

18

1.1.7 Back propagation

A single-layer network has severe restrictions: the class of tasks that can be accomplished is

very limited. Minsky and Papert showed in 1969 that a two layer feed-forward network can

overcome many restrictions, but did not present a solution to the problem of how to adjust the

weights from input to hidden units. An answer to this question was presented by Rumelhart,

Hinton and Williams in 1986 and similar solutions appeared to have been published earlier.

The central idea behind this solution is that the errors for the units of the hidden layer

are determined by back-propagating the errors of the units of the output layer. For this reason

the method is often called the back-propagation learning rule. Back-propagation can also be

considered as a generalization of the delta rule for non-linear activation functions and

multilayer networks.

1.1.8 Multi-layer feed-forward networks

A feed-forward network has a layered structure. Each layer consists of units which receive their

input from units from a layer directly below and send their output to units in a layer directly

above the unit. There are no connections within a layer. The Ni inputs are fed into the first layer

of Nh,1 hidden units. The input units are merely 'fan-out' units; no processing takes place in

these units. The activation of a hidden unit is a function Fi of the weighted inputs plus a bias.

The output of the hidden units is distributed over the next layer of Nh,2 hidden units, until the

last layer of hidden units, of which the outputs are fed into a layer of No output units.

1.1.9 The Generalized delta rule

The following equation gives a recursive procedure for computing the δ's for all units in the

network, which are then used to compute the weight changes accordingly

 (1.7)

This procedure constitutes the generalized delta rule for a feed-forward network of non-linear

units. the whole back-propagation process is intuitively very clear. What happens in the above

equations is the following. When a learning pattern is clamped, the activation values are

19

propagated to the output units, and the actual network output is compared with the desired

output values, we usually end up with an error in each of the output units. The simplest method

to do this is the greedy method: we strive to change the connections in the neural network in

such a way that, next time around, the error eo will be zero for this particular pattern.

That's step one. But it alone is not enough: when we only apply this rule, the weights from

input to hidden units are never changed, and we do not have the full representational power of

the feed-forward network as promised by the universal approximation theorem. In order to

adapt the weights from input to hidden units, we again want to apply the delta rule. In this case,

however, we do not have a value for δ for the hidden units. This is solved by the chain rule

which does the following: distribute the error of an output unit o to all the hidden units that is it

connected to, weighted by this connection. Differently put, a hidden unit h receives a delta

from each output unit o equal to the delta of that output unit weighted with (= multiplied by)

the weight of the connection between those units.

Fig 1.8: A multi-layer network with l layers of units

Although back-propagation can be applied to networks with any number of layers, just as for

networks with binary units it has been shown that only one layer of hidden units suffices to

approximate any function with finitely many discontinuities to arbitrary precision, provided the

activation functions of the hidden units are non-linear. In most applications a feed-forward

network with a single layer of hidden units is used with a sigmoid activation function for the

units.

20

1.2 Cryptography

1.2.1 Introduction

There are many aspects to security and many applications, ranging from secure commerce

and payments to private communications and protecting passwords. One essential aspect

for secure communications is that of cryptography. Cryptography is the science of writing

in secret code and is an ancient art; the first documented use of cryptography in writing

dates back to circa 1900 B.C. when an Egyptian scribe used non-standard hieroglyphs in

an inscription. Some experts argue that cryptography appeared spontaneously sometime

after writing was invented, with applications ranging from diplomatic missives to war-

time battle plans. It is no surprise, then, that new forms of cryptography came soon after

the widespread development of computer communications. In data and

telecommunications, cryptography is necessary when communicating over any untrusted

medium, which includes just about any network, particularly the Internet.

Cryptography, then, not only protects data from theft or alteration, but can also be used for

user authentication. There are, in general, three types of cryptographic schemes typically

used to accomplish these goals: secret key (or symmetric) cryptography, public-key (or

asymmetric) cryptography, and hash functions, each of which is described below. In all

cases, the initial unencrypted data is referred to as plaintext. It is encrypted into ciphertext,

which will in turn (usually) be decrypted into usable plaintext.

1.2.2 Types of Cryptographic Algorithms

There are several ways of classifying cryptographic algorithms. Here they will be

categorized based on the number of keys that are employed for encryption and

decryption. The three types of algorithms are:

a) Secret Key Cryptography - With secret key cryptography, a single key is used for

both encryption and decryption. As shown in the figure, the sender uses the key (or

some set of rules) to encrypt the plaintext and sends the ciphertext to the receiver.

The receiver applies the same key (or ruleset) to decrypt the message and recover

the plaintext. Because a single key is used for both functions, secret key

cryptography is also called symmetric encryption.

21

Fig 1.9: Different Encryption Algorithms

b) Public Key Encryption - Public-key cryptography has been said to be the most

significant new development in cryptography in the last 300-400 years. Modern

PKC was first described publicly by Stanford University professor Martin Hellman

and graduate student Whitfield Diffie in 1976. Their paper described a two-key

crypto system in which two parties could engage in a secure communication over a

non-secure communications channel without having to share a secret key. In PKC,

one of the keys is designated the public key and may be advertised as widely as the

owner wants. The other key is designated the private key and is never revealed to

another party. It is straight forward to send messages under this scheme.

c) Hash Functions - Hash functions, also called message digests and one-way

encryption, are algorithms that, in some sense, use no key. Instead, a fixed-length

hash value is computed based upon the plaintext that makes it impossible for either

the contents or length of the plaintext to be recovered. Hash algorithms are typically

used to provide a digital fingerprint of a file's contents, often used to ensure that the

file has not been altered by an intruder or virus. Hash functions are also commonly

employed by many operating systems to encrypt passwords. Hash functions, then,

provide a measure of the integrity of a file.

22

Chapter 2

APPLICATION OF
NEURAL NETWORK

Sequential Machine & Combinational logic

Cryptography using Sequential machine

Cryptography Using Chaotic Neural Network

23

2.1 Sequential Machine

A ``sequential machine'' is a device in which the output depends in some systematic way on

variables other than the immediate inputs to the device. These ``other variables'' are called the

state variables for the machine, and depend on the history or state of the machine. For

example, in a counter, the state variables are the values stored in the flip flops. The essence of a

state table can be captured in a state diagram. A state diagram is a graph with labeled nodes and

arcs; the nodes are the states, and the arcs are the possible transitions between states.

In the project we have used the fact that the output of the sequential machine depend on the

state of the machine as well as the input given to the sequential machine. Therefore we have

used a Jordan network in which a few outputs are used as inputs, these outputs denote the

states. A multilayered neural network is designed on this basis whish has a hard limiter in the

output layer as a transfer function. The network has 3 layers an input layer, a hidden layer and

an output layer. The size of the input layer depends on the number of inputs and the number of

outputs being used to denote the states. The learning algorithm used for this network is back

propagation algorithm and the transfer function in the hidden layer is a sigmoid function. For

implementation of sequential machine a serial adder and a sequential decoder is used.

2.1.1 The Serial Adder

The serial adder accepts as input two serial strings of digits of arbitrary length, starting with the

low order bits, and produces the sum of the two bit streams as its output. (The input bit streams

could come from, say, two shift registers clocked simultaneously.) This device can be easily

described as a state machine.

Fig 2.1: State diagram of Serial Adder

24

2.1.2 A Sequential Detector

A state machine is required which outputs logic 1 whenever a particular sequence is detected in

the input data stream, and which outputs a zero otherwise. The input is supplied serially, one

bit at a time. The following is an example input sequence and output sequence:

Fig 2.2: State diagram of Sequential Detector

The following is a state table corresponding to the state diagram. We can derive a state table

from the state diagram as follows:

Present state Inputs Next state Output

0 0

0

0 1

1

1 0

1

1 1

0

0 0

1

0 1

0

1 0

0

1 1

1

Table 2.1: State table of Sequential Detector

25

2.2 Combinational Logic

A combinational circuit is one for which the output value is determined solely by the

values of the inputs. A combinational circuit consists of input variables, output

variables, logic gates and interconnections. The interconnected logic gates accept

signals from the inputs and generate signals at the output. The n input variables come

from the environment of the circuit, and the m output variables are available for use by

the environment. Each input and output variable exists physically as a binary signal

that represents logic 1 or logic 0.

For n input variables, there are 2
n
 possible binary input combinations. For each binary

combination of the input variables, there is one possible binary value on each output.

Thus, a combinational circuit can be specified by a truth table that lists the output

values for each combination of the input variables. A combinational circuit can also be

described by m Boolean function, one for each output variable. Each such function is

expressed as function of the n input variables.

In electronics, an adder is a digital circuit that performs addition of numbers. In

modern computers adders reside in the arithmetic logic unit (ALU) where other

operations are performed. Although adders can be constructed for many numerical

representations, such as Binary-coded decimal or excess-3, the most common adders

operate on binary numbers. In cases where twos complement or ones complement is

being used to represent negative numbers, it is trivial to modify an adder into an adder-

subtracter.

Many neural network designers are often curious about the capacity of a neural

network. If they are able to know more about the capacity of neural networks, they

would have an easier time deciding what neural network architecture to use as well as

how many hidden neurons are needed for a neural network to perform a given function.

Knowing the best architecture will save time with training, and allow for less

expensive circuitry.

26

There are two neural network architectures considered:

(1) Multilayer, multiple outputs feed-forward.

(2) Multilayer, single output feed-forward.

We examined the advantages of both these networks and proved/disproved the fact that

a single bit per output neural network uses less overall neurons to perform the same

function as a multilayered network. The problem studied includes a multiple bit digital

adder and a multiple bit digital multiplier.

2.3 Cryptography

In the project cryptography has been achieved by using neural network in the following

manner:-

 Using a neural network based n-state sequential machine

 Using a chaotic neural network

2.3.1 Cryptography Using Sequential Machine

For a sequential Machine, the output depends on the input as well as the state of the

machine. Thus a sequential machine can be used in cryptography where the input

data stream is the input to the sequential machine and the state determines the

output input relationship. We can use the state of the sequential machine as the key

and then use the data as an input to the sequential machine. The relationship

between different output and states can be any random but unique sequence

providing security to the encryption.

As a sequential machine can be implemented by using a neural network, therefore a

neural network can be used to encrypt data and another to decrypt data. In this case

the starting state of the sequential machine can act as a key. For this application the

state diagram is drawn and the data is used to train the neural network as it provides

the way the machine moves from one state to another.

27

2.3.1 Cryptography Using Chaotic Neural Network

A new chaotic neural network for digital signal encryption and decryption was studied

in this project. According to a binary sequence generated from a chaotic system, the

biases and weights of neurons are set. The chaotic neural network can be used to

encrypt digital signal. The network's features are as follows:

1) High security

2) No distortion

3) Suitable for system integration.

 The MATLAB simulation results are also included for demonstration. It indicates that

the integration of the proposed system and MPEG2 for TV distribution,

communication, and storage is practicable.

Among the proposed encryption techniques, the basic ideas can be classified into three

major types:

a. Position permutation - The position permutation algorithms scramble the positions

of original data.

b. Value transformation - The value transformation algorithms transform the data

value of the original signal.

c. The combining form - Finally, the combining form performs both operations.

The encryption scheme belongs to the category of value transformation. Based on a

binary sequence generated from the 1-D logistic map, the biases and weights of neurons

are set in each iteration.

Chaos

Chaos is statistically indistinguishable from randomness, and yet it is deterministic and

not random at all. Chaotic system will produce the same results if given the same

inputs, it is unpredictable in the sense that you can not predict in what way the system's

behavior will change for any change in the input to that system. A random system will

produce different results when given the same inputs.

28

Chaotic neural network

Chaotic neural networks offer greatly increase memory capacity. Each memory is

encoded by an Unstable Periodic Orbit (UPO) on the chaotic attractor. A chaotic

attractor is a set of states in a system's state space with very special property that the set

is an attracting set. So the system starting with its initial condition in the appropriate

basin, eventually ends up in the set. The most important, once the system is on the

attractor nearby states diverge from each other exponentially fast, however small

amounts of noise are amplified.

29

Chapter 3

IMPLEMENTATION

Sequential Machine Implementation

Combinational logic Implementation

Cryptography using Sequential machine

Cryptography Using Chaotic Neural Network

30

3.1 Sequential Machine Implementation

A finite state sequential machine was implemented using a Jordan network is used. In

the Jordan network, the activation values of the output units are fed back into the

input layer through a set of extra input units called the state units. There are as many

state units as there are output units in the network. The connections between the

output and state units have a fixed weight of +1 and learning takes place only in the

connections between input and hidden units as well as hidden and output units. Thus

all the learning rules derived for the multi-layer perceptron can be used to train this

network.

Fig 3.1: Jordan Network

To train the Jordan network back propagation algorithm was used. The application of

the generalized delta rule thus involves two phases: During the first phase the input x

is presented and propagated forward through the network to compute the output

values yp
o
 for each output unit. This output is compared with its desired value do,

resulting in an error signal δp
o
 for each output unit. The second phase involves a

backward pass through the network during which the error signal is passed to each

unit in the network and appropriate weight changes are calculated.

31

Weight adjustments with sigmoid activation function. The results from the

previous section can be summarized in three equations:

a. The weight of a connection is adjusted by an amount proportional to the

product of an error signal δ, on the unit k receiving the input and the output of

the unit j sending this signal along the connection:

 (3.1)

b. If the unit is an output unit, the error signal is given by

 (3.2)

 Take as the activation function F the 'sigmoid' function as defined in chapter 1

 (3.3)

c. In this case the derivative is equal to:

 (3.4)

 Such that the error signal for an output unit can be written as:

 (3.5)

d. The error signal for a hidden unit is determined recursively in terms of error

signals of the units to which it directly connects and the weights of those

connections. For the sigmoid activation function:

 (3.6)

e. We will get an update rule which is equivalent to the delta rule as described in

the previous chapter, resulting in a gradient descent on the error surface if we

make the weight changes according to:

 (3.7)

32

For the implementation of the sequential machine the state table is used as input and

the outputs as well as next states are used as the combined output for the Jordan

network. Depending upon the size of the dataset the size of the hidden layer is

changed as the complexity of the sequential machine increases.

In sequential logic two implementations are done namely:-

a. Serial adder

b. Sequence detector

Both of the examples can be represented by a simple state diagram given in chapter 2.

The state table is made and the neural network is trained for the above stated

examples of sequential logic. The weights after training obtained represents a network

trained according to the sample data.

3.2 Combinational Logic

 Two types of forward neural network architectures were used. The first type

was a feed-forward neural network that was fully connected. The second type

partitions the problem into smaller independent subtasks and a neural network is

designed to implement each subtask. Both types of neural networks are shown below.

As one can see in Figure 3.2.a is a fully connected network that is dependent on every

input to determine every output. On the other hand Figure 3.2.b has two networks, a

single network for each of the output bits, Since each neural network in Figure lb only

considers one independent output, they have a smaller problem size, which allows for

simpler neural networks and faster training. The fully connected neural network, type

1 has a goal to combine the training of every output bit and thus use fewer weights

and fewer neurons. The goal of the type 2 neural network was that each neural

network could look for a smaller number of patterns, thus reducing the training time

as well as the number of neurons.

33

a) b)

Fig 3.2 Types of Networks Architectures: a) Type 1 - Fully connected,

b) Type 2 - One network per output.

In any optimization problem, the goal is to find the absolute minimum energy. It was

decided that even though the back propagation algorithm does not always find the

absolute minimum (in other words, the best solution for the problem), it would be

reliable enough for this training. The algorithm was altered such that the weights only

changed after every pattern had been checked in the current iteration. This was done

for two purposes.

1. The first being the fact that when a number is multiplied by zero, the answer

becomes zero. Thus many zero outputs in a row could cause the neural network

to train so that every output would have a zero, thus impeding the proper

training.

2. The second purpose was by evaluating every pattern without changing the

weights until all patterns were finished, would make the program parallelize

better.

34

Fig 3.3: Program Flow Chart

The other features added to enhance the learning were:-

1. Random weights were used to help the network start at different places for the

same network architecture. The weights were usually between 0.01 and .99.

2. A digital error was added such that if the output was between 0.0 and 0.2 it was

considered a low and if it was between 0.7 and 1.0 it was a high. Thus a noise

margin was added between 0.2 and 0.4, as with most digital circuits. This

allowed the program to stop early, instead of finding a minimum error.

3.3 Cryptography using ANN based sequential machine

 The use of Sequential machine has been discussed in the previous section. A

sequential machine using a Jordan network has been implemented using the back-

propagation algorithm. For use of sequential machine for encryption and decryption, a state

diagram is drawn and a state table is obtained. Using the state table, a training set is

generated. The input set includes all the possible inputs and states possible whereas the

output consists of the encrypted/decrypted output and the next state.

The reason for using sequential machine for implementation is that the output and

input can have any type of relationship and the output depends on the starting state. The

starting state is used as a key for encryption and decryption. If the starting state is not known,

35

it is not possible to retrieve the data by decryption even if the state table or the working of the

sequential state is known. For training of the neural network, any type of sequential machine

can be used with the key showing the complexity or the level of security obtained.

The working of a simple sequential machine for encryption is explained here. The

sequential machine has n states and the input is an m bit input, as shown in the diagram. The

output state can be anything according to the user. The encrypted data will depend upon the

present state of the machine. Therefore, the starting state along with the input will generate an

output and then the state will change according to the state table. In case of two states, if it

not known whether the state is „0‟ or „1‟, the data cannot be decrypted and hence the starting

state acts as a key.

3.4 Cryptography using a chaotic neural network

A network is called a chaotic neural network if its weights and biases are determined by a

chaotic sequence. Let g denote a digital signal of length M and g(n), 0 ≤ M-1 , be the one-

byte value of the signal g at position n.

The Chaotic Neural Network (CNN) for Signal Encryption

Step 1: Set the value of the parameter M.

Step 2: Determine the parameter, U and the initial point x(0) of the 1-D logistic map [SI.

Step 3: Evolve the chaotic sequence x(l), x(2), ... , x(M) by x(n+l) = µ(n)(l-x(n)), and create

b(O), b(l), ..., b(8M-1) from x(l), x(2), ..., x(M) by the generating scheme that 0.b(8m-

8)b(8m-7) ….. b(8m-2)b(8m-l) … is the binary representation of x(m) for m = 1, 2,. . . ., M.

Step 4: FOR n: 0 TO (M - 1) DO

 (3.8)

36

For i= 0 TO 7 DO 1

 (3.9)

j (0,1,2,3,4,5,6,7)

 (3.10)

END

For i= 0 TO 7 DO

 (3.11)

Where f(x) is 1 if x 2 0 and 0 otherwise,

END

 (3.12)

END

Step 5: The encrypted signal g‟ is obtained and the algorithm is terminated.

The decryption procedure is the same as the above one except that the input signal to the

decryption CNN should be g’(n) and its output signal should be g”(n).

In case of a image, pixels are processed by neurons according to (3.11). The desirable result

of the encrypted image being completely disorder can be obtained. In the decryption phase of

CNN, according to the same chaotic system and its initial state, i.e. the same chaotic binary

sequence, the original image can be correctly obtained from decryption CNN.

37

 Assume the encryption procedure is known except the chaotic binary sequence. When the

CNN is applied to a signal of length M, it requires 8M bits. The number of possible

encryption results is 2
8×M

. Let us consider the raw data of size 65536 bytes. 8M equals

524288 and all the possible results are 2
52428

(≈ 10
157810

). In the chaotic systems, it is well-

known that

1) It has sensitive dependence on initial conditions

2) There exist trajectories that are dense, bounded, but neither periodic nor quasi-

periodic in the state space.

Hence, the chaotic binary sequence is unpredictable. It is very difficult to decrypt an

encrypted image correctly by making an exhaustive search without knowing x(0) and µ.

Hence, CNN is one of guaranteed high security.

38

Chapter 4

RESULTS & CONCLUSION

Sequential Machine

Combinational logic Machine

Cryptography using ANN based Sequential machine

Cryptography Using Chaotic Neural Network

39

4.1 A General n-state Sequential Machine

A general n-state Sequential Machine was implemented as described in the last chapter.

As an example, the serial adder was implemented using this machine. The following

figures show different stages of the execution:

Fig 4.1: Entering the training data in the sequential machine

40

Fig 4.2: The plotted graph of the error function after the learning process

The data from the state table of the Serial Adder (Fig 4.3) is entered into the program as

shown in figure 4.1. The current state represents any previous carry that might be present

whereas the next state represents the output carry. Thus, this sequential machine consists of 2

input, 1 output and 2 states. After the training data has been entered into the program, the

back-propagation algorithm, to minimize the error function, executes. Figure 4.2 shows the

plot of the error function against the number of iterations.

Input 1 Input 2 Current state Output Next state

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 4.1: State table of the Serial Adder

41

Fig 4.3: Output of the sequential machine implemented as a Serial Adder

Figure 4.4 shows the output of the program. An initial state is informed to the program. It

asks the user for the input bits to be added. The output is the sum and the carry bit. The

program automatically jumps to the new carry state. The user can keep on giving the input

bits to be added and the program generates the output based on the previous carry state.

42

4.2 Combinational Logic Machine

As discussed in section 3.2 a comparative study is done between type 1 and type 2

architectures and the size of neural network required for the design of adder circuit.

Fig 4.4: MSE of a fully connected neural network Type 1

Fig 4.5: MSE of a one output per network Type 2(b0)

43

Fig 4.6: MSE of a one output per network Type 2(b1)

It can clearly be that the type 2 neural network look for a smaller number of patterns and

thus reduced the training time as well as the number of neurons.

No of bits Adder Adder

1×1 2 3

2×2 3 6

3×3 7 11

Table 4.2: Hidden layer neurons and total neurons for the Type 1 network

Adder Bit1 Bit2 Bit3 Bit4 Hidden Total

1×1 2 1 N/A N/A 3 5

2×2 2 2 1 N/A 5 8

3×3 2 2 4 1 9 13

Table 4.3: Hidden neurons per bit for the individually connected network Type 2

The fully connected neural network, type 1 has a goal to combine the training of every

output bit and thus use fewer weights and neurons.

44

4.3 Cryptography using ANN based Sequential Machine

A 3-bit encryption machine was successfully built using an ANN based sequential

machine. The sequential machine used had 2 states („0‟ and „1‟) and the input is the 3-bit

data to be encrypted. Letters „A‟ to „H‟ were used to represent all the possible 3-bit

inputs. If the state is „0‟, the input letter is shifted by one to generate the encrypted letter

while if the state is „1‟, the letter is shifted by 2. During this operation, the state is

automatically switched. Thus, if the starting state is „0‟ and the input is „A‟, the output

will be „B‟ and the state switches to „1‟. If the next input is again „A‟, the output will be

„C‟ as the current state now is „1‟. For „H‟, state „0‟ will flip the letter to „A‟ while state

„1‟ will flip the output to „B‟. This method can be used to encrypt a word containing only

the letters „A‟ to „H‟.

Fig 4.7: Output using sequential machine based Encryption

Figure 4.6 shows the implementation of the above method. The word

“AHFGAGHCBDE” is to be encrypted using the starting state of „1‟. The output in this

case will be “CAHHCHBDDEG”.

4.4 Cryptography Using Chaotic Neural Network

A chaotic network is a neural network whose weights depend on a chaotic sequence. The

chaotic sequence highly depends upon the initial conditions and the parameters, x(0) = 0.75,

45

and ,µ = 3.9 are set. It is very difficult to decrypt an encrypted data correctly by making an

exhaustive search without knowing x(0) and µ.

Fig 4.8: Output using chaotic neural network based Encryption

Here a sequence of ten numbers is used for encryption and the initial parameters for the

chaotic network are used as mentioned. The output or the encrypted data is then used for

decryption. It can easily be seen that the output is in a chaotic state.

46

Fig 4.8: Output sequence using chaotic neural network based Decryption

Depending upon the chaotic sequence a weight matrix and a bias matrix is obtained and the

net input is obtained. Then a hard limiter is applied as a transfer function in order to obtain

the digital encrypted data. For decryption the same network is used and the same initial value

is used to generate the chaotic sequence and for decrypting the data successfully. The CNN

here used can also be used to encrypt and decrypt data such as images by converting it into a

single vector. Hence, CNN is one of guaranteed high security.

47

4.5 Conclusion

Artificial Neural Networks is a simple yet powerful technique which has the ability to

emulate highly complex computational machines. In this project, we have used this technique

to built simple combinational logic and sequential machine using back-propagation

algorithm. A comparative study ha been done between two different neural network

architectures and their merits/demerits are mentioned. ANNs can be used to implement much

complex combinational as well as sequential circuits.

Data security is a prime concern in data communication systems. The use of ANN in the

field of Cryptography is investigated using two methods. A sequential machine based method

for encryption of data is designed. Also, a chaotic neural network for digital signal

cryptography is analyzed. Better results can be achieved by improvement of code or by use of

better training algorithms. Thus, Artificial Neural Network can be used as a new method of

encryption and decryption of data.

48

APPENDIX-1

Matlab Code

a. Sequential machine

clc;

clear all;

close all;

inputs_x=input('enter the no of inputs');

output_x=input('enter the no of output');

statx=input('enter the no of states');

% no of bits for states

for tem=1:100

if 2^tem >=statx

states=tem;
break

end

end

hls=5;%2^(inputs_x+output_x+2); % size of the hidden layer

% weight initialization----------------------

w1=rand(hls,(inputs_x+states+1));

w2=rand((output_x+states),hls+1);

neta=1;

a=1;

sx=0;
p=[];

for tex=1:(2^(inputs_x)*statx);

 training_setx(tex,:)=input('enter input and state');

 training_outx(tex,:)=input('enter output and state');

end

for x=1:7000

 training_set=training_setx(a,:);

 training_out=training_outx(a,:);
% output hidden layer---------------------

 inputu=[1 training_set];

 sum_h=(w1*(inputu)')';

 o_h=1./(1+exp(-sum_h));

% output layer ---------------------------

 input_h=[1 o_h];

 sum_out=(w2*(input_h)')';

 out=1./(1+exp(-sum_out));

% delta ------------------------------------
 delta_out=(out.*(1-out)).*(training_out - out);

 delta_h=(delta_out*w2).*input_h.*(1-input_h);

 % update of weight --------------------------

49

 % output layer --------------------------------

 for t=1:(output_x+states)

 w2(t,:) = w2(t,:) + neta*delta_out(t)*input_h;

 end

 % hidden layer ----------------------------------

 for t=1:hls

 w1(t,:) = w1(t,:) + neta*delta_h(t+1)*inputu;

 end

 for t=1:(output_x+states)

 if out(t)>=0.7

 out1(t)=1;
 elseif out(t)<=0.2

 out1(t)=0;

 else out1(t)=out(t);

 end

 end

 p=[p sum(out-training_out)];

 if out1==training_out

 a=a+1;

 sx=sx+1;
 end

 if a > ((2^inputs_x)*statx)

 a=a-((2^inputs_x)*statx);

 end

end

plot(p);

% testing the program

statx=zeros(1,states);

zaz='y';

for xz=1:10

 ipo = input('enter the input');

 ipox=[ipo statx];

 inputp=[1 ipox];

 sum_h=(w1*(inputp)')';

 o_h=1./(1+exp(-sum_h));

 % output layer ---------------------------

 input_h=[1 o_h];

 sum_out=(w2*(input_h)')';

 out=1./(1+exp(-sum_out));

 for t=1:(states+output_x)

50

 if out(t)>=0.7

 out1(t)=1;

 elseif out(t)<=0.2

 out1(t)=0;

 else out1(t)=out(t);

 end

 end

 out1

statx=out1((output_x + 1):(output_x+states));

end

b. Multilayer single output feed-forward Adder

clc;
clear all;

close all;

inputs_x=input('enter the no of inputs');

training_setxm=[];

training_outxm=[];

for c1=0:1

 for inx1=0:2^(inputs_x)-1

 for inx2=0:2^(inputs_x)-1

 temp=inx1+inx2+c1;

 training_outxm=[training_outxm ; bitget(temp,inputs_x+1:-1:1)];
 training_setxm=[training_setxm ; bitget(inx1,inputs_x:-1:1) bitget(inx2,inputs_x:-1:1) c1];

 end

 end

end

training_setx=[];

training_outx=[];

hls=[4 3 1];% size of the hidden layer

% weight initialization----------------------

for v1=1:inputs_x+1

 if v1 == inputs_x+1

 w1=rand(hls(v1),2*(v1-1)+2);

 else

 w1=rand(hls(v1),2*v1+2);

 end

 w2=rand(1,hls(v1)+1);

 neta=0.5;

 a=1;
 sx=0;

 p=[];

 if v1 == inputs_x+1

 training_setx=training_setxm;

 else

 training_setx=[training_setxm(:,inputs_x-v1+1:inputs_x) training_setxm(:,2*inputs_x-

v1+1:2*inputs_x+1)];

 end

51

 training_outx=[training_outxm(:,(inputs_x+1)-v1+1)];

 for x=1:15000

 training_set=training_setx(a,:);

 training_out=training_outx(a,:);

 % output hidden layer---------------------

 inputu=[1 training_set];

 sum_h=(w1*(inputu)')';

 o_h=1./(1+exp(-sum_h));

 % output layer ---------------------------

 input_h=[1 o_h];

 sum_out=(w2*(input_h)')';

 out=1./(1+exp(-sum_out));

 % delta ------------------------------------

 delta_out=(out.*(1-out)).*(training_out - out);

 delta_h=(delta_out*w2).*input_h.*(1-input_h);

 % update of weight --------------------------

 % output layer --------------------------------

 w2 = w2 + neta*delta_out*input_h;

 % hidden layer ----------------------------------

 for t=1:hls(v1)

 w1(t,:) = w1(t,:) + neta*delta_h(t+1)*inputu;

 end

 for t=1:1

 if out(t)>=0.7
 out1(t)=1;

 elseif out(t)<=0.2

 out1(t)=0;

 else out1(t)=out(t);

 end

 end

 p=[p mean((out-training_out).^2)];

 if out1==training_out

 a=a+1;
 sx=sx+1;

 end

 if a > ((2^(inputs_x))^2)*2

 a=a-((2^(inputs_x))^2)*2;

 end

52

 end

 figure;

 plot(p.*p);

end

c. Multilayer multiple output feed-forward Adder

clc;

clear all;
close all;

inputs_x=input('enter the no of inputs');

training_setx=[];

training_outx=[];

for c1=0:1

 for inx1=0:2^(inputs_x)-1

 for inx2=0:2^(inputs_x)-1

 temp=inx1+inx2+c1;

 training_outx=[training_outx ; bitget(temp,inputs_x+1:-1:1)];
 training_setx=[training_setx ; bitget(inx1,inputs_x:-1:1) bitget(inx2,inputs_x:-1:1) c1];

 end

 end

end

hls=12;% size of the hidden layer

% weight initialization----------------------

w1=rand(hls,2*inputs_x+2);

w2=rand(inputs_x+1,hls+1);
neta=0.5;

a=1;

sx=0;

p=[];

for x=1:15000

 training_set=training_setx(a,:);

 training_out=training_outx(a,:);

% output hidden layer---------------------

 inputu=[1 training_set];
 sum_h=(w1*(inputu)')';

 o_h=1./(1+exp(-sum_h));

% output layer ---------------------------

 input_h=[1 o_h];

 sum_out=(w2*(input_h)')';

 out=1./(1+exp(-sum_out));

% delta ------------------------------------

 delta_out=(out.*(1-out)).*(training_out - out);

 delta_h=(delta_out*w2).*input_h.*(1-input_h);

53

 % update of weight --------------------------

 % output layer --------------------------------

 for t=1:(inputs_x+1)

 w2(t,:) = w2(t,:) + neta*delta_out(t)*input_h;
 end

 % hidden layer ----------------------------------

 for t=1:hls

 w1(t,:) = w1(t,:) + neta*delta_h(t+1)*inputu;

 end

 for t=1:inputs_x+1

 if out(t)>=0.7
 out1(t)=1;

 elseif out(t)<=0.2

 out1(t)=0;

 else out1(t)=out(t);

 end

 end

 p=[p mean((out-training_out).^2)];

 if out1==training_out

 a=a+1;
 sx=sx+1;

 end

 if a > ((2^(inputs_x))^2)*2

 a=a-((2^(inputs_x))^2)*2;

 end

end

plot(p.*p);

d. Encryption using ANN based sequential machine

clc;

clear all;

close all;

inputs_x=3; %------------------------no. of bits of data

output_x=3;

statx=2; %-------------------no. of states

% ------------------------ no of bits for states

for tem=1:100

if 2^tem >=statx

states=tem;

break

end

end

54

hls=6; % size of the hidden layer

% -------------------------- weight initialization

w1=rand(hls,(inputs_x+states+1));

w2=rand((output_x+states),hls+1);
neta=1;

a=1;

sx=0;

p=[];

training_setx=[];

 training_setx=[0 0 0 0; 0 0 1 0; 0 1 0 0; 0 1 1 0;1 0 0 0;1 0 1 0;1 1 0 0;1 1 1 0; 0 0 0 1; 0 0 1 1; 0 1 0 1;

0 1 1 1;1 0 0 1;1 0 1 1;1 1 0 1;1 1 1 1];

 training_outx=[0 0 1 1; 0 1 0 1; 0 1 1 1;1 0 0 1;1 0 1 1;1 1 0 1;1 1 1 1;0 0 0 1; 0 1 0 0; 0 1 1 0;1 0 0 0;

1 0 1 0;1 1 0 0;1 1 1 0; 0 0 0 0; 0 0 1 0];

for x=1:10000

 training_set=training_setx(a,:);

 training_out=training_outx(a,:);

% --------------------------- output hidden layer

 inputu=[1 training_set];

 sum_h=(w1*(inputu)')';

 o_h=1./(1+exp(-sum_h));

% --------------------------- output layer

 input_h=[1 o_h];
 sum_out=(w2*(input_h)')';

 out=1./(1+exp(-sum_out));

% ---------------------------- delta

 delta_out=(out.*(1-out)).*(training_out - out);

 delta_h=(delta_out*w2).*input_h.*(1-input_h);

 % update of weight --------------------------

 % output layer --------------------------------

 for t=1:(output_x+states)

 w2(t,:) = w2(t,:) + neta*delta_out(t)*input_h;

 end

 % hidden layer ----------------------------------

 for t=1:hls

 w1(t,:) = w1(t,:) + neta*delta_h(t+1)*inputu;

 end

 for t=1:(output_x+states)

 if out(t)>=0.7

 out1(t)=1;

 elseif out(t)<=0.2

 out1(t)=0;

 else out1(t)=out(t);

 end

55

 end

 p=[p sum(out-training_out)];

 if out1==training_out

 a=a+1;

 sx=sx+1;
 end

 if a > ((2^inputs_x)*statx)

 a=a-((2^inputs_x)*statx);

 end

end

plot(p.*p);

% testing the program

statx=input('starting state ');

 ipo = input('enter word ','s');

 finp=[];

 for i=1:length(ipo)

 b=ipo(i);

 switch b

 case('A')

 set=[0 0 0];

 case('B')

 set=[0 0 1];

 case('C')
 set=[0 1 0];

 case('D')

 set=[0 1 1];

 case('E')

 set=[1 0 0];

 case('F')

 set=[1 0 1];

 case('G')

 set=[1 1 0];

 case('H')

 set=[1 1 1];

 end
 ipox=[set statx];

 inputp=[1 ipox];

 sum_h=(w1*(inputp)')';

 o_h=1./(1+exp(-sum_h));

 % output layer ---------------------------

 input_h=[1 o_h];

 sum_out=(w2*(input_h)')';

 out=1./(1+exp(-sum_out));

 for t=1:(states+output_x)

 if out(t)>=0.7

 out1(t)=1;

 elseif out(t)<=0.2

 out1(t)=0;

 else out1(t)=out(t);

 end

56

 end

 finp=[finp;out1];

 tempch=[];

 statx=out1((output_x + 1):(output_x+states));

end

outzs=[''];

for f=1:length(ipo)

 tempch=finp(f,:);

 tempch=tempch(1:3);

 if tempch==[0 0 0]

 outzs=[outzs 'A'];

 end

 if tempch==[0 0 1]

 outzs=[outzs 'B'];

 end
 if tempch==[0 1 0]

 outzs=[outzs 'C'];

 end

 if tempch==[0 1 1]

 outzs=[outzs 'D'];

 end

 if tempch==[1 0 0]

 outzs=[outzs 'E'];

 end

 if tempch==[1 0 1]

 outzs=[outzs 'F'];
 end

 if tempch==[1 1 0]

 outzs=[outzs 'G'];

 end

 if tempch==[1 1 1]

 outzs=[outzs 'H'];

 end

end

outzs

e. Encryption using chaos neural network

clear all;

close all;

clc;
% input ---

inp=[11 23 37 45 68 25 236 58 59 90]

for i=1:length(inp)

 inpx(i,:)=bitget(inp(i),8:-1:1);

end

% generating a chaotic sequence ---

l=length(inp);

x(1)=0.75

mu=3.9

for i=2:l

 x(i)=mu*x(i-1)*(1-x(i-1));

57

end

x=uint8(((x-min(x))/max(x))*255);

b=[];

for i=1:l
 b(i,:)= bitget(x(i),8:-1:1);

end

temp=0;

outx=zeros(1,length(inp));

% network ---

for c=1:length(inp)

 for i=1:8

 for j=1:8

 if (b(c,i)==0)&(i==j)

 weight(i,j)=1;

 elseif (b(c,i)==1)&(i==j)

 weight(i,j)=-1;

 elseif i~=j

 weight(i,j)=0;

 end

 end

 if (b(c,i)==0)

 theta(i)=-1/2;
 else theta(i)=1/2;

 end

 end

 for i=1:8

 dx(c,i) = hardlim(sum(weight(i,:).*inpx(c,:))+theta(i));

 end

 for i=1:8

 outx(c)=outx(c)+uint8(dx(c,i))*(2^(8-i));

 end
end

 outx

f. Decryption using chaos neural network

clear all;

close all;

clc;

% input ---
inp=[145 130 187 161 233 114 60 58 88 137]

for i=1:length(inp)

 inpx(i,:)=bitget(inp(i),8:-1:1);

end

% generating a chaotic sequence ---

58

l=length(inp);

x(1)=0.75

mu=3.9

for i=2:l

 x(i)=mu*x(i-1)*(1-x(i-1));
end

x=uint8(((x-min(x))/max(x))*255);

b=[];

for i=1:l

 b(i,:)= bitget(x(i),8:-1:1);

end

temp=0;

outx=zeros(1,length(inp));

% network ---

for c=1:length(inp)

 for i=1:8

 for j=1:8

 if (b(c,i)==0)&(i==j)

 weight(i,j)=1;

 elseif (b(c,i)==1)&(i==j)

 weight(i,j)=-1;

 elseif i~=j

 weight(i,j)=0;
 end

 end

 if (b(c,i)==0)

 theta(i)=-1/2;

 else theta(i)=1/2;

 end

 end

 for i=1:8

 dx(c,i) = hardlim(sum(weight(i,:).*inpx(c,:))+theta(i));

 end

 for i=1:8

 outx(c)=outx(c)+uint8(dx(c,i))*(2^(8-i));

 end

end

 outx

59

APPENDIX-2

References

[I] M. E. Smid and D. K. Branstad, “The Data Encryption Standard: Past and Future,”

Proceedings of The IEEE, vol. 76, no. 5, pp. 550-559, 1988.

[2] C. Boyd, “Modem Data Encryption,” Electronics & Communication Journal, pp. 271-278,

Oct. 1993. 131 N. Bourbakis and C. Alexopoulos, “Picture Data Encryption Using SC4N

Pattern,” Pattern Recognition, vol. 25, no. 6, pp. 567-581, 1992.

[4] J. C. Yen and J. I. GUO, “A New Image Encryption Algorithm and Its VLSI

Architecture,” 1999 IEEE Workshop on Signal Procs. Systems, Grand Hotel, Taipei, Taiwan,

Oct. 18-22, pp. 430-437, 1999.

[5] C. J. Kuo and M. S. Chen, “A New Signal Encryption Technique and Its Attack Study,”

IEEE International Conference on Security Technology, Taipei, Taiwan,

[6] C. W. Wu and N. F. Rulkov, “Studying chaos via 1-D maps - A tutorial,” IEEE Trans. on

Circuits and Systems I-Fundamental Theory and Applications, vol. 40, no. 10, pp. 707-721,

1993.

[7] T. S. Parker and L. 0. Chua, “Chaos - A tutorial for engineers,” IEEE Proc., vol. 75, pp.

982-1008, 1987.

[8]Haykin, Simon. Neural Networks, A Comprehensive Foundation. MacMillin College

Publishing CO, New York. 1994.

[9]Lansner, Anders and Ekeberg, Orjan. An Associative Network Solving the 4-Bit ADDER

Problem". UCNN International Joint Conference on Neural Networks, Vol2, 1987.

[10]Rumelhart, D.E, Hinton, G. E., and Williams, RJ. Learning internal representations by

error propagation. In Parallel Distributed Processing, Vol. 1, MlT Press, Cambridge.

[11]Hebb, D. 0. Organization ofBehavior. New York : Science Editions.

 [12]"An Introduction to Neural network" by Ben Krose and Patrick van der Smagt Eighth

editionNovember 1996

60

[13]Zurada, Jacek M. Introduction to Artificial Systems. West Publishing CO, St. Paul. 1992.

[14]Wasserman, Philip D. Neural Computing, Theory and Practice. Van Nordstrand

Reinhold, New York. 1989.

[15]"Machine Learning, Neural and Statistical Classification" by D. Michie, D.J.

Spiegelhalter, C.C. Taylor February 17, 1994

 [16] “Design and Realization of A New Chaotic Neural Encryption/Decryption Network” by

Scott Su, Alvin Lin, and Jui-Cheng Yen.

[17] “Capacity of Several Neural Networks With Respect to Digital Adder and

Multiplier” by Daniel C. Biederman and Esther Ososanya

[18]"Artificial Intelligence A Modern Approach" by Stuart J. Russell and Peter Norvig.

[19] http://www.garykessler.net/library/crypto.html

[20] Digital design, fourth edition by M. Morris Mano and Michael D. Ciletti

[21] http://www.wikipedia.org

http://www.garykessler.net/library/crypto.html
http://www.wikipedia.org/

