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                                    ABSTRACT 

   

Computational fluid dynamics (CFD)  can predict what will happen , quantitatively , when 

fluids flow , often with the complication of , simultaneous flow of heat , mass tra nsfer (eg 

perspiration , dissolution) , phase change (eg melting , freezing , boiling) , chemical reaction 

(eg combustion , rusting) , mechanical movement , stresses in and displacement of immersed 

or surroundings solids . Knowing how fluids will flow , and what will be their quantitative 

effects on the solids with which they are in contact , assists engineers to maximize the yields 

from their reactors and processing equipment at least cost ; risk.  

                 CFD uses a computer to solve the relevant science-based mathematical equations , 

using information about the circumstances in question . Its components are therefore : the 

human being who states the problem , scientific knowledge expressed mathematically , the 

computer code which embodies this knowledge and expresses the stated problem in scientific 

terms , the computer hardware which performs the calculations dictated by the software.  

  

                 The objective of this project is to simulate a gas-solid fluidized by applying CFD 

techniques in order to investigate hydrodynamics and heat transfer phenomena. Reactor 

model predictions will be compared with the corresponding experimental data reported in the 

literature to validate the model  . To simulate a gas-solid fluidized bed we need to use the 

multiphase flow approach . First we have to write the equations for the different flow regimes 

and then different CFD techniques are applied for discretization of those equations. After that 

a code is written for calculating the values of volume fraction , velocity and temperature .  
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                                          CHAPTER 1: LITURATURE REVIEW 

 1.1 INTRODUCTION 

  

Fluidization is the operation by which particle are transformed into a fluid like state 

through suspension in a gas or liquid.  

      Fluidized bed reactors are widely used in the industries due to their superior heat-and 

mass-transfer as a result of relatively larger particle- fluid contacting area compared to 

other types of reactors. Therefore fluidized beds are suitable for catalytic reactions 

especially for exothermic reaction.  

       Computational fluid dynamic (CFD) is an important tool for design and optimization 

of chemical processes. A fundamental problem encountered in modeling hydrodynamics 

of a gas–solid fluidized bed is the motion of two phases . For the fluidization operation 

minimum two phases are required; one is called primary phase and other one is secondary 

phase. Usually the fluid which passes through the inlet is considered as primary phase and 

particulate in the bed is the secondary phase. The operating conditions like superficial 

fluid velocity, temperature of the primary and secondary phase, and inlet and exit 

pressure of the bed affect the performance of the fluidized bed. The physical property of 

the phases, particle size and distribution controls the hydrodynamical behaviors of it.  

Hydrodynamic modeling has the remarkable ability to synthesize data from various, 

relatively simple experiments and, thereby, to describe the time-dependent distribution of 

fluid and solids volume fractions, velocities, pressure, temperatures, and species mass 

fractions in industrial reactors, where measurement of such quantities might be all but 

impossible. Such calculations, therefore, allow the designer to visualize the conditions in 

the reactor, to understand how performance values change as operating conditions are 

varied, to conduct what- if experiments, and, thereby, to assist in the design process.        

                      Today fluidized bed reactors are used to produce gasoline and other fuels, 

along with many other chemicals. Many industrially produced polymers are  made using 

fluidized bed reactor technology, such as production of rubber, vinyl chloride, 

polyethylene, and styrene. Fluidized bed reactors are also used for coal gasification, 

nuclear power plants, and waste water treatment.   
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                                          CHAPTER 1: LITURATURE REVIEW 

1.2 COMUTATIONAL FLUID DYNAMICS (CFD) 

                    CFD is one of the branches of fluid mechanics that uses numerical methods and 

algorithms to solve and analyze problems that involve fluid flows. Computers are used to 

perform the millions of calculations required to simulate the interaction of fluids and gases 

with the complex surfaces used in engineering. However, even with simplified equations and 

high speed supercomputers, only approximate solutions can be achieved in many cases. More 

accurate codes that can accurately and quickly simulate even complex scenarios such as 

supersonic or turbulent flows are an ongoing area of research. 

 

           The fundamental basis of any CFD problem is the Navier-Stokes equations, which 

define any single-phase fluid flow. These equations can be simplified by removing terms 

describing viscosity to yield the Euler equations. Further simplification, by removing terms 

describing vorticity yields the Full Potential equations. Finally, these equations can be 

linearized to yield the Linearized Potential equations.  

 

    The basic procedure for solving any problem in the CFD is as follows :-  

 

1. The geometry of the problem is defined .  

2. The volume occupied by the fluid is divided into discrete  cells .  

3. The mathematical and physical modeling of the problem is defined .  

4. Boundary conditions are defined .This involves specifying the fluid behaviour and 

properties at the boundary of the problem . For transient problems the initial 

conditions are also applied. 

5. The equations are solved iteratively as a steady state or transient .  

6. Analysis and visualization of the resulting solution .  
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                                          CHAPTER 1: LITURATURE REVIEW 

1.3 ADVANTAGES OF CFD 

Major advancements in the area of gas-solid multiphase flow modeling offer substantial 

process improvements that have the potential to significantly improve process plant 

operations. Prediction of gas solid flow fields, in processes such as pneumatic  transport lines, 

risers, fluidized bed reactors, hoppers and precipitators are crucial to the operation of most 

process plants. Up to now, the inability to accurately model these interactions has limited the 

role that simulation could play in improving operations. In recent years, computational fluid 

dynamics (CFD) software developers have focused on this area to develop new modeling 

methods that can simulate gas- liquid-solid flows to a much higher level of reliability. As a 

result, process industry engineers are beginning to utilize these methods to make major 

improvements by evaluating alternatives that would be, if not impossible, too expensive or 

time-consuming to trial on the plant floor. Over the past few decades, CFD has been used to 

improve process design by allowing engineers to simulate the performance of alternative 

configurations, eliminating guesswork that would normally be used to establish equipment 

geometry and process conditions. The use of CFD enables engineers to obtain solutions for 

problems with complex geometry and boundary conditions. A CFD analysis yields values for 

pressure, fluid velocity, temperature, species or phase concentration on a computational grid 

throughout the solution domain.  

       The key advantages of the CFD are :-  

1. It provides the flexibility to change design parameters without the expense of hardware 

changes. Hence it costs less than laboratory or field experiments, allowing  engineers to 

try more alternative designs than would be feasible otherwise. 

       

      2.   It has a faster turnaround time than experiments. 

 

      3.   It guides the engineer to the root of problems, and is therefore well suited for 

            trouble-shooting .  

      

      4.   It provides comprehensive information about a flow field, especially in regions where                              

            measurements are either  difficult or impossible  to obtain .      
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                                          CHAPTER 1: LITURATURE REVIEW 

1.4 OBJECTIVE     

                              The objective of this project is to simulate a gas-solid fluidized 

by applying CFD techniques in order to investigate hydrodynamics phenomena. 

 

1.5 ORGANISATION OF THE REPORT  

               The present study is about the  CFD  modeling of the hydrodynamics and heat 

transfer in  fluidized bed reactor  .  Chapter  2 deals with the multiphase modeling  of the 

fluidized bed reactor which includes the detailed derivation of the continuity and momentum 

equations . Chapter  3 describes the programming code for the simulation of the fluidized bed 

reactor . Chapter 4 deals with the results and discussion .  

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

   

 

  

  CHAPTER 2 
 

       
         MULTIPHASE MODELING  

   

 

 



14 
 

                                          CHAPTER 2: MULTIPHASE MODELING 

 

2.1 MULTIPHASE MODELING APPROACH  

                                             
                        Advances in computational fluid mechanics have provided the basis 

for  further insight into the dynamics of the multiphase flow. Currently there are two  

approaches for the numerical calculations of multiphase flows:   

1. Euler – Langrange approach .  

2. Euler – Euler approach . 

2.1.1 Euler – Langrange Approach :  

                                  The Lagrangian discrete phase model follows the Euler-Lagrange 

approach. The fluid phase is treated as a continuum by solving the time-averaged Navier- 

Stokes equations, while the dispersed phase is solved by tracking a large number of particles, 

bubbles, or droplets through the calculated flow field. The dispersed phase can exchange 

momentum, mass and energy with the fluid phase. 

                               A fundamental assumption made in this model is that the dispersed    

second phase occupies a low volume fraction, even though high mass loading , mparticle >= 

mfluid is acceptable. The particle or droplet trajectories are computed individually at specified 

intervals during the fluid phase calculation. This makes the model appropriate for the 

modeling of spray dryers , coal and liquid fuel combustion , and some particleladen flows, 

but inappropriate for the modeling of liquid- liquid mixtures, fluidized beds or any application 

where the volume fraction of the second phase is not negligible.  

          

      2.1.2  Euler – Euler Approach : 

                                    In the Euler-Euler approach the different phases are treated  

mathematically as interpenetrating continua. Since the volume of a phase can not be  carried 

occupied by the other phases , the concept of the volume fraction is introduced. These 

volume fractions are assumed to be continuous functions of space and time and their sum is 

equal to one. Conservation equations for each phase are derived to obtain a set of equations , 

which have similar structure for all phases. These equations are closed by providing 

constitutive relations that are obtained from empirical information or in the  case of granular 

flows by application of kinetic theory.  
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                                          CHAPTER 2: MULTIPHASE MODELING 

 

2.2 GOVERNING EQUATIONS  

                                                  

                                     The basic equation of motion for single phase flows  were initially 

developed by Navier in 1822 in the form of well known Navier – Stokes equation . The 

Navier – Stokes equations were extended to multiphase flow by using volume averaging of 

the single phase equation and adding appropriate terms (Drew 1983)  . Soo (1967) suggested 

that particles of identical  diameter and density should form a continuum  or a particulate 

phase . It follows that if two different particle size is required in the fluidized bed then there 

should be two particulate phases  . These phases can be treated like a pseudo fluids where 

they are considered to form the interpenetrating continua . This technique is known as 

Eulerian – Eulerian method . Witt (1997)  showed that the Eulerian – Eulerian method is the 

most promising method for simulating fluidized bed system .  

 

2.2.1 BASIC APPROACH  

  

                             It is assumed that the system on which balances are made consists 

of a sufficient number of particles so that the discontinuities can be smoothed out ; therefore , 

derivatives of various properties exists and are continuous , unless otherwise specified . Thus 

for a property per unit volume ψ , the Reynolds transport theorem is used . For unit volume V 

that may change with time t , there is , for a system bounded by a closed surface , the 

following mathematical identity ( Aris , 1962) :- 

                         

                                 

it
iv                                (1.1) 

In Eq. (1.1) the system moves with velocity  vi   . Hence , differentiation with respect to time 

caries the superscript i to emphasize this effect .  

 

 

                                                            



16 
 

                                          CHAPTER 2: MULTIPHASE MODELING 

 

2.2.2 DENSITY AND VOLUME FRACTION  

                                               

               The density for a continuum at a point is defined as :-  

                        

 

 

 Now here we are dealing with the raw material so we cannot take the limit to the zero . Now 

let us define the enough large volume  ∂V0 so that if the volume was increased or decreased 

slightly it would remain unchanged . So now density can be written as :-  

                                 

 

    Now let us take a volume ∂V and the volume fraction of the dispersed phase will be :- 

  

 

 ∂VN = Volume of the dispersed phase . So here  the bulk density of the dispersed phase will 

be                             

                                                           

 

       mass of the dispersed phase particles .  actual density  

So     

 

 

Here N represents the phase .  
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                                                        CHAPTER 2: MULTIPHASE MODELING 

 

2.2.3 MASS BALANCE  

                                         

                                           The mass of the fluid can be given in terms of its 
i  in a 

multiphase system of volume V as  

    

                                                                                                                     (1.2) 

The Langrangian mass balance on mass mi  moving with the velocity vi is  

    

                                                                          (1.3) 

where Eq.(1.5) defines the volumetric source of mass im . An application of the Reynolds 

transport theorem and the usual contradiction argument applied to an arbitrary element of 

volume gives the well – known continuity equation for the phase i .  

                                

                      (1.4)

 

Now according to the conditions since there is no reaction is occurring in the fluidized bed 

reactor so that the volume source generation term im will not be there . Therefore , the 

continuity equation can be represented as 

                                 

                                                                                        

  (1.5)   

 

For the incompressible fluid ie. for constant density the equation can be represented as ,  

                                       

                                        

                                                                      (1.6)
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                                                                    CHAPTER 2 : MULTIPHASE MODELING  

 

2.2.4 MOMENTUM BALANCE  

                                                          

                                                The derivation of the momentum balance follows the approach 

of Bowen (1976) for a multicomponent mixture . The rate of change of momentum of the 

“particle” or system moving with the velocity vi  equals the sum of the forces acting on the 

system. In single phase flow , similar to the multicomponent flow ,there exists the force of 

interaction of phase i with the other phases . In rational mechanics this force is known as the 

momentum supply . Mathematically this statement can be written as follows .  The 

momentum balance for the phase  i is  

  Rate of change of momentum of phase i = force acting on the phase i                                                                                

 

                                                                                                                (1.7) 

  external forces(gravitational forces) + surface forces  + forces of interaction between 

the  phases                 

                           

                                                                                                                         (1.8) 

    Now an application of the divergence theorem  

                                       

                                                                                                                         (1.9) 

Hence by the application of Reynolds Transport theorem to the equation 1.7 we get the 

required momentum equation  

                                                  (2.0)                                 

Here   represents the stress tensor which is given by the expression 

 

Where  is the pressure and viscous stress tensor , , is assumed to be of Newtonian form 
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                                                                          CHAPTER 2 : MULTIPHASE MODELING 

 

Where  is  the identity tensor and   is the strain tensor for the respective phase , given by 

 

 

 is an interaction force representing the momentum transfer between gas and solid phase . 

In this project only drag and buoyancy forces are taken into account . Therefore the 

interaction between the gas and solid phase is expressed as : 

 

Usually is determined using experimental data. Two type of experimental data can be 

used to calculate the drag coefficient. In the first case when the solid volume fraction is high , 

the Ergun equation is applied . In the second case a correlation for terminal velocity in the 

settling beds is expressed as a function of gas volume fraction and Reynolds number . In the 

second case Syamlal – O’Brien drag model is calculated using terminal velocity as follow 

 

 

                 

Where , 
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                                                                    CHAPTER 2 : MULTIPHASE MODELING  

 

Another model for calculating drag force is Gidaspow model  

                    

                      for  

                     for  

 

In this project work Gidaspow model is used .  

 

2.2.5 ENERGY BALANCE  

                                          The internal energy balance for the gas phase can be 

written in terms of the gas temperature as follows  

                                              (2.1) 

The solid heat conductivity includes direct conduction through the fractional contact area and 

indirect conduction through a wedge of the gas that is trapped between the particles . Since 

the gas heat conductivity is negligible , the heat diffusion term has been ignored . The termal 

energy for the solid phase is given by  

                        (2.2)   

A number of simplifying assumptions, none of which should be significant in typical 

applications to fluid-solids reactors, have been made in the formulation of thermal energy 

equations:-   

1) The irreversible rate of increase of internal energy due to viscous dissipation has been 

neglected. Such terms are negligible except in the case of velocities approaching the speed of 

sound.  

2) The reversible rate of fluid internal energy change due to compression or expansion has 

been neglected. Such terms will be important in transient, compressible flows.  

3) Interfacial flow work terms have not been included, which may lead to a violation of the 

second law (Lyczkowski, Gidaspow, and Solbrig 1982; Arnold, Drew, and Lahey 1990). This 

does not necessarily imply large errors in the calculations, because such terms in usual  
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                                                                    CHAPTER 2 : MULTIPHASE MODELING  

 

applications are negligible. Furthermore, a satisfactory formulation including such terms does 

not exist.  

 

4) The heat of reaction term includes both the enthalpy change due to reaction and the energy 

transfer because the products and reactants may be at different temperatures.   

5) Heat transfer between different solids phases is negligible.  

6) Radiative heat transfer is not considered. 

. 

The heat transfer between the gas and solids is a function of temperature difference between 

the gas and solid phases .  

                                                        

The heat transfer coefficient is related to the particle Nusselt number using the following 

equation                                             

 

The Nusselt number is typically determined from one of the many correlations reported in the 

literature for calculating the heat transfer between particles and fluid in packed or fluidized 

beds (e.g., Zabrodsky 1966; Gelperin and Einstein 1971; Gunn 1978).  

  

 

is the Prandtl number which is given by  

 

and  represents the heat of reaction since there is no reaction is happening so that the 

both terms are neglected. 
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                                          CHAPTER 3: NUMERICAL MODELING 

3.1 DISCRETIZATION  

                                    In mathematics, discretization concerns the process of transferring 

continuous models and equations into discrete counterparts. This process is usually carried 

out as a first step toward making them suitable for numerical evaluation and implementation 

on digital computers. In order to be processed on a digital computer another process named 

quantization is essential. The stability of the chosen discretization is generally established 

numerically rather than analytically as with simple linear problems. Special care must also be 

taken to ensure that the discretization handles discontinuous solutions gracefully. The Euler 

equations and Navier-Stokes equations both admit shocks, and contact surfaces.  

Some of the discretization methods being used are: 

3.1.1 Finite Volume Method(FVM)  

                                             This is the "classical" or standard approach used most often 

in commercial software and research codes. The governing equations are solved on discrete 

control volumes. FVM recasts the PDE's (Partial Differential Equations) of the N-S equation 

in the conservative form and then discretize this equation. "Finite volume" refers to the small 

volume surrounding each node point on a mesh. In the finite volume method, volume 

integrals in a partial differential equation that contain a divergence term are converted to 

surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at 

the surfaces of each finite volume. Because the flux entering a given volume is identical to 

that leaving the adjacent volume, these methods are conservative. Another advantage of the 

finite volume method is that it is easily formulated to allow for unstructured meshes.This 

guarantees the conservation of fluxes through a particular control volume. Though the overall 

solution will be conservative in nature there is no guarantee that it is the actual solution. 

Moreover this method is sensitive to distorted elements which can prevent convergence if 

such elements are in critical flow regions. This integration approach yields a method that is 

inherently conservative (i.e. quantities such as density remain physically meaningful)  

 

Where Q is the vector of conserved variables, F is the vector of fluxes ,V is the cell volume, 

and A is the cell surface area.  

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Continuous_function
http://en.wiktionary.org/wiki/Discrete
http://en.wikipedia.org/wiki/Quantization
http://en.wikipedia.org/wiki/Euler_equations
http://en.wikipedia.org/wiki/Euler_equations
http://en.wikipedia.org/wiki/Euler_equations
http://en.wikipedia.org/wiki/Navier-Stokes_equations
http://en.wikipedia.org/wiki/Divergence
http://en.wikipedia.org/wiki/Surface_integral
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Conservation_law
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                                          CHAPTER 3: NUMERICAL MODELING 

 

3.1.2 Finite Element Method(FEM)  

                                               This method is popular for structural analysis of solids, but 

is also applicable to fluids. The FEM formulation requires, however, special care to ensure a 

conservative solution. The FEM formulation has been adapted for use with the Navier-Stokes 

equations. Although in FEM conservation has to be taken care of, it is much more stable than 

the FVM approach. Subsequently it is the new direction in which CFD is moving. Generally 

stability/robustness of the solution is better in FEM though for some cases it might take more 

memory than FVM methods  

In this method, a weighted residual equation is formed: 
 

 

where Ri is the equation residual at an element vertex i , Q is the conservation equation 

expressed on an element basis, Wi is the weight factor and Ve is the volume of the element.  

 

3.1.3 Finite Difference Method  

                                             This method has historical importance and is simple to 

program. It is currently only used in few specialized codes. Modern finite difference codes 

make use of an embedded boundary for handling complex geometries making these codes 

highly efficient and accurate. Other ways to handle geometries are using overlapping-grids, 

where the solution is interpolated across each grid. Finite-difference methods approximate the 

solutions to differential equations by replacing derivative expressions with approximately 

equivalent difference quotients.  

 

then a reasonable approximation for that derivative would be to take 

 

for some small value of h. In fact, this is the forward difference equation for the first 

derivative. Using this and similar formulae to replace derivative expressions in differential 

equations, one can approximate their solutions without the need for calculus. 

http://en.wikipedia.org/wiki/Difference_quotient
http://en.wikipedia.org/wiki/Forward_difference#Forward.2C_backward.2C_and_central_differences
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                                          CHAPTER 3: NUMERICAL MODELING 

 

3.1.3.1 Explicit Method  

                                     Using a forward difference at time tn and a second-order 

central difference for the space derivative at position x j ("FTCS") we get the recurrence 

equation:  

 

This is an explicit method for solving the one-dimensional heat equation  .   

We can obtain  from the other values this way:        

                                                                               

 

                                where r = k / h2. So, knowing the values at time n you can obtain 

the corresponding ones at time n+1 using this recurrence relation.  

3.1.3.2 Implicit Method  

                                If we use the backward difference at time tn + 1 and a second-order 

central difference for the space derivative at position x j ("BTCS") we get the recurrence 

equation: 

 

This is an implicit method for solving the one-dimensional heat 

equation. We can obtain from solving a system of linear equations: 

                                                           

 

http://en.wikipedia.org/wiki/Forward_difference
http://en.wikipedia.org/wiki/Central_difference
http://en.wikipedia.org/wiki/Explicit_method
http://en.wikipedia.org/wiki/Heat_equation
http://en.wikipedia.org/wiki/Backward_difference
http://en.wikipedia.org/wiki/Implicit_method
http://en.wikipedia.org/wiki/Heat_equation
http://en.wikipedia.org/wiki/Heat_equation
http://en.wikipedia.org/wiki/Heat_equation
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                                          CHAPTER 3: NUMERICAL MODELING 

 

The scheme is always numerically stable and convergent but usually more numerically 

intensive than the explicit method as it requires solving a system of numerical equations on 

each time step. The errors are linear over the time step and quadratic over the space step.  

3.1.3.2 Crank – Nicolson Method  

                                                      Finally if we use the central difference at time tn + 1 / 2 

and a second-order central difference for the space derivative at position x j ("CTCS") we get 

the recurrence equation:                

 

This formula is known as the Crank-Nicolson method. 

 

                                           We can obtain  from solving a system of linear equations: 

 

The scheme is always numerically stable and convergent but usually more numerically 

intensive as it requires solving a system of numerical equations on each time step. Usually the 

Crank-Nicolson scheme is the most accurate scheme for small time steps. The explicit 

scheme is the least accurate and can be unstable, but is also the easiest to implement and the 

least numerically intensive. The implicit scheme works the best for large time steps.  

3.2 DISCRETIZATION OF EQUATIONS  

                                  Continuity and momentum equations are discretized with the 

help of finite difference method since it is easy to operate and also it does not involve any 

kind of calculus . Explicit method is used for discretization of continuity and momentum 

equation. For discretization of continuity and momentum equations we need to write the 

equations in terms of cylindrical coordinates . After that equations will be discretized with the 

help of central difference technique. At special conditions like at r = 0 where the terms will 

tend to infinity special techniques are applied like L’Hospital rule is applied at such 

conditions. 

http://en.wikipedia.org/wiki/Numerically_stable
http://en.wikipedia.org/wiki/Convergent
http://en.wikipedia.org/wiki/Crank-Nicolson_method
http://en.wikipedia.org/wiki/Numerically_stable
http://en.wikipedia.org/wiki/Convergent
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                                                                           CHAPTER 3 : NUMERICAL MODELING  

3.2.1 CONTINIUTY EQUATION  

                                                             Continuity equation for the respective 

phases can be written as:- 

 

 So now as we know that in the two phase modeling gaseous and solid phases are present . 

Here we need to discritize both phase continuity equation so that modeling of each phase 

should be done.  Since we are dealing with the cylindrical bed therefore continuity equation 

should be written in the form of  cylindrical coordinates , which is as follows :-  

             = -[   +   +  ] 

                     = -[   +   ] 

Terms including angular component are to be neglected ,  

 = -[  (  r  + 

 

  

Now this equation is  discretized by applying explicit method and also with the central 

difference technique . Discretized equation is written on the next page .   
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 Now as we know that terms in the continuity equation having r term as a denominator but at 

r=0 those terms will become equal to infinity so for solving the equations at r=0 we need to 

apply L’Hospital rule for the discretization of continuity equation. So at r=0 gas phase 

continuity will become :- 

  

  

This is the discretized gas phase continuity equation . Similarly for the solid phase we can 

write the discretized solid phase continuity equation with the similar procedure . Discretized 

solid phase continuity equation is written on the next page .  
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At r = 0  

  

3.2.2 MOMENTUM BALANCE EQUATION 

                                         Momentum balance equation for the gas – solid phase in the 

cylindrical coordinates can be written as :-  

r – Momentum Equation  
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 ,,  

  

Now angular component terms are to be neglected. This is equation is discretized by applying 

explicit scheme , central difference and forward difference methods .  

L.H.S 

  

R.H.S 

=>  

 

=>

 

=>
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Now discretization,   

  + 

 

 +  

  +  + 

  

 + + 

  

+  

+ 
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At r =0 by applying L’Hospital rule , 

L.H.S 

  

R.H.S 

  + 

 

 +  

  +  + 

  

 +  

+  

+
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+ 

 

   

Z – Momentum Equation   

                         

 

    

Now angular component terms are to be neglected. This is equation is discretized by applying 

explicit scheme , central difference and forward difference methods.  

L.H.S 
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R.H.S 

–   

 

 

 
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At r= 0 

L.H.S 

 

R.H.S 

–   

 
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3.3 FLOW CHART 

 

 

 

             No 

 

                Yes 

 

 

     No  

             

                  Yes  

             

 

         

        No 

            

                Yes  

                                                No 

 

                         Yes 

 

 

                                                                          

 

   Start 

     Initialization of variables  

              T=1, dt=.001 

If t<1  Stop 

 

      i=1,j=1 

 

 If i<n 

       j=1 

If j<n       i=i+1 

If  r=0 

 

  Method 2 is used  

    Method 1 is used 

(L’Hospital rule is used) 

             j=j+1 

        T = T+1 

        t =t+dt 
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3.4  MATLAB CODE  

                                               A Matlab code is written for the modeling of discretized 

equations. 

  Eg=zeros(50,101,101);Vrg=zeros(50,101,101);Vzg=zeros(50,101,101); 
  Vrs=zeros(50,101,101);Vzs=zeros(50,101,101);Es=zeros(50,101,101); 

  t=1;dt=.002;row_g=90;row_s=2500;dz=0.1;dr=0.56;mu=0.1; 
  g=9.81;dp=0.0275; 

  for i=2:100 
  
    for j=2:100 

     
        Es(t,i,j)=0.6; 

        Eg(t,i,j)=0.4; 
        Vrg(t,i,j)=0; 
        Vrs(t,i,j)=0; 

        Vzs(t,i,j)=0; 
        Vzg(t,i,j)=0; 

         
    end 
        Vzg(t,i,1)=0.38; 

        Vzg(t+1,i,1)=0.38; 
        Vrg(t,i,101)=0; 

        Vrs(t,i,101)=0; 
        Vzg(t,i,101)=0; 
        Vzs(t,i,101)=0; 

        Es(t,i,101)=0; 
        Eg(t,i,101)=0; 

     
        Vrg(t+1,i,101)=0; 
        Vrs(t+1,i,101)=0; 

        Vzg(t+1,i,101)=0; 
        Vzs(t+1,i,101)=0; 

       Es(t+1,i,101)=0; 
       Eg(t+1,i,101)=0; 
        end 

  
while t<50 

    for i=2:100 
        Vzg(t,i,1)=0.38; 
        Vzg(t+1,i,1)=0.38; 

        Vrg(t,i,101)=0; 
        Vrs(t,i,101)=0; 

        Vzg(t,i,101)=0;                                                                  
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       Vzs(t,i,101)=0; 
        Es(t,i,101)=0; 

        Eg(t,i,101)=0; 
     

        Vrg(t+1,i,101)=0; 
        Vrs(t+1,i,101)=0; 
        Vzg(t+1,i,101)=0; 

        Vzs(t+1,i,101)=0; 
        Es(t+1,i,101)=0; 

        Eg(t+1,i,101)=0; 
    end 
         

for j=1:101 
    

    Vrg(t,101,j)=0; 
    Vrs(t,101,j)=0; 
    Vzg(t,101,j)=0; 

    Vzs(t,101,j)=0; 
    Es(t,101,j)=0; 

    Eg(t,101,j)=0; 
    Vrg(t,1,j)=0; 
    Vrs(t,1,j)=0; 

    Vzs(t,1,j)=0; 
    Vzg(t,1,j)=0; 

    Es(t,1,j)=0; 
    Eg(t,1,j)=0; 
     

   Vrg(t+1,101,j)=0; 
   Vrs(t+1,101,j)=0; 

   Vzg(t+1,101,j)=0; 
   Vzs(t+1,101,j)=0; 
   Es(t+1,101,j)=0; 

   Eg(t+1,101,j)=0; 
   Vrg(t+1,1,j)=0; 

   Vrs(t+1,1,j)=0; 
   Vzs(t+1,1,j)=0; 
   Es(t+1,1,j)=0; 

   Eg(t+1,1,j)=0; 
end 

  
  
for i=51:100 
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 for j=2:100 
     

                 
                x1=Eg(t,i,j)*row_g*( (Vrg(t,i+1,j)-Vrg(t,i-1,j)) /(2*dr) ); 

  
                x2=row_g*Vrg(t,i,j)*( (Eg(t,i+1,j)-Eg(t,i-1,j)) /(2*dr) ); 
  

                y1=Es(t,i,j)*row_s*( (Vrs(t,i+1,j)-Vrs(t,i-1,j)) /(2*dr) ); 
  

                y2=row_s*Vrs(t,i,j)*( (Es(t,i+1,j)-Es(t,i-1,j)) /(2*dr) ); 
  
  

  
  

                x3=row_g*Eg(t,i,j)*( (Vzg(t,i,j+1)-Vzg(t,i,j-1)) /(2*dz) ); 
  
                x4=row_g*Vzg(t,i,j)*( (Eg(t,i,j+1)-Eg(t,i,j-1)) /(2*dz) ); 

  
                y3=row_s*Es(t,i,j)*( (Vzs(t,i,j+1)-Vzs(t,i,j-1)) /(2*dz) ); 

  
                y4=row_s*Vzs(t,i,j)*( (Es(t,i,j+1)-Es(t,i,j-1)) /(2*dz) ); 
  

  
if i==51 

    x5=Eg(t,i,j)*row_g*( (Vrg(t,i+1,j)-Vrg(t,i-1,j)) /(2*dr) ); 
    y5=Es(t,i,j)*row_s*( (Vrs(t,i+1,j)-Vrs(t,i-1,j)) /(2*dr) ); 
  

else 
  

        x5=(Eg(t,i,j)*Vrg(t,i,j)*row_g)/((i-51)*dr); 
        y5=(Es(t,i,j)*Vrs(t,i,j)*row_s)/((i-51)*dr); 
end 

         Eg(t+1,i,j)=( ( ( -1*( x1+x2+x3+x4+x5 ) )*dt )+( Eg(t,i,j)*row_g ) ) /row_g; 
          

         Es(t+1,i,j)=( ( ( -1*( y1+y2+y3+y4+y5 ) )*dt )+( Es(t,i,j)*row_s ) ) /row_s; 
  
         if Eg(t+1,i,j)<0||Eg(t+1,i,j)>1 

             Eg(t+1,i,j)=0; 
         end 

         if Es(t+1,i,j)<0||Es(t+1,i,j)>1 
             Es(t+1,i,j)=0; 
         end 
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    end 
end 

%////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////% 

  
for i=51:100 
  

    for j=2:100 
    if i==51 

        y9=(Es(t,i,j)*row_s*((Vrs(t,i,j)-Vrs(t,i-1,j))*(Vrs(t,i,j)-Vrs(t,i-1,j))))/dr*dr; 
        x1=mu*Es(t,i,j)*(Vrs(t,i+2,j)-2*Vrs(t,i,j)+Vrs(t,i-2,j))/2*dr*dr; 
        y5=Es(t,i,j)*(Vrs(t,i+2,j)-2*Vrs(t,i,j)+Vrs(t,i-2,j))/2*dr*dr*2; 

        y6=Es(t,i,j)*(Vzs(t,i+1,j+1)-Vzs(t,i-1,j+1)-Vzs(t,i+1,j-1)+Vzs(t,i-1,j-1))/2*2*dz*dr; 
        x9=(Vrs(t,i+1,j)-Vrs(t,i-1,j))*(Es(t,i+1,j)-Es(t,i-1,j))/2*2*dr*dr; 

        x10=2*Es(t,i,j)*(Vrs(t,i+2,j)-2*Vrs(t,i,j)+Vrs(t,i-2,j))/2*dr*dr*2; 
        y2=Es(t,i,j)*(Vzs(t,i+1,j+1)-Vzs(t,i-1,j+1)-Vzs(t,i+1,j-1)+Vzs(t,i-1,j-1))/2*2*dz*dr; 
        y0=Es(t,i,j)*(Vrs(t,i+2,j)-2*Vrs(t,i,j)+Vrs(t,i-2,j))/8*dr*dr; 

        x0=Es(t,i,j)*mu*(Vrs(t,i+1,j)-Vrs(t,i-1,j))/dr; 
    else 

         
        x1=((mu*Es(t,i,j))*(Vrs(t,i+1,j)-Vrs(t,i-1,j)))/((i-51)*dr*dr); 
        y9=(Es(t,i,j)*row_s*Vrs(t,i,j)*(Vrs(t,i,j)-Vrs(t,i-1,j)))/((i-51)*dr*dr); 

        y5=(Es(t,i,j)*(Vrs(t,i+1,j)-Vrs(t,i-1,j)))/(2*dr*(i-51)*dr); 
        x9=(Vrs(t,i,j)*(Es(t,i+1,j)-Es(t,i-1,j)))/(2*dr*(i-51)*dr); 

        x10=(Es(t,i,j)*(Vrs(t,i+1,j)-Vrs(t,i-1,j)))/(dr*(i-51)*dr); 
        y2=(Es(t,i,j)*(Vzs(t,i,j+1)-Vzs(t,i,j-1)))/(2*dz*(i-51)*dr); 
        y6=(Es(t,i,j)*(Vzs(t,i,j+1)-Vzs(t,i,j-1)))/(2*dz*(i-51)*dr); 

        y0=Es(t,i,j)*Vrs(t,i,j)/(i-51)*dr*(i-51)*dr; 
        x0=2*Es(t,i,j)*mu*Vrs(t,i,j)/(i-51)*dr; 

    end   
        x2=((2*mu*Es(t,i,j))*(Vrs(t,i+1,j)-(2*Vrs(t,i,j))+Vrs(t,i-1,j)))/(dr*dr); 
        x3=(mu*(Vrs(t,i+1,j)-Vrs(t,i-1,j))*(Es(t,i+1,j)-Es(t,i-1,j)))/(2*dr*dr); 

        x8=((Es(t,i+1,j)-Es(t,i-1,j))*(Vrs(t,i+1,j)-Vrs(t,i-1,j)))/(4*dr*dr); 
        y1=(Es(t,i,j)*(Vrs(t,i+1,j)-(2*Vrs(t,i,j))+Vrs(t,i-1,j)))/(dr*dr); 

        x12=(Es(t,i,j)*row_s*g); 
  
         

        temp=Vrs(t,i,j)-Vrg(t,i,j); 
        if temp<0 

        temp=0-temp; 
        end 
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x11=(((151*Es(t,i,j)*Es(t,i,j)*mu)/(Eg(t,i,j)*dp*dp))+((1.75*Es(t,i,j)*row_g*temp)/dp))*(Vr

s(t,i,j)-Vrg(t,i,j)); 
         

         
            x4=(mu*(Es(t,i,j+1)-Es(t,i,j-1))*(Vrs(t,i,j+1)-Vrs(t,i,j-1)))/(4*dz*dz); 
            x5=(mu*(Es(t,i,j+1)-Es(t,i,j-1))*(Vzs(t,i+1,j)-Vzs(t,i-1,j)))/(4*dr*dz); 

            x6=(mu*Es(t,i,j)*(Vrs(t,i,j+1)-(2*Vrs(t,i,j))+Vrs(t,i,j-1)))/(dz*dz); 
            x7=(mu*Es(t,i,j)*(Vzs(t,i+1,j+1)-Vzs(t,i+1,j-1)-Vzs(t,i-1,j+1)+Vzs(t,i-1,j-1) ) 

)/(4*dr*dz); 
            y3=((Es(t,i+1,j)-Es(t,i-1,j))*(Vzs(t,i,j+1)-Vzs(t,i,j-1)))/(4*dz*dr); 
            y4=(Es(t,i,j)*(Vzs(t,i+1,j+1)-Vzs(t,i+1,j-1)-Vzs(t,i-1,j+1)+Vzs(t,i-1,j-1)))/(4*dz*dr); 

  
            y11=(Vzs(t,i,j)*Es(t,i,j)*row_s*(Vrs(t,i,j)-Vrs(t,i,j-1)))/(dz); 

            
        
         

         
%      /*RHS2*/ 

y7=(2*mu*(-x8-x9-x10-y1-y2-y3-y4+y5+y6+y0)/3); 
  
%      /*RHS1*/  

     y8=x1+x2+x3+x4+x5+x6+x7-x11+x12-x0; 
  

Vrs(t+1,i,j)=(((y7+y8-y9-y11)*dt)/(Es(t,i,j)*row_s))+Vrs(t,i,j); 
  
if Vrs(t+1,i,j)<0 

    Vrs(t+1,i,j)=0; 
end 

    end 
end 
% 

////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////
/////////////////////////////////% 

  
for i=51:100 
  

    for j=2:100 
    if i==51 

        y9=(Eg(t,i,j)*row_g*((Vrg(t,i,j)-Vrg(t,i-1,j))*(Vrg(t,i,j)-Vrg(t,i-1,j))))/dr*dr; 
        x1=mu*Eg(t,i,j)*(Vrg(t,i+2,j)-2*Vrg(t,i,j)+Vrg(t,i-2,j))/2*dr*dr; 
        y5=Eg(t,i,j)*(Vrg(t,i+2,j)-2*Vrg(t,i,j)+Vrg(t,i-2,j))/2*dr*dr*2; 

        y6=Eg(t,i,j)*(Vzg(t,i+1,j+1)-Vzg(t,i-1,j+1)-Vzg(t,i+1,j-1)+Vzg(t,i-1,j-1))/2*2*dz*dr; 
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        x9=(Vrg(t,i+1,j)-Vrg(t,i-1,j))*(Eg(t,i+1,j)-Eg(t,i-1,j))/2*2*dr*dr; 
        x10=2*Eg(t,i,j)*(Vrg(t,i+2,j)-2*Vrg(t,i,j)+Vrg(t,i-2,j))/2*dr*dr*2; 

        y2=Eg(t,i,j)*(Vzg(t,i+1,j+1)-Vzg(t,i-1,j+1)-Vzg(t,i+1,j-1)+Vzg(t,i-1,j-1))/2*2*dz*dr; 
        y0=Eg(t,i,j)*(Vrg(t,i+2,j)-2*Vrg(t,i,j)+Vrg(t,i-2,j))/8*dr*dr; 

        x0=Eg(t,i,j)*mu*(Vrg(t,i+1,j)-Vrg(t,i-1,j))/dr; 
    else 
         

        x1=((mu*Eg(t,i,j))*(Vrg(t,i+1,j)-Vrg(t,i-1,j)))/((i-51)*dr*dr); 
        y9=(Eg(t,i,j)*row_g*Vrg(t,i,j)*(Vrg(t,i,j)-Vrg(t,i-1,j)))/((i-51)*dr*dr); 

        y5=(Eg(t,i,j)*(Vrg(t,i+1,j)-Vrg(t,i-1,j)))/(2*dr*(i-51)*dr); 
        x9=(Vrg(t,i,j)*(Eg(t,i+1,j)-Eg(t,i-1,j)))/(2*dr*(i-51)*dr); 
        x10=(Eg(t,i,j)*(Vrg(t,i+1,j)-Vrg(t,i-1,j)))/(dr*(i-51)*dr); 

        y2=(Eg(t,i,j)*(Vzg(t,i,j+1)-Vzg(t,i,j-1)))/(2*dz*(i-51)*dr); 
        y6=(Eg(t,i,j)*(Vzg(t,i,j+1)-Vzg(t,i,j-1)))/(2*dz*(i-51)*dr); 

        y0=Eg(t,i,j)*Vrg(t,i,j)/(i-1)*dr*(i-51)*dr; 
        x0=2*Eg(t,i,j)*mu*Vrg(t,i,j)/(i-51)*dr; 
    end   

        x2=((2*mu*Eg(t,i,j))*(Vrg(t,i+1,j)-(2*Vrg(t,i,j))+Vrg(t,i-1,j)))/(dr*dr); 
        x3=(mu*(Vrg(t,i+1,j)-Vrg(t,i-1,j))*(Eg(t,i+1,j)-Eg(t,i-1,j)))/(2*dr*dr); 

        x8=((Eg(t,i+1,j)-Eg(t,i-1,j))*(Vrg(t,i+1,j)-Vrg(t,i-1,j)))/(4*dr*dr); 
        y1=(Eg(t,i,j)*(Vrg(t,i+1,j)-(2*Vrg(t,i,j))+Vrg(t,i-1,j)))/(dr*dr); 
        x12=(Eg(t,i,j)*row_g*g); 

  
         

        temp=Vrs(t,i,j)-Vrg(t,i,j); 
        if temp<0 
        temp=0-temp; 

        end 
        

x11=(((151*Es(t,i,j)*Es(t,i,j)*mu)/(Eg(t,i,j)*dp*dp))+((1.75*Es(t,i,j)*row_g*temp)/dp))*(Vr
s(t,i,j)-Vrg(t,i,j)); 
         

            x4=(mu*(Eg(t,i,j+1)-Eg(t,i,j-1))*(Vrg(t,i,j+1)-Vrg(t,i,j-1)))/(4*dz*dz); 
            x5=(mu*(Eg(t,i,j+1)-Eg(t,i,j-1))*(Vzg(t,i+1,j)-Vzg(t,i-1,j)))/(4*dr*dz); 

            x6=(mu*Eg(t,i,j)*(Vrg(t,i,j+1)-(2*Vrg(t,i,j))+Vrg(t,i,j-1)))/(dz*dz); 
            x7=(mu*Eg(t,i,j)*(Vzg(t,i+1,j+1)-Vzg(t,i+1,j-1)-Vzg(t,i-1,j+1)+Vzg(t,i-1,j-1) ) 
)/(4*dr*dz); 

            y3=((Eg(t,i+1,j)-Eg(t,i-1,j))*(Vzg(t,i,j+1)-Vzg(t,i,j-1)))/(4*dz*dr); 
            y4=(Eg(t,i,j)*(Vzg(t,i+1,j+1)-Vzg(t,i+1,j-1)-Vzg(t,i-1,j+1)+Vzg(t,i-1,j-1)))/(4*dz*dr); 

  
            y11=(Vzg(t,i,j)*Eg(t,i,j)*row_g*(Vrg(t,i,j)-Vrg(t,i,j-1)))/(dz); 
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%      /*RHS2*/ 

y7=(2*mu*(-x8-x9-x10-y1-y2-y3-y4+y5+y6+y0)/3); 
  

%      /*RHS1*/  
     y8=x1+x2+x3+x4+x5+x6+x7+x11+x12-x0; 
      

  
Vrg(t+1,i,j)=(((y7+y8-y9-y11)*dt)/(Eg(t,i,j)*row_g))+Vrg(t,i,j); 

 if Vrg(t+1,i,j)<0 
     Vrg(t+1,i,j)=0; 
 end 

  
  

    end 
end 
  

%////////////////////////////////////////////////////////////////////////// 
%//////////////////////////////////////////////////////////////////// 

for i=51:100 
  
    for j=2:100 

          
        if i==51 

            x2=mu*Eg(t,i,j)*(Vrg(t,i+1,j+1)-Vrg(t,i-1,j+1)-Vrg(t,i+1,j-1)+Vrg(t,i-1,j-1))/4*dr*dz; 
            x4=mu*Eg(t,i,j)*(Vzg(t,i+2,j)-2*Vzg(t,i,j)+Vzg(t,i-2,j))/4*dr*dr; 
            y2=(Vrg(t,i+1,j)-Vrg(t,i-1,j))*(Eg(t,i,j+1)-Eg(t,i,j-1))/4*dr*dz; 

            y5=Eg(t,i,j)*(Vrg(t,i+1,j+1)-Vrg(t,i-1,j+1)-Vrg(t,i+1,j-1)+Vrg(t,i-1,j-1))/4*dr*dz; 
        else 

  
        y5=(Eg(t,i,j)*(Vrg(t,i,j+1)-Vrg(t,i,j-1)))/(2*(i-51)*dr*dz); 
        y2=(Vrg(t,i,j)*(Eg(t,i,j+1)-Eg(t,i,j-1)))/(2*dz*(i-51)*dr);     

        x2=(mu*Eg(t,i,j)*(Vrg(t,i,j+1)-Vrg(t,i,j-1)))/(2*(i-51)*dr*dz); 
        x4=(mu*Eg(t,i,j)*(Vzg(t,i+1,j)-Vzg(t,i-1,j)))/(2*(i-51)*dr*dr); 

         
        end 
  

        x5=(mu*(Eg(t,i+1,j)-Eg(t,i-1,j))*(Vzg(t,i+1,j)-Vzg(t,i-1,j)))/(4*dr*dr); 
        x6=(mu*Eg(t,i,j)*(Vzg(t,i+1,j)-(2*Vzg(t,i,j))+Vzg(t,i-1,j)))/(dr*dr); 

  
        x8=(Eg(t,i,j)*0.3); 
        temp=Vzs(t,i,j)-Vzg(t,i,j); 

        if temp<0 
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   temp=0-temp; 
        end 

         
        

x9=(((151*Es(t,i,j)*Es(t,i,j)*mu)/(Eg(t,i,j)*dp*dp))+((1.75*Es(t,i,j)*row_g*temp)/dp))*(Vzs(
t,i,j)-Vzg(t,i,j)); 
  

         
         

            x1=(mu*(Eg(t,i+1,j)-Eg(t,i-1,j))*(Vrg(t,i,j+1)-Vrg(t,i,j-1)))/(4*dr*dz); 
            x3=(mu*Eg(t,i,j)*(Vrg(t,i+1,j+1)-Vrg(t,i+1,j-1)-Vrg(t,i-1,j+1)+Vrg(t,i-1,j-1) 
))/(4*dr*dz); 

            x7=(2*mu*Eg(t,i,j)*(Vzg(t,i,j+1)-(2*Vzg(t,i,j))+Vzg(t,i,j-1)))/(dz*dz); 
            y1=(Eg(t,i,j+1)-Eg(t,i,j-1))*(Vrg(t,i+1,j)-Vrg(t,i-1,j))/(4*dr*dz); 

            y3=(Eg(t,i,j+1)-Eg(t,i,j-1))*(Vzg(t,i,j+1)-Vzg(t,i,j-1))/(4*dz*dz); 
            y4=(Eg(t,i,j)*(Vrg(t,i+1,j+1)-Vrg(t,i+1,j-1)-Vrg(t,i-1,j+1)+Vrg(t,i-1,j-1)))/(4*dr*dz); 
            y6=(Eg(t,i,j)*(Vzg(t,i,j+1)-(2*Vzg(t,i,j))+Vzg(t,i,j-1)))/(dz*dz); 

% /*LHS2*/       
y9=(Eg(t,i,j)*row_g*Vzg(t,i,j)*(Vzg(t,i,j)-Vzg(t,i,j-1)))/dz;    

         
%   /*RHS2*/     
y7=(2*mu*(y1+y2+y3+y4+y5+y6))/3; 

  
%   /*RHS1*/     

x11=x1+x2+x3+x4+x5+x6+x7+x8+(Eg(t,i,j)*row_g*g)+x9; 
  
%  /*LHS1*/  

y8=(Eg(t,i,j)*Vrg(t,i,j)*row_g*(Vzg(t,i,j)-Vzg(t,i-1,j)))/dr; 
  

        Vzg(t+1,i,j)=(((x11-y7-y8-y9)*dt)/(Eg(t,i,j)*row_g))+Vzg(t,i,j); 
        if Vzg(t+1,i,j)<0 
            Vzg(t+1,i,j)=0; 

        end 
    end 

     
end 
% 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////

///////////////////////////////////////////////////////////////////////////////////////////////  
for i=51:100 
  

    for j=2:100 
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        if i==51 
            x2=mu*Es(t,i,j)*(Vrs(t,i+1,j+1)-Vrs(t,i-1,j+1)-Vrs(t,i+1,j-1)+Vrs(t,i-1,j-1))/4*dr*dz; 

            x4=mu*Es(t,i,j)*(Vzs(t,i+2,j)-2*Vzs(t,i,j)+Vzs(t,i-2,j))/4*dr*dr; 
            y2=(Vrs(t,i+1,j)-Vrs(t,i-1,j))*(Es(t,i,j+1)-Es(t,i,j-1))/4*dr*dz; 

            y5=Es(t,i,j)*(Vrs(t,i+1,j+1)-Vrs(t,i-1,j+1)-Vrs(t,i+1,j-1)+Vrs(t,i-1,j-1))/4*dr*dz; 
        else 
  

        y5=(Es(t,i,j)*(Vrs(t,i,j+1)-Vrs(t,i,j-1)))/(2*(i-51)*dr*dz); 
        y2=(Vrs(t,i,j)*(Es(t,i,j+1)-Es(t,i,j-1)))/(2*dz*(i-51)*dr);     

        x2=(mu*Es(t,i,j)*(Vrs(t,i,j+1)-Vrs(t,i,j-1)))/(2*(i-51)*dr*dz); 
        x4=(mu*Es(t,i,j)*(Vzs(t,i+1,j)-Vzs(t,i-1,j)))/(2*(i-51)*dr*dr); 
         

        end 
  

        x5=(mu*(Es(t,i+1,j)-Es(t,i-1,j))*(Vzs(t,i+1,j)-Vzs(t,i-1,j)))/(4*dr*dr); 
        x6=(mu*Es(t,i,j)*(Vzs(t,i+1,j)-(2*Vzs(t,i,j))+Vzs(t,i-1,j)))/(dr*dr); 
  

        x8=(0.6-Eg(t,i,j)*0.3); 
        temp=Vzs(t,i,j)-Vzg(t,i,j); 

        if temp<0 
        temp=0-temp; 
        end 

         
        

x9=(((151*Es(t,i,j)*Es(t,i,j)*mu)/(Eg(t,i,j)*dp*dp))+((1.75*Es(t,i,j)*row_g*temp)/dp))*(Vzs(
t,i,j)-Vzg(t,i,j)); 
  

  
         

         
            x1=(mu*(Es(t,i+1,j)-Es(t,i-1,j))*(Vrs(t,i,j+1)-Vrs(t,i,j-1)))/(4*dr*dz); 
            x3=(mu*Es(t,i,j)*(Vrs(t,i+1,j+1)-Vrs(t,i+1,j-1)-Vrs(t,i-1,j+1)+Vrs(t,i-1,j-1) 

))/(4*dr*dz); 
            x7=(2*mu*Es(t,i,j)*(Vzs(t,i,j+1)-(2*Vzs(t,i,j))+Vzs(t,i,j-1)))/(dz*dz); 

            y1=(Es(t,i,j+1)-Es(t,i,j-1))*(Vrs(t,i+1,j)-Vrs(t,i-1,j))/(4*dr*dz); 
            y3=(Es(t,i,j+1)-Es(t,i,j-1))*(Vzs(t,i,j+1)-Vzs(t,i,j-1))/(4*dz*dz); 
            y4=(Es(t,i,j)*(Vrs(t,i+1,j+1)-Vrs(t,i+1,j-1)-Vrs(t,i-1,j+1)+Vrs(t,i-1,j-1)))/(4*dr*dz); 

            y6=(Es(t,i,j)*(Vzs(t,i,j+1)-(2*Vzs(t,i,j))+Vzs(t,i,j-1)))/(dz*dz); 
% /*LHS2*/       

y9=(Es(t,i,j)*row_s*Vzs(t,i,j)*(Vzs(t,i,j)-Vzs(t,i,j-1)))/dz;    
         
%   /*RHS2*/     

y7=(2*mu*(y1+y2+y3+y4+y5+y6))/3; 
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%   /*RHS1*/     
x11=x1+x2+x3+x4+x5+x6+x7+x8+(Es(t,i,j)*row_s*g)+x9; 

  
%  /*LHS1*/  

y8=(Es(t,i,j)*Vrs(t,i,j)*row_s*(Vzs(t,i,j)-Vzs(t,i-1,j)))/dr; 
  
        Vzs(t+1,i,j)=(((x11-y7-y8-y9)*dt)/(Es(t,i,j)*row_s))+Vzs(t,i,j); 

        if Vzs(t+1,i,j)<0 
            Vzs(t+1,i,j)=0; 

        end 
    end 
     

end 
n=1; 

while n<50 
  for j=2:100 
     

    Eg(t+1,51-n,j)=Eg(t+1,51+n,j); 
    Es(t+1,51-n,j)=Es(t+1,51+n,j); 

    Vrg(t+1,51-n,j)=Vrg(t+1,51+n,j); 
    Vzg(t+1,51-n,j)=Vzg(t+1,51+n,j); 
    Vrs(t+1,51-n,j)=Vrs(t+1,51+n,j); 

    Vzs(t+1,51-n,j)=Vzs(t+1,51+n,j); 
    

      
  end 
   n=n+1; 

end 
t=t+1; 

end 
 
This code is written for calculating the values of volume fractions of solid, fluid phase, 

velocity of solid and fluid phase in the radial and vertical direction.  
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                                                                    CHAPTER 4 : RESULTS AND DISCUSSION  

4.1 RESULTS 

                   This section includes the results obtained by simulation of the code. 

This part involves how the properties are changing with radial distance , vertical direction , 

time and how they are varying from point to point at a specific time. Properties like fluid 

volume fraction , solid volume fraction , velocity of the fluid phase , velocity of the solid 

phase are plotted with time , radial distance and vertical direction.  

4.1.1 Fluid volume fraction 

 

          Fig 1.1  PLOT OF  FLUID VOLUME FRACTION vs RADIAL DISTANCE 
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                  Fig 1.2 FLUID VOLUME FRACTION vs HEIGHT vs TIME  

 

                          Fig 1.3 FLUID VOLUME FRACTION vs TIME 
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4.1.2 Solid volume fraction 

  

             Fig 1.4  PLOT OF SOLID VOLUME FRACTION vs HEIGHT 

                 

             Fig 1.5  PLOT OF SOLID VOLUME FRACTION vs TIME vs RAIDAL 

DIRECTION 
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                       Fig 1.6  PLOT OF SOLID VOLUME FRACTION vs TIME 

4.1.3 Fluid phase velocity  

 

                 Fig 1.7   FLUID PHASE RADIAL VELOCITY vs HEIGHT 
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                  Fig 1.8   FLUID PHASE RADIAL VELOCITY vs TIME 

 

           Fig 1.9   FLUID PHASE RADIAL VELOCITY vs TIME vs RADIAL DISTANCE  
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             Fig 2.1  FLUID PHASE VERTICAL VELOCITY vs  HEIGHT 

 

                Fig 2.2  FLUID PHASE VERTICAL VELOCITY vs  TIME 
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                Fig 2.3  FLUID PHASE VERTICAL VELOCITY vs  TIME vs HEIGHT 

4.1.4 Solid phase velocity 

                  

                 Fig 2.4  SOLID  PHASE RADIAL VELOCITY vs   RAIDAL DISTANCE 
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                  Fig 2.5 SOLID PHASE RADIAL VELOCITY vs TIME  

 

                  Fig 2.6 SOLID PHASE RADIAL VELOCITY vs TIME vs HEIGHT 
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                 Fig 2.7 SOLID PHASE VERTICAL VELOCITY vs HEIGHT 

 

                Fig 2.8 SOLID PHASE VERTICAL VELOCITY vs HEIGHT vs TIME 
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                   Fig 2.9 SOLID PHASE VERTICAL VELOCITY vs TIME 

4.2 CONCLUSION 

                                Hydrodynamics of the fluidized bed is studied with the help of 

computational fluid dynamics (CFD) techniques. Volume fraction of solid phase and liquid 

phase are studied and a volume fractions of solid phase and liquid phase are calculated at 

each point of the fluidized bed. Since in the industry we deal with the different type of 

particles having different properties like particle diameter , density , viscosity etc. Here in this 

work a code is developed which can be used for a range of particles or for a range of 

properties. So we can  calculate the properties like volume fractions , velocity inside the 

fluidized bed etc for a range of particle diameter and range of density . Here in this results 

obtained are not satisfactory and improvement in needed in the algorithm of the code.  
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NOMENCLATURE :- 

            Single particle drag function 

           Diameter of the particles 

                  Coefficient for the interphase force between the fluid phase and solid phase  

              Identity tensor  

               Prandtl number  

            Momentum transfer from fluid phase to solid phase  

              Solid phase conductivity         

                Pressure       

                Reynolds number  

    V                  Velocity  

    r                   Radius of fluidized bed  

    z                  Height of fluidized bed   

    Greek symbols  

                Ratio of the terminal velocity of particles 

   Є              Volume fraction 

    µ                     Viscosity  

    ρ                      Density  

    σ                      Stress tensor  

    Subscripts  

    g                       Index for gas phase                 

    s                       Index for the solid phase  
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