
 

NEW DEVELOPMENT AND PERFORMANCE EVALUATION 

OF TRANSFORM DOMAIN OFDM BASEBAND SYSTEM 

 

 

A THESIS SUBMITTED IN PARTIAL REQUIREMENTS FOR THE DEGREE OF 

BACHELOR OF TECHNOLOGY 

IN 

ELECTRONICS & COMMUNICATION ENGINEERING 

By 

Vijay Kumar 

Roll No. : 10509026 

 

Under the Guidance of  

Prof. G. Panda  

 

 

 

 

 

 

 

 

 

 

 

Department of Electronics & Communication Engineering 

National Institute of Technology, Rourkela  

Orissa 769008  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53186993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

NEW DEVELOPMENT AND PERFORMANCE EVALUATION 

OF TRANSFORM DOMAIN OFDM BASEBAND SYSTEM 

 

 

A THESIS SUBMITTED IN PARTIAL REQUIREMENTS FOR THE DEGREE OF 

BACHELOR OF TECHNOLOGY 

IN 

ELECTRONICS & COMMUNICATION ENGINEERING 

By 

Vijay Kumar 

Roll No. : 10509026 

 

Under the Guidance of  

Prof. G. Panda  

 

 

 

 

 

 

 

 

 

 

 

Department of Electronics & Communication Engineering 

National Institute of Technology, Rourkela  

Orissa 769008  



 

 

 

 
 

 

National Institute of Technology, Rourkela 

Orissa 769008 

CERTIFICATE 

This is to certify that the thesis entitled “New Development And Performance Evaluation Of 

Transform Domain OFDM Baseband System” submitted by Sri Vijay Kumar in partial 

fulfillment of the requirements for the award of Bachelor of Technology Degree in Electronics 

and Communication Engineering at National Institute of Technology, Rourkela (Deemed 

University) is an authentic work carried out by him under my supervision and guidance. 

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any 

other University/ Institute for the award of any Degree or Diploma. 

 

                                                                                                                    

 

 

 

 

 

 

Dr. Ganapati Panda 

Professor, SMIEEE, FNAE, FNASc, FIE 

Department of Electronics & Communication Engg. 

National Institute of Technology, Rourkela 

Orissa 769008 

 

Date:  



 

 

  

ACKNOWLEDGEMENT 
 
 

I take this opportunity as a privilege to thank all individuals without whose support and 

guidance we could not have completed our project in this stipulated period of time. 

First and foremost I would like to express my deepest gratitude to my Project Supervisor 

Prof. G. Panda, Head of the Department, Department of Electronics and Communication 

Engineering, for his invaluable support, guidance, motivation and encouragement through out the 

period this work was carried out. His readiness for consultation at all times, his educative 

comments and inputs, his concern and assistance even with practical things have been extremely 

helpful. 

I am grateful to Ms.  Babita Majhi, Mr. Sitanshu Sekhar Sahu, Satyasai Jagannath Nanda, 

Nitin V. George and Upendra Sahoo for their valued suggestions and inputs during the course of 

the project work. 

I would also like to thank all professors and lecturers, and members of the department of 

Electronics & Communication Engineering for their generous help in various ways for the 

completion of this thesis. I also extend my thanks to my fellow students for their friendly co-

operation. 

 

 

 

Vijay Kumar 

Roll No. 10509026 

Department of Electronics & Communication Engg. 

National Institute of Technology, Rourkela 

Orissa 769008 

 



 

 

 

 

 

CONTENTS 

Abstract………………………………………………………………………………………..i 

List of Figures………………………………………………………………………..………ii 

List of Tables………………………………………………………………………………...iv 

Abbreviations Used………………………………………………………………………….v 

1. INTRODUCTION……………………………………………..……………….……............1  

1.1 Basics of Wirelesss Communication……………...………………………………………2 

1.2 Motivation…………….…………………………..……………………………………….3 

1.3 Contribution……………..………………………………………………………..……….4  

1.4 Thesis Outline……………………………………………………………………………..5 

2. BASICS OF MODULATION & OFDM BASEBAND MODEL…………………………6 

2.1 Single Carrier Modulation System………………………………………………………...7  

2.2 Frequency Division Multiplexing Modulation System……………………………………7 

2.3 Basics of OFDM System………………………………………………………………….8 

2.3.1 OFDM for Multicarrier Transmission………………….…………………………9 

2.4 Implementation of DFT based OFDM System…………………………………………..11 

2.5 Multipath Channels and Use of Cyclic Prefix…………………………………………...13 

2.6 Intersymbol Interference…………………………………………………………………14 

2.7 Intrasymbol Interference…………………………………………………………………15 



 

 

 

3. OFDM FREQUENCY & TIMING SYNCHRONIZATION……………………………17 

3.1 OFDM Frequency Synchronization Errors………………………………………………18 

3.2 OFDM Timing Synchronization Errors………………………………...………………..18 

3.3 OFDM Timing & Frequency Offsets…………………………………………………….19 

3.4 Preamble & OFDM Symbol Generation…………………………………………………20 

3.5 OFDM Timing Acquisition & Frequency Offset Estimation……………………………21 

3.5.1 Schmidl Cox Algorithm for OFDM Timing Acquisition…………….………….21 

3.5.2 Fractional Frequency Offset Estimations……………………………….……….23 

3.5.3 Integer Frequency Offset Estimation……………………………………………24 

3.5.4 Phase Offset Estimation…………………………………………………………24 

3.6 Observations & Analysis…………………………………………….…………………..25 

3.6.1 Observations…………………………………………………………………………26 

3.6.2 Analysis……………………………………………………...……………………….26 

4. OFDM CHANNEL ESTIMATION……………………………………………………….30 

4.1 OFDM System Modeling…………………………….…………………………………..31 

4.2 Channel Estimation………………………………………………………………………33 

4.2.1 Least Square/Zero Forcing Channel Estimators………………………………..….33 

4.2.2 Modified Least Square Channel Estimators……………………………………….34 

 4.3 PED-B Channel………………………………………………………………………….35 

 4.4 Obesrvations & Analysis………………………………………………………………..36 

5. DHT BASED OFDM BASEBAND SYSTEM…………………………………………….38 

 5.1 Some Properties of the DHT…………………………………………………………….39 



 

 

 5.2 DHT Based OFDM System and its Implementation……………………………………42 

 5.3 Observation & Analysis……………………………………………………….…………44 

  5.3.1 Frequency and Timing Synchronization………………………………….………..44 

  5.3.2 Channel Estimation…………………………………………………………...……44 

  5.3.3 Analysis using BER versus SNR curve……………………………………………46 

6. CONCLUSIONS & FUTURE WORK……………………………………………………..48 

 6.1 Conclusions……………………………………………………………………………...48 

 6.2 Future Work……………………………………………………………………………..48 

PUBLICATIONS………………………………………………………………………………50 

BIBLIOGRAPHY………………………………………….………………………….……….51 

 

  

 

 

     

 

 

 

 

 

 



i 

 

ABSTRACT 

 

Wireless Communication has gained much popularity in the field of Communication because of 

its ability to transfer the data at high rate with much more increased high quality, low cost and 

better performance. Also it offers variety of services for the wide range of applications. 

Orthogonal frequency division multiplexing (OFDM) is becoming widely applied in 

wireless communications system due to its high rate transmissions capability with high 

bandwidth efficiency and its robustness with regard to multipath and delay. It has been used in 

digital audio broadcasting systems (DAB), digital video broadcasting (DVB) systems, digital 

subscriber line (DSL) standards, and wireless LAN standards such as the American IEEE std. 

802.11(WiFi) and WiMAX (stands for Worldwide Interoperability for Microwave Access), are 

one of the standards of IEEE which utilizes the idea of OFDM, and is aimed to provide high-

throughput broadband connections over long distances. 

Conventially we use discrete Fourier transform (DFT) in OFDM system. This thesis 

presents the simulation of 4 Qudrature Amplitude Modulation (QAM) orthogonal frequency 

divison multiplexing (OFDM) baseband system and channel estimation which uses inverse 

discrete Hartley transform (IDHT) and discrete Hartley transform (DHT). As the calculation of 

DHT and IDHT involves real operations hence the computational complexities are less as 

comapred to DFT and IDFT. Moreover as IDHT is same as DHT hence we can use same 

hardware for both, while the DFT and IDFT require separate hardware to implement. As 

compared to DFT based OFDM system, the simulated DHT based OFDM system achieves 

approximately the same transmission performance with less computational complexity and 

hardware requirements. 
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1.1 Basics of Wireless Communication  

Wireless communication is one of the most active areas of technology development. Wireless 

Broadband Technologies allow the simultaneous delivery of voice, data and video over fixed or 

mobile platforms [1]. Wi-Fi, WiMAX, LTE, UMB are some of the emerging technologies. 

WiMAX acronym stands for World Wide Interoperability for Microwave Access. LTE stands for 

Long Term Evolution. These standards are wireless technologies that provide high throughput 

broadband connections over long distances [15]. 

Frequency division multiplexing (FDM) is a technology that transmits multiple signals 

simultaneously over a wired or a wireless system. Each signal is limited by a specific frequency 

band, and is modulated by data stream. Orthogonal Frequency Division Multiplexing is a special 

case of this, where the data is distributed over a large number of carriers, which are 'orthogonal' 

to each other. OFDM is spectrally efficient compared to the conventional FDM systems, since it 

doesn't need guard bands between adjacent channels. This orthogonality property of the carriers 

is at the heart of OFDM, since the interference due to the other carriers is prevented, when the 

receiver demodulates a particular carrier. IEEE 802.16: Wireless MAN and WiMAX (stands for 

Worldwide Interoperability for Microwave Access), are one of the standards of IEEE which 

utilizes the idea of OFDM. 

OFDM is a robust and efficient modulation scheme, which mitigates some of the channel 

impairments quite effectively and support high data rates. It combats multipath fading and 

narrow band interference efficiently [16].  
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Here we shall discuss the motivation for the study as well as the insight into the 

significance of design of an OFDM system using Discrete Hartley Transform. 

1.2 Motivation  

One of the principal advantages of OFDM is its utility for transmission at very nearly optimum 

performance in unequalized channels and in multipath channels. Inter-symbol interference (ISI) 

and inter-carrier interference (ICI) can be entirely eliminated by the simple expedient of inserting 

between symbols a small time interval known as guard interval [17]. 

One of the principal disadvantages of OFDM is sensitivity to frequency o�set in the 

channel. There are two deleterious effects caused by frequency o�set; one is the reduction of 

signal amplitude in the output of the filters matched to each of the carriers and the second is 

introduction of ICI from the other carriers which are now no longer orthogonal to the filters. 

Timing errors also affects OFDM system performance by reducing the delay spread robustness 

and by introducing phase shift in the received spectrum. 

Adaptive estimation of channel is necessary before the demodulation of OFDM signals 

since the wireless channel is frequency selective and time- varying. There are two main problems 

in designing the channel estimators for wireless OFDM systems. The first problem is the 

arrangement of pilot information, where the pilots means the reference signal used by the both 

the transmitter and the receiver. The second problem is to design an estimator with both low 

complexity and good channel tracking ability. Third problem is, while considering the design of 

system the major parameters are computational complexity and implementation cost. In the 

current DFT based OFDM system transceivers, the modulator needs to compute a long length 

inverse discrete Fourier transform (IDFT) and the demodulator needs to compute a long length 
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DFT, where transform length is up to 512 or more. For such long-length DFT/IDFT 

computations, a great number of complex multiplications are required. Hence DFT based OFDM 

system involves a lot of computational complexity and high implementation cost. 

Motivated by above problem of OFDM timing acquisition and frequency synchronization 

we have implemented a robust timing acquisition (Scmidl-Cox algorithm) and frequency 

synchronization algorithm for OFDM and to cope with computational complexity and 

implementation cost we have designed a Discrete Hartley Transform (DHT) based OFDM 

system in the thesis report. 

We have also implemented the following three algorithm of channel estimation is 

implemented to correct the timing error, which is like a rotating phasor in the frequency domain.  

1) Least Squares (LS)/ Zero forcing method 2) Modified Least Squares (MLS)  

1.3 Contribution  

In the current DFT based OFDM system transceivers, the modulator needs to compute a long 

length inverse discrete Fourier transform (IDFT) and the demodulator needs to compute a long 

length DFT, where transform length is up to 512 or more. For such long-length DFT/IDFT 

computations, a great number of complex multiplications are required and  each  of  them  

basically involves  four  real multiplications  and  two  real  additions. Clearly, the  complexity  

of  a  DFT-based  or  OFDM-based  transceiver would  be  reduced  if  the  corresponding  

modulator/demodulator could  be  implemented  using  purely  real  transforms  while  fast 

algorithms  similar  to  the  fast  Fourier  transform  (FFT)  algorithm can still be applied. In this 

project report, we simulated an OFDM system which is based on Discrete Hartley transform 

(DHT) and inverse Discrete Hartley transform (IDHT) for modulation and demodulation. The 
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DHT involves only real-valued arithmetic and has an identical inverse. Hence the simulated 

OFDM system model has reduced computational complexity but same performance compared to 

DFT based model. Finally the results of OFDM system based on DFT and DHT are compared 

after channel estimation with the help of BER versus SNR curve. 

 

1.4 Thesis Outline 

 

The organization of the thesis is as follows. Following the brief introduction, motivation and 

contibution of the thesis, the basics of modulation and OFDM baseband system are outlined in 

chapter 2. Chapter 3 discusses OFDM timing and frequency synchronization and Schmidl-Cox 

algorithm. Chapter 4 OFDM channel estimation using least squares (LS) and modified least 

squares (MLS) channel estimator. In Chapter 5 DHT based OFDM system and its performance 

analysis and results in comparison with DFT based OFDM system are discussed. Finally, chapter 

6 describes the concluding remark. 
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2.1 Single Carrier Modulation System  

 

A single carrier system modulates information onto one carrier using frequency, phase, or 

amplitude adjustment of the carrier [18]. For digital signals, the information is in the form of 

bits, or collections of bits called symbols, that are modulated onto the carrier. As higher 

bandwidths (data rates) are used, the duration of one bit or symbol of information becomes 

smaller. The system becomes more susceptible to loss of information from impulse noise, signal 

reflections and other impairments. These impairments can impede the ability to recover the 

information sent. In addition, as the bandwidth used by a single carrier system increases, the 

susceptibility to interference from other continuous signal sources becomes greater. This type of 

interference is commonly labeled as carrier wave (CW) or frequency interference. 

 

2.2 Frequency Division Multiplexing Modulation System 

 

Frequency division multiplexing (FDM) extends the concept of single carrier modulation by 

using multiple subcarriers within the same single channel. The total data rate to be sent in the 

channel is divided between the various subcarriers. The data do not have to be divided evenly 

nor do they have to originate from the same information source. Advantages include using 

separate modulation/demodulation customized to a particular type of data, or sending out banks 

of dissimilar data that can be best sent using multiple, and possibly different, modulation 

schemes. 
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Current national television systems committee (NTSC) television and FM stereo 

multiplex are good examples of FDM. FDM offers an advantage over single-carrier modulation 

in terms of narrowband frequency interference since this interference will only affect one of the 

frequency sub bands. The other subcarriers will not be affected by the interference. Since each 

subcarrier has a lower information rate, the data symbol periods in a digital system will be 

longer, adding some additional immunity to impulse noise and reflections.FDM systems usually 

require a guard band between modulated subcarriers to prevent the spectrum of one subcarrier 

from interfering with another. These guard bands lower the systems effective information rate 

when compared to a single carrier system with similar modulation. 

 

2.3 Basics of OFDM System 

 

Orthogonal Frequency Division Multiplexing (OFDM), is now a popular technique for MCM 

(Multi-Carrier Modulation), is deployed in various standards of IEEE, especially in the wireless 

systems. It also looks promising for the 4G mobile technologies. OFDM converts a frequency 

selective fading channel into a collection of the flat fading sub-channels. The key ideas of 

OFDM were patented, on 1967-68. The wireless channels offers much more unpredictability and 

other challenges than their wire line (like twisted wire pairs or coaxial cables) counterparts, due 

to the presence of multipath, Doppler spread etc., This difficulty in the wireless channels is 

mainly due to the frequent change in the environment and other factors because of the mobility 

of the user, and presence of different environment conditions. 
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2.3.1 OFDM for Multicarrier Transmission  

 

In a wireless communication system, the signal is carried by a large number of paths with 

different strengths and delays. Such multipath dispersion of the signal is commonly referred as 

“channel-induced inter symbol interference (ISI).” In fact, the multipath dispersion leads to an 

upper limitation of the transmission rate in order to avoid the frequency selectivity of the channel 

or the need of a complex adaptive equalization in the receiver. In order to mitigate the time-

dispersive nature of the channel, single-carrier serial transmission at a high data rate is replaced 

with a number of slower parallel data streams. Each parallel stream will be then used to 

sequentially modulate a different subcarrier. By creating N parallel sub streams, we will be able 

to decrease the bandwidth of the modulation symbol by the factor of N, or, in other words, the 

duration of a modulation symbol is increased by the same factor. The summation of all of the 

individual subchannel data rates will result in total desired symbol rate, with the drastic reduction 

of the ISI distortion. 

If the FDM system above had been able to use a set of subcarriers that were orthogonal to each 

other, a higher level of spectral efficiency could have been achieved. The guard bands that were 

necessary to allow individual demodulation of subcarriers in an FDM system would no longer be 

necessary. The use of orthogonal subcarriers would allow the subcarriers’ spectra to overlap, 

thus increasing the spectral efficiency. As long as orthogonality is maintained, it is still possible 

to recover the individual subcarriers’ signals despite their overlapping spectrums. If the dot 

product of two deterministic signals is equal to zero, these signals are said to be orthogonal to 

each other. Orthogonality can also be viewed from the standpoint of stochastic processes. If two 

random processes are uncorrelated, then they are orthogonal. Given the random nature of signals 
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in a communications system, this probabilistic view of orthogonality provides an intuitive 

understanding of the implications of orthogonality in OFDM. As we know the sinusoids of the 

DFT form an orthogonal basis set, and a signal in the vector space of the DFT can be represented 

as a linear combination of the orthogonal sinusoids. One view of the DFT is that the transform 

essentially correlates its input signal with each of the sinusoidal basis functions. If the input 

signal has some energy at a certain frequency, there will be a peak in the correlation of the input 

signal and the basis sinusoid that is at that corresponding frequency. This transform is used at the 

OFDM transmitter to map an input signal onto a set of orthogonal subcarriers, i.e., the 

orthogonal basis functions of the DFT. Similarly, the transform is used again at the OFDM 

receiver to process the received subcarriers. The signals from the subcarriers are then combined 

to form an estimate of the source signal from the transmitter. The orthogonal and uncorrelated 

nature of the subcarriers is exploited in OFDM with powerful results. Since the basis functions of 

the DFT are uncorrelated, the correlation performed in the DFT for a given subcarrier only sees 

energy for that corresponding subcarrier. The energy from other subcarriers does not contribute 

because it is uncorrelated. This separation of signal energy is the reason that the OFDM 

subcarriers’ spectrums can overlap without causing interference. 

 In OFDM, the orthogonal subcarriers are separated by a frequency interval of ∆f = 1/Ts, 

where Ts is the OFDM symbol duration, as shown in Fig. 2.1.  
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Fig.2.1 OFDM transmission spectrum 

 The frequency spectrum of the adjacent subchannel overlap with one another, but the 

orthogonality of subcarriers will eliminate in principle the inter-channel interference (ICI). 

2.4 Implementation of DFT based OFDM System  

The idea behind the analog implementation of OFDM can be extended to the digital domain by 

using the discrete Fourier Transform (DFT) [2, 3] and its counterpart, the inverse discrete Fourier 

Transform (IDFT). These mathematical operations are widely used for transforming data 

between the time-domain and frequency-domain. These transforms are interesting from the 

OFDM perspective because they can be viewed as mapping data onto orthogonal sub-carriers. 

For example, the IDFT is used to take in frequency-domain data and convert it to time-domain 

data. In order to perform that operation, the IDFT correlates the frequency-domain input data 

with its orthogonal basis functions, which are sinusoids at certain frequencies. This correlation is 

equivalent to mapping the input data onto the sinusoidal basis functions. 
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Fig 2.2 Typical OFDM baseband system, affected only by noise, timing offset and frequency offset. nW  

represents AWGN noise, nφ  represents a time varying phase which (artificially mimics) implements 

frequency offset , CP refers to cyclic prefix A/D refers to analog to digital converter and D/A refers to 

digital to analog converter.  

  

 In practice, OFDM systems are implemented using a combination of fast Fourier 

Transform (FFT) and inverse fast Fourier Transform (IFFT) blocks that are mathematically 

equivalent versions of the DFT and IDFT, respectively, but more efficient to implement. An 

OFDM system treats the source symbols (e.g., the QPSK or QAM symbols that would be present 

in a single carrier system) at the transmitter as though they are in the frequency-domain. These 

symbols are used as the inputs to an IFFT block that brings the signal into the time domain. The 

IFFT takes in N symbols at a time where N is the number of subcarriers in the system. Each of 

these N input symbols has a symbol period of T seconds. Recall that the basis functions for an 

IFFT are N orthogonal sinusoids. These sinusoids each have a different frequency and the lowest 

frequency is DC. Each input symbol acts like a complex weight for the corresponding sinusoidal 

basis function. Since the input symbols are complex, the value of the symbol determines both the 

amplitude and phase of the sinusoid for that subcarrier. The IFFT output is the summation of all 

N sinusoids. Thus, the IFFT block provides a simple way to modulate data onto N orthogonal 

subcarriers. The block of N output samples from the IFFT make up a single OFDM symbol. The 

length of the OFDM symbol is NT where T is the IFFT input symbol period mentioned above. 
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After some additional processing, the time-domain signal that results from the IFFT is 

transmitted across the channel. At the receiver, an FFT block is used to process the received 

signal and bring it into the frequency domain. Ideally, the FFT output will be the original 

symbols that were sent to the IFFT at the transmitter. When plotted in the complex plane, the 

FFT output samples will form a constellation, such as 4-QAM. However, there is no notion of a 

constellation for the time-domain signal. When plotted on the complex plane, the time-domain 

signal forms a scatter plot with no regular shape. Thus, any receiver processing that uses the 

concept of a constellation (such as symbol slicing) must occur in the frequency-domain. The 

block diagram in Figure 2.2 illustrates the switch between frequency-domain and time-domain in 

an OFDM system. 

 

2.5 Multipath Channels and Use of Cyclic Prefix  

 

 A major problem in most wireless systems is the presence of a multipath channel. In a multipath 

environment, the transmitted signal reflects off of several objects. As a result, multiple delayed 

versions of the transmitted signal arrive at the receiver. The multiple versions of the signal cause 

the received signal to be distorted. Many wired systems also have a similar problem where 

reflections occur due to impedance mismatches in the transmission line. 

A multipath channel will cause two problems for an OFDM system [9]. The first problem is 

intersymbol interference. This problem occurs when the received OFDM symbol is distorted by 

the previously transmitted OFDM symbol. The effect is similar to the intersymbol interference 

that occurs in a single-carrier system. However, in such systems, the interference is typically due 

to several other symbols instead of just the previous symbol; the symbol period in single carrier 
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systems is typically much shorter than the time span of the channel, whereas the typical OFDM 

symbol period is much longer than the time span of the channel. The second problem is unique to 

multicarrier systems and is called Intrasymbol Interference. It is the result of interference 

amongst a given OFDM symbol’s own subcarriers. The next sections illustrate how OFDM deals 

with these two types of interference. 

 

2.6 Intersymbol Interference  

 

Assume that the time span of the channel is LC samples long. Instead of a single carrier with a 

data rate of R symbols/second, an OFDM system has N subcarriers, each with a data rate of R/N 

symbols/second [13]. Because the data rate is reduced by a factor of N, the OFDM symbol 

period is increased by a factor of N. By choosing an appropriate value for N, the length of the 

OFDM symbol becomes longer than the time span of the channel. Because of this configuration, 

the effect of intersymbol interference is the distortion of the first LC samples of the received 

OFDM symbol. By noting that only the first few samples of the symbol are distorted, one can 

consider the use of a guard interval to remove the effect of intersymbol interference. The guard 

interval could be a section of all zero samples transmitted in front of each OFDM symbol. Since 

it does not contain any useful information, the guard interval would be discarded at the receiver. 

If the length of the guard interval is properly chosen such that it is longer than the time span of 

the channel, the OFDM symbol itself will not be distorted. Thus, by discarding the guard 

interval, the effects of intersymbol interference are thrown away as well. 
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2.7 Intrasymbol Interference  

 

The guard interval is not used in practical systems because it does not prevent an OFDM symbol 

from interfering with itself [7, 13]. This type of interference is called intrasymbol interference. 

The solution to the problem of intrasymbol interference involves a discrete-time property. Recall 

that in continuous-time, a convolution in time is equivalent to a multiplication in the frequency 

domain. This property is true in discrete-time only if the signals are of infinite length or if at least 

one of the signals is periodic over the range of the convolution. It is not practical to have an 

infinite-length OFDM symbol; however, it is possible to make the OFDM symbol appear 

periodic. This periodic form is achieved by replacing the guard interval with something known 

as a cyclic prefix of length LP samples. The cyclic prefix is a replica of the last LP samples of the 

OFDM symbol where LP >LC. Since it contains redundant information, the cyclic prefix is 

discarded at the receiver. Like the case of the guard interval, this step removes the effects of 

intersymbol interference. Because of the way in which the cyclic prefix was formed, the 

cyclically-extended OFDM symbol now appears periodic when convolved with the channel. An 

important result is that the effect of the channel becomes multiplicative. In a digital 

communications system, the symbols that arrive at the receiver have been convolved with the 

time-domain channel impulse response of length LC samples. Thus, the effect of the channel is 

convolutional. In order to undo the effects of the channel, another convolution must be 

performed at the receiver using a time-domain filter known as an equalizer. The length of the 

equalizer needs to be on the order of the time span of the channel. The equalizer processes 

symbols in order to adapt its response in an attempt to remove the effects of the channel. Such an 
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equalizer can be expensive to implement in hardware and often requires a large number of 

symbols in order to adapt its response to a good setting. 

In OFDM, the time-domain signal is still convolved with the channel response. However, the 

data will ultimately be transformed back into the frequency-domain by the FFT in the receiver. 

Because of the periodic nature of the cyclically-extended OFDM symbol, this time-domain 

convolution will result in the multiplication of the spectrum of the OFDM signal (i.e., the 

frequency-domain constellation points) with the frequency response of the channel. The result is 

that each subcarrier’s symbol will be multiplied by a complex number equal to the channel’s 

frequency response at that subcarrier’s frequency. Each received subcarrier experiences a 

complex gain (amplitude and phase distortion) due to the channel. In order to undo these effects, 

a frequency-domain equalizer is employed. Such an equalizer is much simpler than a time-

domain equalizer. The frequency-domain equalizer consists of a single complex multiplication 

for each subcarrier. For the simple case of no noise, the ideal value of the equalizer’s response is 

the inverse of the channel’s frequency response.  

 

 

 

 

 

 

 

 

 



17 

 

 

Chapter 3 

 

 

 

 

 

 

 

OFDM FREQUENCY & TIMING 

SYNCHRONIZATION 

 

 

 

 

 



18 

 

3.1 OFDM Frequency Synchronization Errors 

OFDM modulation encodes the data symbols onto orthogonal subchannels, where orthogonality 

is assured by the subcarrier separation ∆f = 1/Ts. The subchannels may overlap in the frequency 

domain, as shown in Fig. 2.1 for a rectangular pulse shape in time (sinc function in frequency). 

In practice, the frequency separation of the subcarriers is imperfect, so ∆f is not exactly equal to 

1/Ts. This is generally caused by mismatched oscillators, Doppler frequency shifts, or timing 

synchronization errors [20]. 

Carrier frequency errors result in a shift of the received signal in the frequency domain. If 

the frequency error is an integer multiple of the subcarrier spacing ∆f, then the received 

frequency domain quadrature amplitude modulated (QAM) subcarriers are shifted by n 

subcarrier positions. The subcarriers are still mutually orthogonal but the received data symbols, 

which were mapped to the OFDM spectrum, are now in the wrong position in the demodulated 

spectrum, resulting in BER degradation. 

If the carrier frequency error is not an integer multiple of the subcarrier spacing, then 

energy spills over between the subcarriers, resulting in loss of their mutual orthogonality. 

Interference is then observed between the subcarriers, leading to ICI.  

 3.2 OFDM Timing Synchronization Errors                                                                                                                                                           

Unlike the frequency mismatch discussed above, time synchronization errors do not result in 

inters subcarrier interference. However, even small misalignments of the FFT window result in 

an evolving phase shift in the frequency domain symbols, leading to BER degradation. If the 

receiver’s FFT window is shifted in the received sampling stream, then the time shift property of 

the Fourier transform can be formulated as 
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        Any misalignment τ of the receiver’s FFT window will introduce a phase error of 2π∆fτ/Ts 

between two adjacent subcarriers. If the timing errors are so high that the FFT window of the 

receiver includes samples outside the data and guard segments of the current OFDM symbol, 

then the consecutive OFDM symbols interfere, severely affecting the system’s performance. 

When the guard interval is followed by the data samples, a moderately delayed FFT receiver 

window may overlap with the next OFDM symbol, while an early FFT window will include 

samples of the data segment and the guard interval. The latter case will not introduce any 

interference, while the former case is much more detrimental to the performance. 

             Therefore, timing and frequency synchronization between the transmitter and the 

receiver are of crucial importance in terms of the performance of an OFDM link [20]. 

3.3 OFDM Timing & Frequency Offsets  

             We consider an OFDM system with N subcarriers, which includes NG subcarriers for 

guard band and the zero-DC subcarrier. A cyclic length of NCP is assumed, where typically NCP = 

N/L, L = 32, 16, 8, or 4. The samples of the transmitted baseband sequence corresponding to the 

n
th

 OFDM symbol is then given by 

1Nk0eC
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1
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km
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,,,
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Where mnC ,  is complex modulated data on the th
m subcarrier. 

(3.1) 

(3.2) 

(3.3) 
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After transmission over a multipath fading channel, the 
thk sample of the received OFDM 

symbol can be written as  

kn
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Where mnH , is the frequency response of the multipath channel on the th
m subcarrier, kn,ω  

represents circular complex Gaussian noise samples, and τ represents the timing error. Here, 

f∂ is the normalized frequency offset given by the ratio of the actual frequency offset (in Hz) to 

the inter-subcarrier spacing. The DFT output of the received symbol can be expressed as 

 

 

where mna ,  and mn ,
φ  are the attenuation and the phase rotation factors on the th

m  subcarrier 

respectively, ),(, τfI mn ∂  is the inter-carrier interference and inter-block interference due to 

frequency and timing errors respectively, and mnW , is the noise component on this subcarrier. 

 

3.4 Preamble & OFDM Symbol Generation 

        The  Preamble  samples  are  generated  using  IDcell  9  specification  in  IEEE  802.16d/e  

standard Ref[1] as shown  in Fig.3.1. The amplitude of the sample is kept such that the average 

power of preamble is 3dB more the rest of the OFDM symbols. Out of the 512 subcarriers first 

42 and last 41 subcarriers are null subcarriers.  The DC subcarrier (257th subcarrier) is also a 

(3.4) 

mnmn

2

mnmnmnmn WfIeHCaY mn

,,,,,, ),(, +∂+= τ
πφ (3.5) 



21 

 

null subcarrier. The non-zero subcarriers extend from 43rd symbol index to 471th symbol index 

with an interleaved null subcarrier between successive non-zero subcarriers.  There are in effect 

214 non-zero subcarriers in the Preamble and a 512 point IFFT is performed on the preamble.  

 

Fig.3.1. OFDM Preamble Symbol Structure for N=512 as specified in IEEE 802.16e standard, OFDM 

transmitted signal. 

 

3.5 OFDM Timing Acquisition & Frequency Offset Estimation 

3.5.1. Schmidl Cox Algorithm for OFDM Timing Acquisition 

             The transmitted samples are send through a noisy channel (i.e., channel gain unity and 

only white Gaussian noise of specified variance is added to the transmitted samples) and the 

received samples, )(nr so obtained, are used to find the start of frame (timing recovery) as well 

as fractional frequency offset is estimated using the Schmidl Cox Algorithm [12]. 
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Fig.3.2 OFDM Synchronization using Schmidl Cox Algorithm 

Autocorrelation is performed on the received sequence to find the start of frame. The 
th

l sample 

of autocorrelation output can be written as  

∑
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* )2/(*)()(
N

m

Nmlrmlrlz

 

The correlation )(lz will have a constant “Plateau” of 64 samples, when there is no delay spread 

in the channel. Also, for example, if the channel is of length 26 samples, then the plateau length 

will be reduced to (64-26) =38 samples. Actually, any declaration of “start-of-symbol” (which 

specifies the FFT window) within this “plateau top” is good enough for OFDM receiver to 

correctly block decode the data.  Indeed, this is the strong point of OFDM and OFDMA 

modulation. However, from a system view point where a frame of OFDM symbols are 
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transmitted starting with a preamble symbol, it is important accurately estimate the start of the 

frame. 

            One method to exactly find the “Edge of the Plateau on the right Corner” is by 

differentiation of the smoothed samples , as given below: 

)1()()( −−= lZlZlY
 

∑
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=
i

ik

iYabsiD
63

))(()(

 

)min(],[ Dmc =
 

m+1 give the start of frame. 

3.5.2 Fractional Frequency Offset Estimation  

                   Once the timing acquisition is done, the autocorrelation output can be used to 

estimate the fractional frequency offset. The phase of the correlation output is equal to the phase 

drift between the samples that are N OFDM samples apart. The estimate of the normalized 

fractional frequency offset is given by 

 

              

The fractional frequency offset estimated is removed by multiplying the received sample with 

the )
512

*2
exp(

nfj
∧

∆
−

π
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(3.7) 
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3.5.3 Integer Frequency Offset Estimation 

                 The integer part of the frequency offset can be estimated by using guard and null 

carriers in the Preamble OFDM symbol. As shown in Fig. 3.1, there are guard bands on both 

sides and 214 BPSK modulated subcarriers in every second position. By searching for these 

subcarriers in frequency domain, integer frequency offset can be estimated. At different 

subcarrier positions around the start of the non guard subcarriers, the total power in a window of 

length equal to number of non-guard subcarriers can be found.  The number of subcarriers 

positions by which the subcarrier index, corresponding to maximum power in the window, is 

away from the 42nd subcarrier index (first no guard subcarrier without integer offset) gives the 

residual integer frequency.  

The integer frequency offset is removed by multiplying the samples with 

))(
512

2
exp( int nffj frac∆+∆−

π

. 

3.5.4 Phase Offset Estimation  

                        There is a constant Phase rotation of the QPSK constellation when passed through 

the kit due to different attenuations for the in phase and Quadrature phase components. This can 

be estimated by doing zero forcing on any one non-zero subcarrier of the Preamble. The 

estimated phase offset is removed from all the samples in the OFDM symbols by multiplying 

with exp (-φ) where φ is the estimated phase offset. 

 

(3.12) 
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3.6 Observations & Analysis  

              One OFDM frame in our experiment consists of 10 OFDM symbols. Each OFDM 

symbol has 428 non-zero subcarriers (i.e., from 43 to 471). Thus, 4280(428*10) QPSK symbols 

are generated and a 512 point IFFT is performed on the OFDM symbols. Therefore, an OFDM 

frame consists of a Preamble and 10 OFDM symbols. Preamble is always the first symbol of an 

OFDM frame followed by 10 OFDM symbols. Cyclic Prefix of length NFFT/8 is inserted at the 

start of each OFDM symbol as shown in Fig 3.3. 

 

Fig.3.3 Addition of the Cyclic Prefix to form the transmitted OFDM symbol 

Frequency  offset  will  be  introduced  when  we  send  the  samples  from  card-to-card  after  IF 

modulation. However, in the base-band loop-back mode, or even when going from card to card 

via  base-band,  there  will  not  be  a  (considerable)  frequency  error  introduced  on  the  

received samples.  In  such  situations,  both  integer  and  fractional  frequency  offsets  are  

modeled,  by multiplying the nth transmit sample with )(
512

2
exp( fnj ∆−

π
. For example 

offset=4.3 means integer offset=4 and fractional frequency offset=0.3. The real and the 

imaginary parts of each sample in the transmitted frame are the In-phase and the Quadrature-

phase components, respectively. Since we are using 8 bits, I and Q samples are then converted 
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into range -127 to 127. The samples are written  into  a  file  as  I Q  I Q  I Q….  as  expected  by  

the WiCOMM-T kit  driver. The QPSK data generated  are  also written  into  a  file,  because  

known  symbols  are  required  at  the  receiver  for BER calculation.  

3.6.1 Observations  

                          The following observations are made when the simulation was carried out for 

DFT OFDM baseband transmission:  

1. In the autocorrelation curve if it has two plateaus, sometime it will detect the first plateau 

and sometime it will second plateau. 

2.  Estimated integer frequency offset always does not come as per the expectation i.e. 

around 4±2 for the present case. 

3.  Estimated fractional frequency offset always does not come as per the expectation i.e. 

around 0.3±0.2 for the present case. 

3.6.2 Analysis  

The statistical analysis has been done for the above observations by plotting the histogram for 

the different values of SNR and 150 numbers of iterations. 
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1. For SNR=10 

 

Fig.3.4. Auto Correlation plot in time domain at SNR=10 

 

Fig.3.5. Histogram plot at SNR=10 shows that in almost half of the cases it detects first plateau and in 

rest the second plateau 
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2. For SNR = 20 

 

Fig.3.6. Auto Correlation plot in time domain at SNR=20 

 
Fig.3.7. Histogram plot at SNR=20 shows that in almost in all the cases it detects first plateau in the range 

of 3763 to 3765. .  
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3. For SNR = 30 

 

Fig.3.8. Auto Correlation plot in time domain at SNR=30 

 
Fig.3.9. Histogram plot at SNR = 30 shows that for than half of the cases it detects second plateau and in 

rest the first plateau. 
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Chapter 4 

 

 

 

 

 

 

 

OFDM CHANNEL ESTIMATION  
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The channel is the medium through which the signal travels from the transmitter to the receiver. 

Unlike the wired channels that are stationary and deterministic, wireless channels are extremely 

random in nature. Some of the features of wireless communication like mobility, places 

fundamental limitations on the performance in wireless system. The transmission path between 

the transmitter and receiver can vary from line of sight to that is severely obstructed by 

buildings, terrain & foliage. Efficient channel estimation strategies are required for coherent 

detection & decoding. Adaptive estimation of the channel is necessary before the demodulation 

of the OFDM signals since the wireless channel is frequency selective and time-varying. The 

channel estimation in OFDM can be classified into the two categories  

1. Pilot Based Channel Estimation: Known symbol called pilots are transmitted. 

2. Blind Channel Estimation: No pilots required. It uses some underlying mathematical 

properties of data sent. 

The Blind channel estimation methods are computationally complex and hard to implement. The 

Pilot based channel estimation methods are easy to implement but they reduces the bandwidth 

efficiency. The Pilot based methods are most popular now a days. IEEE 802.16e, 3GP LTE 

standards support the pilot based channel estimation. 

 

4.1 OFDM System Modeling  

              Let the cyclic extension of time length TG, chosen to be larger than the expected delay 

spread, is inserted to avoid intersymbol and intercarrier interferences. The D/A converter contain 

low-pass filters with bandwidth 1/TS, (as shown in the Fig.2.2) where TS is the sampling interval. 
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The channel is modeled as an impulse response g(t) followed by the complex additive white 

Gaussian noise (AWGN) n(t), where αm is a complex values and 0 ≤  τmTS ≤  TG. Hence we treat 

the cannel response g(t) as a time –pulse train of the form [4] 

∑
=

−∂=
M

m

smm Tttg
1

)()( τα  

The entire impulse response lies in the guard space. The system is then modeled using the N-

point discrete-time Fourier transform (DFTN) as  

))((
∧

+⊗= n
N

g
xIDFTDFTy NN  

Where ⊗ denotes cyclic convolution, x=
T

Nxxx ][ 110 −−−−  , y=
T

Nyyy ]...........[ 110 − , 
∧

n  is a vector 

of i.i.d. complex Gaussian variable, & g= 
T

Nggg ]...........[ 110 −  is determined by the cyclic 

equivalent of sinc functions. 

The system described by above equation can be written as a set of N independent Gaussian 

channels, 

kkkk nxhy +=  

Where kh  is the complex channel attenuation given by h= )(]...........[ 110 gDFThhh N

T

N =− and 

n= )(]...........[ 110

∧

− = nDFTnnn N

T

N  is an i.i.d. complex zero mean Gaussian noise vector. 

As a matter fact we can write the above equation in the matrix form as  

nXFgy +=  

 

Where )(xdiagX = matrix and 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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4.2 Channel Estimation  

 We will derive several estimators based on the system model in the previous 

section.  These estimation techniques all have the general structure presented in Fig.  4.1. The 

transmitted  symbols kx ,  appearing  in  the estimator expressions,  are either training  symbols 

or  quantized  decision  variables  in  a  decision-directed  estimator [4, 5].   

 

 

 

 

Fig.4.1 General channel Estimator Structure 

 

 

4.2.1 Least Square/Zero Forcing Channel Estimators  

 The LS estimator for the cyclic response g minimizes )()( XFgyXFgy
H −− and 

generates the  
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yXFFQh
HH

LSLS =
∧

 

Where  

1)( −= XFXFQ
HH

LS  

As the 
∧

LSh  also corresponds to the estimator structure shown in the Fig.4.1. So 
∧

LSh  reduces to  

yXhLS

1−
∧

=  

                                  

The channel estimates at data subcarriers can be obtained using 1D interpolation. As the spacing 

between the pilot subcarriers increase, the accuracy of this method drops. This method ignores 

the frequency domain correlation of the channel.  

4.2.2 Modified Least Square Channel Estimators 

                 This is a time domain method of channel estimation. Usually the number of taps in the 

impulse response of the channel is less than the number of subcarriers in the transfer function. 

Therefore it is advantageous to estimate the impulse response of the channel than its frequency 

domain counterpart. 

As the performance of LS estimator is low in terms of mean square error, so to improve this we 

can assume that the most energy is concentrated into the first few samples of the impulse 

response.  Intuitively, excluding low energy taps of g  will to some extent compensate for this 

shortcoming since the energy of  g decreases  rapidly  outside  the  first  L  taps, whilst  the noise 

energy  is  assumed  to  be  constant  over  the  entire  range [4, 6]. 

 

(4.7) 

(4.8) 

(4.9) 
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Taking only the first L taps of g into account, thus implicitly using channel statistics, the 

modified LS estimator becomes 

yXTTQh
HH

LSLS

'=
∧

 

Where T denotes the first L columns of DFT matrix F and 

1)( −= XTXTQ
HH

LS  

 

4.3 PED-B Channel  

              The transmitted frame is passed through a frequency selective channel. PED-B model is 

used here as the channel. The number of taps in PED-B (pedestrian channel) is 6. 

 

Tap Positions (µs) Tap Gain (dB) 

1 0 

2 -1 

5 -9 

7 -10 

12 -15 

19 -20 

 

Table 4.1 PED-B Channel Model 

 

 

(4.10) 

(4.11) 
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4.4 Observations & Analysis 

The following constellation plot has been plotted for DFT OFDM base band transmissions for 

NFFT=512 

 

Fig.4.2 Constellation obtained by LS channel estimators for DFT OFDM baseband transmission 

 

Fig.4.3 Constellation obtained by MLS channel estimator for DFT OFDM baseband transmission 
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Fig.4.4 BER Versus SNR curve for DFT based OFDM system after channel estimation 

 

Fig.4.5 Channel estimation plot for DFT based OFDM system 
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It can be clearly observed from the Fig. 4.2, Fig. 4.3, Fig. 4.4 & Fig 4.5 that 

constellations & BER versus SNR curve performance for MLS channel estimator is better than 

LS channel estimator. 
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Chapter 5 

 

 

 

 

DHT BASED OFDM BASEBAND SYSTEM 
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For  the  current  DFT-based  or  OFDM-based  transceivers,  the modulator needs to 

compute a long-length  inverse discrete Fourier transform  (IDFT), and  the demodulator  needs  

to compute a long-length DFT, where the transform  length  is up  to 512 or more. For such  

long-length  IDFT/DFT  computations,  a  great  number  of complex  multiplications  are 

required  and  each  of  them  basically involves  four  real multiplications  and  two  real  

additions. Clearly, the complexity of  a  DFT-based  or  OFDM-based  transceiver would  be  

reduced  if  the  corresponding  modulator/demodulator could  be  implemented  using  purely  

real  transforms  while  fast algorithms  similar  to  the  fast  Fourier  transform  (FFT)  algorithm 

can still be applied.  

In  this  report,  we  propose  a  novel  digital  form  of  MCM  that  is based on the 

discrete Hartley transform (DHT) and its inverse (IDHT)  for  modulation  and  demodulation 

[10].  The DHT involves only real-valued arithmetic and has an identical inverse. Like the DFT, 

there have been a number of fast algorithms and hardware architectures available for the DHT 

computation. 

Hence DHT-based MCM method achieves the same transmission performance as the 

DFT-based MCM method, but requires less computational complexity [10, 14]. 

5.1 Some Properties of the DHT 

The N-point DHT of a real sequence is defined by [11] 

∑
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S ,,,,, L  (5.1) 
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Where )N/k2cos()N/k2sin(H k
N π+π= . Letting [ ]T012N1N sssss ,,,, K−−=  be the transform input vector 

and T
012N1N ]S,S,,S,S[S L−−= be the transform output vector, we can express the above equation in 

matrix-vector form as follows: 

S=Hs 
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Being the DHT transform matrix. Note that the DHT has an identical inverse, i.e., the DHT and 

IDHT transform matrices are the same (H=H
-1

) and we have  

s=H
-1

S=HS 

Also  

LHQ .=  

Where Q is IDFT matrix and is given by  
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And L is a unitary matrix given by  

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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With L
-1

 equal to the transpose of complex conjugate of L. 

As we know received signal in DFT based OFDM system is given by y: 

y=Px+n 

Where P is a square N×N matrix, x is N×1 channel input vector, y is the corresponding N×1 

channel output vector and n is noise. 

P can be rewritten as  

P=HLΩL
-1

H
-1

= HLΩL
-1

H=HΦH 

Where Φ=LΩL
-1 
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and 
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5.2 DHT Based OFDM System and its Implementation 

 Based upon the properties of DHT described above, we propose a DHT-based OFDM 

system as follows. Assume that the real data sequence to transmitted, the channel impulse 

response, and the channel noise are same as those used in DFT based OFDM system. Then we 

can directly use the data sequence to form a real data vector for modulation, i.e. 

S=
T 

= 
T
. In contrast to the DFT based OFDM 

transmission process, the DHT based OFDM can be described as follow 

 

 

 

 

 

Fig.5.1. Typical DHT based OFDM baseband system, affected only by noise, timing offset and 

frequency offset. nW  represents AWGN noise, nφ  represents a time varying phase which (artificially 

mimics) implements frequency offset , CP refers to cyclic prefix A/D refers to analog to digital converter 

and D/A refers to digital to analog converter.  
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1. Modulation: Compute the N-point IDHT of S, i.e. [ ]T012N1N sssss ,,,, K−−= =HS 

2. Adding a cyclic prefix: Cyclic prefix is added to form a channel input sequence as given by 

[ ]1N011vv ssssss −−+−−= ,,,,, LK
 
where kNk ss −− =  for k=1,2,…,v. 

3. Channel Output: After neglecting the first v sample at the receiver, the received signal vector 

[ ]T012N1N rrrrr ,,,, K−−= and the IDHT modulated s vector have the following relation:                           

r=Ps+n = HΦHs=HΦS+n 

4.  Demodulation: Compute the N-point DHT of r, i.e. R=
T
=Hr=ΦS+Hn 

    The demodulated R contains two components: the first component ΦS is due to the     

transmitted data and the second one Hn due to additive channel noise. 

5.  Equalization and Detection: To recover the data vector S, appropriate frequency equalization 

is needed. This can be described by the following matrix-vector multiplication operation: 

'nSHnSR 11 +=+= −− ΦΦ  

In our program we have used Schmidl-Cox algorithm for timing and frequency synchronization. 

6.  Channel Estimation: The channel is estimated by using two algorithms  

a) Least Square Channel Estimation (described in section 4.2.1) 

b) Modified Least Square Channel Estimation (described in section 4.2.2) 

Here in this case also we have used PED-B Channel (described in section 4.3) 

 

 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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5.3 Observation & Analysis 

5.3.1 Frequency and Timing Synchronization  

 The observations and analysis for the DHT based OFDM system is same as that of DFT 

based OFDM system described in the section 3.6. 

5.3.2 Channel Estimation   

Channel estimation for both the DHT and DFT based OFDM system has been done using least 

squares (LS) channel estimator and modified least square (MLS) channel estimator and 

compared with the actual channel. Fig. 2 shows the channel estimation plot for DFT based 

OFDM system and Fig. 3 shows the channel estimation plot for DHT based OFDM system. It is 

clear from the Fig. 2 and Fig. 3 shows that LS and MLS channel estimators estimates the channel 

equally well and better at some points in case of DHT based OFDM system in comparison to 

DFT based OFDM system. 
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Fig.5.2 Channel estimation plot for DHT based OFDM system 

5.3.3 Analysis using BER versus SNR curve 

The performance of the proposed DHT based OFDM system has been analysed by plotting bit 

error rate (BER) versus SNR curve after channel estimation and compared it with that of DFT 

based OFDM system [19]. Fig. 5.3 shows BER versus SNR for DHT based system after channel 

estimation. . Fig. 4.4 shows BER versus SNR for DFT based system after channel estimation.  

Table 5.1 shows BER comparison of LS and MLS channel estimator for DHT and DFT based 

OFDM system at different SNR. It can be observed clearly from the Fig. 4 and Fig. 5 that at 

different SNR, the bit error rate performance for DHT and DFT based OFDM is almost same or 

better in case of DHT based OFDM system which justifies the importance of proposed method 
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Fig.5.3 BER Versus SNR curve for DHT based system after channel estimation 

 

SNR 

(dB) 

BER in DFT 

Based OFDM 

System for Least 

Squares Channel 

estimator 

BER in DHT 

Based OFDM 

System for Least 

Squares Channel 

estimator 

BER in DFT Based 

OFDM System for 

Modified Least 

Squares Channel 

estimator 

BER in DHT Based 

OFDM System for 

Modified Least 

Squares Channel 

Estimator 

5.0 0.682 0.06028 0.682 0.04029 

10.0 0.4761 0.6021 0.4642 0.03458 

15.0 0.2068 0.01355 0.1949 0.007423 

20.0 0.02196 0.005607 0.01572 0.003738 

25.0 0.008645 0.001869 0.005374 0.0009346 

Table 5.1. Showing BER comparison of LS and MLS channel estimator for DHT and DFT based OFDM 

system at different SNRs 
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5.1 Conclusions 

            In the wireless communication system it is very important to transfer the data at a very 

high rate with sufficient robustness and with less computationally complexites. We have 

simulated DHT based OFDM system. The DHT is real valued transform and having identical 

inverse while the DFT is a complex transform and not having identical inverse. So the DHT 

based OFDM is having less compuational complexities than DFT based OFDM system. As DHT 

is having identical inverse so implementation of DHT based results in reduction in hardware 

requirement as the same hardware can be used for inverse DHT on receiver side. The simulation 

results shows that DHT based OFDM system is having same transmission efficiency, better BER 

performance as that of DFT based OFDM system with less computational complexities & 

hardware requirement. 

5.2 Future Work  

 The proposed methods of OFDM synchronization & channel estimation has been 

simulated for DFT based OFDM system and DHT based OFDM system. Further we have studied 

the application of OFDM in optical communication and theoretically found that like the wireless 

communication in optical communication also it offers efficient and fast trasmission of data with 

low requirement of bandwidth. The future works includes the hardware system implementation 

of the proposed scheme for both wireless & optical communication. 
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