
                                                                                                                               VIKAS PIPRANI 

                                                                                                                                10504017 

 

FATIGUE LIFE ESTIMATION OF PRE-CORRODED 

ALUMINIUM ALLOY SPECIMEN                                                                                                       

              A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENT FOR THE DEGREE OF 

                                      Bachelor of Technology 

                                                  In 

                 Metallurgical and Materials Engineering 

                                                  By 

                                       VIKAS PIPRANI 

                                                   & 

                                       PRACHI SAMAL 

                                        Under the Guidance of 

                                    Prof. B.B.VERMA 

                                                  & 

                                      Prof. P.K.RAY 

 

Department of Metallurgical and Materials Engineering 

National Institute of Technology, Rourkela. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53186986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

 

 

National Institute of Technology 

                                            CERTIFICATE 

This is to certify that the thesis entitled, “FATIGUE LIFE ESTIMATION OF PRE-CORRODED 

ALUMINIUM ALLOY SPECIMEN” submitted by VIKAS PIPRANI in partial fulfillment of the 

requirements for the award of Bachelor of Technology Degree in Metallurgical and Materials 

Engineering at the National Institute of Technology, Rourkela (Deemed University) is an authentic 

work carried out by him under my supervision and guidance. 

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any other 

University / Institute for the award of any Degree or Diploma. 

Date:                                                                        

                                                                                     

                                                                                    Prof. B.B.VERMA                                                                                       

                                                                                           Dept. of Metallurgical and Materials Engg.                  

      National Institute of Technology                                  

       Rourkela-769008                                                    

 



 3 

ACKNOWLEDGEMENT 

 

We record our sincere gratitude to Prof. B.B.Verma, Dept. of Metallurgical and Materials 

Engineering & Prof.P.K.Ray, Dept. of Mechanical Engineering for assigning us the project “Fatigue 

life estimation of pre-corroded aluminium alloy specimen”. It is not possible to acknowledge 

sufficiently his important contributionof talent and time given unselfishly in proceeding with this 

work. His constant voice of advice and constructive criticism has been our source of inspiration. 

     We wish to record our gratitude to our project coordinators Prof. A.K. Panda and Prof. M. Kumar 

for helping us at each and every step in bringing out this report.  

We are also thankful to Prof. U.K. Mohanty, Dept. of Metallurgical and   Materials Engineering for 

permitting us to access the SEM. We would also like to thank Mr. S.Hembrom and Mr. Rajesh 

Pattnaik of Metallurgical and Materials Engineering Dept. for helping us throughout our project work. 

                       

                                                                                           Vikas Piprani  10504017 

                                                                                           Prachi Samal  10504010 

                                                                                           B.Tech 

                                                                                           Metallurgical and Materials Engineering 

 

 

 

 

 

 



 4 

 

                                                                Abstract 

The effect of time and mode of corrosion in fatigue life of pre-corroded 7020-aluminum 

alloy has been determined and compared with that of uncorroded specimens. It is known 

that fatigue properties of any material depend on the homogeneity of the material mostly 

the surface uniformity .Any irregularity present may cause fatigue crack initiation at a 

stress comparably lower than that shown by the S-N curve and thus the pre-corroded 

specimens’ S-N curve shows some deviation from the actual curve due to the presence of 

corrosion pits. 

 As the fatigue failure process exploits the weakest links (discontinuities) within the test 

material, which act as nucleation sites for crack origins, the fatigue properties of 

uncorroded and pre-corroded 7020-aluminum alloy in aqueous solution of NaCl (3.5% 

NaCl , 8.2 pH) along with forced corrosion at different sweep rates have been studied and 

compared in this project. The properties being the S-N curve, fatigue life, endurance 

limit, fatigue crack growth mechanism, SEM fractograph and probable crack initiation 

cause and spot.  

Round specimen generally used in classical fatigue tests for life estimation have been 

used in this experiment. S-N curve is plotted by using Moore’s rotating cantilever beam 

type fatigue testing machine. The tests are conducted in uncorroded specimen and in pre-

corroded specimen and then results are compared. Also the mechanism and spot of crack 

initiation is predicted by using fractographs under SEM. 
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1.INTRODUCTION 

        Alumimium is remarkable for its ability to resist corrosion(due to the phenomenon 

of passivation). Aluminium and its alloys are being used successfully in a wide range of 

applications, from packaging to aerospace industries due to their light weight. Due to 

their good mechanical properties and low densities, these alloys have an edge over other 

conventional structural materials. They are also used as light weight earth movers. 

Aluminium alloys continue to be the dominating structural materials for aircraft. In most 

of the aircraft, the air-frame consists of about 80% aluminium by weight (Zehnder 1996). 

Now-a-days, the cost reduction for aircraft has become an important criterion in many 

airlines and the selection of material is done on the basis of life cycle approach. The 

composites are very competitive materials for aircraft structural applications. However, 

they are generally considered to have higher initial cost, require more manual labour in 

their production and are more expensive to maintain. Ref[1] 

   Damage by corrosion fatigue is probably the main structural damage factor  that 

will affect the performance and the life of an airplane . However the severity of the 

degradation of an aircraft component by corrosion fatigue depends on its location in the 

airplane structure. Wings are subjected to ground (G.A.C.) cycles due to the landing and 

takeoff and to fatigue cycles during the flight, due to atmospheric perturbations and to 

plane maneuvers. On the contrary of the fuselage, the combination of a flight and a 

ground cycle corresponds to one single fatigue cycle. Tensile stresses are induced in the 

fuselage by the pressurization of the cabin. These stresses are relieved by 
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depressurization during landing. An alteration of pressurization and depressurization 

constitutes one fatigue cycle. Ref [2]  

When corrosion takes place at the same time as fatigue, a synergistic effect is developed 

between the two degradation processes. Damage is enhanced. Corrosion fatigue is a 

serious issue for airplanes that are exposed to marine and/or polluted air. This 

environment is particularly detrimental to the corrosion fatigue performance of airplanes 

since chloride compounds induce the breakdown of the passive film which covers 

aluminum alloys and which protects them from the atmosphere. 

Aluminum-zinc alloys use in aircraft components was not introduced until 1940s, 

after a long research in the mechanical stability of these alloys at a wide range of 

temperatures and pressures conditions. Aluminum-zinc alloys are attracting much 

attention because of their favorable strength-to-weight ratio and corrosion resistance 

compared to conventional stainless steels. Relatively little work has been done on 

corrosion of 7XXX aluminum-zinc alloys. Alloying elements such as zinc, copper, 

magnesium, and silicon added to aluminum improve mechanical properties but frequently 

reduce localized corrosion resistance, in particular, pitting and exfoliation corrosion. 

Stronger localized attack on alloys in comparison with aluminum has been ascribed to 

alloy surface microstructural heterogeneity. Precipitates presence, inclusions and 

intermetallic particles provoke discontinuities during the layer growth and promote 

galvanic couples formation with the alloy matrix. Ternary and quaternary Al-based 

particles frequently found in these alloys exhibit different electrochemical characteristics 

compared to the surrounding microstructure. Mg-containing particles tend to be anodic, 

while Cu, Fe and Mn-containing ones tend to be cathodic in relation to the matrix. In both 
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cases, localized dissolution processes are promoted. Since 7XXX aluminum alloys use to 

have good mechanical performance as aeronautical materials, it is essential to improve 

localized corrosion processes understanding. Ref [3]  

Metal Fatigue: A phenomenon which results in the sudden fracture of a component after 

a period of cyclic loading in the elastic regime. Failure is the end result of a process 

involving the initiation and growth of a crack, usually at the site of a stress concentration 

on the surface. Occasionally, a crack may initiate at a fault just below the surface. 

Eventually the cross sectional area is so reduced that the component ruptures under a 

normal service load, but one at a level which has been satisfactorily withstood on many 

previous occasions before the crack propagated. The final fracture may occur in a ductile 

or brittle mode depending on the characteristics of the material. Fatigue fractures have a 

characteristic appearance which reflects the initiation site and the progressive 

development of the crack front, culminating in an area of final overload fracture.  

 Initiation site(s). 

 Progressive of crack front characterize by beach marks. 

 Culminating in an area of final fracture. 

Fig. la illustrates fatigue failure in a circular shaft. The initiation site is shown and the 

shell-like markings, often referred to as beach markings because of their resemblance to 

the ridges left in the sand by retreating waves, are caused by arrests in the crack front as it 

propagates through the section. The hatched region on the opposite side to the initiation 

site is the final region of ductile fracture. Sometimes there may be more than one 

initiation point and two or more cracks propagate. This produces features as in Fig. 1b 

with the final area of ductile fracture being a band across the middle. This type of fracture 
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is typical of double bending where a component is cyclically strained in one plane or 

where a second fatigue crack initiates at the opposite side to a developing crack in a 

component subject to reverse bending. Some stress-induced fatigue failures may show 

multiple initiation sites from which separate cracks spread towards a common meeting 

point within the section. 

 

Fig 1 

 

1.1 Heat Treatment 

The term “heat treating” for aluminum alloys is frequently restricted to the 

 

Specific operations employed to increase strength and hardness of the precipitation- 

 

hardenable wrought and cast alloys. These usually are referred to as the “heat-treatable” 

 

alloys to distinguish them from those alloys in which no significant strengthening can be  

 

achieved by heating and cooling.  

 

The commercial heat-treatable alloys are, with few exceptions, based on ternary  

or quaternary systems with respect to the solutes involved in developing strength by  

precipitation. Commercial alloys whose strength and hardness can be significantly  



 10 

increased by heat treatment include 2xxx, 6xxx, and 7xxx series wrought alloys and  

2xx.0, 3xx.0 and 7xx.0 series casting alloys. 

Heat treatment to increase strength of aluminum alloys is a three-step process: 

 Solution heat treatment: dissolution of soluble phases 

 

 Quenching: development of supersaturation 

 

 Age hardening: precipitation of solute atoms either at room temperature 

(natural aging) or elevated temperature (artificial aging or precipitation 

heat treatment). 

 

1.1 a.Solution Heat Treatment 

The objective of solution heat treatment is to take into solid solution the maximum  

practical amounts of the soluble hardening elements in the alloy. The process consists of  

soaking the alloy at a temperature sufficiently high and for a time long enough to achieve  

a nearly homogeneous solid solution. It is desirable that the solution heat treatment is  

carried out as close as possible to the liquidus temperature in order to obtain maximum  

solution of the constituents. Accurate furnace temperature and special temperature  

variation must be controlled to within a range of ±5°C for most alloys. Overheating must  

be avoided i.e. exceeding initial eutectic melting temperatures. Often the early stages of  

over heating are not apparent but will result in a deterioration of mechanical properties. 

 

1.1 b.Quenching 

Quenching is in many ways the most critical step in the sequence of heat-treating  

operations. The objective of quenching is to preserve the solid solution formed at the  
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solution heat-treating temperature, by rapidly cooling to some lower temperature, usually  

near room temperature. In most instances, to avoid those types of precipitation that are  

detrimental to mechanical properties or to corrosion resistance, the solid solution formed  

during solution heat treatment must be quenched rapidly enough (and without  

interruption) to produce supersaturated solution at room temperature - the optimum  

condition for precipitation hardening. The resistance to stress-corrosion cracking of  

certain copper-free aluminum-zinc-magnesium alloys, however, is improved by slow  

quenching. Most frequently, parts are quenched by immersion in cold water, or in  

continuous heat treating of sheet, plate, or extrusions in primary fabricating mills, by  

progressive flooding or high-velocity spraying with cold water. 

 

1.1 c.Age Hardening 

After solution treatment and quenching hardening is achieved either at room temperature  

(natural aging) or with a precipitation heat treatment (artificial aging). In some alloys,  

sufficient precipitation occurs in a few days at room temperature to yield stable products  

with properties that are adequate for many applications. These alloys sometimes are  

precipitation heat treated to provide increased strength and hardness in wrought or cast   

products. Other alloys with slow precipitations reactions at room temperature are always  

precipitation heat treated before being used. 

The artificial ageing or precipitation heat treatments are low  temperature long  

time processes. Temperatures range from 115-200°C and times from 5-48 hours. As with  

solution treatment accurate temperature control and spatial variation temperatures are  

critical to the process and generally temperatures should be held to a range of ±7°C. 
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1.2 Pitting Corrosion 

 
 

Localized corrosion (pitting corrosion) 

The basis metal is eaten away and perforated in places in the manner of holes, the rest of 

the surface being affected only slightly or not at all. 

 

 

Wide pitting corrosion 
The corrosion causes localized scarring. 

The pitting is the most common form of corrosive attack in aluminum alloys. The  

 

corrosion is caused by the potential difference between the anodic area inside the pit –  

 

which often contains acidic, hydrolyzed salts – and the surrounding cathodic area.  Pitting  

 

is first noticeable as a white or gray powder deposit, similar to dust, that blotches the  

 

surface. When the superficial deposit is cleaned away, tiny pits or holes can be seen in  

 

the surface. These pits may appear either as relatively shallow indentations or as deeper  

 

cavities of small diameters.  

 

Pitting may occur in any metal, but it is particularly characteristic of aluminum and  

 

aluminum alloys. Pitting (localized) corrosion leading to fatigue crack initiation and  

 

crack growth is considered to be one  of the most significant damage mechanisms in  

 

aging structures. Even low-levels of pitting corrosion on aluminum structures resulting  

 

from saltwater spray and/or salt fog is the precursor to corrosion fatigue degradation. 
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1.3 Fatigue testing machine (Moore test): 

 Theory of Operation: works on rotating beam principle. The specimen function as 

a cantilever beam point loaded at the end point . 

 Load Frame Features: loaded by weight pan below the table.                      

 Specimen Loading: when rotated one half revolution, the stresses in the fibers 

originally below the neutral axis are reversed from tension to compression and 

vice versa. Upon completing the revolution, the stresses are again reversed so that 

during one revolution the test specimen passes through a complete cycle of 

flexural stress (tension and compression).  

 Digital Display: measures number of cycles. 
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1.4 Cyclic voltammetry 

Cyclic voltammetry or CV is a type of potentiodynamic electrochemical measurement.  

The method uses a reference electrode, working electrode, and counter electrode which in  

combination are sometimes referred to as a three-electrode setup. Electrolyte is usually  

added to the test solution to ensure sufficient conductivity. The combination of the  

solvent, electrolyte and specific working electrode material determines the range of the  

potential. 

In cyclic voltammetry, the electrode potential ramps linearly versus time as 

shown. This ramping is known as the experiment's scan rate (V/s). The potential is 

measured between the reference electrode and the working electrode and the current is 

measured between the working electrode and the counter electrode. This data is then 

plotted as current (i) vs. potential (E). As the waveform shows, the forward scan produces 

a current peak for any analytes that can be reduced (or oxidized depending on the initial 

scan direction) through the range of the potential scanned. The current will increase as 

the potential reaches the reduction potential of the analyte, but then falls off as the 

concentration of the analyte is depleted close to the electrode surface. If the redox couple 

is reversible then when the applied potential is reversed, it will reach the potential that 

will reoxidize the product formed in the first reduction reaction, and produce a current of 

reverse polarity from the forward scan. This oxidation peak will usually have a similar 

http://en.wikipedia.org/wiki/Voltammetry
http://en.wikipedia.org/wiki/Electrochemistry
http://en.wikipedia.org/wiki/Reference_electrode
http://en.wikipedia.org/wiki/Working_electrode
http://en.wikipedia.org/wiki/Counter_electrode
http://en.wikipedia.org/wiki/Voltammetry
http://en.wikipedia.org/wiki/Electrolyte
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shape to the reduction peak. As a result, information about the redox potential and 

electrochemical reaction rates of the compounds are obtained. 
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2. LITERATURE REVEW:  

     D.L. DuQuesnay et.al(International Journal of Fatigue 25 (2003) 371–377) examined   

 

7075-T6511  Aluminium alloy provided in the form of extruded channel sections. The  

 

fatigue coupons  were machined with the loading axis parallel to the longitudinal  

 

direction of the extrusion and extrusion thickness was 6.5mm. It showed that artificially  

 

produced pitting corrosion gives a severe reduction in the fatigue life of laboratory  

 

specimens when subjected to transport aircraft spectrum loading in laboratory air. A  

 

simple two-dimensional crack growth calculation using AFGROW software successfully  

 

predicted the fatigue lives of the pitted specimens using the depth and average width of  

 

the corrosion pits as the starting crack size for the analysis. Thus it showed that there is  

 

good potential for this technique to be applied to predict remaining life of corrosion  

 

damaged airframe structures. 

 

Al.Th. Kermanidis  et.al(Journal of Theoretical and Applied Fracture Mechanics 43  

 

(2005) 121–132)prepared 2024 T351 Aluminium alloy in  bare, sheet form of 1.6 mm  

 

nominal thickness. Machining of the specimens was made according to the specifications  

 

ASTM E 466-82 for the fatigue, ASTM E 647-93 for the fatigue crack growth and ASTM  

 

E 561-94 for the fracture toughness specimens. The effect of 36 h exposure to exfoliation  

 

corrosion solution of bare 2024 T351 aluminum specimens on the fatigue life of the  

 

specimens showed that  the corrosion attack results in a significant drop of the materials  

 

fatigue life . Metallographic corrosion characterization of specimens exposed to  
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exfoliation corrosion solution for 24 h showed that the  presence of corrosion pitting and  

 

intergranular corrosion facilitates essentially the onset of  fatigue cracks and, hence,  

 

reduces the fatigue life of the corroded specimens appreciably. 

 

 

K.Genel ( Scripta Materialia 57 (2007) 297–300)showed the effect of pitting corrosion  

 

produced by prior immersion in 3.5% NaCl solution on the fatigue behavior of 7075-T6  

 

aluminum alloys.It was concluded from the  results that pit population, pit density as well  

 

as pit depth increase with increasing pre-corrosion time. Pits, once formed, act as stress  

 

concentration sites and can also facilitate fatigue crack initiation when the stress intensity  

 

factor reaches the threshold value or promotes crack growth. Depending on the pit  

 

severity, the degradation in fatigue strength can be as much as approximately 60%.  

 

K. van der Walde et.al(International Journal of Fatigue 27 (2005) 1509–1518)  

 

performed quantitative fractography on forty 2024-T3 sheet aluminum fatigue specimens.  

 

It was found that over half of  the specimens analyzed had two or more crack-nucleating  

 

pits. The number of nucleating pits per specimen was found to be positively correlated  

 

with stress level and an interactive effect with corrosion exposure duration was observed.  

 

From the fatigue modeling efforts it is concluded that increased accuracy can be achieved  

 

by incorporating multiple crack effects,  particularly at higher stress levels where  

 

consistently unconservative life predictions can be avoided. 

 

W. Guo et.al(International Journal of Fatigue 25 (2003) 733–741) used three  

 

dimensional finite  element (FE) models with 20-node singular elements arranged around  

 

the crack tip  to calculate the SIFs(stress intensity factors) of elliptical surface cracks in  

 

round bars with different notches and  theoretical stress concentration coefficients. From  

 

the numerical results, it was obtained that  the 3D FE model with singular 20-node  
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elements arranged around the crack border is effective to yield reliable SIFs for surface  

 

cracks at notches in round bars. It  showed that the SIFs are strongly influenced by the  

 

theoretical stress concentration coefficient Kt, especially near the notch root. An  

 

empirical expression for the SIFs as a function of crack geometry and Kt was obtained by  

 

fitting the numerical results which can be used conveniently in life prediction of notched  

 

bars with various notch geometry and stress concentration coefficients at least within the  

 

range of parameters studied in this work. 

 

 

R.M. Chlistovsky et.al(International Journal of Fatigue xxx (2007) xxx–xxx) in their  

 

study subjected  axial fatigue specimens of 7075-T651 aluminium alloy to a loading  

 

spectrum that consisted of a fully reversed periodic overload of near-yield magnitude  

 

followed by 200 smaller cycles at high R ratio.The specimens were fatigue tested while  

 

they were fully immersed in an aerated and recirculated 3.5 wt% NaCl simulated  

 

seawater solution. A damage analysis showed that the presence of the corrosive  

 

environment accelerated the damage accumulation rate to greater extent than that  

 

observed in air, particularly at low stress ranges. This resulted in a reduction in the  

 

fatigue strength of the material when it was simultaneously subjected to overloads and a  

 

corrosive environment. It is believed that the reduced fatigue life was due primarily to  

 

corrosion pit formation and a combination of anodic dissolution at the crack tip and  

 

hydrogen embrittlement. 

 

Kimberli Jones et.al(Corrosion Science 47 (2005) 2185–2198)conducted pit-to-crack  

 

transition experiments on 1.600 mm and 4.064 mm 7075-T6 aluminum alloy. Specimens  

 

were corroded using a 15:1 ratio of 3.5% NaCl solution and H2O2 to fatigue loading.  
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Corrosion pits were identified as crack origins in all corroded specimens in the study,  

 

while large pit surface areas contributed to crack development in a low number of cycles.  

 

The combined effects of pit depth, pit surface area, and proximity to other pits were  

 

found to substantially reduce fatigue life. 

 

R.A. Siddiqui et.al(Materials and Design xxx (2007) xxx–xxx)showed experimentally  

 

the effect of seawater corrosion, aging time, and aging temperature on the fatigue  

 

resistance property of 6063 aluminum alloy. The 6063 aluminum alloy that was used for  

 

the study was heat treated and soaked in seawater for different intervals of time between  

 

2 and 30 weeks. It was found that the maximum fatigue resistance property in the 6063  

 

aluminum alloy was observed when aged between 7 and 9 h and heat treated at  

 

temperatures between 160 °C and 200 °C. Generally at constant load, the results  

 

indicated that the number of cycles to fail the 6063 aluminum alloy decreased with  

 

increasing the soaking time in seawater. Moreover, fracture surfaces were considered and  

 

studied under a scanning electron microscope (SEM). The results showed that the brittle  

 

fracture pattern tended to occur with the increase in aging time and temperature. The  

 

fatigue striations were observed very clearly at low and peak aging temperature. 
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3. EXPERIMENTAL: 

The material available was in the form of rolled 25 mm thickness 7020 aluminum alloy 

sheet, generally used  in ground transportation system generally Armoured vehicles, 

military bridges, motor cycle and bicycle frames and also used in aircrafts and ship 

structure.  

The 7020 aluminium alloys have various mechanical properties with pre-determined 

values such as follows: 

Tensile Strength 352.14 MPa 

Yield Strength 314.70 MPa 

Young’s Modulus 70000 MPa 

Elongation in 40mm 21.45 % 

Its composition is given in table 1.  

Table 1.composition of 7020 Al alloy 

   

Element   Cu   Mg   Mn  Fe  Si  Zn   Al  

Wt.%   0.05  1.20  0.43   0.37  0.22  4.60  balance  
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The plate(sheet) is cut into pieces according to the dimension of the standard fatigue test 

specimen on Moore fatigue testing machine. The detailed drawing of specimen is shown 

in figure1.Prior to fabricating to its required dimensions the cut pieces were solution 

treated at a temperature of 520°C for 3 hours and water quenched. This was followed by 

step-aging done at 110°C and 150°C for 10 hours and 20 hours respectively followed by 

air cooling. The time for solution treatment and aging was determined by optimization 

technique so as to obtain good hardness. This heat treatment cycle is generally known as 

T7 type. This is done to improve the machinability of material so as to obtain desired 

surface finish of material and confirmation to dimensions. The specimens were notched 

to improve the stress concentration so as to cause failure at specific point. Some of the 

fabricated samples were corroded using NaCl solution (3.5% by weight, pH 8.2) at room 

temperature by dipping the samples in it for 100 hours. Some others were corroded by 

same solution but by forcing potential through a potentiostat by dipping the specimens in 

the solution. The process employed is known as Cyclic Voltametry (CV). The rate of 

corrosion in this method was changed by altering the sweep rate. 

 Specimens corroded by both the above stated methods are subjected to fatigue testing at 

various loads through a Moore’s (Rotating Beam) Fatigue testing machine. The number 

of cycles to failure for each specimen were recorded and compared. The fractured surface 

was further observed in microscope and in SEM to get an idea about fracture behavior of 

material (fractographic analysis). 

The rest of the samples which were corroded by both methods but were not subjected to 

loading were cut near the notches and observed under hot stage microscope to determine 

number of corrosion pits formed per unit length and area and pit depth . This is further 
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useful in calculation of stress intensity factor (SIF) which is further useful in life 

estimation of specimens. The SEM analysis of the same were also carried out inorder to 

get the same set of parameters. 

Through all this life estimation of samples pre-corroded under various conditions were 

estimated and the fracture surface was analysed and compared for the same.  

 

Figure 1 
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4. RESULTS AND DISCUSSION: 

4.1 Heat Treatment Optimization 

The solution treatment was carried out in muffle furnace for different time periods 

followed by water quenching. After this the samples were grinded and polished 

with emery paper so as to obtain a smooth even surface. Further cloth polishing 

was done with aluminium chloride solution. The polished surface thus obtained 

was tested for Vickers Hardness Number (VHN) under a load of 5kgf. 

Sl.no Time in 

furnace 

  Length of 

diagonal 1 in 

mm 

  Length of 

diagonal 2 in 

mm 

Average length 

in (mm) 

          

VHN 

1. 

 

2 hours 

 

0.334  0.332 0.333                

     84 
0.331 0.332 0.3315 

2. 2.5hours 0.323 0.322 0.3225  

     89 0.324 0.325 0.3245 

3. 3hours 0.300 0.298 0.299  

    104 0.296 0.297 0.2965 

From the above table it is clear that solution treatment for 3 hours yields the maximum 

hardness and hence preferred. 

After the solution treatment time is optimized now the aging time is varied to obtain 

maximum hardness of the specimen after grinding and polishing. The samples after aging 

are subjected to air cooling which is further followed by polishing and subsequent testing 

for VHN in which diagonals of indentation are measured to measure the hardness. 
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Sl.no Aging 

treatment 

   Length of 

diagonal 1 in 

mm 

   Length of 

diagonal 2 in 

mm 

Average length 

in mm 

       VHN 

1. 110°C- 10 

hours 

150°C- 18 

hours 

0.271 0.272 0.2715        126 

0.272 0.273 0.2725         125 

0.270 0.271 0.2705         127 

2. 110°C- 8 

hours 

150°C- 20 

hours 

0.287 0.286 0.2865         113 

0.288 0.286 0.287         114 

0.289 0.288 0.2885         111 

3. 110°C- 10 

hours 

150°C- 20 

hours 

0.263 0.265 0.264         133 

0.263 0.264 0.2635         133 

0.263 0.263 0.263         134 

 

From the above table it can be observed that aging done at 110°C for 10 hours followed 

by at 150°C for 20 hours yields maximum hardness. Hence this aging cycle is selected 

prior to fabrication. 

Hence for project investigation purpose the alloy material in consideration was solution 

treated at 520°C followed by quenching and subsequently 2 stage artificial aging was 

carried out at 110°C and 150°C for 10 hours and 20 hours respectively followed by air 

cooling.  
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4.2 Stress Calculation 

Diameter of specimen at notch, d = 8.0mm 

Diameter of specimen, D = 10mm 

Radius of notch tip, r = 0.5mm 

Implies, r/d =0.0625     D/d= 1.25 

Notch sensitivity factor for aluminium alloy, q=0.4 

 

 

Kt from chart=2.2 
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Kt is the theoretical stress concentration factor 

Kf =1+q (Kt-1) 

    =1.48 

Kf is fatigue stress concentration factor 

            

                            

Where I- Moment of inertia 

My is the bending moment at the notch 

By substituting the required values we get a simplified relation of load applied and stress 

obtained as: 



 27 

σ= 30.91 x W,              where W= load applied 

The table below shows the stress obtained from various load applied: 

 

 

 

 

 

 

 

 

 

 

4.3 Corrosion 

After fabrication of samples some of the specimens are corroded by dipping them 

in NaCl solution (3.5% by weight, pH 8.2) for 100 hours at ambient tempearture. 

Few others are corroded with the help of potentiostat using cyclic voltametry 

method. While the rest are left uncorroded. 

 

4.4 Life Estimation by Moore’s Fatigue Testing Machine 

The samples obtained by above corrosion methods and uncorroded ones are tested 

under various load (stress) conditions by Moore’s (Rotating Beam) Fatigue testing 

machine and number of cycles to failure (N) for each of them is determined. The 

diatance of the notch from point of application of load was kept constant.  

  Load Applied (kg)      Resulting  Bending  Stress (MPa) 

          3                  90.54 

          4                  120.72 

          5                  150.9 

          6                  181.08 

          7                  211.26 

          8                  247.28 

          9                  278.2 
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--- indicates test not performed 

Sl.no Load   

in     kg 

Bending 

Stress in 

MPa 

     Mode of Corrosion No. of cycles to failure (N) 

1. 

 

 

    4 

 

 

 120.72 

 

 

Uncorroded 

Dipped for 100 hours 

CV method 

Did not break upto 1.5x10
7 

                   --- 

                     --- 

2. 

 

 

    5 

 

 

  150.9 

 

 

Uncorroded 

Dipped for 100 hours 

CV method 

                 0.6x10
6 

    0.9x10
7 

        --- 

3. 

 

 

    6 

 

 

  181.08 

 

 

Uncorroded 

Dipped for 100 hours 

CV method 

    1.8x10
7 

                0.31x10
7 

                2.7x10
7
 

4. 

 

 

    7 

 

 

  211.26 

 

 

Uncorroded 

Dipped for 100 hours 

CV method 

     8.9x10
6 

 0.78x10
6
 

                     --- 

5. 

 

 

    8 

 

 

  247.28 

 

 

Uncorroded 

Dipped for 100 hours 

CV method 

                0.92x10
6 

                  0.6x10
6 

                     --- 

6.     9   271.62 Uncorroded 

Dipped for 100 hours 

CV method 

                  0.88x10
6 

                     --- 

                     --- 
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The graph below shows a plot of stress in MPa on y-axis and number of cycles to 

failure (N) on x-axis. Series 1 indicates uncorroded samples and series 2 indicates 

samples corroded by dipping specimens in saline solution for 100 hours. 

  

 

 

From the graph it is clear that fatigue life of corroded samples is much lower than 

that of uncorroded samples. However due to unforeseen circumstances the testing 

of specimens corroded by CV method could not be completed. Also as the stress 

increased the number of cycles to failure for a given set of conditions was 

considerably lowered. 
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4.5 Fractographic Analysis 

The fractured and the corroded surfaces were observed through SEM so study the 

effect of pit sizes on failure and to determine the point of initiation of crack which 

ultimately lead to failure. 
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The above figure shows the fractograph of a corroded specimen. Here scratches 

are observed on the surface which may be produced during the rubbing action of 

specimen pieces after breakage. Hence no fractographic evidence is observed. 
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The previous figure shows edge of a notched specimen which has been corroded. Here 

volcano mouth type features are observed which indicates galvanic corrosion. 

Composition analysis of this corroded specimen showed the following result:  

 

 

 

 

Here the chloride ions are present due to deposition on surface of Al. Fe,Si,C,Mn exists 

as impurities which further indicate galvanic corrosion. Rest may be impurities or 

corrosion products. 
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The above figure shows the length and width of the specimen subjected to corrosion. The 

corrosion pit appears to be elliptical in shape. The length of minor axis of the ellipse itself 

may be considered as depth of corrosion pit.  
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The previous figure roughly indicates the area of crack initiation. The distance to which 

this area extends is about 220µm.This is the required distance to calculate the Stress 

Intensity Factor. 

4.6 Microscopy: 

Here the corroded samples were observed under low magnification to observe the 

corrosion pits. The samples were corroded by CV method by applying different sweep 

rates of 2.4mV/s and 4.8mV/s. 

The specimen corroded with sweep rate of 2.4mV/s showed about 10 pits/mm and 

26pits/mm
2
 having a maximum size of about 0.2mm. The specimen corroded with sweep 

rate of 4.8mV/s showed about 22pits/mm
2
 having a maximum size of 0.1mm. 
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          5. CONCLUSION: 

1. The number of cycles to failure for a corroded sample is lower than that of an 

uncorroded sample. 

2. The number of cycles to failure for specimen corroded by dipping is greater 

than that of those corroded by forced corrosion method. 

3. No clear fractographic evidence was obtained in SEM analysis as the 

fractured surface might have been damaged due to the rubbing action. 

4. Compositional analysis showed certain impurities which might have formed 

as a result of galvanic corrosion. 

5. Volcano mouth type features on the surface indicates galvanic corrosion 

which has occurred. 

6. The number of pits per unit area for specimen corroded by a lower sweep rate 

is greater than that of specimen corroded with higher sweep rate. This is due 

to more defined corrosion taking place in the former. 

7. At higher values of stresses the effect of corrosion is much reduced than that 

at lower stress values. 

8. The number of pits formed by open circuit corrosion are less in number and 

shallower than that formed by forced corrosion. 

Future work: 

1. Study the effect of temperature on pit size. 

2. Corrosion effect on crack growth. 

3. Testing under corrosive environment. 

4. Determination of Stress Intensity Factor through pit depth. 

5. Life estimation by corrosion at different temperatures. 
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