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    ABSTRACT 
 

 A multiplier is one of the key hardware blocks in most digital and high 

performance systems such as FIR filters, digital signal processors and microprocessors 

etc. With advances in technology, many researchers have tried and are trying to design 

multipliers which offer either of the following- high speed, low power consumption, 

regularity of layout and hence less area or even combination of them in multiplier. Thus 

making them suitable for various high speed, low power, and compact VLSI 

implementations. However area and speed are two conflicting constraints. So improving 

speed results always in larger areas. So here we try to find out the best trade off solution 

among the both of them. 

 Generally as we know multiplication goes in two basic steps. Partial product and 

then addition. Hence in this paper we have first tried to design different adders and 

compare their speed and complexity of circuit i.e. the area occupied. And then we have 

designed Wallace tree multiplier then followed by Booth’s Wallace multiplier and have 

compared the speed and Power consumption in them. 

 While comparing the adders we found out that Ripple Carry Adder had a smaller 

area while having lesser speed, in contrast to which Carry Select Adders are high speed 

but posses a larger area. And a Carry Look Ahead Adder is in between the spectrum 

having a proper trade off between time and area complexities. 

  After designing and comparing the adders we turned to multipliers. Initially we 

went for Parallel Multiplier and then Wallace Tree Multiplier. In the mean time we learned 

that delay amount was considerably reduced when Carry Save Adders were used in 

Wallace Tree applications. Then we turned to Booths Multiplier and designed Radix-4 

modified booth multiplier and analyzed the performance of all the multipliers. 

 After that we turned to different methods of power optimization, of which we 

could only complete a few like we went for designing different recoding schemes and 

their corresponding partial product generator scheme. After that we designed these 

recoders and PP generators and found out the time delays and area covered and power 

consumed by each scheme. We took into consideration that since all the PP generators 

take a huge amount of area we need to go for simplest of the designs for them and also 

side by side we need to ensure that we don’t have much switching actions in the circuit. 
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After this we even modified one of the recoding schemes to lower the delay and power 

required by the circuit.  

 The result of our project helps us to make a proper choice of different multipliers 

in fabricating in different arithmetic units as well as making a choice among different 

adders in different digital applications according to requirements. All the programs and 

results have been given in the following sections. 

 

 Further work on Low Power Techniques on different multipliers needs to be done 

in order to make us choose a proper multiplier in accordance with the requirements by 

making the best possible trade off choice between Speed and Power in different 

circumstances. 
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 1.1 MOTIVATION 
 

  As the scale of integration keeps growing, more and more sophisticated 

 signal processing systems are being implemented on a VLSI chip.These  signal 

 processing applications not only demand great computation capacity but   also 

 consume considerable amount of energy. While performance and Area remain 

 to be the two major design tolls, power consumption has become a critical 

 concern in today’s VLSI system design[]. The need for low-power VLSI  system 

 arises from two main forces. First, with the steady growth of operating frequency 

 and processing capacity per chip, large currents have to be delivered and 

 the heat due to large power consumption must be removed by proper cooling 

 techniques. Second, battery life in portable electronic devices is limited. Low 

 power design directly leads to prolonged operation time in these portable 

 devices. 

  Multiplication is a fundamental operation in most signal processing 

 algorithms. Multipliers have large area, long latency and consume considerable 

 power. Therefore low-power multiplier design has been an important part in low-

 power VLSI system design. There has been extensive work on low-power 

 multipliers at technology, physical, circuit and logic levels. A system’s 

 performance is generally determined by the performance of the multiplier 

 because the multiplier is generally the slowest element in the system. 

 Furthermore, it is generally the most area consuming. Hence, optimizing the 

 speed and area of the multiplier is a  major design issue. However, area and 

 speed are usually conflicting constraints so that improving speed results mostly 

 in larger areas. As a  result, a whole spectrum of multipliers with different area-

 speed constraints has been designed with fully parallel. 

 

  Fully Parallel Multipliers at one end of the spectrum and fully serial 

 multipliers at the other end. In between are digit serial multipliers where single 

 digits consisting of several bits are operated on. These multipliers have 

 moderate performance in both speed and area. However, existing digit serial 

 multipliers have been  plagued by complicated switching systems and/or 

 irregularities in design. Radix 2^n multipliers which operate on digits in a parallel 
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 fashion instead of bits bring  the pipelining to the digit level and avoid most of’ 

 the above problems. These structures are iterative and modular. The pipelining 

 done at the digit level  brings  the benefit of constant operation speed irrespective 

 of the size of’ the multiplier. The clock speed is only determined by the digit size 

 which  is already fixed before the design is implemented. 

 

 1.2 POWER OPTIMIZATION 
   
  Power refers to number of Joules dissipated over a certain amount of 

 time whereas energy is the measure of the total number of Joules dissipated by a 

 circuit.  

  In digital CMOS design, the well-known power-delay product is 

 commonly used to assess the merits of designs. In a sense, this can be shown 

 as power × delay = (energy/delay) × delay = energy, which implies delay is 

 irrelevant []. 

 

 1.3 LOW-POWER MULTIPLIER DESIGN 
   
  Multiplication consists of three steps: generation of partial products or 

 (PPG), reduction of partial products (PPR), and finally carry-propagate addition 

 (CPA).In general there are sequential and combinational multiplier 

 implementations. We only consider combinational case here because the scale 

 of integration now is large enough to accept parallel multiplier implementations in 

 digital VLSI systems. Different multiplication algorithms vary in the approaches 

 of PPG, PPR, and CPA. For PPG, radix-2 is the easiest. To reduce the number 

 of PPs and consequently reduce the area/delay of PP reduction, one operand is 

 usually recoded into high-radix digit sets. The most popular one is the radix-4 

 digit set   {-2,-1, 0, 1, 2}. For PPR, two alternatives exist: reduction by rows , 

 performed by an array of adders, and reduction by columns, performed by an 

 array of counters. The final CPA requires a fast adder scheme because it is on 

 the critical path. In some cases, final CPA is postponed if it is advantageous to 

 keep redundant results from PPG for further arithmetic operations. 
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  1.4 LANGUAGE AND TOOLS USED 

 
  We used XILINX ISE v 10.2 for our programming. We considered  VHDL 

 as our primary language. For test bench waveforms also we also used  Xilinx 

 to write our own test benches. Model Synthesis Map report all features in  Xilinx 

 helped us a lot.  

 

  We used Xilinx’s XPower Estimator (XPE) tool in order to calculate 

 power consumed in any arithmetic circuit. For calculation of power using Xilinx’s 

 XPE we need to generate the map report file in XILINX which will be saved in 

 the same directory with an extension “.mrp”. But in the later part of the project we 

 used SYNOPSIS tool for finding out Power and delay and Area calculations 

  

1.5 RESEARCH APPROACH 
  
 The basic motive of our project was to study and develop an Efficient Fast 

and Low Power Multiplier. As the name suggests we had to go for faster and low 

power factor optimization simultaneously. We know that the basic building block 

of a multiplier is ADDER circuit. Hence we turned our focus into The ADDERS 

first. We studied the area occupied and the time delay consumed by different 

adders and found out a proper relation between time and area complexity of all 

the adders under consideration. We generated a factor Area-Delay product 

which helped us to properly understand the Area and Delay trade-off perfectly 

and hence choose the best adder for appropriate circumstances. 

  

  Then we turned our focus into Multipliers. In Multipliers we studied 

 different multipliers writing programs, verifying waveforms and then finally 

 calculating number of CLBs, LUTs required along with Power consumed in the 

 circuit. After knowing all this we also calculated delay for different multipliers 

 which helped us to determine the best multiplier. Radix-4 Booth Multiplier was 

 best Multiplier among all with less power consumption and proper Area Delay 

 trade-off. Our  future work will be to optimize power Consumed by different 

 multipliers there by reducing number of gates used and area occupied by them.  
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THE ADDERS 
 
 Addition is the most common and often used arithmetic operation on 

microprocessor, digital signal processor, especially digital computers. Also, it serves as 

a building block for synthesis all other arithmetic operations. Therefore, regarding the 

efficient implementation of an arithmetic unit, the binary adder structures become a very 

critical hardware unit.  

 

 In any book on computer arithmetic, someone looks that there exists a large 

number of different circuit architectures with different performance characteristics and 

widely used in the practice. Although many researches dealing with the binary adder 

structures have been done, the studies based on their comparative performance 

analysis are only a few. 

 

 In this project, qualitative evaluations of the classified binary adder architectures 

are given. Among the huge member of the adders we wrote VHDL (Hardware 

Description Language) code for Ripple-carry, Carry-select and Carry-look ahead to 

emphasize the common performance properties belong to their classes. In the following 

section, we give a brief description of the studied adder architectures.  

 
 With respect to asymptotic delay time and area complexity, the binary adder 

architectures can be categorized into four primary classes as given in Table 2.1. The 

given results in the table are the highest exponent term of the exact formulas, very 

complex for the high bit lengths of the operands.  

 

 The first class consists of the very slow ripple-carry adder with the smallest area. 

In the second class, the carry-skip, carry-select adders with multiple levels have small 

area requirements and shortened computation times. From the third class, the carry-look 

ahead adder and from the fourth class, the parallel prefix adder represents the fastest 

addition schemes with the largest area complexities.  
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Complex 

(A) 

Delay 

(T) 

Product 

(AxT) 

Adder Class    

Schemes 

O(n) 

 

O(n) 

 

 

O(n) 

O(n) 

 

O(n
1/*1+1

) 

 

 

O(logn) 

O(n2) 

 

O(n
1+2/+1

) 

 

 

O(nlogn) 

Ripple-carry (1) 

 

Carry select (2) 

Carry-skip   (2) 

Carry-Inc    (2) 

Carry look ahead(3) 

 

 *1 denotes the LEVEL number 

     TABLE 2.1 

   Categorization Of adders w.r.t delay time and capacity 
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2.1 Ripple Carry Adders (RCA) 
  

  The well known adder architecture, ripple carry adder is composed of cascaded 

full adders for n-bit adder, as shown in figure.1.It is constructed by cascading full 

adder blocks in series. The carry out of one stage is fed directly to the carry-in of the 

next stage. For an n-bit parallel adder it requires n full adders. 

 

 

FIGURE 2.1 A 4-bit Ripple Carry Adder 
 Not very efficient when large number bit numbers are used. 

 Delay increases linearly with bit length. 

2.1.1 Delay 
 

  Delay from Carry-in to Carry-out is more important than from A to carry-out or 

carry-in to SUM, because the carry-propagation chain will determine the latency of 

the whole circuit for a Ripple-Carry adder. Considering the above worst-case signal 

propagation path we can thus write the following equation. 

  For a k-bit RCA worst case path delay is 

   TRCA-k bit   =   TFA(x0, y0   c0)   +   (k-2)* TFA(Cin Ci)     +   TFA(Cin   Sk-1)   . 

 2.1.2    Logic equations 

   

    gi      =   ai bi     p    =   ai xor bi. 

   Ci+1   =   gi   +   pici    Si   =   pi   xor    ci. 

  2.1.3   Complexity and Delay for n-bit RCA structure 

 

ARCA = O (n) = 7n 

TRCA = O (n) = 2n 
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2.2 Carry Select Adders (CSLA) 
  

  In Carry select adder scheme, blocks of bits are added in two ways: one 

assuning a carry-in of 0 and the other with a carry-in of 1.This results in two 

precomputed sum and carry-out signal pairs (s0
i-1:k , c

0
i ; s

1
i-1:k , c

1
i) , later as the 

block’s true carry-in (ck) becomes known , the correct signal pairs are selected. 

Generally multiplexers are used to propagate carries.  

 

  
 
  FIGURE 2.2 A Carry Select Adder with 1 level using n/2- bit RCA 

 Because of multiplexers larger area is required. 

 Have a lesser delay than Ripple Carry Adders (half delay of RCA). 

 Hence we always go for Carry Select Adder while working with smaller no 

of bits. 

 2.2.1 Logic equations 

       _   

   si-1:k   =   ck  s
0
i-1:k    +    ck  s

1
i-1:k       

         _ 

   ci          =   ck  c
0
i    +   ck  c

1
i     

 
  2.2.2 Complexity and Delay for n-bit CSLA structure 

 

     ACSLA = O (n) = 14n 

           TCSLA = O (n
1/*l+1

) = 2.8n
1/2

. 
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2.3 Carry Look Ahead Adders (CLA) 
  

  Carry Look Ahead Adder can produce carries faster due to carry bits generated in     

parallel by an additional circuitry whenever inputs change. This technique uses carry 

bypass logic to speed up the carry propagation.  

 

   

 
 

     
    FIGURE 2.3 4-BIT CLA Logic equations 

 
 Let ai and bi be the augends and addend inputs, ci the carry input, si and ci+1 , the 

sum and carry-out to the ith bit position. If the auxiliary functions, pi and gi called the 

propagate and generate signals, the sum output respectively are defined as follows. 

   
    pi      =   ai   +    bi     gi      =   ai bi   

    si          =   ai   xor   bi   xor    ci    ci+1   =   gi   +   pici  . 

 As we increase the no of bits in the Carry Look Ahead adders, the complexity 

increases because the no. of gates in the expression Ci+1 increases. So 

practically its not desirable to use the traditional CLA shown above because it 

increase the Space required and the power too.   

 Instead we will use here Carry Look Ahead adder (less bits) in levels to 

create a larger CLA. Commonly smaller CLA may be taken as a 4-bit CLA. 

So we can define carry look ahead over a group of 4 bits. Hence now we 

redefine terms carry generate as [Group Generated Carry] g[ i,i+3 ] and carry 

propagate as  [Group Propagated Carry] p[ i,i+3 ] which are defined below. 

Adder 

G3   P3  S3

  

CLA Circuit 

 

Adder 

G2   P2  S2

  

Adder 

G1   P1  S1

  

Adder 

G0   P0  S0
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 2.3.1 Redefined Equations: 

      g[ i,i+3 ]    =   gi+3  +  gi+2 pi+3  +  gi+1 pi+2 pi+3  +  g[i pi+1 pi+2 pi+3  

        p[ i,i+3 ]    =    pi pi+1 pi+2 pi+3  

 Now the modified block diagram for the Carry Look ahead Adder (8-bit) using 

levels (of 4-bit CLA) will be as block diagram below. 

 

 

FIGURE 2.4 8-BIT CARRY LOOK AHEAD GENERATOR (using 2-bit CLA) 

 

2.3.2  Complexity and Delay for n-bit CLA structure 

 

ACLA = O (n) = 14n 

              TCLA = O (log n) = 4 log2n. 
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2.4 ANALYSIS OF ADDERS 

 
 In our project we compared 3- different adders Ripple Carry Adders, 

Carry Select Adders and the Carry Look Ahead Adders. The basic purpose of 

our experiment was to know the time and power trade-offs between different 

adders whish will give us a clear picture of  which adder suits best in which type 

of situation during design process. Hence below we present both the theoretical 

and practical comparisons of all the three adders whish were taken into 

consideration. 

 

  

Adder Name Complex (Ax) Area for n-bit 

Ripple Carry Adder(RCA) O(n) 7n 

Carry Select Adder(CSLA) O(n) 14n 

Carry Look Ahead Adder(CLA) O(n) 4n 

 

 Table 2.1 Theoretical Comparison of Area Occupied (Ax) 

 

 

Adder Name Complex (T) Delay for n-bit 

Ripple Carry Adder(RSA) O(n) 2n 

Carry Select Adder(CSLA) O(n
1/*l+1

) 2.8(n)
1/2 

Carry Look Ahead Adder(CLA) O(log 2n) 4log2n 

  

 Table 2.2 Theoretical Comparison of Time Required (T) 

 

Adder Name Delay for 

n-bit 

Area for 

n-bit 

Area Delay 

Product 

Ripple Carry Adder(RCA) 2n 7n 14n
2 

Carry Select Adder(CSLA) 2.8(n)
1/2 

14n 39.6(n)
3/2

 

Carry Look Ahead Adder(CLA) 4log2n 4n 16n log2n 

 



 23 

 Table 2.3 Theoretical Area Delay Product (AxT) 

Adder Name Complex 

(A) 

Delay for 8-bit) 

Ripple Carry Adder(RCA) O(n) 20.8 ns 

Carry Select Adder(CSLA) O(n
1/*l+1

) 12.8ns
 

Carry Look Ahead 

Adder(CLA) 

O(log 2n) 17.6ns 

Carry Look Ahead Adder 

(using 2 4-bits in levels) 

 14.8ns 

(close to CSLA) 

    

  Table 2.4 Comparison Of Time Required (Simulated Value) 

 

 

2.5 DISCUSSIONS 

   
 As can be seen above we have stated the theoretical comparison of 

AREA required and both the theoretical and simulated value of TIME required. 

The values stated above are the values for 8-bit adders. So analyzing the above 

facts we reached at the following conclusions about different adders and 

intelligent use of them in different circumstances according to the SPACE TIME 

trade-off. The  results can be summarized as follows. 

 

 Regarding the circuit area complexity in the adder architectures, the 

ripple-carry adder (RCA) in the first class is the most efficient one, but 

the carry select adder (CSLA) in the fourth class with highest complexity 

is the least efficient one. 

 

 Considering the circuit delay time, Carry Select Adder (CSLA) is the 

fastest one for every n-bit length, so has the shortest delay. Otherwise, 

Ripple Carry Adder (RCA) is the slowest one, due to the long carry 

propagation.  
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 We defined a term Area-Delay Product which gave us the clear picture 

of the space-time tradeoff. It is worthy to note that while we consider all 

the adders discussed above Ripple Carry adders and Carry Select 

Adders are the two sides of the spectrum. Because, while Ripple Carry 

Adders have a smaller area and lesser speed, in contrast to which 

Carry Select adders have high speed (nearly twice the speed f Ripple 

Carry Adders) and occupy a larger area. But Carry Look Ahead Adder 

(CLA) has a proper balance between both the Area occupied and Time 

required. Hence among the three, Carry Look Ahead Adder has the 

least AREA DELAY PRODUCT. Hence we should use Carry Look ahead 

Adders when it comes to optimization with both Area and Time. For an 

instance, the last stage of the Wallace tree Adder in Booth multiplier is a 

Carry look Ahead Adder.  
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3.1 THE WALLACE TREE MULTIPLIER 
 

 
 The Wallace tree multiplier is considerably faster than a simple array multiplier 

because its height is logarithmic in word size, not linear. However, in addition to the 

large number of adders required, the Wallace tree’s wiring is much less regular and 

more complicated. As a result, Wallace trees are often avoided by designers, while 

design complexity is a concern to them. 

 

 Wallace tree styles use a log-depth tree network for reduction. Faster, but 

irregular, they trade ease of layout for speed. Wallace tree styles are generally 

avoided for low power applications, since excess of wiring is likely to consume extra 

power. 

 

 While subsequently faster than Carry-save structure for large bit multipliers, the 

Wallace tree multiplier has the disadvantage of being very irregular, which 

complicates the task of coming with an efficient layout. 

 

 The Wallace tree multiplier is a high speed multiplier. The summing of the partial 

product bits in parallel using a tree of carry-save adders became generally known as 

the “Wallace Tree”. Three step processes are used to multiply two numbers. 

 

 Formation of bit products. 

 

 Reduction of the bit product matrix into a two row matrix by means of a carry 

save adder. 

 

 Summation of remaining two rows using a faster Carry Look Ahead Adder 

(CLA). 
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Figure 3.1 Wallace Tree Block Diagram 

   
 In order to design an n-bit Wallace tree Multiplier (Generic: =N) an 

algorithm was derived from the flow diagram developed below. The flow diagram 

below shows the intermediate state reductions of the multipliers are being done 

by Carry save adders and half adders while the final step additions being done 

by a Carry Look Ahead Adder. The flow diagram was done in Microsoft Excel 

sheet and Paint. 

 After generating the flow diagram for 8-bit × 8-bit we generalized the 

algorithm for n-bit and hence we designed a GENERIC WALLACE TREE. The    

Code for the same is in Appendix for programs. The algorithm developed for 

designing the Generic Wallace tree is given below. 
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Figure 3.2   8-bit × 8-bit Wallace Tree Multiplier (Logarithmic Depth Hierarchy) 
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3.1.1 Algorithm For Wallace Tree Multiplier (Generic: N) 

 
 

  Input A: in STD_LOGIC_VECTOR (N-1 downto 0); 

            Input B: in STD_LOGIC_VECTOR (N-1 downto 0); 

            Output C: out STD_LOGIC_VECTOR (2*N-1 downto 0)); 

 

  ------Let half_adder & full_adder be two components 

  type array_signal is array(N downto 1) of      

   STD_LOGIC_VECTOR(2*N-1 DOWNTO 0); 

 

  signal t,m,s :array_signal; 

  signal p,d :STD_LOGIC_VECTOR(2*N-1 downto 0); 

 

  for I in 0 to N-1  

   for J in 0 to N-I-1  

    t(I+1)(I+J)<=A(J) and B(I); 

   end 

  end 

  for I in N-1 downto 0  

   for J in N-I to N-1  

    t(N-I)(I+J)<=A(J) and B(I); 

   end  

  end     

 

  ---Initial Half adder additions    

HA1: half_adder port map(t(N-2)(N),t(N-1)(N),s(N-2)(N),m(N-1)(N+1)); 

HA2: half_adder port map(t(N-1)(N-1),t(N)(N-1),m(N-1)(N-1),m(N-1)(N)); 

 

for I in 1 to N-2  

 for J in (-I) to (I)  

  if(I < N-2)  

   if(J=I or J=(-I))    

full_adder port map(m(N-I)(N+J),t(N-I-1)(N+J),t(N-I-2)(N+J), 

    s(n-I-2)(N+J),m(N-I-1)(N+J+1)); 
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    end   

   if((J /= I and J /= (-I))) 

full_adder port map(m(N-I)(N+J),s(N-I-1)(N+J),t(N-I-2)(N+J), 

      s(n-I-2)(N+J),m(N-I-1)(N+J+1)); 

    end 

   end  

  if(I = N-2) 

   if (J = I)   

full_adder port map(m(N-I)(N+J),t(N-I-1)(N+J),d(N+J),p(N+J),p(N+J+1)); 

   end  

   if (J = (-I))   

 full_adder port map(m(N-I)(N+J),t(N-I-1)(N+J),d(N+J),p(N+J),d(N+J+1)); 

    end  

   if ((J/=I and J/=(-I)))  

 full_adder port map(m(N-I)(N+J),s(N-I-1)(N+J),d(N+J),p(N+J),d(N+J+1)); 

       end  

      end  

  end  

       if(I < N-2)  

 half_adder port map(t(N-I)(N-I-1),t(N-I-1)(N-I-1),m(N-I-1)(N-I-1), 

      m(n-I- 1)(N-I)); 

      end  

      if(I = N-2) generate 

 half_adder port map(t(N-I)(N-I-1),t(N-I-1)(N-I-1),p(N-I-1),d(N-I)); 

  end  

   end  

p(0)<=t(1)(0); 

C<=p; 
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3.2 THE BOOTH’S MULTIPLIER 
 
  Though Wallace Tree multipliers were faster than the traditional Carry 

Save Method, it also was very irregular and hence was complicated while drawing 

the Layouts. Slowly when multiplier bits gets beyond 32-bits large numbers of logic 

gates are required and hence also more interconnecting wires which makes chip 

design large and slows down operating speed 

 Booth multiplier can be used in different modes such as radix-2, radix-4, radix-8 

etc. But we decided to use Radix-4 Booth’s Algorithm because of number of 

Partial products is reduced to n/2.  

 

 

 

 3.2.1 BOOTH MULTIPLICATION ALGORITHM (radix – 4) 
  
 

 One of the solutions realizing high speed multipliers is to enhance 

parallelism which helps in decreasing the number of subsequent calculation 

stages. The Original version of Booth’s multiplier (Radix – 2) had two drawbacks. 

  

 The number of add / subtract operations became variable and hence 

became inconvenient while designing Parallel multipliers. 

 

  The Algorithm becomes inefficient when there are isolated 1s .   

 

 These problems are overcome by using Radix 4 Booth’s Algorithm which 

can scan strings of three bits with the algorithm given below. The design of 

Booth’s multiplier in this project consists of four Modified Booth Encoded (MBE), 

four sign extension corrector, four partial product generators (comprises of 5:1 

multiplexer) and finally a Wallace Tree Adder. This Booth multiplier technique is 

to increase speed by reducing the number of partial products by half. Since an 8-

bit booth multiplier is used in this project, so there are only four partial products 

that need to be added instead of eight partial products generated using 

conventional multiplier. The architecture design for the modified Booths Algorithm 

used in this project is shown below. 
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Figure 3.3 Architecture of designed Booth Multiplier in the Project.  

 

 3.2.2  MODIFIED BOOTH ENCODER (MBE) 
 
   Modified Booth encoding is most often used to avoid variable size partial 

 product arrays. Before designing a MBE, the multiplier B has to be converted into 

 a Radix-4 number by dividing them into three digits respectively according to 

 Booth Encoder Table given afterwards. Prior to convert the multiplier, a zero is 

 appended into the Least Significant Bit (LSB) of the multiplier. The figure above 

 shows that the multiplier has been divided into four partitions and hence that 

 mean four partial products will be generated using booth multiplier approach I

 nstead of eight partial products being generated using conventional multiplier. 

 

  Zn   =   -2* Bn+1   +   Bn   +   Bn-1 

  

  Lets take an example of converting an 8-bit number into a Radix-4 

 number. Let the number be -36 = 1 1 0 1 1 1 0 0. Now we have to append a ‘0’ to 

Bn+1    Bn      Bn-1 

 

MBE(x4) 

Multiplicand A (8-bits) 

PRODUCT GENERATOR 

X0 X1 X-1 X2 X-2 

5 TO 1 MUX 

 (x4) 

A7     Bn+1      Bn        Bn-1 

 

SIGN EXTENSION   

CORRECTOR 

 (x4) 

    PP1     PP2     PP3     PP4 

 

WALLACE TREE ADDER 

OUTPUT 
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 the LSB. Hence the new number becomes a 9-digit number, that is 1 1 0 1 1 1 0 0 

 0. This is now further encoded into Radix-4 numbers according to the following 

 given table. Starting from right we have 0*Multiplicand, -1*Multiplicand, 

 2*Multiplicand, -1*Multiplicand.  

 

 

Bn+1 Bn Bn-1 Zn Partial Product 1M 2M 3M 

0 0 0 0 0 1 1 0 

0 0 1 1 1×Multiplicand 0 1 0 

0 1 0 1 1×Multiplicand 0 1 0 

0 1 1 2 2×Multiplicand 1 0 0 

1 0 0 -2 -2×Multiplicand 1 0 1 

1 0 1 -1 -1×Multiplicand 0 1 1 

1 1 0 -1 -1×Multiplicand 0 1 1 

1 1 1 0 0 1 1 0 

 
     Table 3.1 
 Modified Booth Encoder’s table to generate M, 2M, 3M control signal 

 
    Table 3.1 shows Bn+1, Bn and Bn-1   which are three bits wide binary 

 numbers of the multiplier Bin which Bn+1 is the most significant bit (MSB) and 

 Bn-1 is the least significant bit (LSB). Zn is representing the Radix-4 number of the 

 3-bit binary multiplier number. For example, if the 3-bit multiplier value is “111”, 

 so it means that multiplicand A will be 0.And it’s the same for others either to 

 multiply the multiplicand by -1, -2 and so on depending on 3 digit number. And 

 thing to note is generated numbers are all of 9-bit. 

   

   From the table 4.1, the M, 2M and 3M are the elect control signals for the 

 partial product generator. It will determine whether the multiplicand is multiplied 

 by 0,-1, 2 or -2. M and 2M are designed as an active low circuit which means if 

 let’s say the multiplicand should be multiplied by 1 then the M select signal will 

 be set to low “0” whereas If the multiplicand should be multiplied by 2 then the 

 2M select signal will be set to low “0”. The 3M is representing the sign bit  control 

 signal and its active high circuit which means if the multiplicand should be 

 multiplied by -1 or -2, then the sign, 3M  will be set to high “1”. 
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3.2.3 PARTIAL PRODUCT GENERATOR (PPG) 
  

 

 
  Partial product generator is the combination circuit of the product 

 generator and the 5 to 1 MUX circuit. Product generator is designed to produce 

 the product by multiplying the multiplicand A by 0, 1, -1, 2 or -2. A 5 to 1 MUX 

 is designed to determine which product is chosen depending on the M, 2M, 3M 

 control signal which is generated from the MBE. For product generator, multiply 

 by zero means the multiplicand is multiplied by “0”.Multiply by “1” means the 

 product still remains the same as the multiplicand value. Multiply by “-1” means 

 that the product is the two’s complement form of the number. Multiply by “-2” is 

 to shift left one bit the two’s complement of the multiplicand value and multiply 

 by “2” means just shift left the multiplicand by one place. 

 

 

 

 

 

3.2.4  SIGN EXTENSION CORRECTOR 
   
  Sign Extension Corrector is designed to enhance the ability of the booth 

 multiplier to multiply not only the unsigned number but as well as the signed 

 number. As shown in Table 4.2 when bit 7 of the multiplicand A(A7) is 

 zero(unsigned number) and Bn+1 is equal to one, then sign E will have one value 

 (become signed number for resulted partial product). It is the same when the bit 

 7 of the multiplicand A (A7) is one (signed number) and Bn+1 is equal to zero, the 

 sign E will have a new value. However when both the value of A7 and Bn+1 are 

 equal either to zero or one, the sign E will have a value zero(unsigned number). 

 For the case when all three bits of the multiplier value Bn+1, Bn and Bn-1 are equal 

 to zero or one, the sign E will direct have a zero value independent to the A7 

 value. The table for the Sign Extension Corrector is shown below. 
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TABLE 3.2 (A) Sign E when A& is Zero 

 

A7 Bn+1 Bn Bn-1 E 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 0 

 

   

 

TABLE 3.2 (B) Sign E when A& is One 

 

A7 Bn+1 Bn Bn-1 E 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 0 

 

 3.2.5 WALLACE TREE ADDER 

   

  Wallace tree has been used in this project in order to accelerate 

 multiplication by compressing the number of partial products. This design is done 

 using half adders; Carry save adders and the Carry Look Ahead adders to speed 

 up the multiplication. As shown in the figure below, since there are four sign 

 extension values generated namely sign 1E, 2E, 3E and  4E for the partial product 

 PP1, PP2, PP3 and PP4 respectively. The arrangement of total four partial 

 product s is shown in the figure below. The second partial product had to be 

 shifted left by two bits before adding to the first partial product. Hence the third 

 will be shifted left by four where as for fourth it will be shifted left by six. Hence 

 after proper arrangement all the four partial products will be added along with the 

 sign extension. 
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Figure 3.4  Partial Product Initial Arrangement 

 

 

 
 

Figure 3.5  Wallace Tree Multiplication Method 

   
  First of all, the partial product initial arrangement is rearranged into first 

 stage as shown in figure above. It can be seen like a tree shape here. The stage 

 from PP36 till 1 from the 4th partial product is moved to the first row and 3BE  

 together with 1 is moved up to the row partial product 2. After rearrangement, 

 the first three rows will be added using half adder and carry save adders. The 

 fourth partial product will not be added first but will be sent directly to the second 

 stage. Hence, there total up to nine carry save adders and four half adders. 

    

  For second stage, the summation of the first half adders in right hand side 

 of the first stage is examined. After the summation is done to add up PP02 and 

 PP10, The SUM (1S0) will be generated in the same column as the second stage 

 shows where as the CARRY (1C0) will be shift left into next level of 

 summation. In this stage, the bit PP30-PP35 is finally being added using carry 

 save adder. At this stage, bit 4BE is also being added by using half adders. 

 Hence, there are total six carry save adders and seven half adders needed in this 

 stage. 
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   In third stage, it is a final stage adder and since there are only remaining   

 two inputs to be added instead of three, thus carry look ahead is used to 

 perform the final summation based on the Sum and Cout signal in which had 

 been propagated by the second stage. 13-bit carry look ahead had been 

 designed to be used in this Wallace tree final stage. The bit PP00 and PP01 are 

 directly sent to the output without going through any gate level. Hence, Wallace 

 tree adder will have a 17 bit length output including the carry from the final bit. 

 

3.2.6 BOOTH MULTIPLIER BY AN EXAMPLE 

   
  Let us see an example demonstrating the whole procedure of Booth 

 multiplier (Radix -4) using Wallace Tree and Sign Extension Correctors.Let us 

 take Example of calculation of (34×-42). 

 

  Multiplicand A = 34 = 00100010 

  Multiplier B = -42 = 11010110 (2’s Complement form) 

   

  A×B = 34 × -42 = -1428 

 

  First of all, the multiplier had to be converted into radix number as in 

 Figure below. The first partial product determined by three digits LSB of 

 multiplier that are B1, B0 and one appended zero. This 3 digit number is 100 

 which mean the multiplicand A has to multiply by -2.To multiply by -2, the 

 process takes two’s complement of the multiplicand value and then shift left one 

 bit of that product. Hence, the first partial product is 110111100. All of the partial 

 products will have nine bits length. 

 

  Next, the second partial product is determined by bits B3, B2, B1 which 

 indicated have to multiply by 2. Multiply by 2 means the multiplicand value has 

 to shift left one bit. So, the second partial product is 001000100. The third partial 

 product is determined by bits B5, B4, B3 in which indicated have to multiply by 

 1. So, the third partial product is the multiplicand value namely 000100010. The 

 forth partial product is determined by bits B7, B6, B5 which indicated have to 

 multiply by -1. Multiply by -1 means the multiplicand has to convert to two’s 

 complement value. So, the forth partial product is 111011110. 
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  Figure below shows the arrangement for all four partial products to be 

 added using Wallace tree adder method. 1E, 1BE 2E, 3E and 4E is obtained 

based  on the Table 4.2. The way on how this sign E is arranged has been 

shown in Wallace Tree Multiplication Method above. The Wallace tree for the 

Example is given below. 

 

 
 

Figure 3.6  Method showing How Partial Products Should Be Added 

 

To prove the output result is correct: 

 11111101001101100 = 

  20(0) + 21(0) + 22(1) + 23(1) + 24(0) + 25(1) + 26(1) +  27(0)   

  + 29(1) + 210(0) + 211(-1) 

 = 4 + 8 + 32 + 64 + 512 – 2048 

 = -1428 

 

 

 

3.4 ANALYSIS OF MULTIPLIERS 

 In our project we had to compare different multiplier on the basis of their 

speed and power parameters. We used Xilinx ISE version 10.2 for our 

simulation of different multipliers and knowing their delays. We analyzed Array 

Multipliers, Wallace Tree Multipliers and Booth Multiplier (Radix-2 and Radix-4) 

and analyzed their speed and power consumption using the above.  
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PARAMETERS VALUES 

Number Of Slices 96 

Number Of 4-input LUTs 178 

Number Of Bonded Input 32 

Number Of Bonded Output 32 

Power 134mW 

 

    Table 3.3 Array Multiplier 

   

PARAMETERS VALUES 

Number Of Slices 72 

Number Of 4-input LUTs 130 

Number Of Bonded Input 32 

Number Of Bonded Output 32 

Power 124mW 

 

    Table 3.4 Booth Multiplier (Radix – 2) 

    

     

PARAMETERS VALUES 

Number Of Slices 69 

Number Of 4-input LUTs 125 

Number Of Bonded Input 32 

Number Of Bonded Output 32 

Power 87mW 

Delay 25.435 ns 

      

    Table 3.5 Wallace Tree Multiplier 
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  PARAMETERS VALUES 

Number Of Slices 96 

Number Of 4-input LUTs 178 

Number Of Bonded Input 32 

Number Of Bonded Output 32 

Power 79mW 

Delay 26.645 ns 

    
   Table 3.6 Booth Multiplier (Radix – 4) 

 

 
 If we compare the above values among each other we can observe that 

the Array Multiplier is the worst case multiplier consuming highest amount of 

power. Then comes the Radix – 2 booth multiplier which consumes lesser 

power than array multiplier. The Wallace Tree multiplier and Booth Multiplier 

Radix-4 have nearly same amount of delay while Radix-4 Booth consuming 

lesser power than the other. Hence we reach to a conclusion that Booth Radix-4 

Multiplier is best for situations requiring Low power Applications.  
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4.1 Optimization of Multiplier Recoding schemes for Low 
Power 

   

  The multiplier operand Y is often recoded into a radix higher than 2 in

 order to reduce the number of partial products. The most common recoding is 

 radix – 4 recoding with digit set {-2, -1, 0, 1, 2}. For a series of consecutive 1’s, 

 the recoding algorithm converts them 0’s surrounded by a 1 and a (-1), which has 

 potential of reducing switching activity. At the binary level, there are many 

 design possibilities. The traditional design objectives are small delay and small 

 area. The power issues of different designs have not been addressed well. In this 

 chapter, we focus on the effects of radix-4 recoding schemes in multipliers and 

 optimize their designs for low power. Here, we give an overview and analysis of 

 several known recoding schemes and their designs and compare the Timing and 

 power consumption by them. 

  Intuitively, radix-4 multipliers could consume less power than their radix- 

 2 counterparts as recoding reduce the number of PPs to half. However, the extra 

 recoding logic and the more complex PP generation logic may present significant 

 overheads. In addition, recoding introduces extra unbalanced signal propagation 

 paths because of the additional delay on the paths from operand Y to the product 

 output. We have showed that Wallace tree multipliers consumed less power than 

 Booth-recoded radix-4 multipliers although the radix-2 scheme had twice as 

 many PPs as the radix-4 scheme. This leads us to believe that the design of 

 recoders and PP generators plays an  important role in the overall power 

 consumption in multipliers. 

 

4.1.1 Parallel Recoding Schemes 

  

  In parallel recoding, at least three signals are needed to represent the 

 digit set {-2,-1, 0, 1, 2}. To achieve area/delay tradeoff, additional signals are 

 often used. We classify existing schemes of radix-4 recoding design by the 

 number of control signals. There are three classes: three-signal schemes, 

 four-signal schemes, and five-signal schemes. They are different in one or more 
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 aspects of parallel/serial recoding, control signals, zero handling, and logic 

 organization. 

 

 THREE - SIGNAL SCHEMES 

  4.1.1.1  

   In three-signal schemes, one standard approach [] is the   

  THREE_SIGNAL_1 scheme in Table 4.1. The signal cor is the correction  

  bit for negative numbers. The following switching expressions are   

  deduced: 

     negi =  y2i+1      

     twoi = y’2i+1y2iy2i-1+ y2i+1y’2iy’2i-1 

     onei =  y2i   XOR   y2i-1 

     cori =  y2i+1 

 

Y2i+1 Y2i Y2i-1 Partial Product negi twoi onei cori 

0 0 0 0 0 0 0 0 

0 0 1 1×Multiplicand 0 0 1 0 

0 1 0 1×Multiplicand 0 0 1 0 

0 1 1 2×Multiplicand 0 1 0 0 

1 0 0 -2×Multiplicand 1 1 0 1 

1 0 1 -1×Multiplicand 1 0 1 1 

1 1 0 -1×Multiplicand 1 0 1 1 

1 1 1 0 1 0 0 1 

   

  Table 4.1: Recoder for the scheme THREE_SIGNAL_1 

    

   RECODER   PP GENERATOR 
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  4.1.1.2 

   In three-signal schemes, one standard approach  is the   

  THREE_SIGNAL_2 scheme in Table 4.2. The signal cor is the correction  

  bit for negative numbers. The following switching expressions are   

  deduced: 

 

     negi =  y2i+1 (y2iy2i-1 )’      

     twoi = y’2i+1y2iy2i-1+ y2i+1y’2iy’2i-1 

     zeroi =  y2i+1y2iy2i-1 +  y’2i+1y’2iy’2i-1 

     cori = negi 

 

 

Y2i+1 Y2i Y2i-1 Partial Product negi twoi zeroi cori 

0 0 0 0 0 0 1 0 

0 0 1 1×Multiplicand 0 0 0 0 

0 1 0 1×Multiplicand 0 0 0 0 

0 1 1 2×Multiplicand 0 1 0 0 

1 0 0 -2×Multiplicand 1 1 0 1 

1 0 1 -1×Multiplicand 1 0 0 1 

1 1 0 -1×Multiplicand 1 0 0 1 

1 1 1 0 0 0 1 0 

 

Table 4.2: Recoder for the scheme THREE_SIGNAL_2 

 

  

  RECODER    PP GENERATOR 
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  4.1.1.3 

   In three-signal schemes, one standard approach  is the   

  THREE_SIGNAL_3 scheme in Table 4.3. The signal cor is the correction  

  bit for negative numbers. And the other three signals are pos, neg,two   

  The following switching expressions are deduced: 

 

     negi =  y2i+1 (y2iy2i-1 )’      

     posi = y’2i+1 (y2i+y2i-1) 

     twoi = ( y2i   XOR  y2i-1)’ 

     cori = negi 

 

 

Y2i+1 Y2i Y2i-1 Partial Product negi posi twoi cori 

0 0 0 0 0 0 1 0 

0 0 1 1×Multiplicand 0 1 0 0 

0 1 0 1×Multiplicand 0 1 0 0 

0 1 1 2×Multiplicand 0 1 1 0 

1 0 0 -2×Multiplicand 1 0 1 1 

1 0 1 -1×Multiplicand 1 0 0 1 

1 1 0 -1×Multiplicand 1 0 0 1 

1 1 1 0 0 0 1 0 

 

Table 4.3: Recoder for the scheme THREE_SIGNAL_3 

 

 RECODER    PP GENERATOR 
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 4.1.1.4    FOUR - SIGNAL SCHEMES 

   In Four-signal schemes we have an approach is the   

  FOUR_SIGNAL_1 scheme in Table 4.4. The signals here are as   

  follows: neg, tmp1, tmp2, one, two, zero, cor, The following   

  switching expressions are deduced 

     negi =  y2i+1      

     tmp1i = y2i+1 XOR y2i-1 

     tmp2i = y2i+1   XOR y2i 

     onei = y2i XOR y2i-1 

     twoi = tmp1i *  tmp2i  

     zeroi = (tmp1i +  tmp2i)’ 

     cori =  y2i+1   zeroi’ 

 

Y2i+1 Y2i Y2i-1 Partial Product negi twoi onei zeroi cori 

0 0 0 0 0 0 0 1 0 

0 0 1 1×Multiplicand 0 0 1 0 0 

0 1 0 1×Multiplicand 0 0 1 0 0 

0 1 1 2×Multiplicand 0 1 0 0 0 

1 0 0 -2×Multiplicand 1 1 0 0 1 

1 0 1 -1×Multiplicand 1 0 1 0 1 

1 1 0 -1×Multiplicand 1 0 1 0 1 

1 1 1 0 1 0 0 1 0 

  

Table 4.4: Recoder for the scheme FOUR_SIGNAL_1 

 
 RECODER     PP GENERATOR 
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4.1.2  Serial Recoding Schemes 

   For serial radix-4 recoding, there is not much previous work  

   because its application is limited to linear array multipliers although it has 

   the potential of power saving. However, the use of four possible values  

  instead of five does not necessarily simplify the design because the digit  

  set is not symmetric. The equation derived is shown below. 

     negi =  y2i+1   (y2i+Ci )     

     onei = y2i  XOR Ci 

     zeroi = y2i+1  y2i  Ci  +  y2i-1’ y2i’  Ci  ’ 

     cori =  y2i+1   * onei  

     Ci+1 = negi 

   

Y2i+1 Y2i C i Partial Product negi onei zeroi cori ci+1 

0 0 0 0 0 0 1 0 0 

0 0 1 1×Multiplicand 0 1 0 0 0 

0 1 0 1×Multiplicand 0 1 0 0 0 

0 1 1 2×Multiplicand 0 0 0 0 0 

1 0 0 -2×Multiplicand 0 0 0 0 0 

1 0 1 -1×Multiplicand 1 1 0 1 1 

1 1 0 -1×Multiplicand 1 1 0 1 1 

1 1 1 0 1 0 1 0 1 

 

Table 4.5: Recoder for the scheme SERIES_SIGNAL_1 

 

 RECODER    PP GENERATOR 
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4.2  High Level Comparison 

   When we go for high level comparisons we have two parameters  

          for us when we consider different types of recoding schemes. It is the  

  recoder and the partial product generator. The delay of REC and PPG is  

  estimated roughly as equivalent XOR2 gate delay (TXOR2) without  

  considering fan-out and signal transition directions. Simple gates such as  

  AND2 have the delay of 0.5TXOR2. Two-level AND/OR gates and  

  MUX21 have the same delay as XOR2. 

   Among above discussed recoding schemes, THREE_SIGNAL_1  

  has both the simplest recoder and the simplest PP generator. But doesn’t  

  have a unique zero handling. 

   After analyzing it was found out that in an m × n bit radix-4   

  multiplier, the total area of recoders is n/2AREC1b while the total area of PP 

  generators is n /2 * (m+1)APPG1b, where AREC1b is area of 1-bit recoder cell 

  area and APPG1b  is area of 1-bit partial product generator cell area. Hence  

  since partial product generators (PPG) occupy larger areas than the  

  recoders, we need to simplify PP generators for power saving. In addition, 

  unique zero handling is desired in order to reduce the number of   

  unnecessary switching activities. 

 

4.3 Delay in various recoding schemes 

   The delay found in the above mentioned recoding schemes are  

  given in the table presented below. 

Schemes Delay(in ns) 

Three_signal_1 3.1 

Three_signal_2 4.2 

Three_signal_3 2.75 

Four_signal_1 2 

Series_signal_1 3.5 

 

Table 4.6: Delay for different schemes 
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4.4 New Recoding schemes 

   For new parallel recoding schemes we know we always have  

  THREE_SIGNAL_1 having simplest recoder and PP generator. So we  

  can think to keep the simplicity of the PP generator because it occupies  

  most area and can think of increasing the complexity of recoder to add  

  the power efficient zero handling. So the new scheme can be shown to be 

  as follows.  

     negi =  y2i+1(y2iy2i-1)’      

     twoi = y’2i+1y2iy2i-1+ y2i+1y’2iy’2i-1 

     onei =  y2i   XOR   y2i-1 

     cori =  negi 

 

Y2i+1 Y2i Y2i-1 Partial Product negi twoi onei cori 

0 0 0 0 0 0 0 0 

0 0 1 1×Multiplicand 0 0 1 0 

0 1 0 1×Multiplicand 0 0 1 0 

0 1 1 2×Multiplicand 0 1 0 0 

1 0 0 -2×Multiplicand 1 1 0 1 

1 0 1 -1×Multiplicand 1 0 1 1 

1 1 0 -1×Multiplicand 1 0 1 1 

1 1 1 0 0 0 0 0 

   

  Table 4.7: Recoder for the scheme NEW_THREE_SIGNAL_1 

 

  RECODER    PP GENERATOR 
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4.5 Comparison Of Multipliers with Different Recoding 
Schemes 

 
      

SCHEME POWER (mW) DELAY(ns) 

Three_signal_1 29.72 11.00 

Three_signal_2 30.80 11.15 

Three_signal_3 27.88 10.73 

Four_signal_1 29.82 10.93 

Series_signal_1 31.43 10.97 

New_Three_signal_1 27.32 10.31 

 
   Table 4.8: Power and delays of multiplier with above   

    discussed schemes of recoders and PP generators. 

 
   In the above as we can see we have calculated the Power and  

  Delays by different recoding schemes. We have also included the new  

  proposed recoding scheme which was modified version of some previous  

  recoding scheme. 

   From above only we can say that parallel recoding schemes  

  always consume less power than serial recoding schemes and hence are  

  used very less these days. But if we look at the modified parallel recoding 

  scheme it has much less power consumed than the previous schemes  

  and also has less delay in the circuit as compared to the other schemes.  

  Hence New_Three_signal_1 can be used as a recoder scheme when it  

  comes to lesser power and lesser delay applications, which are generally  

  the basic motto requirements of today’s integration industry.    
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BOOTH MULTIPLIER OUTPUT 

 

 

Binary Form output 

 

 

Signed Form Output 

 

WALLACE TREE MULTIPLIER OUTPUT 

 

 

Binary Form Output 

 

 

Signed Form Output 
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6.1 Conclusion  

  After going through all the hard work and facing problems, this 

 project managed to complete its objectives that are to study different 

 Multiplier and learn the Power and Time trade off among them so that we 

 can design Efficient Faster Low Power Multiplier.  

  We studied about different adders among compared them by 

 different criteria like Area, Time and then Area-Delay Product etc. so that 

 we can judge to know which adder was best suited for situation. After 

 comparing all we came to a conclusion that Carry Select Adders are best 

 suited for situations where Speed is the only criteria. Similarly Ripple 

 Carry Adders are best suited for Low Power Applications. But Among all 

 the Carry Look Ahead Adder had the least Area-Delay product that tells 

 us that, it is suitable for situations where both low power and fastness are 

 a criteria such that we need a proper balance between both as is the case 

 with our Project. 

  Coming to Multipliers we studied different Multipliers starting from 

 Array Multiplier to Wallace Tree, Booth Multipliers, both Radix-2 and 

 Radix-4.We found that parallel multipliers are much better than the serial 

 multipliers due to less area consumption and hence the less power 

 consumption. Comparing Radix-2 and Radix-4 booth multipliers we found 

 that radix-4 consumes less power than radix-2, because radix-4 uses 

 almost half number of iterations than radix-2.We saw Wallace tree having 

 nearly same delay as of radix-4 multipliers where as consuming a little 

 more power than the former. 

  After all this then we tried to improve power efficiency of circuits. 

 Hence we went for studying different recoding schemes along with their 

 Partial Product generators and study time and power required by them in 

 a multiplication process. After studying them we went to modify one of the 

 recoding schemes to find a proper combination of recoder and PP 

 generator such that we will have simplest PP generator as these take 

 maximum area in a cell area and then take care of zero handling as it 

 handles most of the switching activities. Hence we ended up creating a 

 better recoding scheme. 
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 6.2 FUTURE WORK  

   As an attempt to develop arithmetic algorithm and architecture  

  level optimization techniques for low-power multiplier design, the research 

  presented in this dissertation has achieved good results and   

  demonstrated the efficiency of high level optimization techniques.  

  However, there are limitations in our work and several future research  

  directions are possible.  

 

   One possible direction is radix higher-than-4 recoding. We have  

  only considered radix-4 recoding as it is a simple and popular choice.  

  Higher-radix recoding further reduces the number of PPs and thus has  

  the potential of power saving. 

 

   Another possible direction can be representation of Arguments  

  such as in sign-magnitude or 2’s compliment form which in any case  

  would prove better according to situation and require less power and  

  consume less time.  
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