
 1

DESIGN AND IMPLEMENTATION OF FASTER AND LOW
POWER MULTIPLIERS

 A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Bachelors of Technology

In
Electronics & Communication Engineering

By

PARTHA SARATHI MOHANTY

Department Of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

2009

 2

DESIGN AND IMPLEMENTATION OF FASTER AND LOW
POWER MULTIPLIERS

 A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Bachelors of Technology

In
Electronics & Communication Engineering

By
PARTHA SARATHI MOHANTY

Under the guidance of

Prof. K.K.Mahapatra

Electronics and Communication Engineering

National Institute of Technology,Rourkela

Department Of Electronics and Communication Engineering

National Institute Of Technology

Rourkela

2009

 3

National Institute Of Technology

Rourkela

CERTIFICATE

 This is to certify that the thesis entitled “DESIGN AND IMPLEMENTATION OF

FASTER AND LOW POWER MULTILPLIERS” submitted by Mr. Partha Sarathi

Mohanty, Final year student of Electronics and communication Engineering, Roll

No.:10509019 in partial fulfillments for the requirements for the award of Bachelor of

Technology Degree in Electronics and Communication Engineering at National Institute

of Technology, Rourkela is an authentic work carried out by him under my supervision

and guidance.

 To the best of my knowledge, the matter embodied in thesis has not been

submitted to any other university/ Institute for the award of any degree or Diploma.

Date: Prof. K.K.Mahapatra

 Dept. of E.C.E

 National Institute of Technology

 Rourkela - 769008

 4

ACKNOWLEDGEMENT

 I would like to articulate my profound gratitude and indebtedness to my project

guide Prof.Dr.K.K.Mahapatra who has always been a constant motivation and guiding

factor throughout the project time in and out as well. It has been a great pleasure for me

to get an opportunity to work under him and complete the project successfully.

 I wish to extend my sincere thanks to Prof.Dr.S.K.Patra, Head of our Department,

for approving our project work with great interest.

 I would like to mention Mr. J.K.Das for his cooperation and constantly rendered

assistance.

 An undertaking of this nature could never been attempted with our reference to

and inspiration from the works of others whose details are mentioned in references

section. I acknowledge my indebtedness to all of them. Last but not the least, my sincere

thanks to all my friends who have patiently extended all sorts of help for accomplishing

this undertaking.

 Partha Sarathi Mohanty

 Roll No – 10509019

 Department of ECE

 N.I.T, Rourkela

 5

TABLE OF CONTENTS

1 Introduction 11

1.1 Motivation 12

 1.2 Power optimization 13

 1.3 Low Power Multiplier Design 13

 1.4 Language and tools used 14

 1.5 Research Approach 14

2 The Adders 15

2.1 Classification of Adders 16

 2.2 Ripple Carry Adders 18

 2.2.1 Delay 18

 2.2.2 Logic Equations 18

 2.2.3 Complexity and delay for n-bit RCA 18

 2.3 Carry Select Adders 19

 2.3.1 Delay 19

 2.3.2 Logic Equations 19

 2.3.3 Complexity and delay for n-bit CSLA 19

 2.4 Carry Look Ahead Adders 20

 2.4.1 Delay 20

 2.4.2 Logic Equations 21

 2.4.3 Complexity and delay for n-bit CSLA 21

 2.5 Analysis of Adders 22

 2.6 Discussions 23

3 The Multipliers 25

 3.1The Wallace tree Multipliers 26

 3.1.1 Algorithm for Wallace Tree (Generic: N) 29

 3.2 The Booth’s Multiplier 31

 3.2.1 Radix-4 booth’s Algorithm 31

 3.2.2 Modified Booth Encoder 32

 6

 3.2.3Partial Product Generator 34

 3.2.4 Sign Extension corrector 34

 3.2.5 Wallace Tree Adder 35

 3.2.6 Booth Multiplier by an Example 37

3.4 Analysis of multipliers 38

4 Low power Optimizations 41

 4.1Optimization of multiple recoding schemes for low power

 4.1.1 Parallel recoding schemes 42

 4.1.1.1 Three_signal_1 recoding 43

 4.1.1.2 Three_signal_2 recoding 44

 4.1.1.3 Three_signal_3 recoding 45

 4.1.1.4 Four_signal_1 recoding 46

 4.1.2 Serial recoding Schemes 47

 4.2 High level Comparison 48

 4.3 Delay in Various recoding schemes 48

 4.4New Recoding schemes 49

 4.5Comparison of multipliers with different recoding and PP

 Generator schemes 50

5 Output waveforms 51

6 Conclusion and references 53

 Conclusion 54

 Future Work 55

 References 56

 7

 ABSTRACT

 A multiplier is one of the key hardware blocks in most digital and high

performance systems such as FIR filters, digital signal processors and microprocessors

etc. With advances in technology, many researchers have tried and are trying to design

multipliers which offer either of the following- high speed, low power consumption,

regularity of layout and hence less area or even combination of them in multiplier. Thus

making them suitable for various high speed, low power, and compact VLSI

implementations. However area and speed are two conflicting constraints. So improving

speed results always in larger areas. So here we try to find out the best trade off solution

among the both of them.

 Generally as we know multiplication goes in two basic steps. Partial product and

then addition. Hence in this paper we have first tried to design different adders and

compare their speed and complexity of circuit i.e. the area occupied. And then we have

designed Wallace tree multiplier then followed by Booth’s Wallace multiplier and have

compared the speed and Power consumption in them.

 While comparing the adders we found out that Ripple Carry Adder had a smaller

area while having lesser speed, in contrast to which Carry Select Adders are high speed

but posses a larger area. And a Carry Look Ahead Adder is in between the spectrum

having a proper trade off between time and area complexities.

 After designing and comparing the adders we turned to multipliers. Initially we

went for Parallel Multiplier and then Wallace Tree Multiplier. In the mean time we learned

that delay amount was considerably reduced when Carry Save Adders were used in

Wallace Tree applications. Then we turned to Booths Multiplier and designed Radix-4

modified booth multiplier and analyzed the performance of all the multipliers.

 After that we turned to different methods of power optimization, of which we

could only complete a few like we went for designing different recoding schemes and

their corresponding partial product generator scheme. After that we designed these

recoders and PP generators and found out the time delays and area covered and power

consumed by each scheme. We took into consideration that since all the PP generators

take a huge amount of area we need to go for simplest of the designs for them and also

side by side we need to ensure that we don’t have much switching actions in the circuit.

 8

After this we even modified one of the recoding schemes to lower the delay and power

required by the circuit.

 The result of our project helps us to make a proper choice of different multipliers

in fabricating in different arithmetic units as well as making a choice among different

adders in different digital applications according to requirements. All the programs and

results have been given in the following sections.

 Further work on Low Power Techniques on different multipliers needs to be done

in order to make us choose a proper multiplier in accordance with the requirements by

making the best possible trade off choice between Speed and Power in different

circumstances.

 9

LIST OF FIGURES

 Figure 2.1: A 4-bit Ripple Carry Adder 17

 Figure 2.2: A Carry Select Adder using n/2 RCA 18

 Figure 2.3: A 4-bit Carry Look Ahead Adder 19

 Figure 2.4: A 8-bit Carry Look Ahead Generator 20

 (using 2-bit CLA)

 Figure 3.1: A Wallace Tree Block Diagram 26

 Figure 3.2: 8-bit × 8-bit Wallace Tree Multiplier 27

 (Logarithmic Depth Hierarchy)

 Figure 3.3: Architecture of designed Booth Multiplier 31

 Figure 3.4: Partial Product Initial Arrangement 35

 Figure 3.5: Wallace Tree Multiplication Method 35

 Figure 3.6: Method showing How Partial Products Should Be Added 37

 10

LIST OF TABLES

 Table 2.1(a): categorization of adders’ w.r.t delay time and capacity 16

Table 2.1: Theoretical Comparison of Area Occupied (Ax) 21

Table 2.2: Theoretical Comparison of Time Required (T) 21

Table 2.3: Theoretical Area Delay Product (AxT) 21

Table 2.4: Comparison of Time Required (Simulated Value) 22

 Table 3.1: Modified Booth Encoder’s table to

 Generate M, 2M, 3M control signal 32

Table 8.2 (A): when A & Sign E is Zero 34

Table 8.2 (B): when A & Sign E is One 34

Table 3.3: Array Multiplier 38

Table 3.4: Booth Multiplier (Radix – 2) 38

Table 3.5: Wallace Tree Multiplier 38

 Table 3.6: Booth Multiplier (Radix – 4) 39

 Table 4.1: Recoder for scheme Three_signal_1 42

 Table 4.2: Recoder for scheme Three_signal_2 43

 Table 4.3: Recoder for scheme Three_signal_3 44

 Table 4.4: Recoder for scheme four_signal_1 45

 Table 4.5: Recoder for scheme serial_signal_1 46

 Table 4.6: Delay of different schemes 47

 Table 4.7: Recoder for scheme new_Three_signal_1 48

 Table 4.1: Power and delay of multipliers with above

 Discussed schemes 49

 11

Chapter 1

 INTRODUCTION

 1.1 Motivation

 1.2 Power Optimization

 1.3 Low Power Multiplier Design

 1.4 Language and tools used

 1.5 Research Approach

 12

 1.1 MOTIVATION

 As the scale of integration keeps growing, more and more sophisticated

 signal processing systems are being implemented on a VLSI chip.These signal

 processing applications not only demand great computation capacity but also

 consume considerable amount of energy. While performance and Area remain

 to be the two major design tolls, power consumption has become a critical

 concern in today’s VLSI system design[]. The need for low-power VLSI system

 arises from two main forces. First, with the steady growth of operating frequency

 and processing capacity per chip, large currents have to be delivered and

 the heat due to large power consumption must be removed by proper cooling

 techniques. Second, battery life in portable electronic devices is limited. Low

 power design directly leads to prolonged operation time in these portable

 devices.

 Multiplication is a fundamental operation in most signal processing

 algorithms. Multipliers have large area, long latency and consume considerable

 power. Therefore low-power multiplier design has been an important part in low-

 power VLSI system design. There has been extensive work on low-power

 multipliers at technology, physical, circuit and logic levels. A system’s

 performance is generally determined by the performance of the multiplier

 because the multiplier is generally the slowest element in the system.

 Furthermore, it is generally the most area consuming. Hence, optimizing the

 speed and area of the multiplier is a major design issue. However, area and

 speed are usually conflicting constraints so that improving speed results mostly

 in larger areas. As a result, a whole spectrum of multipliers with different area-

 speed constraints has been designed with fully parallel.

 Fully Parallel Multipliers at one end of the spectrum and fully serial

 multipliers at the other end. In between are digit serial multipliers where single

 digits consisting of several bits are operated on. These multipliers have

 moderate performance in both speed and area. However, existing digit serial

 multipliers have been plagued by complicated switching systems and/or

 irregularities in design. Radix 2^n multipliers which operate on digits in a parallel

 13

 fashion instead of bits bring the pipelining to the digit level and avoid most of’

 the above problems. These structures are iterative and modular. The pipelining

 done at the digit level brings the benefit of constant operation speed irrespective

 of the size of’ the multiplier. The clock speed is only determined by the digit size

 which is already fixed before the design is implemented.

 1.2 POWER OPTIMIZATION

 Power refers to number of Joules dissipated over a certain amount of

 time whereas energy is the measure of the total number of Joules dissipated by a

 circuit.

 In digital CMOS design, the well-known power-delay product is

 commonly used to assess the merits of designs. In a sense, this can be shown

 as power × delay = (energy/delay) × delay = energy, which implies delay is

 irrelevant [].

 1.3 LOW-POWER MULTIPLIER DESIGN

 Multiplication consists of three steps: generation of partial products or

 (PPG), reduction of partial products (PPR), and finally carry-propagate addition

 (CPA).In general there are sequential and combinational multiplier

 implementations. We only consider combinational case here because the scale

 of integration now is large enough to accept parallel multiplier implementations in

 digital VLSI systems. Different multiplication algorithms vary in the approaches

 of PPG, PPR, and CPA. For PPG, radix-2 is the easiest. To reduce the number

 of PPs and consequently reduce the area/delay of PP reduction, one operand is

 usually recoded into high-radix digit sets. The most popular one is the radix-4

 digit set {-2,-1, 0, 1, 2}. For PPR, two alternatives exist: reduction by rows ,

 performed by an array of adders, and reduction by columns, performed by an

 array of counters. The final CPA requires a fast adder scheme because it is on

 the critical path. In some cases, final CPA is postponed if it is advantageous to

 keep redundant results from PPG for further arithmetic operations.

 14

 1.4 LANGUAGE AND TOOLS USED

 We used XILINX ISE v 10.2 for our programming. We considered VHDL

 as our primary language. For test bench waveforms also we also used Xilinx

 to write our own test benches. Model Synthesis Map report all features in Xilinx

 helped us a lot.

 We used Xilinx’s XPower Estimator (XPE) tool in order to calculate

 power consumed in any arithmetic circuit. For calculation of power using Xilinx’s

 XPE we need to generate the map report file in XILINX which will be saved in

 the same directory with an extension “.mrp”. But in the later part of the project we

 used SYNOPSIS tool for finding out Power and delay and Area calculations

1.5 RESEARCH APPROACH

 The basic motive of our project was to study and develop an Efficient Fast

and Low Power Multiplier. As the name suggests we had to go for faster and low

power factor optimization simultaneously. We know that the basic building block

of a multiplier is ADDER circuit. Hence we turned our focus into The ADDERS

first. We studied the area occupied and the time delay consumed by different

adders and found out a proper relation between time and area complexity of all

the adders under consideration. We generated a factor Area-Delay product

which helped us to properly understand the Area and Delay trade-off perfectly

and hence choose the best adder for appropriate circumstances.

 Then we turned our focus into Multipliers. In Multipliers we studied

 different multipliers writing programs, verifying waveforms and then finally

 calculating number of CLBs, LUTs required along with Power consumed in the

 circuit. After knowing all this we also calculated delay for different multipliers

 which helped us to determine the best multiplier. Radix-4 Booth Multiplier was

 best Multiplier among all with less power consumption and proper Area Delay

 trade-off. Our future work will be to optimize power Consumed by different

 multipliers there by reducing number of gates used and area occupied by them.

 15

Chapter 2

 THE ADDERS

 2.1 Classification of adders

 2.2 Ripple Carry Adders

 2.3 Carry Select adders

 2.4 Carry Look Ahead Adders

 2.5 Analysis of Adders

 2.6 Discussions

 16

THE ADDERS

 Addition is the most common and often used arithmetic operation on

microprocessor, digital signal processor, especially digital computers. Also, it serves as

a building block for synthesis all other arithmetic operations. Therefore, regarding the

efficient implementation of an arithmetic unit, the binary adder structures become a very

critical hardware unit.

 In any book on computer arithmetic, someone looks that there exists a large

number of different circuit architectures with different performance characteristics and

widely used in the practice. Although many researches dealing with the binary adder

structures have been done, the studies based on their comparative performance

analysis are only a few.

 In this project, qualitative evaluations of the classified binary adder architectures

are given. Among the huge member of the adders we wrote VHDL (Hardware

Description Language) code for Ripple-carry, Carry-select and Carry-look ahead to

emphasize the common performance properties belong to their classes. In the following

section, we give a brief description of the studied adder architectures.

 With respect to asymptotic delay time and area complexity, the binary adder

architectures can be categorized into four primary classes as given in Table 2.1. The

given results in the table are the highest exponent term of the exact formulas, very

complex for the high bit lengths of the operands.

 The first class consists of the very slow ripple-carry adder with the smallest area.

In the second class, the carry-skip, carry-select adders with multiple levels have small

area requirements and shortened computation times. From the third class, the carry-look

ahead adder and from the fourth class, the parallel prefix adder represents the fastest

addition schemes with the largest area complexities.

 17

Complex

(A)

Delay

(T)

Product

(AxT)

Adder Class

Schemes

O(n)

O(n)

O(n)

O(n)

O(n
1/*1+1

)

O(logn)

O(n2)

O(n
1+2/+1

)

O(nlogn)

Ripple-carry (1)

Carry select (2)

Carry-skip (2)

Carry-Inc (2)

Carry look ahead(3)

 *1 denotes the LEVEL number

 TABLE 2.1

 Categorization Of adders w.r.t delay time and capacity

 18

2.1 Ripple Carry Adders (RCA)

 The well known adder architecture, ripple carry adder is composed of cascaded

full adders for n-bit adder, as shown in figure.1.It is constructed by cascading full

adder blocks in series. The carry out of one stage is fed directly to the carry-in of the

next stage. For an n-bit parallel adder it requires n full adders.

FIGURE 2.1 A 4-bit Ripple Carry Adder
 Not very efficient when large number bit numbers are used.

 Delay increases linearly with bit length.

2.1.1 Delay

 Delay from Carry-in to Carry-out is more important than from A to carry-out or

carry-in to SUM, because the carry-propagation chain will determine the latency of

the whole circuit for a Ripple-Carry adder. Considering the above worst-case signal

propagation path we can thus write the following equation.

 For a k-bit RCA worst case path delay is

 TRCA-k bit = TFA(x0, y0 c0) + (k-2)* TFA(Cin Ci) + TFA(Cin Sk-1) .

 2.1.2 Logic equations

 gi = ai bi p = ai xor bi.

 Ci+1 = gi + pici Si = pi xor ci.

 2.1.3 Complexity and Delay for n-bit RCA structure

ARCA = O (n) = 7n

TRCA = O (n) = 2n

 19

2.2 Carry Select Adders (CSLA)

 In Carry select adder scheme, blocks of bits are added in two ways: one

assuning a carry-in of 0 and the other with a carry-in of 1.This results in two

precomputed sum and carry-out signal pairs (s0
i-1:k , c

0
i ; s

1
i-1:k , c

1
i) , later as the

block’s true carry-in (ck) becomes known , the correct signal pairs are selected.

Generally multiplexers are used to propagate carries.

 FIGURE 2.2 A Carry Select Adder with 1 level using n/2- bit RCA

 Because of multiplexers larger area is required.

 Have a lesser delay than Ripple Carry Adders (half delay of RCA).

 Hence we always go for Carry Select Adder while working with smaller no

of bits.

 2.2.1 Logic equations

 _

 si-1:k = ck s
0
i-1:k + ck s

1
i-1:k

 _

 ci = ck c
0
i + ck c

1
i

 2.2.2 Complexity and Delay for n-bit CSLA structure

 ACSLA = O (n) = 14n

 TCSLA = O (n
1/*l+1

) = 2.8n
1/2

.

 20

2.3 Carry Look Ahead Adders (CLA)

 Carry Look Ahead Adder can produce carries faster due to carry bits generated in

parallel by an additional circuitry whenever inputs change. This technique uses carry

bypass logic to speed up the carry propagation.

 FIGURE 2.3 4-BIT CLA Logic equations

 Let ai and bi be the augends and addend inputs, ci the carry input, si and ci+1 , the

sum and carry-out to the ith bit position. If the auxiliary functions, pi and gi called the

propagate and generate signals, the sum output respectively are defined as follows.

 pi = ai + bi gi = ai bi

 si = ai xor bi xor ci ci+1 = gi + pici .

 As we increase the no of bits in the Carry Look Ahead adders, the complexity

increases because the no. of gates in the expression Ci+1 increases. So

practically its not desirable to use the traditional CLA shown above because it

increase the Space required and the power too.

 Instead we will use here Carry Look Ahead adder (less bits) in levels to

create a larger CLA. Commonly smaller CLA may be taken as a 4-bit CLA.

So we can define carry look ahead over a group of 4 bits. Hence now we

redefine terms carry generate as [Group Generated Carry] g[i,i+3] and carry

propagate as [Group Propagated Carry] p[i,i+3] which are defined below.

Adder

G3 P3 S3

CLA Circuit

Adder

G2 P2 S2

Adder

G1 P1 S1

Adder

G0 P0 S0

 21

 2.3.1 Redefined Equations:

 g[i,i+3] = gi+3 + gi+2 pi+3 + gi+1 pi+2 pi+3 + g[i pi+1 pi+2 pi+3

 p[i,i+3] = pi pi+1 pi+2 pi+3

 Now the modified block diagram for the Carry Look ahead Adder (8-bit) using

levels (of 4-bit CLA) will be as block diagram below.

FIGURE 2.4 8-BIT CARRY LOOK AHEAD GENERATOR (using 2-bit CLA)

2.3.2 Complexity and Delay for n-bit CLA structure

ACLA = O (n) = 14n

 TCLA = O (log n) = 4 log2n.

 22

2.4 ANALYSIS OF ADDERS

 In our project we compared 3- different adders Ripple Carry Adders,

Carry Select Adders and the Carry Look Ahead Adders. The basic purpose of

our experiment was to know the time and power trade-offs between different

adders whish will give us a clear picture of which adder suits best in which type

of situation during design process. Hence below we present both the theoretical

and practical comparisons of all the three adders whish were taken into

consideration.

Adder Name Complex (Ax) Area for n-bit

Ripple Carry Adder(RCA) O(n) 7n

Carry Select Adder(CSLA) O(n) 14n

Carry Look Ahead Adder(CLA) O(n) 4n

 Table 2.1 Theoretical Comparison of Area Occupied (Ax)

Adder Name Complex (T) Delay for n-bit

Ripple Carry Adder(RSA) O(n) 2n

Carry Select Adder(CSLA) O(n
1/*l+1

) 2.8(n)
1/2

Carry Look Ahead Adder(CLA) O(log 2n) 4log2n

 Table 2.2 Theoretical Comparison of Time Required (T)

Adder Name Delay for

n-bit

Area for

n-bit

Area Delay

Product

Ripple Carry Adder(RCA) 2n 7n 14n
2

Carry Select Adder(CSLA) 2.8(n)
1/2

14n 39.6(n)
3/2

Carry Look Ahead Adder(CLA) 4log2n 4n 16n log2n

 23

 Table 2.3 Theoretical Area Delay Product (AxT)

Adder Name Complex

(A)

Delay for 8-bit)

Ripple Carry Adder(RCA) O(n) 20.8 ns

Carry Select Adder(CSLA) O(n
1/*l+1

) 12.8ns

Carry Look Ahead

Adder(CLA)

O(log 2n) 17.6ns

Carry Look Ahead Adder

(using 2 4-bits in levels)

 14.8ns

(close to CSLA)

 Table 2.4 Comparison Of Time Required (Simulated Value)

2.5 DISCUSSIONS

 As can be seen above we have stated the theoretical comparison of

AREA required and both the theoretical and simulated value of TIME required.

The values stated above are the values for 8-bit adders. So analyzing the above

facts we reached at the following conclusions about different adders and

intelligent use of them in different circumstances according to the SPACE TIME

trade-off. The results can be summarized as follows.

 Regarding the circuit area complexity in the adder architectures, the

ripple-carry adder (RCA) in the first class is the most efficient one, but

the carry select adder (CSLA) in the fourth class with highest complexity

is the least efficient one.

 Considering the circuit delay time, Carry Select Adder (CSLA) is the

fastest one for every n-bit length, so has the shortest delay. Otherwise,

Ripple Carry Adder (RCA) is the slowest one, due to the long carry

propagation.

 24

 We defined a term Area-Delay Product which gave us the clear picture

of the space-time tradeoff. It is worthy to note that while we consider all

the adders discussed above Ripple Carry adders and Carry Select

Adders are the two sides of the spectrum. Because, while Ripple Carry

Adders have a smaller area and lesser speed, in contrast to which

Carry Select adders have high speed (nearly twice the speed f Ripple

Carry Adders) and occupy a larger area. But Carry Look Ahead Adder

(CLA) has a proper balance between both the Area occupied and Time

required. Hence among the three, Carry Look Ahead Adder has the

least AREA DELAY PRODUCT. Hence we should use Carry Look ahead

Adders when it comes to optimization with both Area and Time. For an

instance, the last stage of the Wallace tree Adder in Booth multiplier is a

Carry look Ahead Adder.

 25

Chapter 3

 THE MULTIPLIERS

 3.1 Wallace Tree Multipliers

 3.2 Booth’s Multiplier (radix-2)

 3.3 Booth’s Multiplier (radix-4)

 3.4 Analysis of Multipliers

 26

3.1 THE WALLACE TREE MULTIPLIER

 The Wallace tree multiplier is considerably faster than a simple array multiplier

because its height is logarithmic in word size, not linear. However, in addition to the

large number of adders required, the Wallace tree’s wiring is much less regular and

more complicated. As a result, Wallace trees are often avoided by designers, while

design complexity is a concern to them.

 Wallace tree styles use a log-depth tree network for reduction. Faster, but

irregular, they trade ease of layout for speed. Wallace tree styles are generally

avoided for low power applications, since excess of wiring is likely to consume extra

power.

 While subsequently faster than Carry-save structure for large bit multipliers, the

Wallace tree multiplier has the disadvantage of being very irregular, which

complicates the task of coming with an efficient layout.

 The Wallace tree multiplier is a high speed multiplier. The summing of the partial

product bits in parallel using a tree of carry-save adders became generally known as

the “Wallace Tree”. Three step processes are used to multiply two numbers.

 Formation of bit products.

 Reduction of the bit product matrix into a two row matrix by means of a carry

save adder.

 Summation of remaining two rows using a faster Carry Look Ahead Adder

(CLA).

 27

Figure 3.1 Wallace Tree Block Diagram

 In order to design an n-bit Wallace tree Multiplier (Generic: =N) an

algorithm was derived from the flow diagram developed below. The flow diagram

below shows the intermediate state reductions of the multipliers are being done

by Carry save adders and half adders while the final step additions being done

by a Carry Look Ahead Adder. The flow diagram was done in Microsoft Excel

sheet and Paint.

 After generating the flow diagram for 8-bit × 8-bit we generalized the

algorithm for n-bit and hence we designed a GENERIC WALLACE TREE. The

Code for the same is in Appendix for programs. The algorithm developed for

designing the Generic Wallace tree is given below.

 28

Figure 3.2 8-bit × 8-bit Wallace Tree Multiplier (Logarithmic Depth Hierarchy)

 29

3.1.1 Algorithm For Wallace Tree Multiplier (Generic: N)

 Input A: in STD_LOGIC_VECTOR (N-1 downto 0);

 Input B: in STD_LOGIC_VECTOR (N-1 downto 0);

 Output C: out STD_LOGIC_VECTOR (2*N-1 downto 0));

 ------Let half_adder & full_adder be two components

 type array_signal is array(N downto 1) of

 STD_LOGIC_VECTOR(2*N-1 DOWNTO 0);

 signal t,m,s :array_signal;

 signal p,d :STD_LOGIC_VECTOR(2*N-1 downto 0);

 for I in 0 to N-1

 for J in 0 to N-I-1

 t(I+1)(I+J)<=A(J) and B(I);

 end

 end

 for I in N-1 downto 0

 for J in N-I to N-1

 t(N-I)(I+J)<=A(J) and B(I);

 end

 end

 ---Initial Half adder additions

HA1: half_adder port map(t(N-2)(N),t(N-1)(N),s(N-2)(N),m(N-1)(N+1));

HA2: half_adder port map(t(N-1)(N-1),t(N)(N-1),m(N-1)(N-1),m(N-1)(N));

for I in 1 to N-2

 for J in (-I) to (I)

 if(I < N-2)

 if(J=I or J=(-I))

full_adder port map(m(N-I)(N+J),t(N-I-1)(N+J),t(N-I-2)(N+J),

 s(n-I-2)(N+J),m(N-I-1)(N+J+1));

 30

 end

 if((J /= I and J /= (-I)))

full_adder port map(m(N-I)(N+J),s(N-I-1)(N+J),t(N-I-2)(N+J),

 s(n-I-2)(N+J),m(N-I-1)(N+J+1));

 end

 end

 if(I = N-2)

 if (J = I)

full_adder port map(m(N-I)(N+J),t(N-I-1)(N+J),d(N+J),p(N+J),p(N+J+1));

 end

 if (J = (-I))

 full_adder port map(m(N-I)(N+J),t(N-I-1)(N+J),d(N+J),p(N+J),d(N+J+1));

 end

 if ((J/=I and J/=(-I)))

 full_adder port map(m(N-I)(N+J),s(N-I-1)(N+J),d(N+J),p(N+J),d(N+J+1));

 end

 end

 end

 if(I < N-2)

 half_adder port map(t(N-I)(N-I-1),t(N-I-1)(N-I-1),m(N-I-1)(N-I-1),

 m(n-I- 1)(N-I));

 end

 if(I = N-2) generate

 half_adder port map(t(N-I)(N-I-1),t(N-I-1)(N-I-1),p(N-I-1),d(N-I));

 end

 end

p(0)<=t(1)(0);

C<=p;

 31

3.2 THE BOOTH’S MULTIPLIER

 Though Wallace Tree multipliers were faster than the traditional Carry

Save Method, it also was very irregular and hence was complicated while drawing

the Layouts. Slowly when multiplier bits gets beyond 32-bits large numbers of logic

gates are required and hence also more interconnecting wires which makes chip

design large and slows down operating speed

 Booth multiplier can be used in different modes such as radix-2, radix-4, radix-8

etc. But we decided to use Radix-4 Booth’s Algorithm because of number of

Partial products is reduced to n/2.

 3.2.1 BOOTH MULTIPLICATION ALGORITHM (radix – 4)

 One of the solutions realizing high speed multipliers is to enhance

parallelism which helps in decreasing the number of subsequent calculation

stages. The Original version of Booth’s multiplier (Radix – 2) had two drawbacks.

 The number of add / subtract operations became variable and hence

became inconvenient while designing Parallel multipliers.

 The Algorithm becomes inefficient when there are isolated 1s .

 These problems are overcome by using Radix 4 Booth’s Algorithm which

can scan strings of three bits with the algorithm given below. The design of

Booth’s multiplier in this project consists of four Modified Booth Encoded (MBE),

four sign extension corrector, four partial product generators (comprises of 5:1

multiplexer) and finally a Wallace Tree Adder. This Booth multiplier technique is

to increase speed by reducing the number of partial products by half. Since an 8-

bit booth multiplier is used in this project, so there are only four partial products

that need to be added instead of eight partial products generated using

conventional multiplier. The architecture design for the modified Booths Algorithm

used in this project is shown below.

 32

Figure 3.3 Architecture of designed Booth Multiplier in the Project.

 3.2.2 MODIFIED BOOTH ENCODER (MBE)

 Modified Booth encoding is most often used to avoid variable size partial

 product arrays. Before designing a MBE, the multiplier B has to be converted into

 a Radix-4 number by dividing them into three digits respectively according to

 Booth Encoder Table given afterwards. Prior to convert the multiplier, a zero is

 appended into the Least Significant Bit (LSB) of the multiplier. The figure above

 shows that the multiplier has been divided into four partitions and hence that

 mean four partial products will be generated using booth multiplier approach I

 nstead of eight partial products being generated using conventional multiplier.

 Zn = -2* Bn+1 + Bn + Bn-1

 Lets take an example of converting an 8-bit number into a Radix-4

 number. Let the number be -36 = 1 1 0 1 1 1 0 0. Now we have to append a ‘0’ to

Bn+1 Bn Bn-1

MBE(x4)

Multiplicand A (8-bits)

PRODUCT GENERATOR

X0 X1 X-1 X2 X-2

5 TO 1 MUX

 (x4)

A7 Bn+1 Bn Bn-1

SIGN EXTENSION

CORRECTOR

 (x4)

 PP1 PP2 PP3 PP4

WALLACE TREE ADDER

OUTPUT

 33

 the LSB. Hence the new number becomes a 9-digit number, that is 1 1 0 1 1 1 0 0

 0. This is now further encoded into Radix-4 numbers according to the following

 given table. Starting from right we have 0*Multiplicand, -1*Multiplicand,

 2*Multiplicand, -1*Multiplicand.

Bn+1 Bn Bn-1 Zn Partial Product 1M 2M 3M

0 0 0 0 0 1 1 0

0 0 1 1 1×Multiplicand 0 1 0

0 1 0 1 1×Multiplicand 0 1 0

0 1 1 2 2×Multiplicand 1 0 0

1 0 0 -2 -2×Multiplicand 1 0 1

1 0 1 -1 -1×Multiplicand 0 1 1

1 1 0 -1 -1×Multiplicand 0 1 1

1 1 1 0 0 1 1 0

 Table 3.1
 Modified Booth Encoder’s table to generate M, 2M, 3M control signal

 Table 3.1 shows Bn+1, Bn and Bn-1 which are three bits wide binary

 numbers of the multiplier Bin which Bn+1 is the most significant bit (MSB) and

 Bn-1 is the least significant bit (LSB). Zn is representing the Radix-4 number of the

 3-bit binary multiplier number. For example, if the 3-bit multiplier value is “111”,

 so it means that multiplicand A will be 0.And it’s the same for others either to

 multiply the multiplicand by -1, -2 and so on depending on 3 digit number. And

 thing to note is generated numbers are all of 9-bit.

 From the table 4.1, the M, 2M and 3M are the elect control signals for the

 partial product generator. It will determine whether the multiplicand is multiplied

 by 0,-1, 2 or -2. M and 2M are designed as an active low circuit which means if

 let’s say the multiplicand should be multiplied by 1 then the M select signal will

 be set to low “0” whereas If the multiplicand should be multiplied by 2 then the

 2M select signal will be set to low “0”. The 3M is representing the sign bit control

 signal and its active high circuit which means if the multiplicand should be

 multiplied by -1 or -2, then the sign, 3M will be set to high “1”.

 34

3.2.3 PARTIAL PRODUCT GENERATOR (PPG)

 Partial product generator is the combination circuit of the product

 generator and the 5 to 1 MUX circuit. Product generator is designed to produce

 the product by multiplying the multiplicand A by 0, 1, -1, 2 or -2. A 5 to 1 MUX

 is designed to determine which product is chosen depending on the M, 2M, 3M

 control signal which is generated from the MBE. For product generator, multiply

 by zero means the multiplicand is multiplied by “0”.Multiply by “1” means the

 product still remains the same as the multiplicand value. Multiply by “-1” means

 that the product is the two’s complement form of the number. Multiply by “-2” is

 to shift left one bit the two’s complement of the multiplicand value and multiply

 by “2” means just shift left the multiplicand by one place.

3.2.4 SIGN EXTENSION CORRECTOR

 Sign Extension Corrector is designed to enhance the ability of the booth

 multiplier to multiply not only the unsigned number but as well as the signed

 number. As shown in Table 4.2 when bit 7 of the multiplicand A(A7) is

 zero(unsigned number) and Bn+1 is equal to one, then sign E will have one value

 (become signed number for resulted partial product). It is the same when the bit

 7 of the multiplicand A (A7) is one (signed number) and Bn+1 is equal to zero, the

 sign E will have a new value. However when both the value of A7 and Bn+1 are

 equal either to zero or one, the sign E will have a value zero(unsigned number).

 For the case when all three bits of the multiplier value Bn+1, Bn and Bn-1 are equal

 to zero or one, the sign E will direct have a zero value independent to the A7

 value. The table for the Sign Extension Corrector is shown below.

 35

TABLE 3.2 (A) Sign E when A& is Zero

A7 Bn+1 Bn Bn-1 E

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

TABLE 3.2 (B) Sign E when A& is One

A7 Bn+1 Bn Bn-1 E

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

 3.2.5 WALLACE TREE ADDER

 Wallace tree has been used in this project in order to accelerate

 multiplication by compressing the number of partial products. This design is done

 using half adders; Carry save adders and the Carry Look Ahead adders to speed

 up the multiplication. As shown in the figure below, since there are four sign

 extension values generated namely sign 1E, 2E, 3E and 4E for the partial product

 PP1, PP2, PP3 and PP4 respectively. The arrangement of total four partial

 product s is shown in the figure below. The second partial product had to be

 shifted left by two bits before adding to the first partial product. Hence the third

 will be shifted left by four where as for fourth it will be shifted left by six. Hence

 after proper arrangement all the four partial products will be added along with the

 sign extension.

 36

Figure 3.4 Partial Product Initial Arrangement

Figure 3.5 Wallace Tree Multiplication Method

 First of all, the partial product initial arrangement is rearranged into first

 stage as shown in figure above. It can be seen like a tree shape here. The stage

 from PP36 till 1 from the 4th partial product is moved to the first row and 3BE

 together with 1 is moved up to the row partial product 2. After rearrangement,

 the first three rows will be added using half adder and carry save adders. The

 fourth partial product will not be added first but will be sent directly to the second

 stage. Hence, there total up to nine carry save adders and four half adders.

 For second stage, the summation of the first half adders in right hand side

 of the first stage is examined. After the summation is done to add up PP02 and

 PP10, The SUM (1S0) will be generated in the same column as the second stage

 shows where as the CARRY (1C0) will be shift left into next level of

 summation. In this stage, the bit PP30-PP35 is finally being added using carry

 save adder. At this stage, bit 4BE is also being added by using half adders.

 Hence, there are total six carry save adders and seven half adders needed in this

 stage.

 37

 In third stage, it is a final stage adder and since there are only remaining

 two inputs to be added instead of three, thus carry look ahead is used to

 perform the final summation based on the Sum and Cout signal in which had

 been propagated by the second stage. 13-bit carry look ahead had been

 designed to be used in this Wallace tree final stage. The bit PP00 and PP01 are

 directly sent to the output without going through any gate level. Hence, Wallace

 tree adder will have a 17 bit length output including the carry from the final bit.

3.2.6 BOOTH MULTIPLIER BY AN EXAMPLE

 Let us see an example demonstrating the whole procedure of Booth

 multiplier (Radix -4) using Wallace Tree and Sign Extension Correctors.Let us

 take Example of calculation of (34×-42).

 Multiplicand A = 34 = 00100010

 Multiplier B = -42 = 11010110 (2’s Complement form)

 A×B = 34 × -42 = -1428

 First of all, the multiplier had to be converted into radix number as in

 Figure below. The first partial product determined by three digits LSB of

 multiplier that are B1, B0 and one appended zero. This 3 digit number is 100

 which mean the multiplicand A has to multiply by -2.To multiply by -2, the

 process takes two’s complement of the multiplicand value and then shift left one

 bit of that product. Hence, the first partial product is 110111100. All of the partial

 products will have nine bits length.

 Next, the second partial product is determined by bits B3, B2, B1 which

 indicated have to multiply by 2. Multiply by 2 means the multiplicand value has

 to shift left one bit. So, the second partial product is 001000100. The third partial

 product is determined by bits B5, B4, B3 in which indicated have to multiply by

 1. So, the third partial product is the multiplicand value namely 000100010. The

 forth partial product is determined by bits B7, B6, B5 which indicated have to

 multiply by -1. Multiply by -1 means the multiplicand has to convert to two’s

 complement value. So, the forth partial product is 111011110.

 38

 Figure below shows the arrangement for all four partial products to be

 added using Wallace tree adder method. 1E, 1BE 2E, 3E and 4E is obtained

based on the Table 4.2. The way on how this sign E is arranged has been

shown in Wallace Tree Multiplication Method above. The Wallace tree for the

Example is given below.

Figure 3.6 Method showing How Partial Products Should Be Added

To prove the output result is correct:

 11111101001101100 =

 20(0) + 21(0) + 22(1) + 23(1) + 24(0) + 25(1) + 26(1) + 27(0)

 + 29(1) + 210(0) + 211(-1)

 = 4 + 8 + 32 + 64 + 512 – 2048

 = -1428

3.4 ANALYSIS OF MULTIPLIERS

 In our project we had to compare different multiplier on the basis of their

speed and power parameters. We used Xilinx ISE version 10.2 for our

simulation of different multipliers and knowing their delays. We analyzed Array

Multipliers, Wallace Tree Multipliers and Booth Multiplier (Radix-2 and Radix-4)

and analyzed their speed and power consumption using the above.

 39

PARAMETERS VALUES

Number Of Slices 96

Number Of 4-input LUTs 178

Number Of Bonded Input 32

Number Of Bonded Output 32

Power 134mW

 Table 3.3 Array Multiplier

PARAMETERS VALUES

Number Of Slices 72

Number Of 4-input LUTs 130

Number Of Bonded Input 32

Number Of Bonded Output 32

Power 124mW

 Table 3.4 Booth Multiplier (Radix – 2)

PARAMETERS VALUES

Number Of Slices 69

Number Of 4-input LUTs 125

Number Of Bonded Input 32

Number Of Bonded Output 32

Power 87mW

Delay 25.435 ns

 Table 3.5 Wallace Tree Multiplier

 40

 PARAMETERS VALUES

Number Of Slices 96

Number Of 4-input LUTs 178

Number Of Bonded Input 32

Number Of Bonded Output 32

Power 79mW

Delay 26.645 ns

 Table 3.6 Booth Multiplier (Radix – 4)

 If we compare the above values among each other we can observe that

the Array Multiplier is the worst case multiplier consuming highest amount of

power. Then comes the Radix – 2 booth multiplier which consumes lesser

power than array multiplier. The Wallace Tree multiplier and Booth Multiplier

Radix-4 have nearly same amount of delay while Radix-4 Booth consuming

lesser power than the other. Hence we reach to a conclusion that Booth Radix-4

Multiplier is best for situations requiring Low power Applications.

 41

Chapter 4

 LOW POWER OPTIMIZATIONS

 4.1 Optimization of multiple recoding
 schemes for low power

 4.2 High Level Comparison

 4.3 Delay in various recoding schemes

 4.4 New Recoding schemes

 4.5 Comparison of multipliers with different
 recoding and PP generator schemes

 42

4.1 Optimization of Multiplier Recoding schemes for Low
Power

 The multiplier operand Y is often recoded into a radix higher than 2 in

 order to reduce the number of partial products. The most common recoding is

 radix – 4 recoding with digit set {-2, -1, 0, 1, 2}. For a series of consecutive 1’s,

 the recoding algorithm converts them 0’s surrounded by a 1 and a (-1), which has

 potential of reducing switching activity. At the binary level, there are many

 design possibilities. The traditional design objectives are small delay and small

 area. The power issues of different designs have not been addressed well. In this

 chapter, we focus on the effects of radix-4 recoding schemes in multipliers and

 optimize their designs for low power. Here, we give an overview and analysis of

 several known recoding schemes and their designs and compare the Timing and

 power consumption by them.

 Intuitively, radix-4 multipliers could consume less power than their radix-

 2 counterparts as recoding reduce the number of PPs to half. However, the extra

 recoding logic and the more complex PP generation logic may present significant

 overheads. In addition, recoding introduces extra unbalanced signal propagation

 paths because of the additional delay on the paths from operand Y to the product

 output. We have showed that Wallace tree multipliers consumed less power than

 Booth-recoded radix-4 multipliers although the radix-2 scheme had twice as

 many PPs as the radix-4 scheme. This leads us to believe that the design of

 recoders and PP generators plays an important role in the overall power

 consumption in multipliers.

4.1.1 Parallel Recoding Schemes

 In parallel recoding, at least three signals are needed to represent the

 digit set {-2,-1, 0, 1, 2}. To achieve area/delay tradeoff, additional signals are

 often used. We classify existing schemes of radix-4 recoding design by the

 number of control signals. There are three classes: three-signal schemes,

 four-signal schemes, and five-signal schemes. They are different in one or more

 43

 aspects of parallel/serial recoding, control signals, zero handling, and logic

 organization.

 THREE - SIGNAL SCHEMES

 4.1.1.1

 In three-signal schemes, one standard approach [] is the

 THREE_SIGNAL_1 scheme in Table 4.1. The signal cor is the correction

 bit for negative numbers. The following switching expressions are

 deduced:

 negi = y2i+1

 twoi = y’2i+1y2iy2i-1+ y2i+1y’2iy’2i-1

 onei = y2i XOR y2i-1

 cori = y2i+1

Y2i+1 Y2i Y2i-1 Partial Product negi twoi onei cori

0 0 0 0 0 0 0 0

0 0 1 1×Multiplicand 0 0 1 0

0 1 0 1×Multiplicand 0 0 1 0

0 1 1 2×Multiplicand 0 1 0 0

1 0 0 -2×Multiplicand 1 1 0 1

1 0 1 -1×Multiplicand 1 0 1 1

1 1 0 -1×Multiplicand 1 0 1 1

1 1 1 0 1 0 0 1

 Table 4.1: Recoder for the scheme THREE_SIGNAL_1

 RECODER PP GENERATOR

 44

 4.1.1.2

 In three-signal schemes, one standard approach is the

 THREE_SIGNAL_2 scheme in Table 4.2. The signal cor is the correction

 bit for negative numbers. The following switching expressions are

 deduced:

 negi = y2i+1 (y2iy2i-1)’

 twoi = y’2i+1y2iy2i-1+ y2i+1y’2iy’2i-1

 zeroi = y2i+1y2iy2i-1 + y’2i+1y’2iy’2i-1

 cori = negi

Y2i+1 Y2i Y2i-1 Partial Product negi twoi zeroi cori

0 0 0 0 0 0 1 0

0 0 1 1×Multiplicand 0 0 0 0

0 1 0 1×Multiplicand 0 0 0 0

0 1 1 2×Multiplicand 0 1 0 0

1 0 0 -2×Multiplicand 1 1 0 1

1 0 1 -1×Multiplicand 1 0 0 1

1 1 0 -1×Multiplicand 1 0 0 1

1 1 1 0 0 0 1 0

Table 4.2: Recoder for the scheme THREE_SIGNAL_2

 RECODER PP GENERATOR

 45

 4.1.1.3

 In three-signal schemes, one standard approach is the

 THREE_SIGNAL_3 scheme in Table 4.3. The signal cor is the correction

 bit for negative numbers. And the other three signals are pos, neg,two

 The following switching expressions are deduced:

 negi = y2i+1 (y2iy2i-1)’

 posi = y’2i+1 (y2i+y2i-1)

 twoi = (y2i XOR y2i-1)’

 cori = negi

Y2i+1 Y2i Y2i-1 Partial Product negi posi twoi cori

0 0 0 0 0 0 1 0

0 0 1 1×Multiplicand 0 1 0 0

0 1 0 1×Multiplicand 0 1 0 0

0 1 1 2×Multiplicand 0 1 1 0

1 0 0 -2×Multiplicand 1 0 1 1

1 0 1 -1×Multiplicand 1 0 0 1

1 1 0 -1×Multiplicand 1 0 0 1

1 1 1 0 0 0 1 0

Table 4.3: Recoder for the scheme THREE_SIGNAL_3

 RECODER PP GENERATOR

 46

 4.1.1.4 FOUR - SIGNAL SCHEMES

 In Four-signal schemes we have an approach is the

 FOUR_SIGNAL_1 scheme in Table 4.4. The signals here are as

 follows: neg, tmp1, tmp2, one, two, zero, cor, The following

 switching expressions are deduced

 negi = y2i+1

 tmp1i = y2i+1 XOR y2i-1

 tmp2i = y2i+1 XOR y2i

 onei = y2i XOR y2i-1

 twoi = tmp1i * tmp2i

 zeroi = (tmp1i + tmp2i)’

 cori = y2i+1 zeroi’

Y2i+1 Y2i Y2i-1 Partial Product negi twoi onei zeroi cori

0 0 0 0 0 0 0 1 0

0 0 1 1×Multiplicand 0 0 1 0 0

0 1 0 1×Multiplicand 0 0 1 0 0

0 1 1 2×Multiplicand 0 1 0 0 0

1 0 0 -2×Multiplicand 1 1 0 0 1

1 0 1 -1×Multiplicand 1 0 1 0 1

1 1 0 -1×Multiplicand 1 0 1 0 1

1 1 1 0 1 0 0 1 0

Table 4.4: Recoder for the scheme FOUR_SIGNAL_1

 RECODER PP GENERATOR

 47

4.1.2 Serial Recoding Schemes

 For serial radix-4 recoding, there is not much previous work

 because its application is limited to linear array multipliers although it has

 the potential of power saving. However, the use of four possible values

 instead of five does not necessarily simplify the design because the digit

 set is not symmetric. The equation derived is shown below.

 negi = y2i+1 (y2i+Ci)

 onei = y2i XOR Ci

 zeroi = y2i+1 y2i Ci + y2i-1’ y2i’ Ci ’

 cori = y2i+1 * onei

 Ci+1 = negi

Y2i+1 Y2i C i Partial Product negi onei zeroi cori ci+1

0 0 0 0 0 0 1 0 0

0 0 1 1×Multiplicand 0 1 0 0 0

0 1 0 1×Multiplicand 0 1 0 0 0

0 1 1 2×Multiplicand 0 0 0 0 0

1 0 0 -2×Multiplicand 0 0 0 0 0

1 0 1 -1×Multiplicand 1 1 0 1 1

1 1 0 -1×Multiplicand 1 1 0 1 1

1 1 1 0 1 0 1 0 1

Table 4.5: Recoder for the scheme SERIES_SIGNAL_1

 RECODER PP GENERATOR

 48

4.2 High Level Comparison

 When we go for high level comparisons we have two parameters

 for us when we consider different types of recoding schemes. It is the

 recoder and the partial product generator. The delay of REC and PPG is

 estimated roughly as equivalent XOR2 gate delay (TXOR2) without

 considering fan-out and signal transition directions. Simple gates such as

 AND2 have the delay of 0.5TXOR2. Two-level AND/OR gates and

 MUX21 have the same delay as XOR2.

 Among above discussed recoding schemes, THREE_SIGNAL_1

 has both the simplest recoder and the simplest PP generator. But doesn’t

 have a unique zero handling.

 After analyzing it was found out that in an m × n bit radix-4

 multiplier, the total area of recoders is n/2AREC1b while the total area of PP

 generators is n /2 * (m+1)APPG1b, where AREC1b is area of 1-bit recoder cell

 area and APPG1b is area of 1-bit partial product generator cell area. Hence

 since partial product generators (PPG) occupy larger areas than the

 recoders, we need to simplify PP generators for power saving. In addition,

 unique zero handling is desired in order to reduce the number of

 unnecessary switching activities.

4.3 Delay in various recoding schemes

 The delay found in the above mentioned recoding schemes are

 given in the table presented below.

Schemes Delay(in ns)

Three_signal_1 3.1

Three_signal_2 4.2

Three_signal_3 2.75

Four_signal_1 2

Series_signal_1 3.5

Table 4.6: Delay for different schemes

 49

4.4 New Recoding schemes

 For new parallel recoding schemes we know we always have

 THREE_SIGNAL_1 having simplest recoder and PP generator. So we

 can think to keep the simplicity of the PP generator because it occupies

 most area and can think of increasing the complexity of recoder to add

 the power efficient zero handling. So the new scheme can be shown to be

 as follows.

 negi = y2i+1(y2iy2i-1)’

 twoi = y’2i+1y2iy2i-1+ y2i+1y’2iy’2i-1

 onei = y2i XOR y2i-1

 cori = negi

Y2i+1 Y2i Y2i-1 Partial Product negi twoi onei cori

0 0 0 0 0 0 0 0

0 0 1 1×Multiplicand 0 0 1 0

0 1 0 1×Multiplicand 0 0 1 0

0 1 1 2×Multiplicand 0 1 0 0

1 0 0 -2×Multiplicand 1 1 0 1

1 0 1 -1×Multiplicand 1 0 1 1

1 1 0 -1×Multiplicand 1 0 1 1

1 1 1 0 0 0 0 0

 Table 4.7: Recoder for the scheme NEW_THREE_SIGNAL_1

 RECODER PP GENERATOR

 50

4.5 Comparison Of Multipliers with Different Recoding
Schemes

SCHEME POWER (mW) DELAY(ns)

Three_signal_1 29.72 11.00

Three_signal_2 30.80 11.15

Three_signal_3 27.88 10.73

Four_signal_1 29.82 10.93

Series_signal_1 31.43 10.97

New_Three_signal_1 27.32 10.31

 Table 4.8: Power and delays of multiplier with above

 discussed schemes of recoders and PP generators.

 In the above as we can see we have calculated the Power and

 Delays by different recoding schemes. We have also included the new

 proposed recoding scheme which was modified version of some previous

 recoding scheme.

 From above only we can say that parallel recoding schemes

 always consume less power than serial recoding schemes and hence are

 used very less these days. But if we look at the modified parallel recoding

 scheme it has much less power consumed than the previous schemes

 and also has less delay in the circuit as compared to the other schemes.

 Hence New_Three_signal_1 can be used as a recoder scheme when it

 comes to lesser power and lesser delay applications, which are generally

 the basic motto requirements of today’s integration industry.

 51

Chapter 5

 OUTPUT WAVEFORMS

 52

BOOTH MULTIPLIER OUTPUT

Binary Form output

Signed Form Output

WALLACE TREE MULTIPLIER OUTPUT

Binary Form Output

Signed Form Output

 53

Chapter 6

 6.1 CONCLUSION

 6.2 FUTURE WORK

 6.3 REFERENCES

 54

6.1 Conclusion

 After going through all the hard work and facing problems, this

 project managed to complete its objectives that are to study different

 Multiplier and learn the Power and Time trade off among them so that we

 can design Efficient Faster Low Power Multiplier.

 We studied about different adders among compared them by

 different criteria like Area, Time and then Area-Delay Product etc. so that

 we can judge to know which adder was best suited for situation. After

 comparing all we came to a conclusion that Carry Select Adders are best

 suited for situations where Speed is the only criteria. Similarly Ripple

 Carry Adders are best suited for Low Power Applications. But Among all

 the Carry Look Ahead Adder had the least Area-Delay product that tells

 us that, it is suitable for situations where both low power and fastness are

 a criteria such that we need a proper balance between both as is the case

 with our Project.

 Coming to Multipliers we studied different Multipliers starting from

 Array Multiplier to Wallace Tree, Booth Multipliers, both Radix-2 and

 Radix-4.We found that parallel multipliers are much better than the serial

 multipliers due to less area consumption and hence the less power

 consumption. Comparing Radix-2 and Radix-4 booth multipliers we found

 that radix-4 consumes less power than radix-2, because radix-4 uses

 almost half number of iterations than radix-2.We saw Wallace tree having

 nearly same delay as of radix-4 multipliers where as consuming a little

 more power than the former.

 After all this then we tried to improve power efficiency of circuits.

 Hence we went for studying different recoding schemes along with their

 Partial Product generators and study time and power required by them in

 a multiplication process. After studying them we went to modify one of the

 recoding schemes to find a proper combination of recoder and PP

 generator such that we will have simplest PP generator as these take

 maximum area in a cell area and then take care of zero handling as it

 handles most of the switching activities. Hence we ended up creating a

 better recoding scheme.

 55

 6.2 FUTURE WORK

 As an attempt to develop arithmetic algorithm and architecture

 level optimization techniques for low-power multiplier design, the research

 presented in this dissertation has achieved good results and

 demonstrated the efficiency of high level optimization techniques.

 However, there are limitations in our work and several future research

 directions are possible.

 One possible direction is radix higher-than-4 recoding. We have

 only considered radix-4 recoding as it is a simple and popular choice.

 Higher-radix recoding further reduces the number of PPs and thus has

 the potential of power saving.

 Another possible direction can be representation of Arguments

 such as in sign-magnitude or 2’s compliment form which in any case

 would prove better according to situation and require less power and

 consume less time.

 56

6.3 REFERENCES

 [1] K.H. Tsoi, P.H.W. Leong, "Mullet - a parallel multiplier generator," fpl,

 pp.691-694, International Conference on Field Programmable
 Logic and Applications, 2005., 2005

 [2] S. Tahmasbi Oskuii, P. G. Kjeldsberg, and O. Gustafsson,
 “Transition activity aware design of reduction-stages for parallel
 multipliers,” in Proc. 17th Great Lakes Symp. On VLSI, March 2007, pp.
 120–125.

 [3] Ayman A. Fayed, Magdy A. Bayoumi, "A Novel Architecture for Low-
 Power Design of Parallel Multipliers," wvlsi, pp.0149, IEEE Computer
 Society Workshop on VLSI 2001, 2001

 [4] M. 0. Lakshmanan, Alauddin Mohd Ali, "High Performance Parallel
 Multiplier Using Wallace-Booth Algorithm," IEEE International
 Conference on Semiconductor Electronics, pp. 433-436, 2002.

 [5] Design Compiler User Guide. Synopsys, Inc., Nov. 2000.

 [6] Z. Huang, “High-Level Optimization Techniques for Low-Power
 Multiplier Design,” PhD dissertation, Univ. of California, Los
 Angeles, June 2003.

