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ABSTRACT

Data mining is the process of extracting hiddertgpas from data. As more data is gathered,
with the amount of data doubling every three yedata mining is becoming an increasingly
important tool to transform this data into informoat In this paper, we first focused on
APRIORI algorithm, a popular data mining technicaed compared the performances of a
linked list based implementation as a basis andea-based implementation on it for mining
frequent item sequences in a transactional datab@se examined the data structure,
implementation and algorithmic features mainly f&iog on those that also arise in frequent item
set mining. This algorithm has given us new cajit#sl to identify associations in large data
sets. But a key problem, and still not sufficienthvestigated, is the need to balance the
confidentiality of the disclosed data with the tegate needs of the data users. One rule is
characterized as sensitive if its disclosure rssklove a certain privacy threshold. Sometimes,
sensitive rules should not be disclosed to theipuihce among other things, they may be used
for inferring sensitive data, or they may providgsimess competitors with an advantage. So,
next we worked with some association rule hidingpathms and examined their performances
in order to analyze their time complexity and thpact that they have in the original database.
We worked on two different side effects — one wesrtumber of new rules generated during the

hiding process and the other one was the numbasretensitive rules lost during the process.
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INTRODUCTION

1.5 What is data mining?
1.6 Scope of data mining
1.7 Technologies in data mining

1.8 Privacy issues in data mining
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1.1What is data mining?
Data mining is a technique that helps to extragiartant data from a large database. It is the
process of sorting through large amounts of dathmcking out relevant information through
the use of certain sophisticated algorithms. Aserdata is gathered, with the amount of data
doubling every three years, data mining is becomammgncreasingly important tool to transform
this data into information.
Data mining techniques are the result of a longgse of research and product development.
This evolution began when business data was figted on computers, continued with
improvements in data access, and more recentlyerged technologies that allow users to
navigate through their data in real time. Data mgntakes this evolutionary process beyond
retrospective data access and navigation to pragpeand proactive information delivery. Data
mining is ready for application in the business ommity because it is supported by three
technologies that are now sufficiently mature:

« Massive data collection

« Powerful multiprocessor computers

- Data mining algorithms

1.2 Scope of data mining

Data mining derives its name from the similaritizstween searching for valuable business

information in a large database — for example, ifigdinked products in gigabytes of store

scanner data — and mining a mountain for a veimatiiable ore. Both processes require either
shifting through an immense amount of materiaintlligently probing it to find exactly where
the value resides. Given databases of sufficierté and quality, data mining technology can
generate new business opportunities by providiegdltapabilities:

- Automated prediction of trends and behavi@ata mining automates the process of finding
predictive information in large databases. Questitmt traditionally required extensive
hands-on analysis can now be answered directly thendata — quickly. A typical example
of a predictive problem is targeted marketing. Daiaing uses data on past promotional

mailings to identify the targets most likely to nmake return on investment in future



mailings. Other predictive problems include foreicegs bankruptcy and other forms of
default, and identifying segments of a populati@al{ to respond similarly to given events.

« Automated discovery of previously unknown patteeta mining tools sweep through
databases and identify previously hidden pattem®ne step. An example of pattern
discovery is the analysis of retail sales datalémiify seemingly unrelated products that are
often purchased together. Other pattern discoveoplems include detecting fraudulent
credit card transactions and identifying anomaldasa that could represent data entry
keying errors.

Data mining techniques can yield the benefits ab@ation on existing software and hardware

platforms, and can be implemented on new systeragiasng platforms are upgraded and new

products developed. When data mining tools are emphted on high performance parallel
processing systems, they can analyze massive detlia minutes. Faster processing means
that users can automatically experiment with mooslels to understand complex data. High
speed makes it practical for users to analyze lougatities of data. Larger databases, in turn,

yield improved predictions.

1.3Technologies in data mining

According to a recent Gartner HPC Research Notdth'We rapid advance in data capture,
transmission and storage, large-systems usersineittasingly need to implement new and
innovative ways to mine the after-market valueh&irt vast stores of detail data, employing MPP
[massively parallel processing] systems to create sources of business advantage.”

The most commonly used techniques in data miniag ar

 Atrtificial neural networks Non-linear predictive models that learn througdining and
resemble biological neural networks in structure.

- Decision treesTree-shaped structures that represent sets afioesi These decisions
generate rules for the classification of a dataSpecific decision tree methods include
Classification and Regression Trees (CART) and Shuare Automatic Interaction
Detection (CHAID).

« Genetic algorithms: Optimization techniques that use process such easetig
combination, mutation, and natural selection in esigh based on the concepts of

evolution.



- Nearest neighbor method technique that classifies each record in asdthased on a
combination of the classes of the k record(s) nsasilar to it in a historical dataset.
Sometimes called the k-nearest neighbor technique.

« Rule induction The extraction of useful if-then rules from ddiased on statistical
significance.

Apriori is a classic algorithm used in data minifay learning association rules. Apriori is
designed to operate on databases containing ttaorsadfor example, collections of items
bought by customers, or details of a website fratat®n). Other algorithms are designed for
finding association rules in data having no traheas (Winepi and Minepi), or having no

timestamps (DNA sequencing).

1.4 Privacy issues in data mining
Providing security to sensitive data against unangkd access has been a long term goal for the
database security research community and for theergment statistical agencies. Recent
advances in data mining technologies have incrediseddisclosure risks of sensitive data.
Hence, the security issue has become, recently,uehnmore important area of research.
Therefore, in recent years, privacy-preserving dataing has been studied extensively. A
number of algorithmic techniques have been desidoegrivacy-preserving data mining. Most
methods use some form of transformation on the datarder to perform the privacy
preservation. Typically, such methods reduce tlaagarity of representation in order to reduce
the privacy. This reduction in granularity results some loss of effectiveness of data
management or mining algorithms. This is the natuemle-off between information loss and
privacy. Some examples of such techniques arellasvi
» The randomization methodThe randomization method is a technique for privacy
preserving data mining in which noise is addedhe data in order to mask the attribute
values of records. The noise added is sufficielattge so that individual record values
cannot be recovered.
» The k-anonymity model and I-diversifyhe k-anonymity model was developed because of
the possibility of indirect identification of reas from public databases. In the
anonymity method, the granularity of data represt#on is reduced with the use of

techniques such as generalization and suppression.



In the I-diversity model, the concept of intra-group divigrsof sensitive values is
promoted within the anonymization scheme.

« Distributed privacy preservationn many cases, individual entities may wish to deri
aggregate resultsfrom data sets which are partitioned across thedéies. Such
partitioning may be horizontal (when the records distributed across multiple entities)
or vertical (when the attributes are distributedoas multiple entities). While the
individual entities may not desire to share theitire data sets, they may consent to
limited information sharing with the use of a véyi®f protocols. The overall effect of
such methods is to maintain privacy for each irdiiai entity, while deriving aggregate
results over the entire data.

- Downgrading Application Effectivenedst many cases, even though the data may not be
available, the output of applications such as aason rule mining, classification or
query processing may result in violations of privadhis has lead to research in
downgrading the effectiveness of applications llgezidata or application modifications.
Some examples of such techniques include assatiatide hiding, classifier
downgrading, and query auditing.

In our work, we concentrated dAssociation Rule Miningtechnique for mining information
from a transactional database afgsociation Rule Hidingiethodfor privacy preservation.
We implementedipriori algorithm to generate association rules from argatabase and then

used two different approaches to hide some ofules ithat were considered as sensitive.
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2.1 Brief introduction to association rules:

In a database of transactioDswith a set of n binary attributes (iteris)arule is defined as an

implication of the form
X = YwhereX, YC | andXNY =¢.

The sets of items (for shatem setyX andY are callecanteceden(left-hand-side or LHS)
andconsequenfright-hand-side or RHS) of the rule respectivelfriesupport, supp(X)of an
item setX is defined as the proportion of transactions & dhata set which contain the item set.
Theconfidenceof a rule is defined

confX =Y) =suppX U Y) /supp(X).
Following the original definition given byAgrawal et al [5] association rules (ARsare
implication rules that inform the user about itemast likely to occur in some transactions of a
database. They are advantageous to use becausartheymple, intuitive and do not make
assumptions of any models. Their mining requirdsfyang a user-specifiechinimum support
and a user-specifiechinimum confidenc&om a given database at the same time. To achieve
this, association rule generation is a two-steggss.
First, minimum support is applied to find all fresqu item-sets in a database.
In a second step, these frequent item-sets andhihienum confidence constraint are used to

form rules. While the second step is straight fadyéhe first step needs more attention.

2.2 Steps in finding the association rules

Suppose one of the large item-setsdy = {I 1, I2,...,k}, association rules with this item-set are
generated in the following way: the first rule {ig, I, ... , ki} => {l «}, by checking the
confidence this rule can be determined as intergsir not. Then other rule are generated by
deleting the last items in the antecedent and tinggit to the consequent, further the confidences
of the new rules are checked to determine theifulreess. Those processes iterated until the
antecedent becomes emp8ince the second sub-problem is quite straightdodywmost of the
researches focus on the first sub-problem.

In the contest foFrequent Item-set MiningmplementationApriori has proved to be one of the

most versatile and successful algorithms ranking aely to more sophisticated algorithms like



eclat, nonordfp and lcmt has been proved by scholars tApriori outperforms some of the

algorithms in areas like space and database co

2.3 Defining the problen:
PROBLEM:A transactionaldatabaseconsists of sequence of transaction: Ty,to,....., t>. ta

transaction is a set of items; 1). A set of items is often called item-Sgte(absolute support
or the occurrence oft is the number of transactions that are superse X (i.e. that containX

). The relative suppoiits the absolute support divided by the number arigactions (i.en). An
item-set is frequent its support is greater or equal than a thresheldue

In the frequent itenset mining problem a transaction dbase and a relative support thresh:
is given and we have to find all frequent i-sets.

And eventually in the second step, we find the cison rules with the given minimut

confidence.

2.4 Apriori Algorithm:

Apriori[6] was proposed by Agrawal and Srikant in 1994. Terdahm finds the frequent set
in the database D. It makes use of the downwarsliodoproperty. The algorithm is a bot-up
search, moving upward levelise in the lattice. However, before readine database at every
level, it prunes many of the sets which are unjikel be frequent sets, thus saving any €
efforts.

Candidate GeneratianGiven the set of all frequent-1) itemsets, we want to generate
superset of the set of all frequen-item-sets. The intuition behind the apriori candic
generation procedure is that if an i-set X has minimum support, so do all subsets cdfbéer
all the (I+1)-candidate sequences have been generated, a newfdbantransactions is start
(they are read one-byne) and the support of these new candidatesesrdited.

Pruning The pruning step eliminates the extensions -1) itemsets which are not found to
frequent, from being considered for counting suppBor each transaction t, tlalgorithm
checks which candidates are contained in t and éelast transaction are processed; those

support less than the minimum support are disci..



Pass 1
1. Generate the candidate item-sets in C
2. Save the frequent item-sets in L
Pass k
1. Generate the candidate item-sets infl®@m the frequent
item-sets in ki
a. Join L1 p with L.1q, as follows:
insertinto Cy
select p.item1, g.item . . ., p.itemy, q.item.1
from L1 p, L1Q
where p.item = q.item, . . . p.itemz = g.item.p, p.iten.1 < g.itemq
b. Generate all (k-1) subsets from the candidate isets-in G
c. Prune all candidate item-sets from @Where some (k-1) subset of the candidate
item-set is not in the frequent item-sgf L
2. Scan the transaction database to determinatip@ort for each candidate item-set in C

3. Save the frequent item-sets in L

2.5 Implementing Apriori algorithm
The choice of the data-structure to store the catés is the determining factor in calculating
the efficiency of the algorithm. We present an wgsial of our implementations using simple

Linked-listsandTries separately.

2.5.1 Linked List representation
Here we use two kinds of structures—node and am-get.
struct node{
int index ;
struct item_set *item,*temp1,
struct node *next;
3
struct item_set{
int *data;
struct item_set *nextl; };



There are two separate linked lists----one compasdedodes, where each node specifies the
index, i.e., k. Each node will again have a secamcd list composed of item-sets associated
with it. This connected second linked list will ¢aim the actual items from the transactional
database.

The choice of the data-structure to store the catés is the determining factor in calculating

the efficiency of the algorithm. We present an wgsial of our implementations using simple

linked-lists and tries separately.

2.5.2 The Tries Implementation of Apriori.
TheTries[7] data structure used here is similar to the pnoposed byerenc Bodof8].
A tries is a rooted and labeled tree. Though @resgenerally used to store words, they are also
useful in storing and retrieving any finite ordersets. We utilize this property in building the
tries for Apriori. The tries contains an item dethiere exists a path where the nodes are labeled
by the elements of the set, in increasing ordercaAdidate k-item set C=fi,<.... <ip} IS
represented by the nodesis...... in in order.
struct node{

short int item, depth, sup;

struct child *dp;
3
struct child{

struct node *next;

struct child *nextc;
3
Support countings done by reading transactions one-by-one arefmating which candidates
are contained in the actual transaction. We maintab indices to count support, one for the
items in the transaction and the other for the spdach being initialized to the first element.
After that, we check if the elements pointed by te indices are equal. If true, we call the
process recursively, otherwise we increase thexitiolg points to the smaller item. These steps
are repeated until the end of the transaction eldkt edge is reached. The support counters of
the leaves in the path are increased if the nodesne path are similar to the particular

transaction.

10



The time of finding supported candidates in a taatien can be reduced significantly by storing
some extra information at the nodes. While counsgport, we often have to make superfluous
moves in tries search in the sense that there @a@andidates in the direction we are about to
explore. To avoid this superfluous traveling, aérgvnode, we store the length of the longest
directed path that starts from there. When seagcfon k-item set candidates at depth d, we

move downward only if the maximal path length a$ thode is at least k-d.

The most important function that we use is probabégyintersection pruning method suggested
by Bodon[8] with a slight modification of our own. We deroby u the parent of the node that
has to be extended (sa$). Suppose that the node u is at a depth |, taméte the children of
u’, we first consider the subsequences at deptbmpare withu’ and one-by-one denote these
nodes at depthby v. The intersection of the children ofand each and evewis appended to
u’. Thus the pruned candidate is obtained in a sirgplesaving a lot of superfluous traversals

and hence computation time.

This technique of pruning could however not be i@opto 1-itemset and 2-itemset candidate
generation and we had to write separate functionghiem. Some other issues had to be taken
special care of such as the adjustment of the deptine nodes after deletion is performed. Our
implementation differed from that ddodon only slightly in thatBodon had computed the
children ') of v having the same label as that of the node thatdhae extended while we did
not consider any’, reason being, we did not label our edges as @hees or the items of the

item sets. We used nodes only for that purpose.
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CHAPTER 3

ASSOCIATION RULE HIDING

3.1 Problem Formulation

3.2 Different Approaches to Solve the Problem
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3.1 Problem Formulation

Providing solutions to database security probleesgire combining several techniques and
mechanisms. In an environment where data haverehiffesensitivity levels, this data may be
classified at different levels, and made availatndy to those subjects with an appropriate
clearance. It is however; well known that simply rfegtricting access to sensitive data does
not ensure complete sensitive data protectionekample, sensitive or “high” data items may
be inferred from non-sensitive, or “low” data thghusome inference process based on some
knowledge of the semantics of the application teerthas. Such a problem is known as
‘Inference Problem’. Association rules can be ideld in this category. The proposed
solutions address the problem of how to preventlassire of sensitive data through the
combination of known inference rules with non-sewsidata. Below we provide a notational
view to the problem.

Letl ={i,
database that is going to be disclosed. Each haora € D is an item set such thais a

_____ , In} be a set of literals, called items. LBtbe a set of transactions which is the
proper subset of. A unique identifier, which we call it TID, is amsated with each
transaction. We say that a transactiGupportsX, a set of items i, if X is a proper subset
of t. We assume that the items in a transaction oteam set are sorted in lexicographic order.
An item setX has suppors if s% of the transactions suppoft Support ofX is denoted as
SupX).
An association rule is an implication of the form

X =>Y, where Xand Y are subsets of | and X = &.
We say that the rule X =>Y holds in the databiaseith confidence Gf

|XUY| * 100
———>C
|X|

(where| A | is the number of occurrences of the set of itéms the set of transactior3, andA

occurs in a transactidnif and only ifAis a proper subset .

We also say that the ru¥e=>Y hassupport Sf

|XUY| * 100
— >S5
N

WhereN is the number of transactionsin

13



Here, thesupportis a measure of the frequency of a rule, whetbagonfidencds a measure of
the strength of the relation between sets of items.
Association rule mining algorithms scan the datebafstransactions and calculate the support
and confidence of the candidate rules to deternfirteey are significant or not. A rule is
significant if its support and confidence is highiean the user specified minimum support and
minimum confidence threshold. In this way, alganthdo not retrieve all the association rules
that may be derivable from a database, but onlgrg small subset that satisfies the minimum
support and minimum confidence requirements s¢héysers. We aimed at preventing some of
these rules that we referred to as “sensitive fufesm being disclosed. The problem can be
stated as follows:

“Given a database D, a set R of relevant rules tlate mined from D and a subsef &t

R, we had to transform D into a database D’ in sachay that the rules in R could still

be mined, except for the rules in'R
Thus, we were looking for a transformation Bf (the source database) B (the released

database) that would maximitee number of rules in RRy that could still be mined.

3.2 Different Approaches To Solve The Problem

There are two main approaches that could be adaphbet we tried to hide a sei;Rf rules
(i.e., prevent them from being discovered by asgmi rule mining algorithms):

(a) We could either prevent the rules im Rom being generated, by hiding the frequent sets
from which they are derived,

(b) We could reduce the confidence of the sensitilesrby bringing it below a user-specified
threshold(min_conj.

We focused our work on the second approach. Inrdad@chieve our goal, transactions were
modified by removing some items, or inserting néamis depending on the hiding strategy. The
constraint on the algorithms was that the changethé database introduced by the hiding
process should be limited, in such a way that tifiermation loss incurred by the process was
minimal. Selection of the items in a rule to bed&d and the selection of the transactions that
would be modified was a crucial factor for achieyithe minimal information loss constraint.

Before presenting the strategies and the algoritasntroduce some notation below.

14



3.2.1 Notation and Preliminary Definitions
We used a bitmap notation with a few extensiongpoesent a database of transactions. Bitmap
notation is commonly used in the association ruleimg context. In this representation, each
transactiort in the databasB is a triple:
t =< TID; values of items; size >,

where,TID is the identifier of the transactidrand values of itemss a list of values with one
value for each item in the list of iterhandsizeis the size of the transactions, that is, the numbe
of items in the transaction t. An item is repreednby one of the initial capital letters of the
English alphabet. An item is supported by a tramsad if its value in thevalues of itemss 1
and it is not supported Ryif its value invalues of itemss 0. Sizeis the number of 1 values
which appear in thealues of itemge.g., the number of items supported by transat}ion
Given a seP, the conventional representatipR | indicates the number of elements of theFset
According to this notation, the number of transawsi stored in a database D is indicatefiag
while | I | represents the number of the different items agppgan D. The set of rules that can
be mined from the database is indicatedRmnd the subset of these rules, that we're inteteste
in hiding, is referred to as{RFor each rule in Ry we use the compact notatigrio indicate the
item set which appears in the left side of a ru{also referred to as rule antecedent) gnid
indicate the item set which appears in the rigié sif a rule (also referred to as rule consequent).

Next we present some useful definitions thidithelp to better understand the algorithms or
strategies.
Given a transactiohand an item se$, we say that fully supports 3 the values of the items of
Sin t.values of itemsre all 1;t is said topartially support Sf the values of the items &in
t.values of itemsre not all 1's. For example, 8 = {A, B, C, D} = [11110] andp =< T1,
[10100} 2 >, q=<T2; [11110} 4 > then we would say thaffully supportsSwhile p partially
supportsS.
A ruler corresponds to an item set. This item set is thenuaf the items in the left hand side
and the right hand side of the rule. We denotetéme set that corresponds to rulasl,, and we
refer to it as th@enerating item seaif r. Two different rules may have the same generatamny
set.
We use the notatiofr to denote the set of transactions that fully supfi@ generating item set

of a ruler. We also denote bij, the set of transactions that fully support the thefitd side or the

15



antecedent of the ruke while by Tr, we denote the set of transactions that fully suipibhar right
hand side of the rule. We slightly change the notations to represergtaottransactions that
partially supports an item set. In the previousatiohs we add the prime symbol in all
occurrences off, so the set of transactions that partially supplogt antecedent of the rule
becomedTl,’ and the set of transactions that partially supfi@tconsequent of the rule becomes
Tre.

Further, we assume that each rule is assigned denaitivity level The sensitivity level is
determined based on the impact that a certainhragein the environment that the rule is a part
of. For example, in a retail environment, a rulattban be used to boost the sale of a set of items
could be a sensitive rule. The impact of a rulthmretail environment is the degree at which the
rule increases the sales and consequently tha.@ofce only frequent and strong rules could be
extracted by the data mining algorithms we assuratthe sensitivity level of only the frequent
and strong rules are of interest to us. If a strand frequent rule is above certain sensitivity
level, the hiding process should be applied in sualay that either the frequency or the strength
of the rule will be reduced to bring the suppordahe confidence of the rule below the

min_suppand themin_confcorrespondingly.

3.2.2 Hiding Strategies

The hiding strategies heavily depend on findingndections that fully or partially support the
generating item sets of a rule. Because if we w@ihide a rule, we need to change the support
of some part of the rule, that is, we have to desmethe support of the generating item set.
Again, as mentioned in the previous section, thengks in the database introduced by the hiding
process should be limited, in such a way that tHieriation loss incurred by the process is
minimal. So, we try to apply minimal changes in tii@abase at every step of the hiding
algorithms that we propose.

The decrease in the support of an itenfSs®in be done by selecting a transactjdhat supports
Sand by setting to O at least one of the non-zeheegaoft.values of itemghat represent items in

S

The increase in the support of an itemSean be accomplished by selecting a transadtibat

partially supports it and setting to 1 the valukalbthe items ofSin t.values of items
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If we analyze the formulas for determiningpgort and confidence values (mentioned in
previous section), we can find that there can levays to reduce the support and confidence of
a rule. Both the confidence and the support areessed as ratios of supports of item sets that
support the two parts of a rule or its generatiegniset. In this way, if we want to lower the
value of a ratio, we can adopt either one of thiewong options:

(a) we can decrease the numerator, while keepingeherdinator fixed, or

(b) we can increase the denominator while keepingntimeerator fixed.
Considering the case of decreasing support valeeknow that support S of a rule X => Y is
given by

|XUY| =100 -
N

Since N is constant (as it is the no. of transastio the given database), the only option left for
us is to change the numerator value (op{egin That means, we can decrease the support of any

rule by decreasing the support of the generaterg get of the rule.
Considering the case of decreasing confidence yala&know that confidence C of a rule X =>
Y is given by
|XUY| * 100
—=C
|X]

Now, we analyze each of the options separatelyh&zic which of them (or both) works in the
current context.

Option (a) implies that we need to decrease the numeratoicwis the support) of the
generating item set of the rule, while the suppbthe item set in the left hand side of the rule
remains fixed. In order to do that, we can decrélsesupport of the generating item set of the
entire rule by modifying the transactions that supghis item set, making sure that we hide
items from the consequent or the right hand sidk@fule. This will decrease the support of the
generating item set of the rule, while it will leaunchanged the support of the left hand side or
else the denominator.

Option (b) implies that we need to increase the denominatbich is the support of the item set

in the antecedent) of the rule, while the suppérthe generating item set of the rule remains
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fixed. This option is also applicable, since we @acrease the support of the rule antecedent
while keeping the support of the generating itetnfsed by modifying the transactions that
partially support the item set in the antecederthefrule but do not fully support the item set in
the consequent.

So, briefly we can state the strategies as follows:

Given a rule X => Y on a databaf® the support of the rule iD expresses the
probability to find transactions containing all tiems in X U Y. The confidence of X => Y is,
instead, the probability to find transactions camtay all the items in X U Y once we know that
they containX.

1. We decrease the confidence of the rule:
(a) By increasing the support of the rule antecedérthrough transactions that
partially support it.
(b) By decreasing the support of the rule conseqgifent transactions that support
bothXandY .

2. We decrease the support of the rule:
By decreasing the support of either the rule atentX, or the rule consequent,

through transactions that fully support the rule.

3.2.3 Assumptions

We make the following assumptions in the develogméthe algorithms:

1. We hide only rules that are supported by disjlasirge item sets.

2. We hide association rules by decreasing eitiegr support or their confidence.

3. We select to decrease either the support océhédence based on the side effects on the
information that is not sensitive.

4. We hide one rule at a time.

5. We decrease either the support or the confidemeeunit at a time.

18



If we try to hide overlapping rules, then hidingude may have side effects on the other
rules to be hidden. This may increase the time ¢exity of the algorithms since hiding a rule
may cause an already hidden rule to haunt back.i$kehy, the first assumption is there.

According to the second assumption, we can chaob@le a rule by changing either its
confidence or its support, but not both. Associatioles with confidence above the confidence
threshold are the significant ones. When we armgid rule by decreasing its support below the
threshold, we do not need to further reduce itdidence. Also after decreasing the confidence
of a rule, we do not need to decrease is confidemzze it is no longer significant. So reducing
the support or the confidence is enough for hidingile. Therefore we assume that either the
support or the confidence reduction algorithmsuesed.

The third assumption is actually the main constraihthe algorithms that aims to
maximize the data quality in terms of non-sensitiiermation. If we relax this assumption, we
can just randomly choose a transaction and antieehide from the database without the need
for any kind of heuristic approach. But in that esas large number of new rules can be
generated, or many hidden rules may no longer #éehi or some non-sensitive rules may be
hidden, causing loss of information.

The fourth assumption states that hiding one rulestnbe considered as an atomic
operation. But the first assumption, in fact, fildfithe requirement specified by the fourth one.
Because, if rules considered for hiding are digjdimen items appearing in different rules will
also be different and hence there will be no probéyen if we consider multiple rules at a time.
But relaxing the first one will increase the nedgssf the fourth one.

The method works step by step, considering an &edha transaction at each step which
is stated by the fifth assumption. If we relax taAgsumption, we can assume that we remove a

set of transactions and remove items from the wbelevhich is an entirely different approach.
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3.2.4 Algorithms

We have implemented one algorithm for each of tt@p@sed strategies. Below we mention
these two algorithms.
3.2.4.1 Algorithm 1:
This algorithm hides the sensitive rules accordinthe £'strategy. The basic idea behind it is to
increase the denominator in the expression foridente as mentioned in previous section,
while keeping the numerator constant. To do thist fve need to find out all those transactions
that partially support both the antecedent ancctimsequent of the sensitive rule. Then, for each
transaction, increase the support of the antecestettiat the transaction now fully supports the
antecedent, but still partially supports the rdikis process is repeated until the confidence of
the rule goes below the threshold value, so theannot be mined any longer. Thus each of the
sensitive rules is hidden.
Following is the pseudo code for the above algorith
INPUT: a set R of rules to hide, the source database D, the nufiief transactions in D, the
min _conf threshold and the min supp _threshold.
OUTPUT:the database D transformed so that rulesicdnot be mined.
Begin
For each rule rin R do
{

1. Ty'={t € D | t partially supports,land r }

/I count how many items @fdre in each transaction of, T

2. for each transaction t in,Tdo

{

3. t.num items=| I | - Hamming dis{( t.values of items)

}

/I sort transactions of T in descending order of number of items;of |
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/I contained
4. sort (T,)
5. N _iterations =[| D | * (( supp(r) / min_conf)supp(}))]
6. Fori=1to N iterations do
{
/I pick the transaction ofTwith the highest number of items
7.t=T, [1]
Il set to one all the bits of t that represent gem}
8. set _all_ones (t.values _of _item, |
9. supp () =supp (}) +1
10. conf(r) = supp(r) / suppil
11. T =Ty'-t
}
12.Ry=Ry-r

End

3.2.4.2 Algorithm 2:

This algorithm hides sensitive rules by decreasiegfrequency of the consequent until either
the confidence or the support of the rule is beline threshold. It first finds out those
transactions that support the sensitive rule fullgen it decreases, for each transaction, the
support of the consequent, while keeping the supgdhe antecedent constant. This process is
repeated for all sensitive rules.

Following is the pseudo code for the above algorith

INPUT: a set R of rules to hide, the source database D, the nutdijef transactions in D, the
min _conf threshold and the min supp _threshold.

OUTPUT:the database D transformed so that rulesjicddnot be mined.
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Begin
For each rule rin R do
{
1. T={t € D | t fully supports r}
/I count how many items are in each transactiom, of
2. for each transaction t in, do

{

3. t.num items= count (t)
}
/I sort transactions of [Tin ascending order of size of the transactions
4. sort (T)
5. N _iter_conf=[| D | * (( supp(r) / min_conf)supp(}))]
6. N_iter_supp =[| D | * ( supp(r) / min_supp)]
7. N_iterations = min (N_iter_conf, N_iter_supp)
8. Fori=1to N iterations do
{
/I pick the transaction of, with the lowest number of items
9.t1=T[1]
/I choose the item of with the minimum impact on the (|r| - 1)
Il item-sets
10. j = choose_item¢ )
I/ set to zero the bit oft.calues_of_items thatesents item |
11. set_to_zero (], t.values_of_items)
12. supp (r) =supp (r) - 1
13. conf(r) = supp(r) / suppil
14. =Tt
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End

15. R =Ry-r
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CHAPTER 4

IMPLEMENTATION RESULTS

4.1 Introduction
4.2 Data Mining: Apriori algorithm
4.3 Performance Evaluation of Hiding Algorithms
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4.1 Introduction

In this chapter, we present the results we obtamednplementing the algorithms, that have
been mentioned in earlier chapters. First we impleied Apriori algorithm to mine significant
association rules from a given database. This hgorfirst finds out the frequent item sets that
have support and confidence values above a prefisgethreshold value. Then it derives the
association rules.

After derivation of association rules, we consideseme of the rules, having higher confidence
values, as sensitive and implemented the two hidlggrithms on those rules. Number of new
rules generated and number of non-sensitive rutss ¢during the hiding process, were
considered as the side-effects of these two algustand the algorithms were compared against
their side-effects.

To compare the side-effects, each time we compdwedew database with the source database
rule by rule. If any non-sensitive rule were fouedbe missing from the new database, it was
considered to be lost. Thus we got the number sifigles. Then we calculated the number of
new rules generated by computing the differencevéat the rules generated by the resultant
database and that of the original database.

The algorithms were executed on a workstation WittD Athlon™ 64*2 Dual Core Processor,
2.81 GHz and 2.00 GB of RAM on Fedora OS.

4.2 Data Mining: Apriori algorithm

We have generated some binary transaction datastootr algorithm, i.e. in a transaction; an
item is either present or not presehll. implementations were tested on different nunsbef
transactions, data items and minimum support valiemplete account of the results would

require too much space, thus only the most tymoak are shown below.
4.2.1 Linked-List based implementation:

We implemented Apriori algorithm first using linkédt data structure. The results, we obtained,
are shown in the table below:
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Database Size Support Memory used (in bytes) Timin(sec.)
1800( 5C 1649¢ 0.0549!
2000( 5C 1623¢ 0.0549!
5000( 5C 1908: 0.1098¢
8000( 5C 2211( 0.1648:¢

Table 4.1: Memory and time requirement of linke hased implementation

Next we have plotted the graphs between memory asddsize of the database, time and size
of the database. Here are the graphs:
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Figure 4.6: Time vs. Size of database
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The following observations are made from the aldalée and graphs:

» This implementation is good only for a small datha
* As the database size increases, the implementaiisrio give desired results.

* The above observations made us to switch to thesTmplementation pretty soon.

4.2.2 Tries Based Implementation:

A better implementation then the Linked-List, itlel us to obtained more test results. We
implemented Apriori algorithm using tries data sture. The results, we obtained, are shown in
the table below:

Support Memory used (in kilo bytes) Time (in sec.)
Database Size
10000 7 42 0.01
12000 7 89 0.01
15000 7 221 0.02
20000 7 713 0.07
30000 7 3703 0.37
50000 7 29266 4
70000 7 113700 25
100000 7 477745 170

Table 4.2: Memory and time requirement of triesslolasnplementation

Next we have plotted the graphs between memory aisédize of the database, time and size of
the database. Here are the graphs:
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The following observations are made from the altabée and graphs:

» For small database the Linked-List implementati@s wetter. The size and depth of the tries
can be attributed to this observation.

* Memory uses is much better in the Tries impleméntat

* The memory increases exponentially with increasiatabase because the depth of the Tries

increases exponentially.

» The time required also follow the same trend astikenory as with increase with depth the
search space is also increasing.
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4.3 Performance Evaluation of Association Rule Hidaig Algorithms
After getting the association rule hiding algorithmork correctly for a small sample database
(discussed in previous section), we executed tlyorithms for increasing number of
transactions with varying number of rules (to bedein) to check their performance and also
to have an idea about their relative performances.
We compared the two algorithms on three differeeasures. Those are mentioned below:
(a) Time requirement
(b) Number of new rules generated

(c) Number of rules lost

4.3.1 Time Requirement
We executed both algorithms for 2 rules and 5 r{tede hidden) and for each of those two
cases; we increased the number of transactiontingtdrom 10000 to 35000 with an
increment of 5000 transactions at each step. Ttiasdases of different sizes were generated
usingApriori Algorithm.
In the following tables, we have provided the resule obtained from our experiments. Then,
we have plotted graphs using these statisticstta gemparative result among the two.
Here are the tables:

Table 4.3: Time requirement of Algorithm 3 (No.rafes to be hidden = 2)

No. of transactions Time required for execution (irsec.)
1000( 0.65934.

1500( 1.31868:

2000( 2.58241.

2500( 4.6703:

3000( 6.97802:

3500( 8.35164:
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Table 4.4: Time requirement of Algorithm 4 (No.rafes to be hidden = 5)

No. of transactions Time required for execution (irsec.)
1000( 0.87912:
1500( 1.70329
2000( 3.68131!
2500( 6.86813:
3000( 10.1648.
3500( 12.0329

Table 4.5: Time requirement of Algorithm 2 (No.rafes to be hidden = 2)

No. of transactions Time required for execution (insec.)
1000( 0.1098¢

1500( 0.27472!

2000( 0.4395¢

2500( 0.604391

3000( 0.76923:

3500( 0.87912:

Table 4.6: Time requirement of Algorithm 2 (No.rafes to be hidden = 5)

No. of transaction: Time required for execution (in sec.
1000( 0.27472!
1500( 0.49450!
2000( 0.71428i
2500( 0.98901.
3000( 1.37362
3500( 1.59340
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Next we have plotted the graphs for the time remnents of two algorithms against number

of transactions in the database. The graphs amershelow:
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Figure 4.6: Time requirement for Algorithm 2
From the above tables and the graphs, we canthmdier

» Algorithm 2 works far better than Algorithm 1 inspect of time required for

execution.
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* In case of both the algorithms, as number of tretitsas increases, required time also
increases.

* Similarly required time also increases with ther@ase of number of rules to be
hidden (Ry).

* In case of Algorithm 1, at each step support ofdhtecedent gets increased, which
causes the database to grow up in size gradualyth® other hand, in case of
Algorithm 2, after each iteration, the support lo¢ trule gets decreased. As a result,

the database shrinks. Hence, we got the above.resul

4.3.2 New Rules Generated

In the following tables, we have provided the resule obtained from our experiments.

Table 4.7: New rules generated for Algorithm 1

No. of transactions No. of new rules generated(R=2) | No. of new rules generated(R=5)
500( 94 754
1000( 78 641
1500( 59 46¢
2000( 48 27¢
2500( 35 16t
3000( 35 12¢
3500( 35 98

Table 4.8: New rules generated for Algorithm 2

No. of transactions No. of new rules generated(R=2) | No. of new rules generated(R=5)
500( 3 6
1000( 3 5
1500( 3 4
2000( 2 4
2500( 2 4
3000( 1 2
3500( 1 1
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Next we have plotted the graphs for the no. of nmeMes generated against number of

transactions in the database for both the algosthirhe graphs are shown below:
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Figure 4.9:No. of new rules generated vs. No.arigactions for Algorithm 2 for 2 rules

From above graphs and tables we make the follosamglusions:

4.3.2.1 Algorithm 1:

* For lesser no. of rules (e.g. 2) that are to bedmd there is no significant change in the
no. of rules generated with increase in no. ofgaation.

* When these rules are more in number, the no. of nd®g generated becomes more in
number.

* In this algorithm, new items are added to the taatisns, which lead to increase the
support of the item sets. Hence, more frequent ets are generated leading to the
generation of new rules.

* But as the number of transactions increases, nuailyesw rules generated becomes less.

4.3.2.2 Algorithm 2:
* New rules may get generated when the support ofuieeis more the threshold support
and in future the support of the antecedent deess@msmake it an association rule.
* To hide a rule we need to make the confidence o of the rule below the threshold.

Once this is done no more items need to be remfvgatthe transactions.
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* Hence, as the no. of transactions increase, thecehthat the support of the antecedent
decreases holds good to a certain value and treraaes gradually.
* In addition, more the no. of rules to be hidden enm the chance of decreasing the

support for an antecedent and hence more assocratgeneration.

4.3.3 Non-Sensitive Rules Lost

In the following tables, we have provided the resule obtained from our experiments.

Table 4.9: Rules lost for Algorithm 1

No. of transactions No. of rules lost (R=2) | No. of rules lost (R =5)
500( 3 3
1000( 3 3
1500( 3 3
2000( 3 3
2500( 3 3
3000( 3 3
3500( 3 3

Table 4.10: Rules lost for Algorithm 2

No. of transactions | No. of rules lost (Fy=2) | No. of rules lost (F =5)

500(C
1000(
1500(
2000(
2500(
3000(
3500(

O N| O M W W

Al W W N N N -

Next we have plotted the graphs for the no. ofglibst against number of transactions in the

database for both the algorithms. The graphs arersibelow:
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Figure 4.11: No. of rules lost vs. No. of transaas for Algorithm 2

From above graphs and tables we make the follosomglusions:

4.3.3.1 Algorithm 1:
* Since in this algorithm hiding strategy depends inareasing the support of the

antecedent, hence new items are added into amngxisinsaction.
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» Therefore, the chance of losing a non sensitive isiminor as it is neither dependent on

the number of rules selected for hiding nor on lnenber of transactions. The values
almost tend to zero.

4.3.3.2 Algorithm 2:

In this algorithm the downward slope of the graplwvell understood by the following argument:
* To hide a rule we need to make the confidence mpat of the rule below the threshold.
Once this is done no more items need to be remiwadthe transactions.
* Hence, as the no. of transactions increase, thefmales lost increases.

* In addition, more the no. of rules to be hidden enm the chance of decreasing the
support and hence more rules may be lost.
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CHAPTER 5

CONCLUSION



In our thesis, we presented the implementation @fidki algorithm for association rule mining
using two different data structures. The first dgttacture is based the linked list and the second
is based on tries data structure. We compared ttvesemplementations on the time they
required and the memory they use. The Tries basgdementation was better in both the
context, but the linked list based implementatiequired lesser time for small database.

Later, we presented two algorithms for associatida hiding. Both these algorithms are rule
based.They decrease either the confidence or the sumdaatset of sensitive rules, until the
rules are hidden. This can happen either becaesktye item sets that are associated with the
rules are becoming small or because the rule cendiel goes below the threshold.

We also measured the performance of the propogedtaims according to two criteria:

a) The time that is required by the hiding procass

b) The side effects that are produced.

As side effects, we considered both the loss amdntihoduction of information in the database.
We loose information whenever some rules, originafiined from the database, cannot be
retrieved after the hiding process. We add inforomatvhenever some rules that could not be
retrieved before the hiding process can be minaa the released database.

We compared the proposed algorithms on the basikeofesults of these experiments and we
concluded that there is no best solution for &l tetrics. The choice of the algorithm to adopt
depends on which criteria one considers as the mmlevant: the time required or the

information loss or the information that is added.
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