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Abstract

In this dissertation, the problem of video object detectionhas been addressed. Ini-

tially this is accomplished by the existing method of temporal segmentation. It

has been observed that the Video Object Plane (VOP) generated by temporal seg-

mentation has a strong limitation in the sense that for slow moving video object

it exhibits either poor performance or fails. Therefore, the problem of object de-

tection is addressed in case of slow moving video objects andfast moving video

objects as well. The object is detected while integrating the spatial segmentation

as well as temporal segmentation. In order to take care of thetemporal pixel dis-

tribution in to account for spatial segmentation of frames,the spatial segmentation

of frames has been formulated in spatio-temporal framework. A Compound MRF

model is proposed to model the video sequence. This model takes care of the

spatial and the temporal distributions as well. Besides taking in to account the

pixel distributions in temporal directions, compound MRF models have been pro-

posed to model the edges in the temporal direction. This model has been named

as edgebased model. Further more the differences in the successive images have

been modeled by MRF and this is called as the change based model. This change

based model enhanced the performance of the proposed scheme.

The spatial segmentation problem is formulated as a pixel labeling problem

in spatio-temporal framework. The pixel labels estimationproblem is formulated

using Maximum a posteriori (MAP) criterion. The segmentation is achieved in

supervised mode where we have selected the model parametersin a trial and error

basis. The MAP estimates of the labels have been obtained by aproposed Hy-

brid Algorithm is devised by integrating that global as wellas local convergent



criterion. Temporal segmentation of frames have been obtained where we do not

assume to have the availability of reference frame. The spatial and temporal seg-

mentation have been integrated to obtain the Video Object Plane (VOP) and hence

object detection

In order to reduce the computational burden an evolutionaryapproach based

scheme has been proposed. In this scheme the first frame is segmented and seg-

mentation of other frames are obtained using the segmentation of the first frame.

The computational burden is much less as compared to the previous proposed

scheme.

Entropy based adaptive thresholding scheme is proposed to enhance the ac-

curacy of temporal segmentation. The object detection is achieved by integrating

spatial as well as the improved temporal segmentation results.
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Chapter 1

INTRODUCTION

Video Segmentation and Object detection and tracking are quite challenging and

active research areas in Video Processing and Computer Vision [38], [39]. The

problem of segmentation and tracking a Video Object has wideapplications such

as video coding, video retrieval, video surveillance and video editing [6]-[11].

Temporal segmentation methods have been proposed to construct Video Object

Planes (VOPs) [6]-[20]. Temporal Segmentation based on intensity difference has

been proposed by M. Kim et al. [6], Which includes a statistical hypothesis test

based on variance comparison. They have also introduced watershed based spatial

segmentation and finally a combination of spatial as well as temporal segmenta-

tion is proposed to generate Video Object Plane (VOP) and hence object detec-

tion. The proposed scheme could satisfactorily separate background and moving

objects of a video sequence. Automatic segmentation schemewith morphological

method filter has been proposed [8] to detect moving objects.Subsequently the

object track matcher using active contour model is proposedto track and match

objects in the subsequent frames. Object detection and tracking becomes a hard

problem when there is variation of illumination in the videosequence. A. Cav-

allaro and T. Ebrahimi [7] have proposed a color edge based detection scheme

1



for object detection. Specifically the color edge detectionscheme has been ap-

plied to the difference between the current and a reference image. This scheme

is claimed to be robust under illumination variation. In order to obtain refine-

ment for the object boundary in the video sequence, a supervised video object

segmentation has been proposed [9]. Where the algorithm consists of three steps

(i) Semiautomatic first frame segmentation (ii) Automatic Object tracking and

(iii) Boundary refinement. The algorithm has been claimed tohave satisfactory

results under semiautomatic framework. A novel method of separation of mov-

ing object from background has been proposed [10], for realtime implimentation.

The algorithm is based on the notions of clustering. The algorithm also handles

illumination variation of the whole sequence. There has been a wide variation

to measure the quality of the object detected in a video sequence. Ç. E. Erdem

et al. [11] have developed quantitative performance measures for video object

tracking and segmentation that do not requires ground truthsegmentation results.

They have proposed several interesting quantitative measures for the quality of

the video tracking. Edge based detection techniques has also been proposed by

J. Zhang et al. [12], where pixel history and moving object masks are used to

update background. Connected component analysis and morphological filtering

are employed to obtain accurate VOPs. The computational time is reduced by a

novel object tracking window. The object detection problembecomes quite chal-

lenging when the size of the object is very small as compared to the size of the

background. S. Sun et al. [13] have proposed local adaptive threshold methods

to determine salient areas in a frame. Thereafter local thresholding is proposed to

the local region of interest. The second step segments the target silhouettes pre-

cisely and finally the notion of template matching is carriedout to remove clutters

and hence detection of small targets. Deng and Manjunath et al. [14] have pro-

posed an unsupervised segmentation approach for video sequences. Their method
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is known as Joint Segmentation (JSEG) method consists of twoindependent steps.

(i) Color quantization and (ii) Spatial segmentation. Based on color quantization

a class-map of the image is created and thereafter the spatial segmentation of the

regions are obtained by a region growing approach. A Interpolated Bezier Curve

Based Representation scheme [41] is also proposed to recognize the face. An ob-

ject detection scheme using direct parametric approach in the tomographic images

[40] are also proposed

Stochastic model [15] particularly Markov Random Field Models, have been

extensively used [16]-[17] for image restoration and segmentation. MRF model,

because of its attribute to model spatial dependency, proved to be better model for

image segmentation. MRF model has also been used for video segmentation. R.

O. Hinds and T. N. Pappas [19] have modeled the video sequenceas a 3-D Gibbs

Random Fields. In order to obtain smooth transition of segmentation results from

frame to frame, temporal constraints and temporal local intensity adaptation are

introduced. In order to reduce computational burden, multiresolution approach is

adhered. Gibbs Markov Random Field Model has been used to obtain 3-D spatio-

temporal segmentation [20]. The region growing approach isused to obtain seg-

mentation. E. Y. Kim et al. [21] have used MRF to model each frame sequence

and the observed sequence is assumed to be degraded by independent identically

distributed (i.i.d) zero mean Gaussian white noise. The problem is formulated as

a pixel labeling problem and the pixel labels are estimated using the MAP estima-

tion criterion. The MAP estimates are obtained by Distributed Genetic Algorithm

(DGA).

A novel target detection scheme is proposed by B. G. Kim et al.[22] where the

adaptive thresholding scheme has been proposed to separatethe foreground and

background. The intensity distribution of the video sequence has been modeled by

3



Gaussian distribution and the parameters have been estimated. The background

and objects have been classified and thereafter the object istracked by a centroid

algorithm. This has yielded quite satisfactory results.

Recently MRF modeling has been used to model the video sequences but

the segmentation problem has been formulated using Spatio-temporal framework

[23]. The segmentation obtained is combined with the temporal segmentation

to detect the moving objects. The MAP estimates of the labelsare obtained us-

ing Genetic Algorithm. S. W. Hwang et al. [24] have also proposed GA based

object extraction scheme where spatial segmentation is obtained using Genetic

Algorithm and the spatial segmentation thus obtained is combined with Change

Detection Mask (CDM) to detect the objects. E. Y. Kim and K. jung [25] have

proposed video segmentation scheme where MRF model is used to model the

video sequence and the segmentation problem is formulated in spatio-temporal

framework. Distributed Genetic algorithm has been used to obtain the MAP esti-

mates. These MAP estimates are combined with temporal segmentation to obtain

the video objects. The results are found to be quite promising. Recently E. Y.

Kim and S. H. Park [26] have proposed a video segmentation scheme where the

video sequences have been modeled as MRF and the segmentation problem is for-

mulated in spatio-temporal framework. The estimates of thelabels are obtained

using Distributed Genetic algorithm (DGA). Thereafter temporal segmentation

is obtained using CDM as well as the history of the label information of differ-

ent frames. The object extraction and tracking has been successfully carried out.

Quite promising results have been obtained in this scheme. S. Babacan and T. N.

Pappas [27] have proposed a scheme where they have modeled video sequences

as MRF and the changes in temporal direction have been modeled by a mixture

of Gaussian. In this case also the spatial segmentation has been combined with
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temporal segmentation to detect the foreground accurately. The authors have also

improved the results by proposing a novel scheme for background modeling that

exploits spatial and temporal dependency. Satisfactory results have been obtained

for both indoor and outdoor surveillance videos. Recently S. S. Hwang et al. [29]

have proposed a region based motion segmentation algorithmto obtain a set of

motion coherence regions. They have also used MRFs for spatial segmentation

and have integrated the spatial as well as temporal sequences to obtain the mov-

ing objects in the video sequences.

It has been observed that the spatio-temporal framework cantogether with

temporal segmentation produced better results than that ofusing temporal seg-

mentation. Thus the label fields play a crucial role for detection and tracking.

P. M. jodoin et al. [30] have proposed a segmentation scheme where they have

fused two label fields (i) a quickly estimated segmentation map and (ii) the spa-

tial region map that exhibits the shape of the main objects. The scheme could

be carefully employed for motion segmentation, motion estimation and occlusion

detection. Very recently, Q. Shi and L. Wang [31] have attempted to recognize

human actions under semi-markov model framework. The optimization problem

is solved by them proposed algorithm analogous to viterbi-like algorithm. H.

Zhao et al. [32] proposed a tracking algorithm to track objects in real time cir-

cumstances. This method presents a lagrangians based methods to improve the

accuracy of tracking. The problem of object tracking in realtime environment has

been addressed by X. Pan and Y. Wu [33] where gaussian single model (GSM)

and markov random Field (MRF) have been used. This method is found to be

faster than many other methods and hence suitable for real time implementation.

Another method has been proposed by C. Su and A. Amer [34] for real time track-

ing. The proposed method is computing block thresholds.
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Temporal Segmentation

It has been attempted to address the moving object detectionusing the method

of temporal segmentation. It was found that temporal segmentation could help to

construct the video Object Plane (VOP) and detect the objects. In all these cases,

it was assumed to have reference frames. This scheme produced poor results when

the video has slow moving objects. This scheme also failed when reference frame

is not available. This motivated to devise new methodologies to take care of slow

as well as fast moving video objects in the absence of reference frames.

Often in practice reference frames may not be available. Theavailable video

may have slow moving objects and fast moving objects.

Spatio-temporal Framework

In order to address both the above problems, the video objectdetection problem is

formulate in spatio-temporal framework using spatio-temporal formulation, Spa-

tial segmentation is obtained. The problem is formulated asa pixel labeling prob-

lem in stochastic framework. Markov Random Field Model is proposed to take

care of the spatial distribution of each frames and the distributions frames and the

distributions of pixels of frames in temporal directions. The edges in the temporal

directions have also been modeled as MRF and hence the a priori distributions of

images take into account the distributions and pixels in spatial as well as temporal

directions, edges in the temporal direction. In all these cases, the a priori MRF

model parameters have been selected on trial and error basis. With this video

modeling the label estimation problem has been cast as a Maximum a posteriori

(MAP) estimation problem. These MAP estimates of the pixelshave been ob-

tained by Simulated Annealing (SA) algorithm. It has been observed that the SA

is computationally involved and hence takes appriable amount of time to converge

to solutions. In order to reduce the computational burden, the MAP estimates of

the pixel labels are obtained by a proposed hybrid algorithm. The hybrid algo-
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rithm has been designed based on the notion of the local and global convergence.

The pixels labels thus obtained for each frames are being used for temporal seg-

mentation. Temporal segmentation is obtained using the change detection masks

and the history of the labels of different frames. Thereafter, Video Object Plane

is constructed using the temporal segmentation and original frames. it has been

observed that this scheme could detect moving object more efficiently than that

of using only temporal segmentation. The edges of the movingobjects could be

preserved and this could be preserved and this could be attributed to the edge

preserving property of the proposed model. The results of this scheme when com-

pared with Joint Segmentation method (JSEG) of [14] are found to be superior to

the later.

Spatio-temporal framework with Change based MRF Model

In order to enhance the efficacy of the earlier schemes, a new MRF model for

video sequences is proposed. In the frame sequences, there are changes from

frame to frame because of the object in the video. We assume these changes not

to be abrupt ones and hence are expected to have a temporal neighborhood depen-

dency. These changes in the consecutive frames are modeled as MRF. Therefore

the proposed a priori MRF model of the video sequence takes into account these

changes of the frames together with the edges in temporal direction. This new

MRF model is used to model the video sequences. The pixel label estimation,

temporal segmentation and construction of Video Object planes are obtained as

per the earlier scheme suggested.

Evolutionary approach based Object detection

It has been observed in the previous proposed scheme that spatial segmentation

of each frame has to be obtained to find out temporal segmentation. Spatial seg-

mentation of every frames is a time consuming procedure and hence the object

detection scheme takes appreciable amount of time. This forbids the feasibility
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of real time implementation. In order to reduce the computational burden, we

compute the spatial segmentation of a given frame using the proposed spatio-

temporal approach. The spatial segmentation of subsequentframes are obtained

starting from the segmentation of given frame with adaptation strategy. Detec-

tion of video object at any frame is obtained using the frame together with the

temporal segmentation. Spatial segmentation only one frame is obtained using

spatio-temporal formulation of previous section.

Object Detection using Adaptive Thresholding

In temporal segmentation, CDM is obtained using the original frames and global

thresholding. The performance detoriates when the frames are noisy or there are

variation in conditions of illumination. hence, the notionof adaptive threshold has

been adhered to and towards this end, we have proposed entropy based adaptive

thresholding to obtain appropriate CDMs and hence the moving object parts of

the video sequence. However, the spatio-temporal segmentation in MRF-MAP

framework, as mentioned in the previous section is used to obtain the spatial seg-

mentation. This spatial segmentation is combined with adaptive threshoilding

based temporal segmentation to construct the VOPs and thus moving object de-

tection. The results obtained using adaptive thresholdingis found to be superior

to that of using global thresholding method.

The major contribution of these can be summarized below

1. Proposed a compound Markov Random Field Model to obtain Video seg-

mentation in spatio-temporal framework. This was combinedwith the tem-

poral segmentation to detect object in video frames.

2. Proposed a MRF model based on the changes in the temporal direction and

the spatio-temporal segmentation scheme. This scheme together with tem-

poral segmentation could detect slow as well as fast moving video objects.
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3. Evolutionary approach is proposed to obtain segmentation of k th frame

evolving from the segmentation result of the initial frame.This is combined

with the temporal segmentation method to detect slow as wellas fast moving

objects.

The organization of the thesis is as follows.

A brief background on MRF is provided in the Chapter 2. The proposed MRF

model is described in Chapter 4. and the pixel label estimation problem is formu-

lated in spatio-temporal framework. Hybrid algorithm is also presented in Chap-

ter 4. The a priori MRF model with changes of different framesis also presented

in chapter 5. Evolutionary approach based spatial segmentation is formulated in

Chapter 6. Adaptive thresholding based temporal segmentation and the object de-

tection scheme is dealt in Chapter 8. Conclusions for different chapters have been

in Chapter 9.
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Chapter 2

BACK GROUND ON MARKOV

RANDOM FIELD MODEL

Random fluctuation in intensity, color, texture, object boundary, or shape can be

seen in most real world images. The causes for these fluctuations are diverse and

complex, and they are often due to factors such as non-uniform lighting, random

fluctuations in object surface orientation and texture, complex scene geometry,

and noise. Consequently, the processing of such images become a problem of sta-

tistical inference, which requires the definition of a statistical model correspond-

ing to the image pixels.

Although simple image models can be obtained from image statistics such

as the mean, variance, histogram and correlation function,a more general ap-

proach is to use random fields. Indeed, as a two dimensional extension of the

one-dimensional random process, a random field provides a complete statistical

characterization for given class of images. Combined with various frameworks for

statistical inference, such as Maximum Likelihood (ML) andBayesian estimation,

random field models in recent years led to significant advances in many statisti-
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cal image processing applications. A landmark paper by Geman and Geman in

1984 addressed Markov Random Field models and has attractedgreat attention

and invigorated research in image modeling. Indeed the MRF,coupled with the

Bayesian framework, has been the focus of many studies[16].

MRF theory provides a convenient and consistent way for modeling context

dependent entities such as image pixels and correlated features. This is achieved

through characterizing mutual influences among such entities using conditional

MRF distributions. The MRF theory tells us how to model the a priori probability

of contextual dependent patterns, such as textures and object features. A particular

MRF model favors the class of patterns encoded by itself by associating them with

larger probabilities than other pattern classes. MRF theory is often used in con-

junction with statistical decision and estimation theories, so as to formulate objec-

tive functions in terms of established optimality principles. Maximum a posteriori

(MAP) probability is one of the most popular statistical criteria for optimality and

in fact, has been the most popular choice in MRF vision modeling. MRFs and the

MAP criterion together give rise to the MAP-MRF framework. This frame work,

advocated by Geman and Geman and others, enables us to develop algorithms for

a variety of vising problems systematically using rationalprinciples rather than

relying on ad hoc heuristics.

An objective function is completely specified by its form, i.e. the parametric

family, and the involved parameters. In the MAP-MRF framework, the objective

is the joint posterior probability of the MRF labels. Its form and parameters are

determined according to the Bayes formula, by those of the joint prior distribution

of the labels and the conditional probability of the observed data[35].
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2.1 MARKOV RANDOM FIELD AND GIBBS DIS-

TRIBUTION

MRF theory is a branch of probability theory for analyzing the spatial or contex-

tual dependencies of physical phenomena. It is used in visual labeling to establish

probabilistic distributions of interacting labels.

2.1.1 Neighborhood System and Cliques

The site inS are related to one another via a neighborhood system. A neighbor-

hood system forS is defined as

N = {Ni | ∀i ∈ S} (2.1)

whereNi is the set of sites neighboringi. The neighboring relationship has

the following properties:

1. a site is not neighboring to itself:i /∈ Ni

2. the neighboring relationship is mutual:i ∈ Ni′ ⇔ i′ ∈ Ni

For a regular latticeS, the set of neighbors ofi is defined as the set of sites

within a radius of
√

r from i.

Ni = {i′ ∈ S | [dist((xi′ , yi′), (xi, yi))]
2 ≤ r, i′ 6= i} (2.2)

wheredist(A, B) denotes the Euclidean distance betweenA andB andr takes

an integer value. The Fig 2.3 shows the first order (η1) and second order (η2)

neighborhood system.

The pair(S, N) = G constitutes a graph in the usual sense;S contains the

nodes andN determines the links between the nodes according to the neighboring

12



Figure 2.1: Figure showing first order (η1), second order (η2) and third order (η3)

neighborhood structure

relationship. Acliquec for (S, N) is defined as a subset of sitesc = {i, i′}, or a

triple of neighboring sitesc = {i, i′, i”}, and so on. The collections of single-site,

pair-site and triple-site cliques will be denoted byC1, C2, C3, respectively, where

C1 = {i | i ∈ S} (2.3)

C2 = {{i, i′} | i′ ∈ Ni, i ∈ S} (2.4)

C3 = {{i, i′, i”} | i, i′, i′′ ∈ S are neighbors to one another} (2.5)

The sites in a clique are ordered, and{i, i′} is not the same clique as{i′, i},
and so on. The collection of all cliques for(S, N) is

C = C1 ∪ C2 ∪ C3 ∪ ........ (2.6)

The type of a clique for(S, N) of a regular lattice is determined by its size, shape

and orientation. Fig 2.4 shows the clique types for the first order and second order

neighborhood systems for a lattice[35][16].
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Figure 2.2: Cliques on a lattice of regular sites

2.1.2 Markov Random Field(MRF)

Let Z = {Z1, Z2, ...., Zm} be a family of random variables defined on the setS,

in which each random variableZi takes a valuezi in L. The familyZ is called

a random field. We use the notionZi = zi to denote the event thatZi takes the

valuezi and the notion(Z1 = z1, Z2 = z2, ..........Zm = zm) to denote the joint

event. For simplicity a joint event is abbreviated asZ = z wherez = {z1, z2, ....}
is a configuration ofz, corresponding to realization of a field. For a discrete

label setL, the probability that random variableZi takes the valuezi is denoted

P (Zi = zi),abbreviatedP (zi), and the joint probability is denoted asP (Z = z) =

P (Z1 = z1, Z2 = z2, ......Zm = zm) and abbreviatedP (z).

F is said to be a Markov random field onS with respect to a neighborhood system

N if and only if the following two conditions are satisfied:

P (Z = z) > 0, ∀z ∈ Z (Positivity) (2.7)

P (zi|zS−i) = P (zi|zNi
) (Markovianity) (2.8)
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whereS− i is the set difference,zS−i denotes the set of labels at the sites inS− i

and

zNi
= {zi′ |i′ ∈ Ni} (2.9)

stands for the set of labels at the sites neighboringi.

The positivity is assumed for some technical reasons and canusually be satisfied

in practice. The Markovianity depicts the local characteristis ofZ. In MRF, only

neighboring labels have direct interactions with each other[35][16].

The concept of MRF is a generalization of that of Markov processes(MPs) which

are widely used in sequence analysis. An MP is defined on a domain of time

rather than space. It is a sequence of random variables.....Z1, ..., Zm defined in

the time indices....1, ..., m, ... It is generalized into MRFs when the time indices

are considered as spatial indices.

There are two approaches for specifying an MRF:

1. Conditional probability

2. Joint probability

According to Besag, the conditional approach has the following disadvan-

tages:

1. No obvious method is available for deducing the joint probability from the

associated conditional probability.

2. The conditional probability themselves are subject to some non-obvious and

highly restrictive consistency conditions.

3. The natural specification of an equilibrium of statistical process is in terms

of the joint probability rather than the conditional distribution of the vari-

ables.
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A theoretical result about the equivalence between MRF and Gibbs distri-

bution (Hammersley and Clifford Theorem) provides a mathematical tractable

means of specifying the joint probability of an MRF[35].

2.1.3 MRF models

In the 20’s, mostly inspired by the Ising model, a new type of stochastic pro-

cess appeared in the theory of probability called Markov Random Field. MRF’s

become rapidly a broadly used tool in a variety of problems not only in statical

mechanics. Its use in image processing became popular with the famous paper of

S.Geman and D.Geman in 1984 but its first use in the domain dates in the early

70’s. Here we briefly give introduction to the theory of some MRF models.

Weak membrane model

The weak membrane model have been introduced in image restoration by A.Blake

and A.Zisserman[5] . The problem is to reconstruct surfaceswhich are continuous

almost everywhere or, in other words , continuous in patches. To reach a satis-

factory formalization of this principle, they have developed a membrane model:

Imagine an elastic membrane which we are trying to fit to a surface, the edge

will appear as tears in the membrane. Depending on how elastic is the membrane

there may be more or less edges. The membrane is described by an energy func-

tion (the elastic energy of the membrane) which has to be minimized in order to

find an equilibrium state. The energy has three components:

D: A measure of faithfulness to the data:

D =
∫

(u− d)2dA

whereu(x, y) represents the membrane andd(x, y) represents the data.
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S: A measure of how the functionu(x, y) is deformed

S = λ2
∫

(∇u)2dA

P: The sum of penaltiesα levied for each break in the membrane

p = αZ

whereZ is a measure of the set of contours along whichu(x, y) is discontinuous

The elastic energy of the membrane is then given by

E = D + S + P =
∫

(u− d)2dA + λ2
∫

(∇u)2dA + αZ

There is Strong relation between theweak membranemodel and MRF models.

An elastic system can also be considered from a probabilistic view point. The link

between the elastic energy and probability P is

P ∝ exp(
−E

T
)

that is the Gibbs distribution. however theweak membrane modeloperates with

mechanical analogies, representinga priori knowledge from a mechanical point

of view, while MRF modelization is purely probabilistic.

Reward Punishment(RP) model

The auto logistic model can be generalized to multi level logistic(MLL) model,

also called Strauss process and generalized Ising model. There areM(> 2) dis-

crete label set,L = 1, 2, ...., M . In this type of models, a clique potential depends

on the type c (related to size, shape and possibly orientation) of the clique and lo-

cal configurationfc
∼= fi|iǫc. For cliques containing more thanone site(c > 1),

the MLL clique potentials are defined by
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Vc(f) =











+αc if all sites on c have the same label

−αc otherwise
(2.10)

whereαc is the potential for type-c cliques.

We have chosen a simple case of Ising model, In our case we havestudied the

behavior of reward and punishment given by the model, depending on the homo-

geneity of the class. If the adjacent pixel is same as that of the center pixel then a

reward is assigned to the energy function, otherwise punishment and the amount

of reward and punishment is dependent on the homogeneity of the given image.

So the clique potential of the model is given by:

Vc(z) =











+δc if |zi − zj | = 0

−δc if |zi − zj | 6= 0
(2.11)

whereδc is selected on ad hoc manner in our case.

2.1.4 Gibbs Random Field

A set of random variablesZ is said to be aGibbs random field (GRF)on S with

respect toN if and only if its configuration obey aGibbs distribution. A Gibbs

distribution takes the following form.

P (Z = z) =
1

Z ′ × e−
U(z)

T (2.12)

where

Z
′

=
∑

z∈Z
e−

U(z)
T (2.13)

Z is a normalizing constant called the partition function,T is a constant called the

temperature which shall be assumed to be 1 unless otherwise stated, andU(Z) is
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the energy function. The energy

U(Z) =
∑

c∈C

Vc(z) (2.14)

is a sum of clique potentialsVc(z) over all possible cliquesC. The value ofVc(z)

depends on the local configuration on the cliqueC[16][35].

A GRF is said to be homogeneous ifVc(z) is independent of the relative position

of the cliquec in S. It is said to be isotropic ifVc is independent of the orientation

of c. It is considerably simpler to specify a GRF distribution ifit is homogeneous

or isotropic than one without such properties. The homogeneity is assumed in

most MRF vision modes for mathematical and computational convenience. The

isotropy is a property of direction-independent blob-likeregions[35].

To calculate a Gibbs distribution, it is necessary to evaluate the partition func-

tion Z
′

which is the sum over all possible configurations inZ. P (Z = z) mea-

sures the probability of the occurrence of a particular configuration, or pattern,z.

The more probable configuration are those with lower energies. The temperature

T controls the sharpness of the distribution. When the temperature is high, all

configurations tend to be equally distributed. Near the zerotemperature, the dis-

tribution concentrates around the global energy minima.

For discrete labeling problem, a clique potentialVc(z) can be specified by a

number of parameters. For example, lettingzc = (zi, zi′, zi′′) be the local con-

figuration on a triple cliquec = {i, i′, i′′}, zc takes finite number of states and

thereforeVc(z) takes a finite number of values. Sometimes, it may be convenient

to express the energy of a Gibb’s distribution as the sum of several terms, each

ascribed to cliques of a certain size, that is,

U(z) =
∑

{i}∈C1

V1(zi) +
∑

{i,i′}∈C2

V2(zi, zi′) +
∑

{i,i′,i′′}∈C3

V3(zi, zi′ , zi′′) (2.15)
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The above implies a homogeneous Gibbs distribution becauseV1, V2, V3 are in-

dependent of the locations ofi, i′, i”. For nonhomogeneous Gibbs distributions,

the clique functions should be written asV1(i, zi), V2(i, i
′′, zi), and so on[35].

2.1.5 Markov-Gibbs Equivalence

An MRF is characterized by its local property whereas a GRF ischaracterized by

its global property. The Hammersley-Clifford theorem establishes the equivalence

of these two types of properties. The theorem states thatZ is an MRF on S with

respect to N if and only if Z is a GRF on S with respect to N.

The practical value of the theorem is that it provides a simple way of speci-

fying the joint probability. One can specify the joint probability P (Z = z) by

specifying the clique potential functionsVc(z) and choosing appropriate potential

functions for desired system behavior. How to choose the forms and parameters

of the potential functions for proper encoding of the constraints is a major issue in

MRF modeling. The forms of the potential functions determine the forms of the

Gibbs distribution. When all the parameters involved in thepotential functions

are specified, the Gibbs distribution is completely defined.

To calculate the joint probability of an MRF, which is a Gibbsdistribution, it

is necessary to evaluate the partition function (2.65). Because it is the sum over

a combinatorial number of configurations, the computation is usually intractable.

The explicit evaluation can be avoided in maximum probability based MRF vision

models whenU(z) contains no unknown parameters. But this is not true when

the parameter estimation is also a part of the problem. In thelatter case, the

energy functionU(z) = U(z/θ) is also a function of parametersθ and so is the

partition functionZ ′ = Z ′(θ). The evaluation ofZ ′(θ) is required. To circumvent
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the formidable difficulty therein, the joint probability isoften approximated in

practice[35][16].

2.2 LINE PROCESS

Smoothness is a generic assumption in MRF models which characterizes the spa-

tial coherence and homogeneity of image lattice. However improper imposition

of it can lead to undesirable, over-smoothed solutions. It is necessary to take care

of discontinuities when using smoothness prior. To avoid the problem of over-

smoothing Geman and Geman proposed the underlying MRF (label process) with

an additional line process. The line process is neither a data nor the target of esti-

mation. Rather, it is an auxiliary process which is coupled to the label process in

such a manner that the joint probability distribution of intensity function is locally

smooth with line process for discontinuities. The prior on the line process is often

selected to emphasize continuous line and to reject spurious edge elements. Such

a model has the desirable property of promoting structure within the image with-

out causing over-smoothing. A couple of MRFs are defined on the image lattice,

one is for intensity or label field, other is the dual lattice for the edge field or ”line

field” . A line process comprises a latticeS
′

of random variablef ∈ F , whose

sitesi
′ ∈ S

′
corresponded with vertical and horizontal boundaries between adja-

cent pixels of the image lattice. It takes the values from0, 1 which signifies the

absence or occurrence of edges.zi
′ = 1 of the line process variable indicates that

a discontinuity is detected between the neighboring pixelsj andi, i.e. Vi,j(zi, zj)

is taken same before.

Another neighborhoodN is defined over the dual latticeS
′
for line sites. Each

pixel has four line site neighbors. Image lattice can be represented asS ∪ S
′
. The
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(2.62) can be represented with the incorporation of the linefiels as

P (Z = z, F = f) =
1

Z ′ e
−

U(z,f)
T (2.16)

The resulting MAP estimation can therefore defined using a Gibbs posterior

distribution whose prior energy function is

U(z, f) = U(z|f) + U(f) (2.17)

Assignment of line field is preferred as it results in smallerenergy and better

estimation[16][35].
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Chapter 3

OBJECT DETECTION USING

TEMPORAL SEGMENTATION

Segmentation is a process that subdivides an image into its constituent regions

or objects.The level to which the subdivision is carried depends on the problem

being solved. That is, segmentation should stop when the objects of interest in

an application have been isolated. Segmentation of nontrivial images is one of

the most difficult tasks in image processing. Motion is a powerful cue used by

humans and animals to extract objects of interest from a background of irrelevant

detail. Video segmentation refers to the identification of regions in a frame of

video that are homogeneous in some sense. Most real image sequences contain

multiple moving objects or multiple motions. Motion segmentation refers to la-

beling pixels that are associated with each independently moving 3-D object in

a sequence featuring multiple motions. A closely related problem is optical flow

segmentation , which refers to grouping together those optical flow vectors that

are associated with the same 3-D motion and/or structure. These two problems

are identical when we have a dense optical flow field with an optical flow vector

for every pixel. It should not come as a surprise that motion-based segmentation is
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an integral part of many image sequence analysis problems, including: improved

optical flow estimation, 3-D motion and structure estimation in the presence of

multiple moving objects,and higher-level description of the temporal variations

and/or the content of video imagery. In the first case, the segmentation labels

help to identify optical flow boundaries and occlusion regions where the smooth-

ness constraint should be turned off. Segmentation is required in the second case,

because a distinct parameter set is needed to model the flow vectors associated

with each independently moving 3-D object. Finally, in the third case, segmen-

tation information may be considered as a high-level (object-level) description of

the frame-to-frame motion information as opposed to the low-level (pixel-level)

motion information provided by the individual flow vectors.As with any segmen-

tation problem, proper feature selection facilitates effective motion segmentation.

In general, application of standard image segmentation methods directly to op-

tical flow data may not yield meaningful results, since an object moving in 3-D

usually generates a spatially varying optical flow field. Forexample in the case of

a single rotating object, there is no flow at the center of rotation, and the magni-

tude of the flow vectors grows as we move away from the center ofrotation. The

mapping parameters depend on the 3-D motion parameters, therotation matrix

R and the translation vector T, and the model of the object surface, such as the

orientation of the plane in the case of a piecewise planar model. Since each inde-

pendently moving object and/or different surface structure will best fit a different

parametric mapping, parameters of a suitably selected mapping will be used as

features to distinguish between different 3-D motions and surface structures. Di-

rect methods, which utilize spatio-temporal image gradients may be considered as

extension of the case of multiple motion. A suitable parametric motion model has

subsequently been used for optical flow segmentation using clustering or maxi-

mum a posteriori (MAP) estimation. The accuracy of segmentation results clearly
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depends on the accuracy of the estimated optical flow field. Asmentioned earlier,

optical flow estimates are usually not reliable around moving object boundaries

due to occlusion and use of smoothness constraints. Thus, optical flow estimation

and segmentation are mutually interrelated, and should be addressed simultane-

ously for best results. We consider direct methods for segmentations of images

into independently moving regions based on spatio-temporal image intensity and

gradient information. This is in contrast to first estimating the optical flow field

between two frames and then segmenting the image based on theestimated opti-

cal flow field. We start with a simple thresholding method thatsegments images

into “changed” and “unchanged regions”. Thresholding is often used to segment

a video frame into “changed” versus “unchanged” regions with respect to the pre-

vious frame. The unchanged regions denote the stationary background, while the

changed regions denote the moving and occlusion areas. We define the frame

differenceFDk,k−1(x1, x2) between the frames k and k-1 as

FDk,k−1 (x1, x2) = s (x1, x2, k)− s (x1, x2, k − 1) (3.1)

which is the pixel-by-pixeldifference between the two frames. Assuming that

the illumination remains more or less constant from frame toframe, the pixel lo-

cations whereFDk,k−1(x1, x2) differ from zero indicate “changed” regions. How-

ever, the frame difference hardly ever becomes exactly zero, because of the pres-

ence of observation noise. In order to distinguish the nonzero differences that

are due to noise from those that are due road scene change , segmentation can be

achieved by thresholding the difference image as

X =











1 if | FDk,k−1(x1, x2) |> T

o Otherwise.
(3.2)

where T is an appropriate threshold.
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3.1 IMAGE SEGMENTATION

Segmentation is an important process in automated image analysis. It is during

segmentation that regions of interest are extracted from animage for subsequent

processing such as surface description and object recognition. It is the low level

operation concerned with partitioning images by determining disjoint and homo-

geneous regions, or, equivalently, by finding edges or boundaries. The homoge-

neous regions, or the edges are supposed to correspond to actual objects or parts

of them within the images. Thus, in a large number of applications in image pro-

cessing and computer vision, segmentation plays a fundamental role as the first

step before applying to images for higher level operations such as recognition, se-

mantic interpretation and representation. Segmentation can be defined as follows:

Let I denote an image andH define a certain homogeneity predicate, then the

segmentation ofI is a partitionP of I into a set ofN regionsRn, n = 1, 2, .....N

such that:

1.
⋃N

n=1 Rn = I with Rn ∩Rm 6= 0, n 6= m

2. H(Rn) = TRUE ∀n

3. H(Rn ∪ Rm) = FALSE ∀Rn andRm adjacent

Condition 1) states that partition has to cover the whole image; condition 2)

states that each region has to be homogeneous with respect topredicateH; condi-

tion 3) states that no two adjacent region cannot be merged into a single region that

satisfies the predicateH. Regions of image segmentation should be uniform and

homogeneous with respect to some characteristics such as gray tone, texture or

color. Region interiors should be simple and without many small holes. Adjacent
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regions of segmentation should have significantly different values with respect to

the characteristic on which they are uniform. Boundaries ofeach segment should

be simple, not ragged and must be spatially accurate.

3.2 VIDEO SEGMENTATION

Video segmentation refers to the identification of regions in a frame of video that

are homogeneous in some sense. Different features and homogeneity criteria gen-

erally leads to different segmentation of same data; for example, color segmenta-

tion, texture segmentation, and motion segmentation usually result in segmenta-

tion maps. Furthermore, there is no guarantees that any of the resulting segmen-

tation will semantically meaningful, since semantically meaningful region may

have multiple colors, multiple textures, or multiple motions. Generally motion

segmentation is closely related to two other problems, motion (change) detection

and motion estimation. Change detection is a special case ofmotion segmenta-

tion with only two regions, namely changed and unchanged regions(in the case of

static cameras) or global and local motion regions(in the case of moving cameras).

An important distinction between the change detection and motion segmentation

is that the former can achieved without motion estimation ifthe scene is recorded

with a static camera. Change detection in the case of a movingcamera and gen-

eral motion segmentation, in contrast, require some sort ofglobal or local motion

estimation, either explicitly or implicitly. It should notcome as a surprise that

motion/object segmentation is an integral part of many video analysis problems,

including (i) improved motion (optical flow) estimation, (ii) three- dimensional

(3-D) motion and structure estimation in the presence of multiple moving objects,

and (iii) description of the temporal variation or content of video. In the for-

mer case,the segmentation labels help to identify optical flow boundaries(motion
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edges) and occlusion regions where the smoothness constraint should be turned

off. Segmentation is required in the second case, because distinct 3-D motion and

structure parameters are needed to model the flow vectors associated with each in-

dependently moving objects. Finally in third case segmentation information may

be employed in an object level description of frame to frame motion as opposed

to a pixel level description provided by individual flow vectors.

Video segmentation has applications in the field of face and gait -based human

recognition, event detection, activity recognition, activity based human recogni-

tion,detection of the position of the object, detection of the behaviors of the in-

sects, fault diagnosis in rolling plants, visual recognition, detect and model the

abnormal behavior of the insects, anomaly detection, tracking, robotics applica-

tions, autonomous navigations, dynamic scene analysis, target tracking and path

detection etc.

3.3 TEMPORAL SEGMENTATION

Motion is a powerful cue used by humans and many animals to extract objects of

interest from a background of irrelevant detail. In imagingapplications, motion

arises from a relative displacement between the sensing system and the scene be-

ing viewed, such as in robotic applications, autonomous navigation and dynamic

scene analysis.

3.3.1 Spatial Techniques

Basic approach

One of the simplest approaches for detecting changes between two image frames

f(x, y, ti) andf(x, y, tj) taken at timesti andtj , respectively, is to compare the
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two images pixel by pixel. One procedure for doing this is to form a difference

image. Suppose that we have a reference image containing only stationary com-

ponents. Comparing this image against a subsequent image ofthe same scene,

but including a moving object, results in the difference of the two images cancel-

ing the stationary elements, leaving only nonzero entries that correspond to the

nonstationary image components.

A difference image between two images taken at timesti andtj may be defined

as

di,j(x, y) =











1 if | f(x, y, ti)− f(x, y, tj) |> T

o Otherwise.
(3.3)

whereT is a specified threshold. Note thatdi,j(x, y) has a value of 1 at spatial

coordinates(x, y) only if the gray-level difference between the two images is ap-

preciably different at those coordinates, as determined bythe specified threshold

T . It is assumed that all images are of the same size. Finally, we note that the val-

ues of the coordinates(x, y) in (3.3) span the dimensions of these images, so that

the difference imagedi,j(x, y) also is of same size as the images in the sequence.

In dynamic image processing, all pixels indi,j(x, y) with value 1 are consid-

ered the result of object motion. This approach is applicable only if the two im-

ages are registered spatially and if the illumination is relatively constant within the

bounds established by T. In practice, 1-valued entries indi,j(x, y) often arise as a

result of noise. Typically, these entries are isolated points in the difference image,

and a simple approach to their removal is to form 4- or 8-connected regions of 1’s

in di,j(x, y) and then ignore any region that has less than a predeterminednumber

of entries. Although it may result in ignoring small and/or slow-moving objects,

this approach improves the chances that the remaining entries in the difference
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image actually are the result of motion.

Accumulative differences

Isolated entries resulting from noise is not an insignificant problem when trying to

extract motion components from a sequence of images. Although the number of

these entries can be reduced by a thresholded connectivity analysis, this filtering

process can also remove small or slow-moving objects as noted in the previous

section. One way to address this problem is by considering changes at a pixel

location over several frames, thus introducing a ”memory” into the process. The

idea is to ignore changes that occur only sporadically over aframe sequence and

can therefore be attributed to random noise.

Consider a sequence of image framesf(x, y, t1), f(x, y, t2).........f(x, y, tn)

and letf(x, y, t1) be the reference image. Anaccumulative difference image

(ADI) is formed by comparing this reference image with everysubsequent im-

age in the sequence. A counter for each pixel location in the accumulative image

is incremented every time a difference occurs at that pixel location between the

reference and an image in the sequence. Thus when thekth frame is being com-

pared with the reference, the entry in a given pixel of the accumulative image

gives the number of times the gray level at that position was different from the

corresponding pixel value in the reference image. Often useful is consideration

of three types of accumulative difference images: absolute, positive, and negative

ADIs. Assuming that the gray-level values of the moving objects are larger than

the background, these three types of ADIs are defined as follows. Let R(x, y)

denote the reference image and, to simplify the notation, let k denotetk, so that

f(x, y, k) = f(x, y, tk). We assume thatR(x, y) = f(x, y, 1). Then, for any

k > 1, and keeping in mind that the values of the ADIs are counts, wedefine the
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following for all relevant values of(x, y):

Ak(x, y) =











Ak−1(x, y) + 1 if | R(x, y)− f(x, y, k) |> T

Ak−1(x, y) Otherwise.
(3.4)

Pk(x, y) =











Pk−1(x, y) + 1 if | R(x, y)− f(x, y, k) |> T

Pk−1(x, y) Otherwise.
(3.5)

and

Nk(x, y) =











Nk−1(x, y) + 1 if [R(x, y)− f(x, y, k)] < −T

Nk−1(x, y) Otherwise.
(3.6)

whereAk(x, y) , Pk(x, y) andNk(x, y) are the absolute, positive, and nega-

tive ADIs, respectively, after thekth image in the sequence is encountered. It is

understood that these ADIs start out with all zero values (counts). The images in

the sequence are all assumed to be of the same size. The order of the inequalities

and signs of the thresholds in (3.5) and (3.6) are reversed ifthe gray-level values

of the background pixels are greater than the levels of the moving objects.

Establishing a Reference Image

A key to the success of the techniques discussed in the preceding two sections is

having a reference image against which subsequent comparisons can be made. As

indicated, the difference between two images in a dynamic imaging problem has

the tendency to cancel all stationary components, leaving only image elements

that correspond to noise and to the moving objects. The noiseproblem can be

handled by the filtering approach mentioned earlier or by forming an accumula-

tive difference image, as discussed in the preceding section.
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In practice, obtaining a reference image with only stationary elements is not

always possible, and building a reference from a set of images containing one or

more moving objects becomes necessary. This necessity applies particularly to

situations describing busy scenes or in cases where frequent updating is required.

One procedure for generating a reference image is as follows. Consider the first

image in a sequence to be the reference image. When a nonstationary component

has moved completely out of its position in the reference frame, the correspond-

ing background in the present frame can be duplicated in the location originally

occupied by the object in the reference frame. When all moving objects have

moved completely out of their original positions, a reference image containing

only stationary components will have been created. Object displacement can be

established by monitoring the changes in the positive ADI.

3.4 ALGORITHM FOR TEMPORAL SEGMENTA-

TION

The salient steps of the Hybrid Algorithm are as follows

1. Initially two frames are taken one as a reference frame andanother frame

in which object is present and identification of object is performed on that

frame.

2. A Change Detection Mask (CDM) is obtained by taking the difference be-

tween the considered frame and the reference frame.

3. The difference between the frame is thresholded by globalthresholding ap-

proach, which gives a binary image with two regions that is object and back-

ground.
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4. In final stage the intersection of object region and original image frame is

taken to find out the Moving Objects.

3.5 RESULTS AND DISCUSSION

In simulation, two types of situations are considered. The first one is when refer-

ence frame is available, while the second one is in the absence of reference frames.

Fig. 3.1 shows the Hall monitoring video sequence. The original Hall monitor-

ing sequence which is considered as the reference frame is shown in Fig. 3.1(a).

The movement in the hall is shown in different video sequences as shown in Fig.

3.1(b). The change detection masks are shown in Fig. 3.1(c).It is observed from

the CDMs that there are many other objects i.e parts of the background presence in

the CDMs. Temporal Segmentation is carried out and the corresponding VOPs of

different frames are shown in Fig. 3.1(d). It can be observedfrom Fig. 3.1(d) that

the video objects could be detected but there are few other background patches.

However, ignoring the minor background patches in the VOPs it can be concluded

that with the availability of reference frames, the objectscould be detected accu-

rately.

The second example considered is Bowing video sequence as shown in Fig.

3.2. In this case, the reference frame is shown in Fig. 3.2(a). With the activity in

the video, frames 57, 58, 59, 60 are shown in Fig. 3.2(b) wherethe moving object

is thee human activity. The CDMs obtained with the use of reference frames con-

tains lots of background information besides foreground information. VOPs are

generated using Temporal Segmentation and it is observed that the moving object

could be detected with less error. Hence in this case also with reference frame,

temporal segmentation could produce better results. The third example is the Hall
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monitoring sequence with a different type of activity. The corresponding CDMs

are also shown in Fig. 3.3(a) and the CDMs are with more background informa-

tion. The corresponding VOPs are shown in Fig. 3.3(d) where it can be observed

that the object could be detected with vary background patches.

The second case considered is when no reference frame is available. The first

example considered is the Akiyo Video sequence as shown in Fig. 3.4(a). The

VOPs generated are shown in Fig. 3.4(c) where it can be observed that some

parts of the moving object could be detected but in a ditheredway. Hence, it

can be concluded that without availability of reference frames temporal segmen-

tation method fails to detect the objects. This observationis also corroborated

with the second example considered as shown in Fig. 3.5. Thisis a Grandma

video sequence, where reference frame is not available and hence the VOPs are

very much distorted as shown in Fig. 3.5(c). It is observed that only some effect

of the silhouette is present in the sequence. Thus it can be concluded that tempo-

ral segmentation is not suitable for object detection when reference frame is not

available.

The limitation of the existing temporal segmentation methods are as follows

1. It does not give good result in presence of noise and illumination variation

2. It can not able to give good result with poor resolution

3. case will be more critical in absence of reference frame

4. It may not give any result if there is slow movements in the sequences.

5. Substantial amount of object movement is required in order to generate ref-

erence frame.

6. If Object size is large it may also fails to generate reference frame.
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(a) Original Hall Monitoring Video Sequence Frame No.6

(b) Original Hall Monitoring Video Sequence Frame No.49,50,51,52

(c) CDM of Frame No.49,50,51,52 using Frame No. 6 as reference

(d) VOP of Frame No.49,50,51,52

Figure 3.1:VOP Generation of Hall Monitoring Sequence using Temporal Segmentation
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(a) Original Bowing Video Sequence Frame No.1

(b) Original Bowing Video Sequence Frame No.57,58,59,60

(c) CDM of Frame No.57,58,59,60 using Frame No. 1 as reference

(d) VOP of Frame No.57,58,59,60

Figure 3.2:VOP Generation for Bowing Video Sequence using Temporal Segmentation

36



(a) Original Hall Monitoring Video Sequence Frame No.6

(b) Original Hall Monitoring Video Sequence Frame No.292, 293, 294, 295

(c) CDM of Frame No.292, 293, 294, 2955 using Frame No. 6 as reference

(d) VOP of Frame No.292,293,294,295

Figure 3.3:VOP Generation for Hall Video Sequence using Temporal Segmentation
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(a) Original Akiyo Video Sequence Frame No.75

(b) Original Akiyo Video Sequence Frame No.76,77,78,79

(c) VOP of Frame No.76,77,78,79

Figure 3.4: VOP Generation for Akiyo Sequence using Temporal Segmentation

(a) Original Grandma Video Sequence Frame No.11

(b) Original Grandma Video Sequence Frame No.12,13,14,15

(c) VOP of Frame No.12,13,14,15

Figure 3.5:VOP Generation for Grandma Sequence using Temporal Segmentation
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Chapter 4

OBJECT DETECTION USING
COMPOUND MRF MODEL
BASED SPATIO-TEMPORAL
SEGMENTATION

There has been a growing research interest in video image segmentation over the

past decade and towards this end, a wide variety of methodologies have been

developed [1],[2],[21],[16]. The video segmentation methodologies have exten-

sively used stochastic image models, particularly Markov Random Field (MRF)

model, as the model for video sequences [19],[25],[26]. MRFmodel has proved

to be an effective stochastic model for image segmentation [35],[17],[4] because

of its attribute to model context dependent entities such asimage pixels and cor-

related features. In Video segmentation, besides spatial modeling and constraints,

temporal constraints are also added to devise spatio-temporal image segmenta-

tion schemes. An adaptive clustering algorithm has been reported [19] where

temporal constraints and temporal local density have been adopted for smooth

transition of segmentation from frame to frame. Spatio-temporal segmentation

has also been applied to image sequences [20] with differentfiltering techniques.

Extraction of moving object and tracking of the same has beenachieved in spatio-
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temporal framework [24] with Genetic algorithm serving as the optimization tool

for image segmentation. Recently, MRF model has been used tomodel spatial

entities in each frame [24] and Distributed Genetic algorithm (DGA) has been

used to obtain segmentation. Modified version of DGA has beenproposed [25]

to obtain segmentation of video sequences in spatio-temporal framework. Be-

sides, video segmentation and foreground subtraction has been achieved using

the spatio-temporal notion [27],[28] where the spatial model is the Gibbs Markov

Random Field and the temporal changes are modeled by mixtureof Gaussian dis-

tributions. Very recently, automatic segmentation algorithm of foreground objects

in video sequence segmentation has been proposed [29]. In this approach, first

region based motion segmentation algorithm is proposed andthereafter the labels

of the pixels are estimated. A compound MRF model based segmentation scheme

has been proposed in spatio-temporal framework. The problem of extraction of

moving target from the background has been investigated [22] where adaptive

thresholding based scheme has been employed to segment the images.

In this Chapter we propose a scheme to detect moving object ina video se-

quence. There could be substantial movement in the moving objects from frame

to frame of a video sequence or the movement could be slow enough to be missed

by temporal segmentation. In order to take care of both the situation, we obtain

spatial segmentation of the given frame and in the sequence use the same results

to obtain temporal segmentation. The accuracy of temporal segmentation greatly

depends upon the accuracy of spatial segmentation. The results of the temporal

segmentation is used to obtain the video object plane and hence moving object

detection. The spatial segmentation problem is formulatedin spatio-temporal

framework. A compound MRF model is proposed to model the spatial as well

as temporal pixels of the video sequence. The compound MRF model consists of
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three MRF, one to model the spatial entities of the given frame; the second MRF

model take care of attributes in the temporal direction and the third MRF model

is used to take care of edge features in the temporal direction. Thus a compound

MRF model is used to model the video. The problem is formulated as a pixel la-

beling problem and the pixel label estimates are the maximuma posteriori (MAP)

estimates of the given problem. By and large the Simulated Annealing (SA) al-

gorithm [16] is used to obtain the MAP estimates, instead we have proposed a

hybrid algorithm based on local global attributes to obtainthe MAP estimates and

hence segmentation. The proposed scheme has been tested fora wide verity of

sequences and it is observed that with the proposed edge based compound MRF

model yields better segmentation results than that of edgeless model. The ground

truth image is constructed manually and the percentage of misclassification is ob-

tained based on the ground truth images. The proposed methodis compared with

JSEG [14] method and it is found that the proposed method outperformed JSEG

in terms of misclassification error.

The pixels labels thus obtained for each frames are being used for tempo-

ral segmentation. Temporal segmentation is obtained usingthe change detection

masks and the history of the labels of different frames. Thereafter, Video Object

Plane is constructed using the temporal segmentation and original frames. it has

been observed that this scheme could detect moving object more efficiently than

that of using only temporal segmentation. The edges of the moving objects could

be preserved and this could be preserved and this could be attributed to the edge

preserving property of the proposed model.The VOP constructed using the edge-

based model and it is observed that the video segmentation results has two class,

one moving object and the other background. The scheme was tested for different

video sequence and even slow movements in the video could be detected.
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4.1 MOVING OBJECT DETECTION

Usually, CDM is the difference of two consecutive frames. The gray value of

pixels on CDM could be either high due to changes such as motion or significant

illumination changes or low due to noise and variation in illumination. These low

value changes cause improper generation of VOP. We have proposed a method

of obtaining the CDM, where inspite of taking the gray level difference of two

consecutive frame, the difference between the label of two consecutive frames,

are obtained followed by thresholding. The CDM obtained with that of label

difference produces better result than that of using CDM with difference in gray

level.

4.2 SPATIO TEMPORAL IMAGE MODELING

Let the observed video sequencesy be considered to be 3-D volume consisting

of spatio-temporal image frames. For video, at a given timet , yt represents the

image at timet and hence is a spatial entity. Each pixel inyt is a site s denoted

by yst and hence,yst refers to a spatio-temporal representation of the 3-D volume

video sequences Let the observed video sequencesy be considered to be 3-D

volume consisting of spatio-temporal image frames. For video, at a given timet ,

yt represents the image at timet and hence is a spatial entity. Each pixel inyt is a

site s denoted byyst and hence,yst refers to a spatio-temporal representation of the

3-D volume video sequences Letx denote the segmented video sequences andxt

denote the segmentation of each video frameyt. Instead of modeling the video as

a 3-D model we adhere to a spatio-temporal modeling. We modelXt as a Markov

random Field Model and the temporal pixels are also modeled as MRF. We model

Xt as Markov Random Field model and the temporal pixels are alsomodeled as

MRF. In particular for second order modeling in the temporaldirections, we take
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Xt, Xt−1 andXt−2. In order to preserve the edge features, another MRF model

is considered for the pixel of the current framexst and the line fields ofXt−1 and

Xt−2. Thus, three MRF models are used as the spatio-temporal image model. The

MRF model taking care of edge features, in other words the line fields of frame

xt−1 andxt−2 together withxt are modeled as MRF. It is known that ifXt is MRF

then, it satisfies the markovianity property in spatial direction.

P (Xst = xst | Xqt = xqt, ∀qǫS, s 6= q)

= P (Xst = xst | Xqt = xqt, (q, t)ǫηs,t)

whereηs,t is denoted the neighborhood of (s,t) and S denotes spatial Lattice of the

frameXt. For temporal MRF, the following markovianity is satisfied.

P (Xst = xst | Xpq = xpq, q 6= t, p 6= s, ∀(s, t)ǫV )

= P (Xst = xst | Xpq = xpq, (p, q)ǫηs,t)

where V denotes the 3-D volume of the video sequence. In spatial domainXt

is modeled as MRF and hence the prior probability can be expressed as Gibb’s

distributed which can be expressed asP (Xt) = 1
z
e

−U(Xt)
T where z is the partition

function which is expressed asz =
∑

x e
−U(xt)

T , U(Xt) is the energy function and

expressed asU(Xt) =
∑

c∈C Vc(xt) andVc(xt) denotes the clique potential func-

tion, T denotes the temperature and is considered to be unity. We have considered

the following clique potential function.

Vc(x) =











+α : ifxst 6= xptand(s, t), (p, t)ǫS

−α : ifxst = xptand(s, t), (p, t)ǫS

Vtec(x) =











+β : ifxst 6= xqtand(s, t), (q, t)ǫS

−β : ifxst = xqtand(s, t), (q, t)ǫS
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Analogously in the temporal direction

Vteec(x) =











+γ : ifxst 6= xetand(s, t), (e, t)ǫS

−γ : ifxst = xetand(s, t), (e, t)ǫS

4.2.1 Segmentation in MAP frame work

The Segmentation problem is cast as a pixel labeling problem. Let y be the ob-

served video sequence and be an image frame at time t and s denote the site of the

imageyt. CorrespondinglyYt is modeled as a random field andyt is a realization

frame at time t. Thus,yst denotes as a spatio-temporal co-ordinate of the grid (s,

t). Let X denotes the segmentation of the video sequence and let Xt denote the

segmentation of an image at time t. LetXt denote the random field in the spatial

domain at time t. The observed image sequencesY are assumed to be the de-

graded version of the segmented image sequences X. For example at a given time

t, the observed frameYt is considered as the degraded version of the original label

field Xt . This degradation process is assumed to be Gaussian Process. Thus, the

label field can be estimated from the observed random fieldYt . The label field is

estimated by maximizing the following posterior probability distributions.

x̂ = arg max
x

P (X = x|Y = y) (4.1)

Wherex̂ denotes the estimated labels. Since,x is unknown it is very difficult

to evaluate (4.1), hence, using Baye’s theorem (4.1) can be written as

x̂ = arg max
x

P (Y = y|X = x)P (X = x)

P (Y = y)
(4.2)

Since y is known, the prior probabilityP (Y = y) is constant. hence (4.2)

reduces to

x̂ = arg max
x

P (Y = y|X = x, θ)P (X = x, θ) (4.3)
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Whereθ is the parameter vector associated withx. According to Hammerseley

Clifford theorem, the prior probabilityP (X = x, θ) is Gibb’s distributed and is

of the following form

P (X = x) = e−U(x,θ) = e[−
∑

cǫC
[Vsc(x)+Vtec(x)+Vteec(x)]] (4.4)

In (4.4) Vsc(x) the clique potential function in the spatial domain at time t,

Vtec(x) denotes the clique potential in the temporal domain andVteec(x) denotes

the clique potential in the temporal domain incorporating edge feature. We have

proposed this additional feature in the temporal direction.(4.4) is called the edge-

based model. The corresponding edgeless model is

P (X = x) = e−U(x,θ) = e[−
∑

cǫC
[Vsc(x)+Vtec(x)]]

The likelihood functionP (Y = y|X = x) can be expressed as

P (Y = y|X = x) = P (y = x + n|X = x + θ) = P (N = y − x|X = x + θ)

Since n is assumed to be Gaussian and there are three components present in

color,P (Y = y|X = x) Can be expressed as

P (N = y − x|X, θ) =
1

√

(2π)ndet [k]
e−

1
2
(y−x)T K−1(y−x) (4.5)

Where k is the covariance matrix. Assuming decorrelation ofthe three RGB

planes and the variance to be same among each plane, (4.5) canbe expressed as

P (N = y − x|X, θ) =
1

√

(2π)3σ3
e−

1
2σ2 (y−x)2 (4.6)

In (4.6) Varianceσ2 corresponds to the Gaussian degradation. Hence (4.3) can

be expressed as
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x̂ = arg max
x

1

(2π)3σ3
e
[−‖y−x‖2]

2σ2 [−[
∑

cǫC
[Vsc(x)+Vtec(x)+Vteec(x)]]]

The a priori model having the three components is attributedas edge based model.

x̂ = arg max
x

e
−

[

‖y−x‖2

2σ2 +
∑

cǫC
Vsc(x)+Vtec(x)+Vteec(x)

]

(4.7)

Maximizing (4.7) is tantamount to minimizing the

x̂ = arg min
x

{[

‖ y − x ‖2
2σ2

]

+

[

∑

cǫC

Vsc(x) + Vtec(x) + Vteec(x)

]}

(4.8)

x̂ in (4.8) is the MAP estimate and the MAP estimate is obtained by the pro-

posed hybrid algorithm. The associated clique potential parameters and the noise

standard deviationσ are selected on trial and error basis

4.2.2 Hybrid Algorithm

It is observed that SA algorithm takes substantial amount oftime to converge to

the global optimum solution. SA algorithm has the attributeof coming out of the

local minima and converging to the global optimal solution.This feature could

be attributed to the acceptance criterion(acceptance witha probability). We have

exploited this feature, that is the proposed hybrid algorithm uses the notion of

acceptance criterion to come out of the local minima and to benear the global

optimal solution. Thus, in the hybrid algorithm, SA algorithm produces an in-

termediate solution that can be local to the optimal solution. In order to obtain

the optimal solution, a local convergence based strategy isadopted for quick con-

vergence. Towards this end, we have used Iterated Conditional Mode (ICM) [17]

algorithm as the locally convergent algorithm. Thus, the proposed algorithm is a

hybrid of both SA algorithm and ICM algorithm. The hybrid algorithm’s working
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principle is as follows. Initially, a specific number of timesteps of SA algorithm,

fixed by trial and error, are executed to achieve the near optimal solution. There-

after, ICM is run to converge to the desired optimal solution. This avoids the

undesirable time taken by SA algorithm when the solution is close to the optimal

solution. The steps of proposed hybrid algorithm are enumerated as below :

1. Initialize the temperatureTin.

2. Compute the energyU of the configuration.

3. Perturb the system slightly with suitable Gaussian disturbance.

4. Compute the new energyU
′
of the perturbed system and evaluate the change

in energy∆U = U
′ − U .

5. If (∆U < 0), accept the perturbed system as the new configuration Else

accept the perturbed system as the new configuration with a probability

exp(−∆U)/t (wheret is the temperature of cooling schedule).

6. Decrease the temperature according to the cooling schedule.

7. Repeat steps 2-7 till some prespecified number of epochs.

8. Compute the energyU of the configuration.

9. Perturb the system slightly with suitable Gaussian disturbance.

10. Compute the new energyU
′
of the perturbed system and evaluate the change

in energy∆U = U
′ − U .

11. If (∆U < 0), accept the perturbed system as the new configuration, other-

wise retain the original configuration.

12. Repeat steps 8-12, till the stopping criterion is met. The stopping criterion

is the energy(U < threshold).
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4.3 TEMPORAL SEGMENTATION

In temporal segmentation, a change detection Mask (CDM) is obtained and this

CDM serves as a precursor for detection of foreground as wellas background.

This CDM is obtained by taking the label difference of two consecutive frames

followed by thresholding. We have adopted a global thresholding method such as

Otsu’s method for thresholding the image. The results, thusobtained are verified

and compensated by historical information, to enhance the segmentation results of

the moving object. Thus the results obtained are compared with that of the CDM

constructed with taking intensity difference of two consecutive frames. Where we

found that label difference as that of intensity differencegive better results. The

historical information of a pixel means whether or not the pixel belongs to the

moving object parts in the previous frame. This is represented as follow

H = {hs|0 ≤ s ≤ (M1 − 1)(M2 − 1)} (4.9)

WhereH is a matrix of size of a frame. If a pixel is found to havehs = 1

, then it belongs to moving object in the previous frame; otherwise it belonged

to the background in the previous frame. Based on this information, CDM is

modified as follows. If it belongs to a moving object part in the previous frame

and its label obtained by segmentation is same as one of the corresponding pixels

in the previous frame, the pixel is marked as the foreground area in the current

frame.

4.4 VOP GENERATION

The Video Object Plane (VOP) is obtained by the combination of temporal seg-

mentation result and the original video image frame. In a given scene we consider

objects as one class and background as the other thus having atwo class problem
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of foreground and background. Therefore, the temporal segmentation results yield

two classes. We denoteFMt andBMt as the foreground and background part of

theCDMt respectively. The region forming foreground part in the temporal seg-

mentation is identified as object and is obtained by the intersection of temporal

segmentation and original frame as

V OP = num(FMt ∩ yt)

Where the num (.) is the function counting the number of pixelforming the

region of interest.

4.4.1 Modification in CDM

By and large CDM is the difference of two consecutive frames.The gray value of

pixels on CDM could be either high due to changes such as motion or significant

illumination changes or low due to noise and variation in illumination. These low

value changes cause improper generation of VOP. We have proposed a method

of obtaining the CDM, where inspite of taking the gray level difference of two

consecutive frame, the difference between the label of two consecutive frames,

are obtained followed by thresholding. The CDM obtained with that of label

difference produces better result than that of using CDM with difference in gray

level.

4.5 CENTROID CALCULATION ALGORITHM

Using a optimal threshold value and the VOP available for previous frame the

temporal segmentation of the current frame is obtained. Thecluster of the object

region is transformed to a gray level image, where the objectregion is differed

from the background region by two gray level either0 or 255. Which can be given

as,
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x =











255 if it is in object

o Otherwise.

where the centroid(x̂nc
, ŷnc

) of the binary temporal segmented image is given

as,

x̂nc
=

∑

iǫT xni
c(i)

∑

iǫT c(i)
(4.10)

ŷnc
=

∑

iǫT yni
c(i)

∑

iǫT c(i)
(4.11)

4.6 SIMULATION AND RESULT DISCUSSION

The two video models edge less and edgebased model have been tested with three

different video sequences, namely Suzie, Akiyo and Motherbaby video sequences.

For these two models, the two different strategies are adopted while obtaining the

CDMs. The first one is when the original frame is considered and the second one

is when the estimated label frames are considered. In all thecases we have con-

sidered RGB color model.

Fig. 4.2 shows the results of the Suzie video sequence. The original sequence

is shown in Fig. 4.2(a). It can be seen from the original sequence that there is

slow movements of the object in different frames such as 5, 8 and 11. Besides, the

reference frame is not available. Hence temporal segmentation method would fail

in this case.

Hence, the spatio-temporal segmentation together with thetemporal segmen-

tation is used to detect the video objects. The ground truth images for spatial
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segmentation are shown in Fig. 4.2(b). For spatial segmentation it has been as-

sumed to be Gaussian. The standard deviationσ for this process is3.34 while

the MRF model parameters areα = 0.01, β = 0.007 andγ = 0.001. These

parameters are considered for different video images are tabulated in Table. 4.2.

The spatio-temporal based segmentation using edgeless andedgebased model are

shown in Fig. 4.2(d) and 4.2(e) the sharpness in lips of the face has been ob-

served while the lips are smoothed in case of edgeless model.The corresponding

JSEG result is shown in Fig. 4.2(c). It can be observed that the part of the face

is merged with the hair part and similarly there are more misclassified labels in

this. This is also reflected in the percentage of misclassification error provided in

Table. 4.1. As seen from the Table. 4.1. the error for JSEG is4.5 percentage

which is quite high as compared to0.4 and0.3 for edgeless and edgebased model.

Even though the misclassification errors are close in both the cases, the sharpness

of the features has been preserved. However in other cases there is appreciable

amount of difference in error between edge less and edgebased approaches. The

temporal segmentation as obtained using the original videosequence are shown in

Fig. 4.2(f) and the corresponding VOPs are shown in Fig. 4.2(g) where it can be

observed that the object could be separated from the background. Even for slow

movement of the objects in frames, this method could detect the objects.

Similar observation are also made for other two video sequences are shown in

Fig. 4.3 and Fig. 4.4 shows the Akiyo news reading video sequence where there

are slow movements of the different parts of the body. It is observed that the JSEG

groped the whole faces one class while the edgebased model preserved the edges.

The misclassification is again low in case of edgebased model. The temporal seg-

mentation and VOPs are shown in Fig. 4.3(f) and (g). For slow movements, the

object could be detected.
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The third video sequence, as shown in Fig. 4.4(a) has movements that can

be viewed as moderate and even in this case also the edgebasedmodel proved to

be better as corroborated from the misclassification error.Temporal segmentation

and VOPs are shown in Fig. 4.4(f) and Fig. 4.4(g). As observedin the VOPs there

are some background pixels present in the edges of the head and also at the top

of the head. All the above results used original frames to compute the CDMs and

hence the VOPs. The model parameters for the sequence are given in Table. 4.2

In the subsequent part we consider the label frames to obtainthe CDMs as

opposed to the original frames. It is found that the objects detected using the la-

bel frames and edge based model is more precise than using theoriginal frames.

The movements again are slow as well as moderately fast and the object could be

detected. The Grandma video sequence is shown in Fig. 4.5, the objects detected

using original frames are shown in Fig. 4.5(f). It can be observed that near the

shoulder some background part has reflected and hence this does not belong to the

object part. Fig. 4.5(i) shows the objects detected using the label frames and it is

seen that the object could be detected properly without any background part. The

model parameters and the misclassification error is given inTable. 4.2. and.Table.

4.3. The′+′ in Fig. 4.5(i) indicates the centroid of the object detected. In this case

also edge based model proved to be better for slow moving objects. Similarly Fig.

4.8(d) observation can be made for the Akiyo video sequence shown in Fig. 4.6.

The edgebased model with label frames for temporal segmentation detected ob-

jects more efficiently than edgeless model using original sequences. Thus can be

seen from the results shown in case of Fig. 4.6 and Fig. 4.8. For Traffic video

sequence as shown in Fig. 4.9, 4.10 and 4.11, with a moderately fast movements,

the proposed scheme could detect the vehicles without any missing parts. Fig. 4.8
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shows the result for a single object i.e car was seen from Fig.4.10(i), with the use

of label frames it could be detected properly. Fig. 4.11 shows multiple objects in

the scenes and the moving object could be detected as seen in Fig. 4.11. The third

traffic sequence also corroborate the above findings.

Thus, for slow as well as moderately fast movements the edge based model

with label frames proved to be better than edge less model.
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 (i,j)

(a)

Frame : f

Frame: f−1

Frame: f−2

(b)

Line field:f

Line field: f−1

Line field: f−2

(c)

Figure 4.1: (a) MRF modeling in the spatial direction (b) MRF modeling taking two
previous frames in the temporal direction (c) MRF with two additional frames with line
fields to take care of edge features
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(a) Original Suzie Video Sequence Frame No.5,8,11

(b) Ground Truth of Suzie Video Sequence Frame No.5,8,11

(c) JSEG Results for Suzie Video Sequence Frame No.5,8,11

(d) Edgeless Result of Suzie Video Sequence Frame No.5,8,11

(e) Edgebased Result of Suzie Video Sequence Frame No.5,8,11

(f) Temporal Segmentation Result of Suzie Video Sequence Frame No.5,8,11
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(g) Extracted VOP of Suzie Video Sequence Frame No.5,8,11

Figure 4.2:Detection of Moving Object in Suzie Video Sequence

(a) Original Akiyo Video Sequence Frame No.75,88,101

(b) Ground Truth of Akiyo Frame No.75,88,101

(c) JSEG Results for Akiyo Frame No.75,88,101

(d) Edgeless Result of Akiyo Frame No.75,88,101

(e) Edgebased Result of Akiyo Frame No.75,88,101
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(f) Temporal Segmentation Result of Akiyo Frame No.75,88,101

(g) Extracted VOP of Akiyo Frame No.75,88,101

Figure 4.3:Detection of Moving Object in Akiyo Video Sequence

(a) Original Mother Baby Video Sequence Frame No.65,74,83

(b) Ground Truth of Mother baby Frame No.65,74,83

(c) JSEG Results for Mother Baby Frame No.65,74,83

(d) Edgeless Result of Mother Baby Frame No.65,74,83
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(e) Edgebased Result of Mother Baby Frame No.65,74,83

(f) Temporal Segmentation Result of Mother Baby Frame No.65,74,83

(g) Extracted VOP of Mother Baby Frame No.65,74,83

Figure 4.4:Detection of Moving Object in Mother Baby Video Sequence

V ideo FrameNo. Edgeless Edgebased JSEG
5 0.40 0.30 4.50

Suzie 8 0.35 0.10 5.50
11 0.45 0.1 7.50
75 0.80 0.60 2.00

Akiyo 88 1.20 0.90 2.50
101 2.70 0.90 2.50
65 1.10 0.20 4.70

MotherBaby 74 2.80 1.00 9.90
83 1.70 0.10 7.10

Table 4.1: Percentage of Misclassification Error

58



(a) Original Frame No.12,13,14,15

(b) Ground truth of Frame No.12,13,14,15

(c) Segmentation of Frame No.12,13,14,15 with Edge based Compound MRF Model,

(d) Segmentation result with JSEG Scheme

(e) Temporal Segementation result of Frame No. 12,13,14,15using CDM of Original Frames

(f) Detected Moving Object of Frame No.12,13,14,15 using results(e)
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(g) Temporal Segementation result of Frame No. 12,13,14,15using CDM of Label Frames

(h) Detected Moving Object of Frame No.12,13,14,15 using result (g)

(i) Tracked Object of Frame No.12,13,14,15 using result (h)

Figure 4.5:VOP Generation of Grandma video sequences

(a) Original Frame No.75,76,77,78

(b) Ground truth of Frame No.75,76,77,78

(c) Segmentation of Frame No.75,76,77,78 with Edge based Compound MRF Model
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(d) Segmentation result with JSEG Scheme

(e) Temporal Segementation result of Frame No.75,76,77,78using CDM of Original Frames

(f) Detected Moving Object of Frame No.75,76,77,78 using results(e)

(g) Temporal Segementation result of Frame No.75,76,77,78using CDM of Label Frames

(h) Detected Moving Object of Frame No.75,76,77,78 using result (g)

(i) Tracked Object of Frame No.75,76,77,78 using result (h)

Figure 4.6:VOP Generation of Akiyo video sequences
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(a) Original Frame No.4,5,6,7

(b) Ground truth of Frame No.4,5,6,7

(c) Segmentation of Frame No.4,5,6,7 with Edge based Compound MRF Model

(d) Segmentation result with JSEG Scheme

(e) Temporal Segementation result of Frame No.4,5,6,7 using CDM of Original Frames

(f) Detected Moving Object of Frame No.4,5,6,7 using results(e)
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(g) Temporal Segementation result of Frame No.4,5,6,7 using CDM of Label Frames

(h) Detected Moving Object of Frame No.4,5,6,7 using result(g)

Figure 4.7:VOP Generation of Container video sequences

(a) Original Frame No.5,6,7,8

(b) Ground truth of Frame No.5,6,7,8

(c) Segmentation of Frame No.5,6,7,8 with Edge based Compound MRF Model

(d) Segmentation result with JSEG Scheme
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(e) Temporal Segementation result of Frame No.5,6,7,8 using CDM of Original Frames

(f) Detected Moving Object of Frame No.5,6,7,8 using results(e)

(g) Temporal Segementation result of Frame No.5,6,7,8 using CDM of Label Frames

(h) Detected Moving Object of Frame No.5,6,7,8 using result(g)

(i) Tracked Object of Frame No.5,6,7,8 using result (h)

Figure 4.8:VOP Generation of Suzie video sequences

(a) Original Frame No.3,4,5,6
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(b) Ground truth of Frame No.3,4,5,6

(c) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model

(d) Segmentation result with JSEG Scheme

(e) Temporal Segementation result of Frame No.3,4,5,6 using CDM of segmented Frames

(f) Detected Moving Object of Frame No.3,4,5,6 using results(e)

(g) Temporal Segementation result of Frame No.3,4,5,6 using CDM of segmented Frames
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(h) Detected Moving Object of Frame No.3,4,5,6 using results(g)

(i) Tracked Moving Object of Frame No.3,4,5,6 using results(h)

Figure 4.9:VOP Generation of Traffic video Car sequences

(a) Original Frame No.3,4,5,6

(b) Ground truth of Frame No.3,4,5,6

(c) Segmentation result with JSEG Scheme

(d) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model
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(e) Temporal Segementation result of Frame No.3,4,5,6 using CDM of Original Frames

(f) Detected Moving Object of Frame No.3,4,5,6 using results(e)

(g) Temporal Segementation result of Frame No.3,4,5,6 using CDM of Label Frames

(h) Detected Moving Object of Frame No.3,4,5,6 using result(g)

Figure 4.10:VOP Generation of Canada Traffic video sequences

(a) Original Frame No.3,4,5,6

(b) Ground truth of Frame No.3,4,5,6
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(c) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model

(d) Segmentation result with JSEG Scheme

(e) Temporal Segementation result of Frame No.3,4,5,6 using CDM of segmented Frames

(f) Detected Moving Object of Frame No.3,4,5,6 using results(e)

(g) Temporal Segementation result of Frame No.3,4,5,6 using CDM of segmented Frames

(h) Detected Moving Object of Frame No.3,4,5,6 using results(g)
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(i) Tracked Moving Object of Frame No.3,4,5,6 using results(g)

Figure 4.11:VOP Generation of Bus video sequences

VIDEO α β γ σ
Suzie 0.01 0.007 0.001 3.34
Akiyo 0.009 0.008 0.007 2.0

Mother & Daughter 0.01 0.007 0.005 5.5
Grandma 0.05 0.009 0.007 5.19
Container 0.01 0.009 0.001 2.44
Traffic Car 0.01 0.009 0.007 3.0

Traffic Cannada 0.01 0.009 0.007 3.0
Traffic Bus 0.01 0.009 0.007 3.0

Table 4.2:Compond MRF Model Parameters for diffrent videos
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Figure 4.12:Energy plot of different Video Sequences
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V ideo FrameNo. JSEG Edgebased
12 6.82 0.24

Grandma 13 3.77 0.30
14 4.29 0.25
15 4.20 0.29
75 6.20 0.12

Akiyo 76 4.90 0.12
77 5.50 0.10
78 5.40 0.10
4 2.55 0.10

Container 5 6.44 0.14
6 4.61 0.17
7 4.46 0.15
4 2.55 0.10

Suzie 5 6.44 0.14
6 4.61 0.17
7 4.46 0.15
3 9.56 0.75

TrafficCar 4 10.44 0.41
5 7.56 0.65
6 22.05 0.61
3 6.10 0.18

TrafficBus 4 5.27 0.40
5 4.97 0.44
6 5.10 0.39
3 5.95 0.1

CanadaTraffic 4 8.23 0.41
5 16.65 0.52
6 7.1 0.46

Table 4.3: Percentage of Misclassification Error
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Chapter 5

DETECTION OF SLOW MOVING
VIDEO OBJECTS USING
COMPOUND MARKOV RANDOM
FIELD MODEL

Often, moving object detection in a video sequence has been achieved a variant of

temporal segmentation methods. For slow moving video objects, a temporal seg-

mentation method fails to detect the objects. In this Chapter, we propose a Markov

random Field (MRF) model based scheme to detect slow movements in a video

sequence. In order to enhance the efficacy of the earlier schemes, a new MRF

model for video sequences is proposed. In the frame sequences, there are changes

from frame to frame because of the object in the video. We assume these changes

not to be abrupt ones and hence are expected to have a temporalneighborhood

dependency. These changes in the consecutive frames are modeled as MRF [26].

Therefore the proposed a priori MRF model of the video sequence takes in to ac-

count these changes of the frames together with the edges in temporal direction.

In this piece of work, we propose a scheme to detect slowly moving objects in

a video sequence. The movement could be slow enough to be missed by different
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existing temporal segmentation. A spatio-temporal schemeis proposed to obtain

spatial segmentation of a given frame and, in the sequel, usethe same results for

temporal segmentation. The spatio-temporal scheme is formulated as a pixel la-

beling problem and the pixel labels are estimated using MAP criterion [25]. MRF

model is used to model the label process. In this model the prior distribution takes

into account the spatial distribution of a given frame, interactions in a temporal

direction, edgemaps in temporal direction. The edge maps helps in preserving

the edges of the moving objects. in order to detect slow moments we take in to

account the changes in the different frames, slow moments ina video could be ob-

tained. In spatio-temporal framework, observed frame is viewed as a degradation

of the label process. This degradation of the label process is assumed to be Gaus-

sian. The spatio-temporal segmentation results thus obtained are used to obtain

temporal segmentation, which in turn used to construct the video objects plane

and hence detection of objects. The MRF model parameters have been selected

on trial and error basis. It is found that spatial segmentation for every frame of

the sequence is computationally intensive. In order to reduce the computational

burden, we obtain the spatial segmentation of the initial frame and next use it as

the initials one for the next frame. ICM (Iterative Conditional Mode) algorithm

[17] is used to obtain the spatial segmentation of the next frame. The spatial seg-

mentation, thus obtained is used as the initial one for the subsequent frames. The

proposed scheme has been tested for a wide variety of sequences and it is ob-

served that the model incorporating changes could detect the slow moving objects

successfully. The ground truth image constructed manually. The results obtained

by the proposed method are compared with the JSEG [14] methodand it is found

that the proposed method outperformed JSEG in terms of misclassification error.
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5.1 SPATIO-TEMPORAL IMAGE MODELING

Let the observed video sequencesy be considered to be 3-D volume consisting of

spatio-temporal image frames. For video, at a given timet , yt represents the im-

age at timet and hence is a spatial entity. Each pixel inyt is a site s denoted byyst

and hence,yst refers to a spatio-temporal representation of the 3-D volume video

sequences Letx denote the segmented video sequences andxt denote the segmen-

tation of each video frameyt. Instead of modeling the video as a 3-D model we

adhere to a spatio-temporal modeling. We modelXt as a Markov random Field

Model and the temporal pixels are also modeled as MRF. We model Xt as Markov

Random Field model. The a priori distribution takes care of the spatial model of

Xt, the temporal modeling taking care ofXt, Xt−1 andXt−2 for second order, edge

feature modeling in temporal directions. In order to detectslow changes of the ob-

ject position, we also incorporate the change model into account. We compute the

changes from consecutive changes frames and the changes arealso incorporated

in the a priori model. We compute the changes finding out the change detection

mask. In order to preserve the edge features, another MRF model is considered

for the pixel of the current framexst and the line fields ofxt−1 andxt−2. Thus,

four MRF models are used as the spatio-temporal image model.The two temporal

direction MRF models are shown in Fig. 1. (a) and (b). Fig. 1. (a) correspond

to the interaction of pixelxst with the corresponding pixels ofxt−1 andxt−2 and

respectively. The MRF model taking care of changes in temporal direction of the

framext−1 andxt−2 together withxt are modeled as MRF. It is known that ifXt

is MRF then, it satisfies the markovianity property in spatial direction

P (Xst = xst | Xqt = xqt, ∀qǫS, s 6= q)

= P (Xst = xst | Xqt = xqt, (q, t)ǫηs,t)
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whereηs,t is denoted the neighborhood of (s,t) and S denotes spatial Lattice of the

frameXt. For temporal MRF, the following markovianity is satisfied.

P (Xst = xst | Xpq = xpq, q 6= t, p 6= s, ∀(s, t)ǫV )

= P (Xst = xst | Xpq = xpq, (p, q)ǫηs,t)

where V denotes the 3-D volume of the video sequence. In spatial domainXt

is modeled as MRF and hence the prior probability can be expressed as Gibb’s

distributed which can be expressed asP (Xt) = 1
z
e

−U(Xt)
T where z is the partition

function which is expressed asz =
∑

x e
−U(xt)

T , U(Xt) is the energy function and

expressed asU(Xt) =
∑

c∈C Vc(xt)) andVc(xt) denotes the clique potential func-

tion, T denotes the temperature and is considered to be unity. We have considered

the following clique potential function.

Vc(x) =











+α : ifxst 6= xptand(s, t), (p, t)ǫS

−α : ifxst = xptand(s, t), (p, t)ǫS

Vtec(x) =











+β : ifxst 6= xqtand(s, t), (q, t)ǫS

−β : ifxst = xqtand(s, t), (q, t)ǫS

Analogously in the temporal direction

Vteec(x) =











+γ : ifxst 6= xetand(s, t), (e, t)ǫS

−γ : ifxst = xetand(s, t), (e, t)ǫS

For the change model, the CDM for different frames are determined with the

CDM, the clique potential function is defined as

Vtch(x) =











+δ : ifxst 6= xctand(s, t), (c, t)ǫS

−δ : ifxst = xctand(s, t), (c, t)ǫS
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 (i,j)

(a)

Frame : f

Frame: f−1

Frame: f−2

(b)

Line field:f

Line field: f−1

Line field: f−2

(c)

Frame : f

Change Frame: 

Change Frame: 

f−1

f−2

(d)

Figure 5.1: (a) MRF modeling in the spatial direction (b) MRFmodeling taking
two previous frames in the temporal direction (c) MRF with two additional frames
with line fields to take care of edge features (d) MRF with two change frame to
incorporate changes
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5.1.1 Spatio-temporal Segmentation in MAP frame work

The Segmentation problem is cast as a pixel labeling problem. Let y be the ob-

served video sequence and be an image frame at time t and s denote the site of the

imageyt. CorrespondinglyYt is modeled as a random field andyt is a realization

frame at time t. Thus,yst denotes as a spatio-temporal co-ordinate of the grid (s,

t). Let X denotes the segmentation of the video sequence and let Xt denote the

segmentation of an image at time t. LetXt denote the random field in the spatial

domain at time t.Xt is assumed to be MRF and for proper spatial segmentation

we model the prior probability incorporating the following, (i) Clique potential

function in the temporal direction are incorporated. (ii) The edge maps of each

frames is computed and the edge feature in the temporal direction is considered to

preserve the edges.

Since, we focus on the detection of slow moving video objects. We have

modeled the changes from frame to frame in the MRF-MAP framework. The

Change Detection Mask (CDM) of consecutive frames has been determined and

the changes are denoted as∆Xt−1. In the prior model ofXt , the changes at

∆Xt−1 and∆Xt−2 at framest− 1 andt− 2 are incorporated. The corresponding

clique potential function is included in the prior distribution of Xt .The observed

image sequencesY are assumed to be the degraded version of the segmented

image sequences X. For example at a given time t, the observedframeYt is con-

sidered as the degraded version of the original label fieldXt . This degradation

process is assumed to be Gaussian Process. Thus, the label field can be estimated

from the observed random fieldYt . The label field is estimated by maximizing

the following posterior probability distributions.

x̂ = arg max
x

P (X = x|Y = y, ) (5.1)
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Wherex̂ denotes the estimated labels. Since,x is unknown it is very difficult to

evaluate (5.1), hence, using Baye’s theorem (5.1) can be written as

x̂ = arg max
x

P (Y = y|X = x)P (X = x)

P (Y = y)
(5.2)

Since y is known, the prior probabilityP (Y = y) is constant. hence (5.2)

reduces to

x̂ = arg max
x

P (Y = y|X = x, θ)P (X = x, θ) (5.3)

Whereθ is the parameter vector associated withx. According to Hammerseley

Clifford theorem, the prior probabilityP (X = x, θ) is Gibb’s distributed and is

of the following form

P (X = x) = e−U(x,θ) = e[−
∑

cǫC
[Vsc(x)+Vtec(x)+Vteec(x)+Vtch(x)]] (5.4)

In (5.4)Vsc(x) the clique potential function in the spatial domain at time t, Vtec(x)

denotes the clique potential in the temporal domain andVteec(x) denotes the clique

potential in the temporal domain incorporating edge feature andVtch(x)denotes

clique potential incorporating change feature. We have proposed this additional

feature in the temporal direction.(5.4) is called the edgebased model. The corre-

sponding edgeless model is

P (X = x) = e−U(x,θ) = e[−
∑

cǫC
[Vsc(x)+Vtec(x)]]

The likelihood functionP (Y = y|X = x) can be expressed as

P (Y = y|X = x) = P (y = x + n|X = x + θ) = P (N = y − x|X = x + θ)
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Since n is assumed to be Gaussian and there are three components present in

color,P (Y = y|X = x) Can be expressed as

P (N = y − x|X, θ) =
1

√

(2π)ndet [k]
e−

1
2
(y−x)T K−1(y−x) (5.5)

Where k is the covariance matrix. Assuming decorrelation ofthe three RGB

planes and the variance to be same among each plane, (5.5) canbe expressed as

P (N = y − x|X, θ) =
1

√

(2π)3σ3
e−

1
2σ2 (y−x)2 (5.6)

In (5.6) Varianceσ2 corresponds to the Gaussian degradation. Hence (5.3) can be

expressed as

x̂ = arg max
x

1

(2π)3σ3
e
[−‖y−x‖2]

2σ2 [−[
∑

cǫC
[Vsc(x)+Vtec(x)+Vteec(x)+Vtch(x)]]]

The a priori model having the three components is attributedas the edgebased

model. In the following the clique potential correspondingto CDM of different

frames have been introduced. This is called the change basedmodel.

x̂ = arg max
x



e−
[−‖y−x‖2]

2σ2 +
∑

cǫC
Vsc(x)+Vtec(x)+Vteec(x)+Vtch(x)



 (5.7)

Maximizing (5.7) is tantamount to minimizing the

x̂ = arg min
x

{[

‖ y − x ‖2
2σ2

]

+

[

∑

cǫC

Vsc(x) + Vtec(x) + Vteec(x) + Vtch(x)

]}

(5.8)

x̂ in (5.8) is the MAP estimate and the MAP estimate is obtained by the pro-

posed hybrid algorithm. The associated clique potential parameters and the noise

standard deviationσ are selected on trial and error basis.
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5.2 VOP GENERATION

The Video Object Plane (VOP) is obtained by the combination of temporal seg-

mentation result and the original video image frame. In a given scene we consider

objects as one class and background as the other thus having atwo class problem

of foreground and background. Therefore, the temporal segmentation results yield

two classes. We denoteFMt andBMt as the foreground and background part of

theCDMt respectively. The region forming foreground part in the temporal seg-

mentation is identified as object and is obtained by the intersection of temporal

segmentation and original frame asV OP = num(FMt ∩ yt) .Where the num (.)

is the function counting the number of pixel forming the region of interest.

5.3 RESULTS AND DISCUSSION

Five different video sequences have been considered to validate the change based

MRF model. The a priori MRF distributions of the change basedmodel have

additional model parameters besides edge based model. In this case, the model

parametersµ1 andµ2 have also been selected on a trial and error basis. Fig. 5.2

shows the Grandma video sequences. Fig. 5.2(d) shows the spatial segmentation

of edge based model and Fig. 5.2(i) shows results due to change model. The cor-

responding tracked objects are shown in Fig. 5.2(h) and Fig.5.2(l). The model

parameters selected are given in Table. 5.2, and the misclassification error is in

Table. 5.1. From Fig. 5.2(i) there are some misclassified pixels in the shoulder of

the Grandma where as seen from Fig. 5.2(l) the′+′ symbol indicates the centroid

of the object. The change based MRF model with the label framecould better

detect the object than the edge based model. As observed in the previous section

the JSEG method yields segmentation result having more misclassification error

than edgebased model.
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Similar observations are also made with the Akiyo video sequence shown in

Fig. 5.3. In this case, comparing 5.3(f) and 5.3(l), it is observed that there are

some background information because of use of original frames where as with the

use of label frames the result has improved and the results are further improved

by use of the change based model.

Fig. 5.4 shows another video sequence with slow moving objects. As observed

the spatial segmentation accuracy in case of change model iscomparable with that

of the edgebased model. The detected objects in case of change based model are

comparable with that of edgebased model with some of the background noise

being eliminated. Analogous observation are also made for the Container video

sequence shown in Fig. 5.5. A flag which could not be detected properly could

be detected in case of change based model. Fig. 5.6 shows the results obtained

for the traffic sequence which has multiple objects in the scene. As observed from

Fig. 5.6(k) and the change based model could detect the moving object while

other objects have been static and hence considered background. Edgebased also

produced similar result with some dots as the background noise. Hence even in

multiple scene the proposed method could track the objects.As seen from Table.

5.1 the misclassification error for traffic sequence is lowest as compared to JSEG

and edgebased model.

Thus, the change based MRF model exhibited improved accuracy as compared

to the edgebased model. The moving objects in this sequence could be detected

for slow as well as moderately fast moving sequences
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(a) Original Frame No.12,13,14,15

(b) Ground truth of Frame No.12,13,14,15

(c) Segmentation result with JSEG Scheme

(d) Segmentation of Frame No.12,13,14,15 with Edge based Compound MRF Model,

(e) Temporal Segementation result of Frame No. 12,13,14,15using CDM of Original Frames

(f) Detected Moving Object of Frame No.12,13,14,15 using results(e)
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(g) Temporal Segementation result of Frame No. 12,13,14,15using CDM of Label Frames

(h) Detected Moving Object of Frame No.12,13,14,15 using result (g)

(i) Segmentation of Frame No.12,13,14,15 with Change Model

(j) Temporal Segementation result of Frame No. 12,13,14,15using CDM of Label Frames

(k) Detected Moving Object of Frame No.12,13,14,15 using result (j)

(l) Tracked Object of Frame No.12,13,14,15 using result (k)

Figure 5.2:VOP Generation of Grandma video sequences
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(a) Original Frame No.75,76,77,78

(b) Ground truth of Frame No.75,76,77,78

(c) Segmentation result with JSEG Scheme

(d) Segmentation of Frame No.75,76,77,78 with Edge based Compound MRF Model

(e) Temporal Segementation result of Frame No.75,76,77,78using CDM of Original Frames

(f) Detected Moving Object of Frame No.75,76,77,78 using results(e)
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(g) Temporal Segementation result of Frame No.75,76,77,78using CDM of Label Frames

(h) Detected Moving Object of Frame No.75,76,77,78 using result (g)

(i) Segmentation of Frame No.75,76,77,78 with Change Model

(j) Temporal Segementation result of Frame No.75,76,77,78using CDM of Label Frames

(k) Detected Moving Object of Frame No.75,76,77,78 using result (j)

(l) Tracked Object of Frame No.75,76,77,78 using result (k)

Figure 5.3:VOP Generation of Akiyo video sequences
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(a) Original Frame No.5,6,7,8

(b) Ground truth of Frame No.5,6,7,8

(c) Segmentation result with JSEG Scheme

(d) Segmentation of Frame No.5,6,7,8 with Edge based Compound MRF Model

(e) Temporal Segementation result of Frame No.5,6,7,8 using CDM of Original Frames

(f) Detected Moving Object of Frame No.5,6,7,8 using results(e)
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(g) Temporal Segementation result of Frame No.5,6,7,8 using CDM of Label Frames

(h) Detected Moving Object of Frame No.5,6,7,8 using result(g)

(i) Segmentation of Frame No.5,6,7,8 with Change Model

(j) Temporal Segementation result of Frame No.5,6,7,8 using CDM of Label Frames

(k) Detected Moving Object of Frame No.5,6,7,8 using result(j)

(l) Detected Moving Object of Frame No.5,6,7,8 using result(k)

Figure 5.4:VOP Generation of Suzie video sequences
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(a) Original Frame No.3,4,5,6

(b) Ground truth of Frame No.3,4,5,6

(c) Segmentation result with JSEG Scheme

(d) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model

(e) Temporal Segementation result of Frame No.3,4,5,6 using CDM of Original Frames

(f) Detected Moving Object of Frame No.3,4,5,6 using results(e)
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(g) Temporal Segementation result of Frame No.3,4,5,6 using CDM of Label Frames

(h) Detected Moving Object of Frame No.3,4,5,6 using result(g)

(i) Segmentation of Frame No.3,4,5,6 with Change Model

(j) Temporal Segementation result of Frame No.3,4,5,6 using CDM of Label Frames

(k) Detected Moving Object of Frame No.3,4,5,6 using result(j)

Figure 5.5:VOP Generation of Container video sequences
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(a) Original Frame No.3,4,5,6

(b) Ground truth of Frame No.3,4,5,6

(c) Segmentation result with JSEG Scheme

(d) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model

(e) Temporal Segementation result of Frame No.3,4,5,6 using CDM of Original Frames

(f) Detected Moving Object of Frame No.3,4,5,6 using results(e)
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(g) Temporal Segementation result of Frame No.3,4,5,6 using CDM of Label Frames

(h) Detected Moving Object of Frame No.3,4,5,6 using result(g)

(i) Segmentation of Frame No.3,4,5,6 with Change Model

(j) Temporal Segementation result of Frame No.3,4,5,6 using CDM of Label Frames

(k) Detected Moving Object of Frame No.3,4,5,6 using result(j)

Figure 5.6:VOP Generation of Cannada Traffic video sequences
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V ideo FrameNo. JSEG Edgebased ChangeModel
12 6.82 0.24 0.40

Grandma 13 3.77 0.30 0.40
14 4.29 0.25 0.39
15 4.20 0.29 0.12
75 6.20 0.12 0.12

Akiyo 76 4.90 0.12 0.18
77 5.50 0.10 0.19
78 5.40 0.10 0.22
4 2.55 0.10 0.15

Container 5 6.44 0.14 0.15
6 4.61 0.17 0.23
7 4.46 0.15 0.24
4 2.55 0.10 0.24

Suzie 5 6.44 0.14 0.24
6 4.61 0.17 0.24
7 4.46 0.15 0.24
3 5.95 0.1 0.19

CanadaTraffic 4 8.23 0.41 0.16
5 16.65 0.52 0.13
6 7.1 0.46 0.21

Table 5.1: Percentage of Misclassification Error

VIDEO α β γ σ µ1 µ2
Grandma 0.05 0.009 0.007 5.19 0.1 0.01

Akiyo 0.009 0.008 0.007 2.0 0.1 0.01
Suzie 0.01 0.007 0.001 3.34 0.1 0.01

Container 0.01 0.009 0.001 2.44 0.1 0.01
Traffic Video 0.01 0.009 0.007 3.0 0.01 0.01

Table 5.2: Compond MRF Model Parameters for diffrent videos
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Chapter 6

AN EVOLUTIONARY BASED
SLOW AND FAST MOVING
VIDEO OBJECTS DETECTION
SCHEME USING COMPOUND
MRF MODEL

It has been observed in the previous proposed scheme that spatial segmentation

of each frame has to be obtained to find out temporal segmentation. Spatial seg-

mentation of every frames is a time consuming procedure and hence the object

detection scheme takes appreciable amount of time. This forbids the feasibility

of real time implementation. In order to reduce the computational burden, we

compute the spatial segmentation of a given frame using the proposed spatio-

temporal approach. The spatial segmentation of subsequentframes are obtained

starting from the segmentation of given frame with adaptation strategy. Detec-

tion of video object at any frame is obtained using the frame together with the

temporal segmentation. Spatial segmentation only one frame is obtained using

spatio-temporal formulation of previous section [25].

In this piece of work, we propose a scheme that detects slow aswell as fast
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moving objects. The proposed scheme is a combination of spatio-temporal seg-

mentation and temporal segmentation. In this approach, we obtain spatio-temporal

segmentation once for a given frame and thereafter, for subsequent frames, the

segmentation is obtained by the evolution of the initial spatio-temporal segmen-

tation. We have proposed a Compound MRF model that takes careof the spatial

distribution of the current frame,temporal frames, edge maps in the temporal di-

rection. The MRF model parameters are selected on a trial anderror basis. This

problem is formulated using MAP estimation principles [35]. The pixel labels are

obtained using the proposed hybrid algorithm.For the subsequent frames the ini-

tial segmentation evolves to obtain the spatial segmentation. This spatio-temporal

segmentation combined with temporal segmentation yields the VOP and hence

Video Object detection. In our scheme for temporal segmentation, we use the

segmented frames as opposed to the original frames. The results obtained by pro-

posed methods are compared with that of the JSEG [14] method and it is observed

that the proposed method is found to be better than former onein the context of

misclassification error.

6.1 PROPOSED APPROACH OF OBJECT DETEC-
TION

In this approach, we obtain the spatial segmentation of a frame known as the ini-

tial frame, The spatial segmentation is formulated in spatio-temporal framework

using edge based MRF model as in Section. 4. Hybrid algorithmis used to ob-

tain the MAP estimates of the pixel labels. Thereafter, segmentation of successive

frames are obtained by evolving the labels of the initial frames with the proposed

evolution strategy. Thus, estimation of labels of other frames are not necessary.

In order to construct the VOP, temporal segmentation is obtained with the labels

of different frames as opposed to the original frames. The history of the labels are
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being used to obtain the temporal segmentation (Global thresholding is used for

to obtain the CDM). The VOP are constructed using the temporal segmentation

and the original frame sequence. Thus scheme avoids the estimation of labels of

each frame. This reduces the computational burden and makesit feasible for real

time implementation.

6.2 EVOLUTIONARY APPROACH BASED SEG-
MENTATION SCHEME

In order to detect fast moving objects, temporal segmentation usually used and for

slow moving objects spatio-temporal segmentation has to becoupled with tem-

poral segmentation. Spatio-temporal segmentation in MRF-MAP frame work is

computational intensive and hence computing spatial segmentation of each frame

would incur high computational burden. Hence, we suggest the following evolu-

tionary approach to obtain spatial segmentation.

Let yt denotes the current frame andxt denotes the corresponding spatial segmen-

tation. The next frame is denoted byyt+d andx(t+d)i denotes the initial spatial

segmentation for theyt+dth frame.x(t+d)i is obtained as follows,

x(t+d)i = xt− | yt+d − yt | +yt+d(yt+d−yt) (6.1)

Whereyt+d(yt+d−yt) denotes the change portion of thetth frame to be replaced

in the tth segmented framext. x(t+d)i serves as the initial spatial segmentation

for (t + d)th frame. Iterated Conditional Mode (ICM) is run on the(t + d)th

frame starting fromx(t+d)i to obtain thex(t+d). This process repeated to obtain

spatio-temporal segmentation of any other frame.
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6.3 ITERATED CONDITIONAL MODE ALGORITHM

Since it is difficult to maximize the joint probability of an MRF, Besag proposed

a deterministic algorithm called Iterated Conditional Modes (ICM) which max-

imizes local conditional probabilities sequentially. TheICM algorithm uses the

greedy strategy in the iterative local maximization. Giventhe datax and the other

labelsz(k)
S−i, the algorithm sequentially updates eachz

(k)
i intoz

(k+1)
i by maximizing

P (zi | x, zS−i), the conditional probability, with respect tozi. Two assumptions

are made in calculatingP (zi | x, zS−I):

1. The observation componentsx1, x2, x3... xm are conditionally independent

givenz and eachxi has the same known conditional density functionp(xi |
zi dependent only onzi. Thus

p(x | z) =
∏

i

p(xi | zi) (6.2)

2. The second assumption is thatz depends on the labels in the local neigh-

borhood, which is the Markovianity.

From the two assumptions and the Bayes theorem, it follows that

P (zi | x, zS−i) ∝ p(xi | zi)P (zi | zNi
) (6.3)

Obviously,P (zi | xi, zk
Ni

) is much easier to maximize thanP (z | x), which is the

point of ICM. Maximizing (4.18) is equivalent to minimizingthe corresponding

posterior energy using the following rule.

zk+1
i ←− arg max

zi

U(zi | xi, f
(k)
Ni

) (6.4)

The result obtained by ICM depends very much on the initial estimatorz(0) and

the ICM is locally convergent[35].
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6.4 SIMULATION AND RESULT DISCUSSION

We have considered four types of video sequences as shown in Fig. 6.1, Fig. 6.2,

Fig. 6.3 and Fig. 6.4. Fig. 6.1 and Fig. 6.4 corresponds to slow movements of the

sequence where as Fig. 6.2 and Fig. 6.3 corresponds to video sequences with fast

moving objects. Fig. 6.1(a) shows Grandma image of 12th, 37th, 62nd and 87th

frame. It is observed from these frames that there are slow changes. The corre-

sponding ground truth image constructed manually are shownin Fig. 6.1(b). Fig.

6.1(c) shows the spatial segmentation obtained using the CMRF Model (Com-

pound markov Random Field Model) and hybrid algorithm. The MRF model pa-

rameters chosen areα = 0.05, β = 0.009, γ = 0.007, σ = 5.2. Fig.6.1(c) evolves

to produce the initial segmentation results correspondingto 18, 24, 30 and 37th

frame as shown in Fig. 6.1(d). Using 37 th frame crude result in Fig. 6.1(d)

as the crude segmentation, ICM is run to obtain the segmentation of 37th frame

as shown in Fig. 6.1(e). Analogously for the 62nd frame segmentation result of

37th frame evolves to obtain crude segmentation of 62nd frame as shown in Fig.

6.1(f). ICM is run starting in 62nd frame crude result of Fig.6.1(f) and the seg-

mented results obtained for 62nd frame is shown in Fig. 6.1(g). Similarly result is

obtained for 87th frame from evolving crude result of 87th frame. The temporal

segmentation result obtained using the segmented result instead of original frames

are shown in Fig. 6.1(k) and the corresponding VOPs are shownin Fig. 6.1(l).

It is observed from these VOP that the objects (i.e Grandma with slow moments)

in different frames have been detected. Temporal segmentation using the original

frames are shown in 6.1(o). It is observed from these figures that there are some

white portion appearing near the solder of the Grandma that leads to misclassifi-

cation. Thus, temporal segmentation obtained using the segmented frame yields

better VOPs than that of using the original frames. The results obtained by JSEG

method is shown in Fig. 6.1(j). The%age of misclassification error is given in
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Table. 6.2 and it can be observed that the proposed method hasless misclassifica-

tion error as compared to JSEG method.

The time required for execution of the edgebased scheme is 104sec while the

time required for the evolving scheme is 9sec. Thus there is atime saving of

order 10. The scheme implemented in aPentium4(D), 3GHz, L2 cache 4MB

, 1GBRAM , 667FSB PC. The execution time required for other sequences also

are much less as compared to the edgebased model.

The second video considered is the Akiyo video sequence as shown in Fig.

6.2. Fig. 6.2(c) show the spatial segmentation of 75th frameusing spatio-temporal

formulation and hybrid algorithm. The MRF model parametersare tabulated in

Table. 6.1. The evolutionary strategy is applied to 75th frame to obtain segmen-

tation of 79, 83, 87 and 95th frame as shown in Fig. 6.2(d). ICMis run on 95th

frame crude result and the final segmentation is obtained is shown in Fig. 6.2(e)

. Other segmented result obtained using the evolving procedure is shown in Fig.

6.2(g) and (i) .Segmentation of JSEG is shown in Fig. 6.2(j).The video objects

could be detected properly. The third example considered isthe container video

sequence as shown in Fig. 6.3. Fig. 6.3(n) shows the detection of video objects

with the evolving scheme and it is observed that the object could be tracked with-

out any background effect.The time taken by the proposed scheme is also 10 times

less that of obtaining spatial segmentation of each frame.The 4th example consid-

ered is the claire video sequence shown in Fig. 6.4. Similar observations are also

made in this case. Fig. 6.4(l) shows the tracked object usingthe label maps in

CDMs. Where as using original frames the results are shown inFig. 6.4(o). The

object detected using the label frame based CDMs are sometimes better than that

of using original frames. Thus the evolutionary approach based scheme has much

less computational burden and hence is viable from real timecomplementation
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VIDEO α β γ σ
Grandma 0.05 0.009 0.007 5.19

Akiyo 0.009 0.008 0.007 2.0
Container 0.01 0.009 0.001 2.44

Claire 0.009 0.008 0.007 1.00

Table 6.1: Parameters for diffrent videos of the given videos

strategy.
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V ideo FrameNo. Evolving JSEG
12 0.24 6.82

Grandma 37 0.15 4.65
62 0.15 4.5
87 0.12 3.88
75 0.12 6.20

Akiyo 95 0.10 1.62
115 0.15 1.65
135 0.15 1.80
4 0.10 2.55

Container 12 0.11 2.55
20 0.13 1.51
24 0.13 2.08
3 0.41 2.95

Claire 7 0.39 2.47
11 0.76 2.91
15 0.76 2.91

Table 6.2: Percentage of Misclassification Error

V ideo FrameNo. EdgeBased Evolving

Grandma 37 104 9

62 104 9

87 104 9

Akiyo 95 82 8

115 82 8

135 82 8

Container 12 112 12

20 112 12

28 112 12

Claire 7 94 8

11 94 8

15 94 8

Table 6.3: Time required for execution of the programme in Second
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(a) Original Frame No.12,37,62,87

(b) Ground truth of Frame No.12,37,62,87

(c) Segmentation of Frame No.12 with Edge based Compound MRFModel

(d) Evolving Crude result of Frame No. 18,24,30,37

(e) Segmentation of Frame No.37 using Evolving scheme

(f) Evolving Crude Result of Frame No. 41,47,53,62
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(g) Segmentation of Frame No.62 using Evolving Scheme

(h) Evolving Crude Result of Frame No. 68,74,80,87

(i) Segmentation of Frame No.87 using Evolving scheme

(j) Segmentation Result using JSEG Scheme

(k) Temporal Segmentation Result using Segmented Result CDM

(l) VOP Extracted using Temporal Segmentation Result (i)
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(m) Tracked Moving Object

(n) Temporal Segmentation Result using Original Frame CDM

(o) VOP Extracted using Temporal Segmentation Result (k)

Figure 6.1:VOP Generation for Grandma Video using Evolving Scheme

(a) Original Frame No.75,95,115,135

(b) Ground truth of Frame No.75,95,115,135

(c) Segmentation of Frame No.75 with Edge based Compound MRFModel
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(d) Evolving Crude Result of Frame No. 79,83,87,95

(e) Segmentation of Akiyo video Frame No.95 using Evolving scheme

(f) Evolving Crude Result of Frame No. 100,105,110,115

(g) Segmentation of Akiyo video Frame No.115 using EvolvingScheme

(h) Evolving Crude Result of Frame No. 120,125,130,135

(i) Segmentation of Akiyo video Frame No.115 using EvolvingScheme
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(j) Segmentation Resul using JSEG Scheme

(k) Temporal Segmentation Result using Segmented Result CDM

(l) VOP Extracted by Evolving Scheme using Temporal Segmentation Result (k)

(m) Tracked Moving Object

(n) Temporal Segmentation Result using Original Frame CDM

(o) VOP Extracted using Temporal Segmentation Result (m)

Figure 6.2:VOP Generation for Akiyo Video
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(a) Original Frame No.4,12,20,28

(b) Ground truth of Frame No.4,12,20,28

(c) Segmentation of Frame No.4 with Edge based Compound MRF Model

(d) Evolving Crude Result of Frame No. 6,8,10,12

(e) Segmentation of Frame No.12 using Evolving scheme

(f) Evolving Crude Result of Frame No. 14,16,18,20
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(g) Segmentation of Frame No.20 using Evolving Scheme

(h) Evolving Crude Result of Frame No. 22,24,26,28

(i) Segmentation of Frame No.20 using Evolving Scheme

(j) Segmentation Result using JSEG Scheme

(k) Temporal Segmentation Result using Segmented Result CDM

(l) VOP Extracted by Evolving Scheme using Temporal Segmentation Result (i)
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(m) Temporal Segmentation Result using Original Frame CDM

(n) VOP Extracted using Temporal Segmentation Result (k)

Figure 6.3:VOP Generated using Container Video

(a) Original Frame No.3,7,11,15

(b) Ground truth of Frame No.3,7,11,15

(c) Segmentation of Frame No.3 with Edge based Compound MRF Model

(d) Evolving Crude Result of Frame No. 4,5,6,7
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(e) Segmentation of Frame No.7 using Evolving scheme

(f) Evolving Crude Result of Frame No. 8,9,10,11

(g) Segmentation of Frame No.11 using Evolving Scheme

(h) Evolving Crude Result of Frame No. 12,13,14,15

(i) Segmentation of Frame No.15 using Evolving Scheme

(j) Segmentation Result using JSEG Scheme
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(k) Temporal Segmentation Result using Segmented Result CDM

(l) Tracked moving Object (k)

(m) Tracked Moving Object

(n) Temporal Segmentation Result using Original Frame CDM

(o) VOP Extracted using Temporal Segmentation Result (k)

Figure 6.4:VOP Generated using Claire Video
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Chapter 7

VIDEO OBJECT DETECTION
USING MRF MODEL AND
ADAPTIVE THRESHOLDING

Detecting regions of changes in video frames is of widespread interest due to

a large number of applications in diverse disciplines. Change detection is widely

used in video processing and analysis. Change detection researchers employ many

common processing steps and core algorithms [3]. The changemask may result

from a combination of underlying factors, including appearance or disappearance

of objects, motion of objects relative to the background, orshape changes of ob-

jects. In addition, stationary objects can undergo changesin brightness or color.

A key issue is that the change mask should not contain unimportant or nuisance

forms of change, such as those induced by camera motion, sensor noise, illumi-

nation variation, nonuniform attenuation, or atmosphericabsorption. The notions

of significantly different and unimportant vary by application, which sometimes

makes it difficult to directly compare algorithms. Estimating the change mask is

often a first step toward the more ambitious goal of change understanding: seg-

menting and classifying changes by semantic type, which usually requires tools

tailored to a particular application. Image differencing followed by thresholding

is a popular method for change detection [9]. Thresholding plays a pivotal role in
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such change detection methods. Many thresholding methods have been proposed

in literatures, however, few of them are specific to change detection. Threshold-

ing methods can be classified into gray-level distribution based [34] and spatial

properties based [24].

In this chapter we have obtained the temporal segmentation scheme using the

notion of adaptive thresholding and feature entropy. In existing temporal segmen-

tation CDM, we have obtained from the original frames and global thresholding.

The performance detoriates when the frames are noisy or variation in conditions

of illumination is there. Hence, the notion of adaptive thresholding has been ap-

plied. The scheme also failed to give a good performance if there is a object

present in a background of multiple class. So a modified CDM isproposed to

obtain the change detection between the frames. we have proposed entropy based

adaptive thresholding to obtain appropriate CDMs and hencethe moving object

parts of the video sequence. However, the spatio-temporal segmentation in MRF-

MAP framework, as mentioned in the previous section is used to obtain the spatial

segmentation. This spatial segmentation is combined with adaptive thresholding

based temporal segmentation to construct the VOPs and thus moving object de-

tection. The results obtained using adaptive thresholdingis found to be superior

to that of using global thresholding method.

7.1 ADAPTIVE THRESHOLDING

The problem that arises when illumination is not sufficiently uniform may be tack-

led by permitting the threshold to varyadaptively(or dynamically) over the whole

image. In principle, there are several way of achieving this. One involves mod-

eling the background the background within the image. Another is to work out
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a local threshold value for each pixel by examining the rangeof intensities in its

neighborhood. A third approach is to split the image into subimages and deal with

them independently. Though this last method will clearly run into problems at the

boundaries between subimages, and by the time these problems have been solved

it will look more like one of the other two methods. Ultimately, all such methods

must operate on identical principles. The differences arise in the rigor with which

the threshold is calculated at different locations and in the amount of computation

required in each case. In real-time applications the problem amounts to finding

how to estimate a set of thresholds with a minimum amount of computation. The

problem can sometimes be solved rather neatly in the following way. On some

occasions-such as in automated assembly applications-it is possible to obtain an

image of the background in the absence of any objects. This appears to solve the

problem of adaptive thresholding in rigorous manner, sincethe tedious task of

modeling the background has already been carried out. However, some caution is

needed within this approach. Objects bring with them not only shadows (which

can in some sense be regarded as part of the objects), but alsoan additional ef-

fect due to the reflections they cast over the background and other objects. This

additional effect is nonlinear, in the sense that it is necessary to add not only the

difference between the object and the background intensityin each case but also

an intensity that depends on the products of the reflectance of pairs of objects.

Since the threshold used for each pixel depends on the location of the pixel

in terms of the subimages, this type of thresholding is adaptive. Let us consider

an example. All the subimages that didn’t contain a boundarybetween object and

background had variances of less than 75. All subimages containing boundaries

had variances in excess of 100. Each subimage with variance greater than 100 was

segmented with a threshold computed for that subimage usingany of the global

thresholding algorithm. There may be three approaches for finding the threshold
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Figure 7.1: Image having sizeM × N is divided into 12 non-overlapping subimages,
each of sizea× b, is thresholded by different thresholdsT1, T2, ..., T12.

114



in adaptive thresholding:

1. The Chow and Kaneko Approach

2. Local Thresholding Approach

3. Adaptive Window Approach

7.2 CHOW AND KANEKO APPROACH

Chow and Kaneko [36] proposed a method in 1972 which is widelyrecognized

as the standard technique for adaptive thresholding. It performs a thoroughgoing

analysis of the background intensity variation, making fewcompromises to save

computation. In this method , the image is divided into a regular array of overlap-

ping subimages, and individual intensity histograms are constructed for each one.

Those that are unimodal are ignored since they are assumed not to provide any

useful information that can help in modeling the backgroundintensity variation.

However, the bimodal distributions are well suited to this task. These are individ-

ually fitted to pairs of Gaussian distributions of adjustable height and width, and

the threshold values are located. Thresholds are then found, by interpolation, for

the unimodal distributions. Finally, a second stage of interpolation is necessary to

find the correct thresholding value at each pixel.

One problem with this approach is that if the individual subimages are made

very small in an effort to model the background illuminationmore exactly, the

statistics of the individual distributions become worse, their minima become less

well defined, and the thresholds deduced from them are no longer significant i,e. it

does not pay to make subimages too small and that ultimately only a certain level

of accuracy can be achieved in modeling the background in this way. The situation

is highly data dependent, but little can be expected to be gained by reducing the

subimage size below32×32 pixels. Chow and Kaneko employed256×256 pixel
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images and divided these into a7× 7 array of64× 64 pixel subimages with50%

overlap.

Overall, this approach involves considerable computation, and in real-time ap-

plications it may well not be viable for this reason. However, this type of approach

is of considerable value in certain medical, remote sensing, and space applications.

7.3 LOCAL THRESHOLDING APPROACH

In real-time applications the alternative approach mentioned earlier is often more

useful for finding local thresholds. It involves analyzing intensities in the neigh-

borhood of each pixel to determine the optimum local thresholding level. Ideally,

the above histogram technique would be repeated at each pixel, but this would

significantly increase the computational load of this already computationally in-

tensive technique. Thus, it is necessary to obtain the vitalinformation by an effi-

cient sampling procedure. One simple means of achieving this is to take a suitably

computed function of nearby intensity values as the threshold. Often the mean of

the local intensity distribution is taken, since this is a simple statistics and gives

good results in some cases.For example, in astronomical images stars have been

thresholded in this way.

Another frequently used statistic is the mean of the maximumand minimum

values in the local intensity distribution. Whatever the sizes of the two main peaks

of the distribution, this statistic often gives a reasonable estimate of the position

of the histogram minimum. The theory presented earlier shows that this method

will only be accurate if

1. the intensity profiles of object edges are symmetrical,

2. noise acts uniformly everywhere in the image so that the widths of two

peaks of the distribution are similar, and
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3. the heights of the two distributions do not differ markedly.

Sometimes these assumptions are definitely invalid-for example, when looking

for(dark) cracks in eggs or other products. In such cases themean and maximum

of the local intensity distribution can be found, and a thresholdcan be deduced

using the statistic

T = mean− (maximum−mean) (7.1)

where the strategy is to estimate the lowest intensity in thebright background

assuming the distribution of noise to be symmetrical. Use ofthe mean here is

realistic only if the crack is narrow and does not affect the value of the mean

significantly. If it does, then the statistic can be adjustedby use of an ad-hoc

parameter

T = mean− k(maximum−mean) (7.2)

wherek may be as low as 0.5.

This method is computationally less intensive but they are somewhat unreli-

able because of the effects of noise. All these methods work well only if the size

of the neighborhood selected for estimating the required threshold is sufficiently

large to span a significant amount of object and background. In many practical

cases, this is not possible and the method then adjusts itself erroneously, for ex-

ample, so that it finds darker spots within dark objects as well as segmenting the

dark objects themselves.

7.4 ADAPTIVE WINDOW BASED APPROACH

One of the primary disturbances sources id from uneven lighting, which often

exists in the capturing of an image, especially during field operation. The main

causes for uneven lighting are:
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1. the light may not be always stable

2. the object is so large such that it creates an uneven distribution of the light,

and

3. the background is unable to be optically isolated from shadows of other

objects.

One possible solution to this problem is to partition the whole image into cer-

tain small windows, and then use those existing methods to threshold each small

window. This process is called thresholding in partitionedwindows. The smaller

the window size is, the better the result will be. However, when the window size

becomes too small, it can produce the problem of homogeneouswindows, i,e.,

windows contain only background or object pixels. As a consequence, black ar-

eas called ghost objects will occur after thresholding. Therefore, there is a need to

develop a new technique for automatically selecting windowsize in order to ob-

tain optimal result i.e., adaptive window selection. This technique is based on the

pyramid data structure manipulation, and the window size isadaptively selected

according to Lorentz information measure.

7.5 ENTROPY

The entropy of a system as defined by Shannon [37] gives a measure of our ig-

norance about its actual structure. In the context of information theory, shannon’s

function is based on the concept that information gain from an event is inversely

related to its probability of occurrence. The logarithmic behavior of entropy is

considered to incorporate the additive property of information.
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7.5.1 Shannon’s entropy

Shanon defined the entropy of ann−state system as

H = −
∑

i

pi log2 pi (7.3)

wherepi is the probability of occurrence of the eventi and

∑

i

pi = 1, 0 ≤ pi ≤ 1 (7.4)

In case of a binary system, the entropy becomes

H = p log2 p− (1− p) log2(1− p) (7.5)

The entropy H is claimed to express a measure of ignorance about the actual

structure of the system. In order to explain why such an expression is taken as

a measure of ignorance, let us critically examine the philosophy behind shanon’s

entropic measure with an example given below.

Suppose a six-faced die, covered with a box, is placed on a table and someone

is asked to guess the number on the top most face of the die. Since the exact state

of the die is not known, he/she can describe the state of the die by the probabil-

ity distribution of occurrences of different faces on the top. In other world, the

state of the die can be expressed by specifyingpi, i = 1, 2, ..., 6; wherepi is the

probability that theith face is the topmost face. Obviously,

0 ≤ pi ≤ 1 and
6
∑

i=1

pi = 1

When the box is opened, the state of the die becomes known to usand we gain

some information. A very natural question arises, How much information did we

gain ?

Let pk = maxi pi :the most probable event andpm = mini pi :the least proba-

ble event. Now, if thekth face appears on the top, the gain in information would
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be minimum, whereas the occurrence of themth face on the top would result in

the maximum gain.

Thus we see that the gain in information from an event is inversely related

to its probability of occurrence.This, of course, intuitively seems all right. For

example, if somebody says, ”The sun rises in the east”, the information content of

the statement is practically nil. On the other hand if one says, ”He is ten feet in

height”, the information content of the statement is very high, as it is an unlikely

event. A commonly used measure of such a gain is

△I = log2 (1/p1) = − log2 (pi) (7.6)

In order to justify the logarithmic function, the followingpoints can be stated:

1. It gives additive property of information. To make it moreclear, suppose

two independent eventsm andn with probabilities of occurrencepm andpn

have occurred jointly, then the additive property says

△I(pm · pn) = △I(pm) +△I(pn) (7.7)

where(pm · pn) is the probability of the joint occurrence of the events m

and n. Thus the additive property can be stated as follows. The information

gain from the joint occurrence of more than one event is equalto the sum of

information gain from their individual occurrence.

2. The gain in information from an absolutely certain event is zero, i.e.,△I(pi =

1) = 0.

3. Aspi increases,△I(pi) decreases. Gain in information from the experiment

can be written as

H = E(△I) = −
∑

i

pi log2 pi (7.8)

The value of H denotes the entropy (shanon’s entropy) of the system.
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7.5.2 Entropic measures for image processing

Based on the concept of Shanon’s entropy, different authorshave defined entropy

for an image and its extension to fuzzy sets. Let us consider those measures

and the associated problems when applied to image processing and recognition

problems.

Let X = [X(m, n)]P×Q be an image of sizeP×Q, whereX(m, n) is the gray

value at(m, n); X(m, n) ∈ GL = 0, 1, ..., L− 1, is the set of gray levels. LetNi

be the frequency of the gray leveli. Then

L−1
∑

i=0

Ni = P ×Q = N(say) (7.9)

Lets consider the gray level histogram ofX anL− symbol source, independently

from the underlying image. In addition to this, they also assumed that these sym-

bols are statistically independent.

Following Shanon’s definition of entropy from (7.3), the entropy of image

(histogram) is defined as

H = −
L−1
∑

i=0

pi log2 pi (7.10)

7.6 PROPOSED METHODS

The proposed method of section 3.4 based on the Lorentz information measure

and is greatly dependent on the proper choice of initial window size. In order

to ameliorate this situation, we propose a method of window growing instead of

window merging.

7.6.1 Window growing based on feature entropy

The basic notion of window growing is to fix the window size primarily focussing

on the information measure of the image at different scale. In other words, fixing
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the size of the window not only depends on the entropy of the chosen window but

also the feature entropy of the window. The edges of the window are considered as

the features and the feature entropy is computed. Since, theedge map represents

the image information at a different scale, the entropy at this scale also plays

a pivotal role for image segmentation. Thus, the basic notion is to capture the

information at a different scale. It is known that entropy can be

Hw =
G
∑

i=1

pi loge

(

1

pi

)

(7.11)

wherepi is the probability distribution of theith gray value,Hw denotes entropy

of the window,G denotes the total number of gray values. Over a given window,

the edge map is computed and the entropy of the edge map is

Hwf =
G
∑

i=1

pfi
loge

(

1

pfi

)

(7.12)

whereHwf denotes the entropy of the edge map of the window. The following

are the two proposed window growing criterion.

case I: WG-I

The window is fixed if the following is satisfied

Hw > Th (7.13)

whereTh is selected based on the entropy of the total image.

case II: WG-II

The following criterion is considered for window fixing after the grow of the win-

dow.

Hw > Th

subject to the constraint, Hwf > Thf (7.14)
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Figure 7.2: Illustration of Window growing method

Figure 7.3: Illustration of Window growing method
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The thresholdsTh andThf for the above inequality are chosen based on the total

entropy of the image and that of edge map respectively. Empirically, it is found

that the thresholds are closer to the entropy of the whole image and whole edge

map.

Figure 4.1 shows the illustration of window growing method.First a window

of sizem× n is chosen and it is merged with sizea× b to make a window of size

(m + a)× (n + b) and so on till condition is not satisfied. Figure 4.2 shows that,

after fixing of one window, another of sizem× n started from adjacent side. The

followings are the salient steps of the algorithm.

Algorithm

1. Choose a window of sizew.

2. Determine the entropy from the gray value distribution ofthe considered

window.

3. Compute the edge map and determine the entropy of the edge map of the

window.

4. Choose two thresholdsTh andThf and test the conditions of the (7.13) and

(7.14).

5. If the window is fixed, then start from the next window. If not fixed, then

increase the window size by10− 25.

6. Repeat steps 2-5 till he whole image is exhausted.

7.7 PROPOSED CDMs

Usually, CDM is obtained by taking the difference of the original frames, which

fails to give satisfactory result in case of a object presentwith multiple class back-
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ground, situation where there is less variation in the gray level of the object.

Hence, a modified CDM is proposed. Initially we take the absolute difference

of the estimated labels of consecutive frames i.e ifyt andyt−1 are two consecutive

frames, andxt andxt−1 are the estimated labels a new sequence is obtained using

xd−t = |xt − xt−1| (7.15)

a new sequence ofxd−t is created and the CDM is the difference of this con-

secutive frames of this sequence. Thus, the modified CDM is

CDMm = |x(d−t)t
− x(d−t)t−1 | (7.16)

This CDMm is subjected to adaptive thresholding to obtain temporal segmenta-

tion.

7.8 OBJECT DETECTION USING ADAPTIVE THRESH-
OLDING

In this scheme also the spatial segmentation of each frame isobtained. The spatio-

temporal framework as given in Section. 4 is used to obtain the labels of a given

frame. The video sequence is modeled as Compound edgebased MRF and the

pixel labeling problem is formulated using MAP estimation criterion. The MAP

estimates are obtained using the hybrid Algorithm. Thus, the spatial segmentation

of individual frames are obtained.

The proposed adaptive thresholding is used to obtain the temporal segmenta-

tion. Initially the CDMs are obtained using difference of the estimated labels and

because of noise where the CDM becomes noisy. This noisy CDM,when used for

the temporal segmentation yields noises and hence wrong object detection. The
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proposed entropy based adaptive thresholding scheme is used in CDMs to obtain

the moving objects while eliminating noises. The window growing based adap-

tive scheme is used to obtain a accurate CDMs. The temporal segmentation is

obtained with the CDMs while using the history of the pixel labels. Thereafter the

VOPs are constructed and hence the object is detected. In this scheme, the noises

in CDMs that otherwise have falsely detected moving objectsare avoided.

7.9 SIMULATION AND RESULTS DISCUSSION

In this chapter the object detection is based on spatial segmentation and tempo-

ral segmentation. The edgebased MRF model is used and the MAPestimates are

obtained by Hybrid Algorithm. In simulation five different examples have been

considered. The first example is the Grandma video sequence as shown in Fig.

7.4. The edge based MRF model is used and the spatial segmentation is obtained

as shown in Fig. 7.4(c). The temporal segmentation is obtained using the CDM

and global thresholding. These are shown in Fig. 7.4(e). Theobject detected

is shown in Fig. 7.4(f) where there are some background pixels reflected in the

foreground. Some noisy pixels are still present with the foreground. Temporal

segmentation obtained using adaptive thresholding is shown in Fig. 7.4(g) where

it can be observed that noisy pixels are absent and hence the detected objects us-

ing this are shown in Fig. 7.4(h). It can be seen that the background pixels earlier

reflected is absent and the objects are detected correctly and the tracking is done

accordingly. The MRF model parameters are tabulated in Table. 7.1.

The second example considered is the Claire Video sequence shown in Fig.

7.5. As observed from Fig. 7.5(e) in the temporal segmentation using global

thresholding, some portion of the object such as portions from the head is miss-
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ing. In case of the temporal segmentation using adaptive thresholding, the above

missing portion appear in the object. Hence, in the detectedpart of the moving

object is the complete object itself. Thus, adaptive thresholding could eliminate

the background noises and hence the moving objects could be tracked.

The next three sequences are traffic sequences with single moving objects or

multiple moving objects. Fig. 7.6 shows the results for traffic sequence having

three moving objects. The global thresholding approach detected two objects(Car

and the man) as shown in Fig. 7.6(f). As observed from Fig. 7.6(h), using adap-

tive thresholding approach two object could be detected. Onthe second traffic

sequence as shown in Fig. 7.7, the single object is detected in case of adaptive

thresholding where as in global thresholding the back portion of the car is missing

as seen from Fig. 7.7(e). Fig. 7.8 shows the case of multiple moving objects

and global thresholding approach produce results with manymissing parts of the

moving object as seen from Fig. 7.8(e) and Fig. 7.8(f). Fig. 7.8(h) shows the

results obtained using adaptive thresholding approach, where it can be seen that

all the parts of the moving object has been detected.

The last example is shown in Fig. 7.9 where the original frames are blurred

ones. Use of global thresholding in temporal segmentation has lots of missing

parts of the moving objects as seen from Fig. 7.9(e). Adaptive thresholding could

detect the objects fully as shown in Fig. 7.9(h). Thus the proposed adaptive

thresholding could take care of blurred situation.
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(a)Original Frame No.12,37,62,87

(b)Ground truth of Frame No.12,37,62,87

(c) Segmentation of Frame No.12,37,62,87 with Edge based Compound MRF Model

(d)Segmentation result with JSEG Scheme

(e)Temporal Segementation result of Frame No.12,37,62,87using CDM of segmented Frames

(f)Detected Moving Object of Frame No.12,37,62,87 using results(e)
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(g)Temporal Segementation result of Frame No.12,37,62,87using proposed CDM and adaptive thresholding

(h)Detected Moving Object of Frame No.12,37,62,87 using results(g)

(i)Tracked Moving Object of Frame No.12,37,62,87 using results(g)

Figure 7.4:VOP Generation of Grandma video sequences

(a)Original Frame No.3,7,11,15

(b)Ground truth of Frame No.3,7,11,15

(c) Segmentation of Frame No.3,7,11,15 with Edge based Compound MRF Model

129



(d)Segmentation result with JSEG Scheme

(e)Temporal Segementation result of Frame No.3,7,11,15 using CDM of segmented Frames

(f)Detected Moving Object of Frame No.3,7,11,15 using results(e)

(g)Temporal Segementation result of Frame No.3,7,11,15 using proposed CDM and adaptive thresholding

(h)Detected Moving Object of Frame No.3,7,11,15 using results(g)

(i)Tracked Moving Object of Frame No.3,7,11,15 using results(g)

Figure 7.5:VOP Generation of Claire sequences
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(a)Original Frame No.3,4,5,6

(b)Ground truth of Frame No.3,4,5,6

(c) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model

(d)Segmentation result with JSEG Scheme

(e)Temporal Segementation result of Frame No.3,4,5,6 using CDM of Label Frames

(f)Detected Moving Object of Frame No.3,4,5,6 using result(g)
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(g)Temporal Segementation result of Frame No.3,4,5,6 using proposed CDM and adaptive thresholding

(h)Detected Moving Object of Frame No.3,4,5,6 using results(g)

Figure 7.6:VOP Generation of Canada Traffic Video sequences

(a)Original Frame No.3,4,5,6

(b)Ground truth of Frame No.3,4,5,6

(c) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model
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(d)Segmentation result with JSEG Scheme

(e)Temporal Segementation result of Frame No.3,4,5,6 using CDM of segmented Frames

(f)Detected Moving Object of Frame No.3,4,5,6 using results(e)

(g)Temporal Segementation result of Frame No.3,4,5,6 using proposed CDM and adaptive thresholding

(h)Detected Moving Object of Frame No.3,4,5,6 using results(g)

(i)Tracked Moving Object of Frame No.3,4,5,6 using results(g)

Figure 7.7:VOP Generation of Traffic video sequences
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(a)Original Frame No.3,4,5,6

(b)Ground truth of Frame No.3,4,5,6

(c) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model

(d)Segmentation result with JSEG Scheme

(e)Temporal Segementation result of Frame No.3,4,5,6 using CDM of segmented Frames

(f)Detected Moving Object of Frame No.3,4,5,6 using results(e)
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(g)Temporal Segementation result of Frame No.3,4,5,6 using proposed CDM and adaptive thresholding

(h)Detected Moving Object of Frame No.3,4,5,6 using results(g)

Figure 7.8:VOP Generation of Traffic-2 video sequences

(a)Original Frame No.3,4,5,6

(b)Ground truth of Frame No.3,4,5,6

(c) Segmentation of Frame No.3,4,5,6 with Edge based Compound MRF Model
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(d)Segmentation result with JSEG Scheme

(e)Temporal Segementation result of Frame No.3,4,5,6 using CDM of segmented Frames

(f)Detected Moving Object of Frame No.3,4,5,6 using results(e)

(g)Temporal Segementation result of Frame No.3,4,5,6 using proposed CDM and adaptive thresholding

(h)Detected Moving Object of Frame No.3,4,5,6 using results(g)

Figure 7.9:VOP Generation of Sequence video sequences
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VIDEO α β γ σ
Grandma 0.05 0.009 0.007 5.19

Claire 0.009 0.008 0.007 1.00
Traffic Cannada 0.01 0.009 0.007 3.0

Traffic Car 0.01 0.009 0.007 3.0
Traffic Sequence 0.009 0.008 0.007 3.0

Traffic Car-2 0.01 0.008 0.007 4.0
Traffic Bus 0.01 0.009 0.007 3.0

Table 7.1: Parameters for diffrent videos of the given videos
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V ideo FrameNo. Evolving JSEG
12 0.24 6.82

Grandma 37 0.15 4.65
62 0.15 4.5
87 0.12 3.88
3 0.41 2.95

Claire 7 0.39 2.47
11 0.76 2.91
15 0.76 2.91
3 0.1 5.95

CanadaTraffic 4 0.41 8.23
5 0.52 16.65
6 0.46 7.1
3 0.75 9.56

TrafficCar 4 0.41 10.44
5 0.65 7.56
6 0.61 22.05
3 1.41 15.03

TrafficSequence 4 1.25 11.50
5 1.33 15.19
6 0.84 17.73
3 1.53 7.02

TrafficCar − 2 4 1.54 7.82
5 2.37 6.49
6 1.37 5.83
3 6.10 0.18

TrafficBus 4 5.27 0.40
5 4.97 0.44
6 5.10 0.39

Table 7.2: Percentage of Misclassification Error
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Chapter 8

CONCLUSION

In this dissertation, the problem of slow as well as fast moving video objects

detection is addressed. Initially the existing temporal segmentation with CDMs

could detect fast moving video objects but failed with slow moving video objects.

In the scheme it has been assumed to have the reference frame.Often in practice

reference frame may not be available. Therefore the problemis formulated using

spatio-temporal framework.

The spatial segmentation problem is considered in supervising mode where the

model parameters are assumed to be known a priori. A compoundMRF model is

proposed to model the video sequence. In the first case, the a priori distribution

of the model takes care of the pixel distribution of a frame spatially and also the

pixel distribution in the temporal directions. This is called edge less MRF model.

The edge features in the temporal directions are extracted and the MRF a priori

distribution is modified to take edge features in the temporal directions besides

the edge features in the spatial domain. This model has been named as the edge

based model. The spatial segmentation problem is formulated as a pixel labeling

problem and the pixel labels are estimated using MAP estimation criterion. Simu-

lated Annealing algorithm used to obtain the MAP estimates.It has been observed

139



that SA is computationally involved and hence takes appreciable amount of time

to converge to the solution. Hence, a Hybrid Algorithm exploiting the globally

convergent features of SA and the local convergent featuresof ICM is proposed to

obtain the MAP estimates. The proposed algorithm is found tobe much faster than

that of SA. It is approximately 10 or more times faster than that of SA. The only

bottleneck was to fix the epochs for global convergence on a trial and error basis.

The results obtained by the Hybrid Algorithm are found to be comparable with

that of SA. Thus a substantial saving in computational time could be achieved. As

far as the proposed MRF model is concerns, it is proved to be anefficient model

for modeling the video sequences. The only bottleneck of thescheme is that the

model parameters are selected on a trial and error basis.

The performance of the scheme could further be improved by changing the

model. The changes of the frames were obtained by taking the difference is

CDMs were obtained. The CDMs for difference are assumed to have some tempo-

ral dependence and continuity and hence the changes are alsomodeled as MRFs.

Hence, the a priori distribution of MRF distribution not only took care of the edges

of the temporal sequences but also took into account the changes in the temporal

direction. This model is known as the Change based MRF model.This model

proved to be more efficient than the other models. Temporal segmentation in this

case is obtained using CDMs together with the history of the labels. Here the

CDMs are obtained by taking the difference of the estimated labels of each frame

rather than the original frames. This scheme with this modelproved to be best

among edge based and edgeless approaches. The above scheme is quite compu-

tationally involved because in spatial segmentation of every image frame has to

be obtained. This prohibited from the idea of running the scheme for real time

sequences.
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In order to make a viable scheme from the practical stand point, an evolution-

ary approach based segmentation scheme is proposed. In thisscheme, segmen-

tation of only one frame has to be obtained by spatio-temporal frame with MAP

estimation principle. The rest of the label maps of different frames are obtained

by evolving the label map of the initial frame with the proposed evolution strat-

egy. This reduced the computational burden appreciably thus, leading a stepping

stone for real time implementation. Here also the temporal segmentation uses the

labels of different frames as opposed to the original frames. It has been observed

that there are some errors in the object detection and tracking. It was due to the

presence of noise in the CDMs reflected from original frames or variation of illu-

mination in the original frames.

Hence, to take care of such situations an entropy based adaptive threshold

strategy is proposed to eliminate the noises in CDMs. The temporal segmentation

and the VOPs thus constructed are found to be better than all other methods. All

the proposed scheme are supervised in native because the parameters are selected

on trial and error basis. the schemes can be made unsupervised with estimation of

model parameters together with the labels. Model parameterestimation is worth

pursuing. Fusing label fields to obtain improve results is also worth pursuing.
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