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Abstract

In this dissertation, the problem of video object detectias been addressed. Ini-
tially this is accomplished by the existing method of tengh@egmentation. It
has been observed that the Video Object Plane (VOP) geddrptemporal seg-
mentation has a strong limitation in the sense that for slawing video object
it exhibits either poor performance or fails. Therefores gnoblem of object de-
tection is addressed in case of slow moving video objectdastdnoving video
objects as well. The object is detected while integratirgggpatial segmentation
as well as temporal segmentation. In order to take care detheoral pixel dis-
tribution in to account for spatial segmentation of frantkes,spatial segmentation
of frames has been formulated in spatio-temporal framewdi®ompound MRF
model is proposed to model the video sequence. This modes te&re of the
spatial and the temporal distributions as well. Besidestpkn to account the
pixel distributions in temporal directions, compound MRBdgls have been pro-
posed to model the edges in the temporal direction. This iriwebeen named
as edgebased model. Further more the differences in thessice images have
been modeled by MRF and this is called as the change based.riibdechange

based model enhanced the performance of the proposed scheme

The spatial segmentation problem is formulated as a pikalliag problem
in spatio-temporal framework. The pixel labels estimapooblem is formulated
using Maximum a posteriori (MAP) criterion. The segmemtatis achieved in
supervised mode where we have selected the model paranmedergal and error
basis. The MAP estimates of the labels have been obtainedpbgpmsed Hy-
brid Algorithm is devised by integrating that global as wasl local convergent



criterion. Temporal segmentation of frames have been ddavhere we do not
assume to have the availability of reference frame. Thaamatd temporal seg-
mentation have been integrated to obtain the Video ObjecteR]VOP) and hence

object detection

In order to reduce the computational burden an evolutioapproach based
scheme has been proposed. In this scheme the first framenestgd and seg-
mentation of other frames are obtained using the segmentatithe first frame.
The computational burden is much less as compared to théopseproposed

scheme.

Entropy based adaptive thresholding scheme is proposechinee the ac-
curacy of temporal segmentation. The object detectionhgeged by integrating

spatial as well as the improved temporal segmentationtsesul



Chapter 1

INTRODUCTION

Video Segmentation and Object detection and tracking aite ghallenging and
active research areas in Video Processing and Computem\i38], [39]. The
problem of segmentation and tracking a Video Object has ajg#ications such
as video coding, video retrieval, video surveillance andkwi editing [6]-[11].
Temporal segmentation methods have been proposed to wcingideo Object
Planes (VOPs) [6]-[20]. Temporal Segmentation based @msity difference has
been proposed by M. Kim et al. [6], Which includes a stat#tiypothesis test
based on variance comparison. They have also introducestsiaid based spatial
segmentation and finally a combination of spatial as welkagporal segmenta-
tion is proposed to generate Video Object Plane (VOP) andéhebject detec-
tion. The proposed scheme could satisfactorily separatiegibaund and moving
objects of a video sequence. Automatic segmentation schattmenorphological
method filter has been proposed [8] to detect moving objegtdasequently the
object track matcher using active contour model is propésdachack and match
objects in the subsequent frames. Object detection ankingabecomes a hard
problem when there is variation of illumination in the videequence. A. Cav-

allaro and T. Ebrahimi [7] have proposed a color edge baststilen scheme



for object detection. Specifically the color edge detecdoheme has been ap-
plied to the difference between the current and a referemegé. This scheme
is claimed to be robust under illumination variation. In erdo obtain refine-
ment for the object boundary in the video sequence, a swgetwideo object
segmentation has been proposed [9]. Where the algorithsisterof three steps
(i) Semiautomatic first frame segmentation (ii) Automatibjé€xt tracking and
(iii) Boundary refinement. The algorithm has been claimetidwe satisfactory
results under semiautomatic framework. A novel method passion of mov-
ing object from background has been proposed [10], forirealimplimentation.
The algorithm is based on the notions of clustering. Therélyn also handles
illumination variation of the whole sequence. There hambeevide variation
to measure the quality of the object detected in a video seueC. E. Erdem
et al. [11] have developed quantitative performance measiar video object
tracking and segmentation that do not requires ground segimentation results.
They have proposed several interesting quantitative meggar the quality of
the video tracking. Edge based detection techniques hadakn proposed by
J. Zhang et al. [12], where pixel history and moving objectksaare used to
update background. Connected component analysis and ologptal filtering
are employed to obtain accurate VOPs. The computational ismeduced by a
novel object tracking window. The object detection probleecomes quite chal-
lenging when the size of the object is very small as compardtd size of the
background. S. Sun et al. [13] have proposed local adagtreshold methods
to determine salient areas in a frame. Thereafter locastimiding is proposed to
the local region of interest. The second step segments tfet tsilhouettes pre-
cisely and finally the notion of template matching is caroedto remove clutters
and hence detection of small targets. Deng and Manjunath &4 have pro-

posed an unsupervised segmentation approach for videersegg Their method



is known as Joint Segmentation (JSEG) method consists dhttependent steps.
(i) Color quantization and (ii) Spatial segmentation. Bhea color quantization
a class-map of the image is created and thereafter the lspegimentation of the
regions are obtained by a region growing approach. A Intatpd Bezier Curve
Based Representation scheme [41] is also proposed to rieedye face. An ob-
ject detection scheme using direct parametric approadteitomographic images
[40] are also proposed

Stochastic model [15] particularly Markov Random Field Msj have been
extensively used [16]-[17] for image restoration and segateéon. MRF model,
because of its attribute to model spatial dependency, driavee better model for
image segmentation. MRF model has also been used for vidgoesgation. R.
O. Hinds and T. N. Pappas [19] have modeled the video sequesnad-D Gibbs
Random Fields. In order to obtain smooth transition of segaten results from
frame to frame, temporal constraints and temporal locanisity adaptation are
introduced. In order to reduce computational burden, madalution approach is
adhered. Gibbs Markov Random Field Model has been used &nd®D spatio-
temporal segmentation [20]. The region growing approactséx to obtain seg-
mentation. E. Y. Kim et al. [21] have used MRF to model eacim&asequence
and the observed sequence is assumed to be degraded byndéepieentically
distributed (i.i.d) zero mean Gaussian white noise. Thélpra is formulated as
a pixel labeling problem and the pixel labels are estimagigithe MAP estima-
tion criterion. The MAP estimates are obtained by DistrdouGenetic Algorithm
(DGA).

A novel target detection scheme is proposed by B. G. Kim ¢al.where the
adaptive thresholding scheme has been proposed to seffedteeground and

background. The intensity distribution of the video sequdmas been modeled by



Gaussian distribution and the parameters have been estiméhe background
and objects have been classified and thereafter the objeatised by a centroid

algorithm. This has yielded quite satisfactory results.

Recently MRF modeling has been used to model the video seqsdiut
the segmentation problem has been formulated using Steatiperal framework
[23]. The segmentation obtained is combined with the tempsegmentation
to detect the moving objects. The MAP estimates of the latedobtained us-
ing Genetic Algorithm. S. W. Hwang et al. [24] have also preg GA based
object extraction scheme where spatial segmentation &rsdat using Genetic
Algorithm and the spatial segmentation thus obtained iskioed with Change
Detection Mask (CDM) to detect the objects. E. Y. Kim and Kngy25] have
proposed video segmentation scheme where MRF model is osewbdel the
video sequence and the segmentation problem is formulategatio-temporal
framework. Distributed Genetic algorithm has been usedtain the MAP esti-
mates. These MAP estimates are combined with temporal segtia to obtain
the video objects. The results are found to be quite prompisRecently E. Y.
Kim and S. H. Park [26] have proposed a video segmentatioenselwhere the
video sequences have been modeled as MRF and the segmeptatitem is for-
mulated in spatio-temporal framework. The estimates ofldbels are obtained
using Distributed Genetic algorithm (DGA). Thereafter paral segmentation
is obtained using CDM as well as the history of the label infation of differ-
ent frames. The object extraction and tracking has beeressfidly carried out.
Quite promising results have been obtained in this schemBalsacan and T. N.
Pappas [27] have proposed a scheme where they have modeédésdsaquences
as MRF and the changes in temporal direction have been ntbtgla mixture

of Gaussian. In this case also the spatial segmentationdeas dbmbined with



temporal segmentation to detect the foreground accurdatblyauthors have also
improved the results by proposing a novel scheme for backgtonodeling that
exploits spatial and temporal dependency. Satisfact@yliehave been obtained
for both indoor and outdoor surveillance videos. Recentl@.3Hwang et al. [29]
have proposed a region based motion segmentation algotittohtain a set of
motion coherence regions. They have also used MRFs foragsatymentation
and have integrated the spatial as well as temporal segaémobdtain the mov-

ing objects in the video sequences.

It has been observed that the spatio-temporal frameworkagether with
temporal segmentation produced better results than thasiofy temporal seg-
mentation. Thus the label fields play a crucial role for ditdecand tracking.
P. M. jodoin et al. [30] have proposed a segmentation schehezenthey have
fused two label fields (i) a quickly estimated segmentati@prand (ii) the spa-
tial region map that exhibits the shape of the main objectse 3cheme could
be carefully employed for motion segmentation, motionneation and occlusion
detection. Very recently, Q. Shi and L. Wang [31] have attedo recognize
human actions under semi-markov model framework. The opdition problem
is solved by them proposed algorithm analogous to viteklei-algorithm. H.
Zhao et al. [32] proposed a tracking algorithm to track otsjea real time cir-
cumstances. This method presents a lagrangians baseddséthionprove the
accuracy of tracking. The problem of object tracking in teak environment has
been addressed by X. Pan and Y. Wu [33] where gaussian sirglel{iGSM)
and markov random Field (MRF) have been used. This methoouisdf to be
faster than many other methods and hence suitable for nealithplementation.
Another method has been proposed by C. Su and A. Amer [34¢&btime track-

ing. The proposed method is computing block thresholds.



Temporal Segmentation
It has been attempted to address the moving object deteasiog the method
of temporal segmentation. It was found that temporal segatien could help to
construct the video Object Plane (VOP) and detect the abjéetall these cases,
it was assumed to have reference frames. This scheme pbpooeresults when
the video has slow moving objects. This scheme also faileetwbference frame
is not available. This motivated to devise new methodo®tpeaake care of slow
as well as fast moving video objects in the absence of rederéfames.

Often in practice reference frames may not be available. aiadable video
may have slow moving objects and fast moving objects.
Spatio-temporal Framework
In order to address both the above problems, the video otggettion problem is
formulate in spatio-temporal framework using spatio-terapformulation, Spa-
tial segmentation is obtained. The problem is formulatea pixel labeling prob-
lem in stochastic framework. Markov Random Field Model isgmsed to take
care of the spatial distribution of each frames and theibigions frames and the
distributions of pixels of frames in temporal directionfi€ledges in the temporal
directions have also been modeled as MRF and hence the adisioibutions of
images take into account the distributions and pixels itiglas well as temporal
directions, edges in the temporal direction. In all thessesathe a priori MRF
model parameters have been selected on trial and error. A&tk this video
modeling the label estimation problem has been cast as anMemia posteriori
(MAP) estimation problem. These MAP estimates of the pikxelge been ob-
tained by Simulated Annealing (SA) algorithm. It has beeseanted that the SA
is computationally involved and hence takes appriable arhaoflttime to converge
to solutions. In order to reduce the computational burdem MAP estimates of

the pixel labels are obtained by a proposed hybrid algoritfitme hybrid algo-



rithm has been designed based on the notion of the local ahaigionvergence.
The pixels labels thus obtained for each frames are beind) faseemporal seg-
mentation. Temporal segmentation is obtained using thegehdetection masks
and the history of the labels of different frames. ThereaiWedeo Object Plane
is constructed using the temporal segmentation and ofifj@@es. it has been
observed that this scheme could detect moving object méirestly than that
of using only temporal segmentation. The edges of the mowinjects could be
preserved and this could be preserved and this could béw#d to the edge
preserving property of the proposed model. The resultsi®sttheme when com-
pared with Joint Segmentation method (JSEG) of [14] areddaorbe superior to
the later.

Spatio-temporal framework with Change based MRF Model

In order to enhance the efficacy of the earlier schemes, a nBW Model for
video sequences is proposed. In the frame sequences, tieeohanges from
frame to frame because of the object in the video. We assuese tthanges not
to be abrupt ones and hence are expected to have a tempagfabodiood depen-
dency. These changes in the consecutive frames are modeMBRR& Therefore
the proposed a priori MRF model of the video sequence takesancount these
changes of the frames together with the edges in tempomrdtdin. This new
MRF model is used to model the video sequences. The pixel &stienation,
temporal segmentation and construction of Video Objeatgdaare obtained as
per the earlier scheme suggested.

Evolutionary approach based Object detection

It has been observed in the previous proposed scheme thetl Sggmentation
of each frame has to be obtained to find out temporal segn@mt&8patial seg-
mentation of every frames is a time consuming procedure andenthe object

detection scheme takes appreciable amount of time. Thisd®the feasibility



of real time implementation. In order to reduce the componal burden, we
compute the spatial segmentation of a given frame using tbpoged spatio-
temporal approach. The spatial segmentation of subsedpaemés are obtained
starting from the segmentation of given frame with adaptasitrategy. Detec-
tion of video object at any frame is obtained using the fraogether with the
temporal segmentation. Spatial segmentation only onedranobtained using
spatio-temporal formulation of previous section.

Object Detection using Adaptive Thresholding

In temporal segmentation, CDM is obtained using the origna@nes and global
thresholding. The performance detoriates when the frameesa@sy or there are
variation in conditions of illumination. hence, the notiwiradaptive threshold has
been adhered to and towards this end, we have proposedebaepd adaptive
thresholding to obtain appropriate CDMs and hence the ngooliject parts of
the video sequence. However, the spatio-temporal segtienta MRF-MAP
framework, as mentioned in the previous section is usedtamte spatial seg-
mentation. This spatial segmentation is combined with tadaphreshoilding
based temporal segmentation to construct the VOPs and tbusgnobject de-
tection. The results obtained using adaptive thresholdifigund to be superior
to that of using global thresholding method.

The major contribution of these can be summarized below

1. Proposed a compound Markov Random Field Model to obtailediseg-
mentation in spatio-temporal framework. This was combwvéld the tem-

poral segmentation to detect object in video frames.

2. Proposed a MRF model based on the changes in the temp@etiain and
the spatio-temporal segmentation scheme. This schemth&geith tem-

poral segmentation could detect slow as well as fast mowiiepvobjects.



3. Evolutionary approach is proposed to obtain segmemtaifdk th frame
evolving from the segmentation result of the initial fram&is is combined

with the temporal segmentation method to detect slow asagd#ist moving

objects.

The organization of the thesis is as follows.

A brief background on MRF is provided in the Chapter 2. Theppsed MRF
model is described in Chapter 4. and the pixel label estonairoblem is formu-
lated in spatio-temporal framework. Hybrid algorithm is@presented in Chap-
ter 4. The a priori MRF model with changes of different fransealso presented
in chapter 5. Evolutionary approach based spatial segmi@mta formulated in
Chapter 6. Adaptive thresholding based temporal segmentand the object de-

tection scheme is dealt in Chapter 8. Conclusions for diffechapters have been

in Chapter 9.



Chapter 2

BACK GROUND ON MARKOV
RANDOM FIELD MODEL

Random fluctuation in intensity, color, texture, object boary, or shape can be
seen in most real world images. The causes for these fluohsadire diverse and
complex, and they are often due to factors such as non-umifighting, random

fluctuations in object surface orientation and texture, [glem scene geometry,
and noise. Consequently, the processing of such imagesigegproblem of sta-
tistical inference, which requires the definition of a stitial model correspond-

ing to the image pixels.

Although simple image models can be obtained from imagestta such
as the mean, variance, histogram and correlation funcaomore general ap-
proach is to use random fields. Indeed, as a two dimensiotah&rn of the
one-dimensional random process, a random field providesnplete statistical
characterization for given class of images. Combined watiowus frameworks for
statistical inference, such as Maximum Likelihood (ML) &welyesian estimation,

random field models in recent years led to significant advantenany statisti-
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cal image processing applications. A landmark paper by Gesina Geman in
1984 addressed Markov Random Field models and has attrgietat attention
and invigorated research in image modeling. Indeed the MB#pled with the

Bayesian framework, has been the focus of many studies[16].

MRF theory provides a convenient and consistent way for riagleontext
dependent entities such as image pixels and correlategrésatThis is achieved
through characterizing mutual influences among such estitsing conditional
MREF distributions. The MRF theory tells us how to model theianpprobability
of contextual dependent patterns, such as textures anct tdgeures. A particular
MRF model favors the class of patterns encoded by itself bg@ating them with
larger probabilities than other pattern classes. MRF theooften used in con-
junction with statistical decision and estimation thesyso as to formulate objec-
tive functions in terms of established optimality prineipl Maximum a posteriori
(MAP) probability is one of the most popular statisticateria for optimality and
in fact, has been the most popular choice in MRF vision madelMRFs and the
MAP criterion together give rise to the MAP-MRF frameworkaig frame work,
advocated by Geman and Geman and others, enables us toplelgathms for
a variety of vising problems systematically using ratiopahciples rather than

relying on ad hoc heuristics.

An objective function is completely specified by its forng.ithe parametric
family, and the involved parameters. In the MAP-MRF framekyohe objective
is the joint posterior probability of the MRF labels. Itsfioand parameters are
determined according to the Bayes formula, by those of tiné poior distribution

of the labels and the conditional probability of the obsdraata[35].
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2.1 MARKOV RANDOM FIELD AND GIBBS DIS-
TRIBUTION

MRF theory is a branch of probability theory for analyzing t#patial or contex-
tual dependencies of physical phenomena. It is used inMeoing to establish

probabilistic distributions of interacting labels.

2.1.1 Neighborhood System and Cliques

The site inS are related to one another via a neighborhood system. A beigh

hood system fof' is defined as

N={N, | Vi € S} (2.1)

where N; is the set of sites neighboring The neighboring relationship has

the following properties:

1. asite is not neighboring to itself:¢ N;

2. the neighboring relationship is mutual:c Ny < i’ € N;

For a regular lattice, the set of neighbors afis defined as the set of sites

within a radius ofy/r from i.
Ny ={i' € S| [dist((zi,ye), (i, 9:)))* <7, " #1} (2.2)

wheredist( A, B) denotes the Euclidean distance betwdeand B andr takes
an integer value. The Fig 2.3 shows the first ordg) @nd second ordemf)

neighborhood system.

The pair(S, N) = G constitutes a graph in the usual senSe;ontains the

nodes andV determines the links between the nodes according to thaineiong
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Figure 2.1: Figure showing first ordef(, second orden#) and third order*)
neighborhood structure

relationship. Acliquec for (S, N) is defined as a subset of sites- {i,i'}, or a
triple of neighboring sites = {i,’,7" }, and so on. The collections of single-site,

pair-site and triple-site cliques will be denoted®y, Cs, C5, respectively, where

C ={ilic S 2.3)
Co={{i,i'}| 7 € N;,ie S} (2.4)
Cy = {{i,7',7"} | i,¢,7" € S areneighbors to one another} (2.5)

The sites in a clique are ordered, afid:’'} is not the same clique &3, },

and so on. The collection of all cliques fo$, V) is
C:C’1UCQU CgU ........ (26)

The type of a clique fofS, N) of a regular lattice is determined by its size, shape
and orientation. Fig 2.4 shows the clique types for the firdépand second order

neighborhood systems for a lattice[35][16].
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Figure 2.2: Cliques on a lattice of regular sites

2.1.2 Markov Random Field(MRF)

Let 7 = {71, Zs, ...., Z,,} be a family of random variables defined on the Set

in which each random variablg; takes a value; in L. The family Z is called
arandom field We use the notiol¥; = z; to denote the event thaf; takes the
valuez; and the notionZ; = z1, Zs = 23, .ccvee.. Zm = zm) to denote the joint
event. For simplicity a joint event is abbreviatedas- z wherez = {z1, 23, ....}

is a configuration ofz, corresponding to realization of a field. For a discrete
label setl, the probability that random variablé takes the value; is denoted
P(Z; = z;),abbreviated’(z;), and the joint probability is denoted 87 = z) =
P(Zy = 21,75 = 29, ...... Zm = zm) and abbreviate®(z).

F is said to be a Markov random field ¢ihwith respect to a neighborhood system

N if and only if the following two conditions are satisfied:

P(Z=2)>0, Vze€Z  (Positivity) (2.7)

P(zi|zs—i) = P(zi|zn,) (Markovianity) (2.8)
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whereS — i is the set difference;s_; denotes the set of labels at the site$'in ¢

and
zy, = {zo|i’ € Ni} (2.9)

stands for the set of labels at the sites neighbating

The positivity is assumed for some technical reasons andisaally be satisfied
in practice. The Markovianity depicts the local charaestggiof Z. In MRF, only
neighboring labels have direct interactions with each p8a¢{16].

The concept of MRF is a generalization of that of Markov peses(MPs) which
are widely used in sequence analysis. An MP is defined on a idoofidime
rather than space. It is a sequence of random variablgs, ..., Z,, defined in
the time indices...1, ..., m, ... It is generalized into MRFs when the time indices
are considered as spatial indices.

There are two approaches for specifying an MRF:
1. Conditional probability
2. Joint probability

According to Besag, the conditional approach has the fatigwdisadvan-

tages:

1. No obvious method is available for deducing the joint bty from the

associated conditional probability.

2. The conditional probability themselves are subject toesaon-obvious and

highly restrictive consistency conditions.

3. The natural specification of an equilibrium of statidtijmapcess is in terms
of the joint probability rather than the conditional dibtrtion of the vari-

ables.
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A theoretical result about the equivalence between MRF arth<=distri-
bution (Hammersley and Clifford Theorem) provides a mataigral tractable

means of specifying the joint probability of an MRF[35].

2.1.3 MRF models

In the 20’s, mostly inspired by the Ising model, a new type totkastic pro-
cess appeared in the theory of probability called Markovdeam Field. MRF's
become rapidly a broadly used tool in a variety of problemisamby in statical
mechanics. Its use in image processing became popularhvettamous paper of
S.Geman and D.Geman in 1984 but its first use in the domais datbe early

70’s. Here we briefly give introduction to the theory of somBNMmodels.

Weak membrane model

The weak membrane model have been introduced in imageagéstoby A.Blake
and A.Zisserman[5] . The problem is to reconstruct surfadgsh are continuous
almost everywhere or, in other words , continuous in patciiesreach a satis-
factory formalization of this principle, they have devetopa membrane model:
Imagine an elastic membrane which we are trying to fit to aasexfthe edge
will appear as tears in the membrane. Depending on howeiaghe membrane
there may be more or less edges. The membrane is describeddneryy func-
tion (the elastic energy of the membrane) which has to bermzad in order to
find an equilibrium state. The energy has three components:

D: A measure of faithfulness to the data:
D= / (u — d)*dA

whereu(z, y) represents the membrane ai{d, y) represents the data.
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S: A measure of how the functiar(z, y) is deformed
§ = A2 / (Vu)?dA
P: The sum of penalties levied for each break in the membrane
p=aZ

whereZ is a measure of the set of contours along whi¢h, y) is discontinuous

The elastic energy of the membrane is then given by
E:D+S+P:/(u—d)QdA+>\2/(Vu)2dA+aZ

There is Strong relation between theak membranenodel and MRF models.
An elastic system can also be considered from a probabiigw point. The link

between the elastic energy and probability P is

—F
P -
ox exp( T )
that is the Gibbs distribution. however tiveak membrane modeperates with
mechanical analogies, representagriori knowledge from a mechanical point

of view, while MRF modelization is purely probabilistic.

Reward Punishment(RP) model

The auto logistic model can be generalized to multi leveldog{MLL) model,
also called Strauss process and generalized Ising modete®neM (> 2) dis-
crete label set, = 1,2, ...., M . In this type of models, a clique potential depends
on the type c (related to size, shape and possibly orienjadicthe clique and lo-
cal configurationf. = f;|iec. For cliques containing more thanone gite> 1),

the MLL clique potentials are defined by
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+a, If all sites on ¢ have the same label
Ve(f) = (2.10)

—a, otherwise

wherea, is the potential for type-cliques.

We have chosen a simple case of Ising model, In our case weshagied the

behavior of reward and punishment given by the model, ddpgrah the homo-

geneity of the class. If the adjacent pixel is same as thdteo€énter pixel then a
reward is assigned to the energy function, otherwise pumst and the amount
of reward and punishment is dependent on the homogeneityeafiven image.

So the cligue potential of the model is given by:

Vi(z) = Sl (2.12)
—0, if |zi — 2| #0

whered, is selected on ad hoc manner in our case.

2.1.4 Gibbs Random Field

A set of random variable§ is said to be &ibbs random field (GRF)n S with
respect taV if and only if its configuration obey &ibbs distribution A Gibbs

distribution takes the following form.

1 2
P(Z=2)=— xe 1 (2.12)
7
where
7 =Y e T (2.13)
zEZ

Z is a normalizing constant called the partition functidrns a constant called the

temperature which shall be assumed to be 1 unless othenatsel sand/(Z7) is
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the energy function. The energy

U(Z) =Y Vil2) (2.14)

ceC

is a sum of clique potentialg.(z) over all possible clique§'. The value of/.(z)
depends on the local configuration on the cligyé6][35].

A GRF is said to be homogeneoud/if(z) is independent of the relative position
of the cliquecin S. Itis said to be isotropic i/ is independent of the orientation
of c. Itis considerably simpler to specify a GRF distributioft is homogeneous
or isotropic than one without such properties. The homoigeine assumed in
most MRF vision modes for mathematical and computationavenience. The

isotropy is a property of direction-independent blob-likgions[35].

To calculate a Gibbs distribution, it is necessary to evalttze partition func-
tion Z" which is the sum over all possible configurationsZinP(Z = z) mea-
sures the probability of the occurrence of a particular cumétion, or pattern;.
The more probable configuration are those with lower ensrgi@e temperature
T controls the sharpness of the distribution. When the teatpes is high, all
configurations tend to be equally distributed. Near the remyperature, the dis-

tribution concentrates around the global energy minima.

For discrete labeling problem, a clique potentialz) can be specified by a
number of parameters. For example, letting= (z;, 2, z;») be the local con-
figuration on a triple clique: = {i,7,i"}, z. takes finite number of states and
thereforeV.(z) takes a finite number of values. Sometimes, it may be conmenie
to express the energy of a Gibb’s distribution as the sum wéraéterms, each
ascribed to cliques of a certain size, that is,

U(Z): Z Vl(zz‘)+ Z ‘/2(21'721'/>+ Z V:s(zz‘,zz'/,zi”) (2.15)

{i}eC {i,i'}eC2 {i,¢' 1" }eC3
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The above implies a homogeneous Gibbs distribution beceusk,, V5 are in-
dependent of the locations afi’, i”. For nonhomogeneous Gibbs distributions,

the clique functions should be written 81, z;), V5(7,4", 2;), and so on[35].

2.1.5 Markov-Gibbs Equivalence

An MRF is characterized by its local property whereas a GRih#@acterized by
its global property. The Hammersley-Clifford theorem bbthes the equivalence
of these two types of properties. The theorem statesaligtan MRF on S with

respect to N if and only if Z is a GRF on S with respectto N

The practical value of the theorem is that it provides a sawphy of speci-
fying the joint probability. One can specify the joint prdiidy P(Z = z) by
specifying the clique potential functio®$(z) and choosing appropriate potential
functions for desired system behavior. How to choose the$aand parameters
of the potential functions for proper encoding of the coaustis is a major issue in
MRF modeling. The forms of the potential functions deterenine forms of the
Gibbs distribution. When all the parameters involved in plaéential functions

are specified, the Gibbs distribution is completely defined.

To calculate the joint probability of an MRF, which is a Gildtistribution, it
is necessary to evaluate the partition function (2.65).aBse it is the sum over
a combinatorial number of configurations, the computatsomsiually intractable.
The explicit evaluation can be avoided in maximum probgbilased MRF vision
models wherl/(z) contains no unknown parameters. But this is not true when
the parameter estimation is also a part of the problem. Iné&tier case, the
energy function/(z) = U(z/6) is also a function of parametefisand so is the

partition functionZ’ = Z’(#). The evaluation of’(#) is required. To circumvent
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the formidable difficulty therein, the joint probability &ften approximated in
practice[35][16].

2.2 LINE PROCESS

Smoothness is a generic assumption in MRF models which clieaizes the spa-
tial coherence and homogeneity of image lattice. Howev@raper imposition
of it can lead to undesirable, over-smoothed solutions. tieicessary to take care
of discontinuities when using smoothness prior. To avoelglhoblem of over-
smoothing Geman and Geman proposed the underlying MRH @lafieess) with
an additional line process. The line process is neitheramat the target of esti-
mation. Rather, it is an auxiliary process which is couptethe label process in
such a manner that the joint probability distribution okimsity function is locally
smooth with line process for discontinuities. The prior be line process is often
selected to emphasize continuous line and to reject smiedge elements. Such
a model has the desirable property of promoting structutieimvthe image with-
out causing over-smoothing. A couple of MRFs are defined erirttage lattice,
one is for intensity or label field, other is the dual lattioe the edge field or "line
field” . A line process comprises a latticg of random variablef € F, whose
sitesi’ € S’ corresponded with vertical and horizontal boundaries betwadja-
cent pixels of the image lattice. It takes the values fam which signifies the
absence or occurrence of edges.= 1 of the line process variable indicates that
a discontinuity is detected between the neighboring pixelsd:, i.e. V; ;(z;, z;)

is taken same before.

Another neighborhood is defined over the dual lattic® for line sites. Each

pixel has four line site neighbors. Image lattice can beasgmted as U S'. The
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(2.62) can be represented with the incorporation of theflels as

1 e
P(Z=z2 F=f) = —¢ 7

- (2.16)

The resulting MAP estimation can therefore defined usinglzb&posterior

distribution whose prior energy function is

Uz, f) = U(zlf) + U(f) (2.17)

Assignment of line field is preferred as it results in smaéleergy and better

estimation[16][35].
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Chapter 3

OBJECT DETECTION USING
TEMPORAL SEGMENTATION

Segmentation is a process that subdivides an image intoiistitcuent regions
or objects.The level to which the subdivision is carriedetegs on the problem
being solved. That is, segmentation should stop when thectsbpf interest in
an application have been isolated. Segmentation of nagitimages is one of
the most difficult tasks in image processing. Motion is a pdwecue used by
humans and animals to extract objects of interest from agrvaakd of irrelevant
detail. Video segmentation refers to the identification egions in a frame of
video that are homogeneous in some sense. Most real imagersas contain
multiple moving objects or multiple motions. Motion segrtegion refers to la-
beling pixels that are associated with each independentlyimg 3-D object in

a sequence featuring multiple motions. A closely relatexblam is optical flow

segmentation , which refers to grouping together thosecalptiow vectors that
are associated with the same 3-D motion and/or structures&ktwo problems
are identical when we have a dense optical flow field with arcaptiow vector

for every pixel. It should not come as a surprise that mobased segmentation is
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an integral part of many image sequence analysis problemisiding: improved
optical flow estimation, 3-D motion and structure estimatio the presence of
multiple moving objects,and higher-level description loé temporal variations
and/or the content of video imagery. In the first case, thensegation labels
help to identify optical flow boundaries and occlusion regiavhere the smooth-
ness constraint should be turned off. Segmentation ismed|in the second case,
because a distinct parameter set is needed to model the flderseassociated
with each independently moving 3-D object. Finally, in thed case, segmen-
tation information may be considered as a high-level (dHgeel) description of
the frame-to-frame motion information as opposed to thelwel (pixel-level)
motion information provided by the individual flow vectosss with any segmen-
tation problem, proper feature selection facilitatesaie® motion segmentation.
In general, application of standard image segmentatiomaoast directly to op-
tical flow data may not yield meaningful results, since areobmoving in 3-D
usually generates a spatially varying optical flow field. &ample in the case of
a single rotating object, there is no flow at the center oftimta and the magni-
tude of the flow vectors grows as we move away from the centestafion. The
mapping parameters depend on the 3-D motion parametersotiieon matrix
R and the translation vector T, and the model of the objedasey such as the
orientation of the plane in the case of a piecewise planari@&ince each inde-
pendently moving object and/or different surface struewill best fit a different
parametric mapping, parameters of a suitably selected imgpyll be used as
features to distinguish between different 3-D motions antase structures. Di-
rect methods, which utilize spatio-temporal image gragiemy be considered as
extension of the case of multiple motion. A suitable paraimetotion model has
subsequently been used for optical flow segmentation ususgecing or maxi-

mum a posteriori (MAP) estimation. The accuracy of segntentaesults clearly
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depends on the accuracy of the estimated optical flow fieldnéstioned earlier,
optical flow estimates are usually not reliable around mgwbject boundaries
due to occlusion and use of smoothness constraints. Thusabjow estimation
and segmentation are mutually interrelated, and shouldideeased simultane-
ously for best results. We consider direct methods for segatens of images
into independently moving regions based on spatio-tenhjpoege intensity and
gradient information. This is in contrast to first estimgtihe optical flow field
between two frames and then segmenting the image based esttimated opti-
cal flow field. We start with a simple thresholding method egments images
into “changed” and “unchanged regions”. Thresholding temmiused to segment
a video frame into “changed” versus “unchanged” regionk waspect to the pre-
vious frame. The unchanged regions denote the stationakghbaund, while the
changed regions denote the moving and occlusion areas. Ve dee frame

differencel Dy 1 (x1, z2) between the frames k and k-1 as
FDy -1 (21,22) = s (21,29, k) — s (21, 29,k — 1) (3.2)

which is the pixel-by-pixeldifference between the two fesnAssuming that
the illumination remains more or less constant from framiame, the pixel lo-
cations wheré' Dy, ;. (1, z2) differ from zero indicate “changed” regions. How-
ever, the frame difference hardly ever becomes exactly, bewause of the pres-
ence of observation noise. In order to distinguish the nangédferences that
are due to noise from those that are due road scene changaersagjon can be

achieved by thresholding the difference image as

1 if | FDpi_1(x1,20) |>T
Y | FDyg—1(z1, 72) | (3.2)

0 Otherwise.

where T is an appropriate threshold.
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3.1 IMAGE SEGMENTATION

Segmentation is an important process in automated imadgsanalt is during
segmentation that regions of interest are extracted froimage for subsequent
processing such as surface description and object recagnlt is the low level
operation concerned with partitioning images by deterngrdisjoint and homo-
geneous regions, or, equivalently, by finding edges or bauesl. The homoge-
neous regions, or the edges are supposed to correspondiéb alofects or parts
of them within the images. Thus, in a large number of appbcatin image pro-
cessing and computer vision, segmentation plays a fundahrethe as the first
step before applying to images for higher level operatioh ®s recognition, se-

mantic interpretation and representation. Segmenta#iarbe defined as follows:

Let I denote an image and define a certain homogeneity predicate, then the
segmentation of is a partitionP of [ into a set ofN regionsRk,,, n =1,2,.....N

such that:

1. UV, R, =IwithR,NR, #0,n#m

n

2. H(R,) =TRUE Vn

3. HR,UR,,) = FALSE VR, andR,, adjacent

Condition 1) states that partition has to cover the wholegepaondition 2)
states that each region has to be homogeneous with resgeetiioater ; condi-
tion 3) states that no two adjacent region cannot be merged isingle region that
satisfies the predicatd. Regions of image segmentation should be uniform and
homogeneous with respect to some characteristics suchagdare, texture or

color. Region interiors should be simple and without mangléholes. Adjacent
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regions of segmentation should have significantly diffexa@tues with respect to
the characteristic on which they are uniform. Boundariesawh segment should

be simple, not ragged and must be spatially accurate.

3.2 VIDEO SEGMENTATION

Video segmentation refers to the identification of regiona frame of video that
are homogeneous in some sense. Different features and leomiogcriteria gen-
erally leads to different segmentation of same data; fomgte, color segmenta-
tion, texture segmentation, and motion segmentation lystedult in segmenta-
tion maps. Furthermore, there is no guarantees that anyeakgulting segmen-
tation will semantically meaningful, since semanticallganingful region may
have multiple colors, multiple textures, or multiple maoiso Generally motion
segmentation is closely related to two other problems, endithange) detection
and motion estimation. Change detection is a special castbn segmenta-
tion with only two regions, namely changed and unchangei@nsgn the case of
static cameras) or global and local motion regions(in tise ©d moving cameras).
An important distinction between the change detection antian segmentation
Is that the former can achieved without motion estimatidhéfscene is recorded
with a static camera. Change detection in the case of a m@angra and gen-
eral motion segmentation, in contrast, require some satatfal or local motion
estimation, either explicitly or implicitly. It should natome as a surprise that
motion/object segmentation is an integral part of many eidealysis problems,
including (i) improved motion (optical flow) estimationj)(three- dimensional
(3-D) motion and structure estimation in the presence otiplalmoving objects,
and (iii) description of the temporal variation or contefitvadeo. In the for-

mer case,the segmentation labels help to identify optioal Houndaries(motion
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edges) and occlusion regions where the smoothness constinaiuld be turned
off. Segmentation is required in the second case, becasteati3-D motion and
structure parameters are needed to model the flow vectarsiates] with each in-
dependently moving objects. Finally in third case segntemtanformation may
be employed in an object level description of frame to franwiom as opposed

to a pixel level description provided by individual flow vecs.

Video segmentation has applications in the field of face aidgased human
recognition, event detection, activity recognition, @ityi based human recogni-
tion,detection of the position of the object, detectiontwd behaviors of the in-
sects, fault diagnosis in rolling plants, visual recogmitidetect and model the
abnormal behavior of the insects, anomaly detection, ingckobotics applica-
tions, autonomous navigations, dynamic scene analysgettaracking and path

detection etc.

3.3 TEMPORAL SEGMENTATION

Motion is a powerful cue used by humans and many animals taeabjects of
interest from a background of irrelevant detail. In imagapplications, motion
arises from a relative displacement between the sensitgmnsyand the scene be-
ing viewed, such as in robotic applications, autonomousgga&ion and dynamic

scene analysis.

3.3.1 Spatial Techniques
Basic approach

One of the simplest approaches for detecting changes betweamage frames

f(z,y,t;) and f(z,y, t;) taken at times; andt;, respectively, is to compare the

28



two images pixel by pixel. One procedure for doing this isdaomf a difference
image. Suppose that we have a reference image containiggiaionary com-
ponents. Comparing this image against a subsequent imaie sime scene,
but including a moving object, results in the differencehs two images cancel-
ing the stationary elements, leaving only nonzero enthes ¢orrespond to the
nonstationary image components.

A difference image between two images taken at titnaadt; may be defined

as

dij(z,y) = Lt | fle,y,t) — fla,yty) [>T (3.3)

o) Otherwise.
whereT is a specified threshold. Note th&t;(z, y) has a value of 1 at spatial
coordinategz, y) only if the gray-level difference between the two imagesis a
preciably different at those coordinates, as determinetth&pecified threshold
T. Itis assumed that all images are of the same size. Finalyjate that the val-
ues of the coordinatgs;, y) in (3.3) span the dimensions of these images, so that

the difference image, ;(x, y) also is of same size as the images in the sequence.

In dynamic image processing, all pixelsdp;(z, y) with value 1 are consid-
ered the result of object motion. This approach is appleallly if the two im-
ages are registered spatially and if the illumination iatireély constant within the
bounds established by T. In practice, 1-valued entrie j(, y) often arise as a
result of noise. Typically, these entries are isolated {samthe difference image,
and a simple approach to their removal is to form 4- or 8-coteteregions of 1's
ind; j(x,y) and then ignore any region that has less than a predetermimeder
of entries. Although it may result in ignoring small and/@vg-moving objects,

this approach improves the chances that the remainingesritrithe difference
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image actually are the result of motion.

Accumulative differences

Isolated entries resulting from noise is not an insignifiganblem when trying to
extract motion components from a sequence of images. Adtndlue number of
these entries can be reduced by a thresholded connectnatysas, this filtering
process can also remove small or slow-moving objects aginotthe previous
section. One way to address this problem is by considerimggds at a pixel
location over several frames, thus introducing a "memomngd ithe process. The
idea is to ignore changes that occur only sporadically ovesirae sequence and

can therefore be attributed to random noise.

Consider a sequence of image fram@s, v, t1), f(x,y,t2)......... f(z,y,tn)
and let f(x,y,t,) be the reference image. Aaccumulative difference image
(ADI) is formed by comparing this reference image with evegpsequent im-
age in the sequence. A counter for each pixel location in ticaraulative image
is incremented every time a difference occurs at that poehtion between the
reference and an image in the sequence. Thus whekrthigeame is being com-
pared with the reference, the entry in a given pixel of theuaudative image
gives the number of times the gray level at that position wtsrdnt from the
corresponding pixel value in the reference image. Ofterfiulise consideration
of three types of accumulative difference images: absphdgsitive, and negative
ADIs. Assuming that the gray-level values of the moving otgere larger than
the background, these three types of ADIs are defined asv®lldet R(z, y)
denote the reference image and, to simplify the notatidrk enotet,, so that
fz,y, k) = f(x,y,ty). We assume thaR(z,y) = f(x,y,1). Then, for any

k > 1, and keeping in mind that the values of the ADIs are countsjsime the
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following for all relevant values ofz, y):

Ap(z,y) = { Ap_1(x,y)+1 if | R(x,y) — f(a:,»y, k) |>T 64
Apa(,y) Otherwise.
Pu(z,y) = { P q(z,y)+1 if | R(z,y) — f(z,y,k) [>T s
By (2, y) Otherwise.
and
Ni(.y) { Neslw,g) #1100 (R(@y) = Sy bl < =T g o
Ni-1(2,9) Otherwise.

where A, (z,y) , Pi(x,y) and Ny(z,y) are the absolute, positive, and nega-
tive ADIs, respectively, after theth image in the sequence is encountered. It is
understood that these ADIs start out with all zero valuestfts). The images in
the sequence are all assumed to be of the same size. The btdernmequalities
and signs of the thresholds in (3.5) and (3.6) are reversibe ifjray-level values

of the background pixels are greater than the levels of thamgmbjects.

Establishing a Reference Image

A key to the success of the techniques discussed in the pngcedb sections is
having a reference image against which subsequent corapaiian be made. As
indicated, the difference between two images in a dynamaging problem has
the tendency to cancel all stationary components, leaviig image elements
that correspond to noise and to the moving objects. The m@alem can be
handled by the filtering approach mentioned earlier or bynfog an accumula-

tive difference image, as discussed in the preceding sectio
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In practice, obtaining a reference image with only statigredements is not
always possible, and building a reference from a set of imagetaining one or
more moving objects becomes necessary. This necessitiesygalrticularly to
situations describing busy scenes or in cases where freqpédating is required.
One procedure for generating a reference image is as fall@esasider the first
image in a sequence to be the reference image. When a nonatgtcomponent
has moved completely out of its position in the referencen&athe correspond-
ing background in the present frame can be duplicated inabetibn originally
occupied by the object in the reference frame. When all ngpwibjects have
moved completely out of their original positions, a refe@mmage containing
only stationary components will have been created. Objispiatement can be

established by monitoring the changes in the positive ADI.

3.4 ALGORITHMFOR TEMPORAL SEGMENTA-
TION

The salient steps of the Hybrid Algorithm are as follows

1. Initially two frames are taken one as a reference frameaaundher frame
in which object is present and identification of object isfpaned on that

frame.

2. A Change Detection Mask (CDM) is obtained by taking théedénce be-

tween the considered frame and the reference frame.

3. The difference between the frame is thresholded by gkbbesholding ap-
proach, which gives a binary image with two regions that jeciand back-

ground.
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4. In final stage the intersection of object region and oagimage frame is

taken to find out the Moving Objects.

3.5 RESULTS AND DISCUSSION

In simulation, two types of situations are considered. Tis @ine is when refer-
ence frame is available, while the second one is in the albs#neference frames.
Fig. 3.1 shows the Hall monitoring video sequence. The waigHall monitor-
ing sequence which is considered as the reference framewmnsh Fig. 3.1(a).
The movement in the hall is shown in different video sequsraseshown in Fig.
3.1(b). The change detection masks are shown in Fig. 3.t{s)observed from
the CDMs that there are many other objects i.e parts of thegpauand presence in
the CDMs. Temporal Segmentation is carried out and the sporeding VOPs of
different frames are shown in Fig. 3.1(d). It can be obsefr@d Fig. 3.1(d) that
the video objects could be detected but there are few othekgbaund patches.
However, ignoring the minor background patches in the V@Pari be concluded
that with the availability of reference frames, the objextsld be detected accu-

rately.

The second example considered is Bowing video sequenceoas sh Fig.
3.2. In this case, the reference frame is shown in Fig. 3.2(h the activity in
the video, frames 57, 58, 59, 60 are shown in Fig. 3.2(b) wterenoving object
is thee human activity. The CDMs obtained with the use ofrexfee frames con-
tains lots of background information besides foregrouridrmation. VOPs are
generated using Temporal Segmentation and it is obseraéthiéa moving object
could be detected with less error. Hence in this case aldoneference frame,

temporal segmentation could produce better results. Titcegkample is the Hall
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monitoring sequence with a different type of activity. Tleeresponding CDMs
are also shown in Fig. 3.3(a) and the CDMs are with more backgt informa-
tion. The corresponding VOPs are shown in Fig. 3.3(d) wheran be observed

that the object could be detected with vary background gatch

The second case considered is when no reference frame lstd®air he first
example considered is the Akiyo Video sequence as showngin ¥4(a). The
VOPs generated are shown in Fig. 3.4(c) where it can be obddhat some
parts of the moving object could be detected but in a dithevagd Hence, it
can be concluded that without availability of referencerfes temporal segmen-
tation method fails to detect the objects. This observasoalso corroborated
with the second example considered as shown in Fig. 3.5. iFlasGrandma
video sequence, where reference frame is not available amcklthe VOPs are
very much distorted as shown in Fig. 3.5(c). It is observed timly some effect
of the silhouette is present in the sequence. Thus it canmawabed that tempo-
ral segmentation is not suitable for object detection wleference frame is not
available.

The limitation of the existing temporal segmentation methare as follows

1. It does not give good result in presence of noise and ithation variation
2. It can not able to give good result with poor resolution

3. case will be more critical in absence of reference frame

4. It may not give any result if there is slow movements in thguences.

5. Substantial amount of object movement is required inrcimgenerate ref-

erence frame.

6. If Object size is large it may also fails to generate refeesframe.
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(a) Original Hall Monitoring Video Sequence Frame No.6

(b) Original Hall Monitoring Video Sequence Frame No0.495052

(c) CDM of Frame No0.49,50,51,52 using Frame No. 6 as referenc

(d) VOP of Frame No0.49,50,51,52

Figure 3.1:VOP Generation of Hall Monitoring Sequence using Tempoegirentation
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(b) Original Bowing Video Sequence Frame No0.57,58,59,60

(c) CDM of Frame No0.57,58,59,60 using Frame No. 1 as referenc

(d) VOP of Frame No0.57,58,59,60

Figure 3.2:VOP Generation for Bowing Video Sequence using Temporair@egation
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(b) Original Hall Monitoring Video Sequence Frame N0.29232294, 295

(c) CDM of Frame No0.292, 293, 294, 2955 using Frame No. 6 asaenate

(d) VOP of Frame N0.292,293,294,295

Figure 3.3:VOP Generation for Hall Video Sequence using Temporal Seggtien
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(a) Original Akiyo Video Sequence Frame No.75

AN AN T

(b) Original Akiyo Video Sequence Frame No.76,77,78,79

(c) VOP of Frame No0.76,77,78,79

Figure 3.4: VOP Generation for Akiyo Sequence using Tenmfegmentation

(c) VOP of Frame No0.12,13,14,15

Figure 3.5:VOP Generation for Grandma Sequence using Temporal Segtivent
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Chapter 4

OBJECT DETECTION USING
COMPOUND MRF MODEL
BASED SPATIO-TEMPORAL
SEGMENTATION

There has been a growing research interest in video imageesggtion over the
past decade and towards this end, a wide variety of methg@sldrave been
developed [1],[2],[21],[16]. The video segmentation noetblogies have exten-
sively used stochastic image models, particularly Markandm Field (MRF)

model, as the model for video sequences [19],[25],[26]. MRdelel has proved
to be an effective stochastic model for image segmenta8bh[[L7],[4] because
of its attribute to model context dependent entities sudmasgje pixels and cor-
related features. In Video segmentation, besides spatidefing and constraints,
temporal constraints are also added to devise spatio-t&himage segmenta-
tion schemes. An adaptive clustering algorithm has beearteg [19] where

temporal constraints and temporal local density have beeptad for smooth
transition of segmentation from frame to frame. Spatiogeral segmentation
has also been applied to image sequences [20] with difféfertng techniques.

Extraction of moving object and tracking of the same has lae@reved in spatio-
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temporal framework [24] with Genetic algorithm serving las bptimization tool
for image segmentation. Recently, MRF model has been usett®| spatial
entities in each frame [24] and Distributed Genetic algwnit(DGA) has been
used to obtain segmentation. Modified version of DGA has lpgeposed [25]
to obtain segmentation of video sequences in spatio-teghfiamework. Be-
sides, video segmentation and foreground subtraction éas hchieved using
the spatio-temporal notion [27],[28] where the spatial glaslthe Gibbs Markov
Random Field and the temporal changes are modeled by mot@aussian dis-
tributions. Very recently, automatic segmentation alidponi of foreground objects
in video sequence segmentation has been proposed [29]islagproach, first
region based motion segmentation algorithm is proposedrerdafter the labels
of the pixels are estimated. A compound MRF model based sagitnen scheme
has been proposed in spatio-temporal framework. The probfeextraction of
moving target from the background has been investigatep\i#2re adaptive

thresholding based scheme has been employed to segmemiches.

In this Chapter we propose a scheme to detect moving objexwideo se-
guence. There could be substantial movement in the movijegisbfrom frame
to frame of a video sequence or the movement could be slowgénowe missed
by temporal segmentation. In order to take care of both tiuaton, we obtain
spatial segmentation of the given frame and in the sequesethe same results
to obtain temporal segmentation. The accuracy of tempegahentation greatly
depends upon the accuracy of spatial segmentation. Thisre$uhe temporal
segmentation is used to obtain the video object plane andeheoving object
detection. The spatial segmentation problem is formulatespatio-temporal
framework. A compound MRF model is proposed to model theigpas well

as temporal pixels of the video sequence. The compound MRfeheonsists of

40



three MRF, one to model the spatial entities of the given &atihe second MRF
model take care of attributes in the temporal direction dnadthird MRF model
is used to take care of edge features in the temporal direclibus a compound
MRF model is used to model the video. The problem is formdlaea pixel la-
beling problem and the pixel label estimates are the maximpwsteriori (MAP)
estimates of the given problem. By and large the Simulatedkeating (SA) al-
gorithm [16] is used to obtain the MAP estimates, instead asehproposed a
hybrid algorithm based on local global attributes to obtaanMAP estimates and
hence segmentation. The proposed scheme has been testedifte verity of
sequences and it is observed that with the proposed edgé basgwound MRF
model yields better segmentation results than that of edgehodel. The ground
truth image is constructed manually and the percentagesaflassification is ob-
tained based on the ground truth images. The proposed mistbochpared with
JSEG [14] method and it is found that the proposed methodediatpned JSEG

in terms of misclassification error.

The pixels labels thus obtained for each frames are beind fmsetempo-
ral segmentation. Temporal segmentation is obtained ubmghange detection
masks and the history of the labels of different frames. @afker, Video Object
Plane is constructed using the temporal segmentation agidarframes. it has
been observed that this scheme could detect moving obje etficiently than
that of using only temporal segmentation. The edges of thenmgmbjects could
be preserved and this could be preserved and this couldrideusgt to the edge
preserving property of the proposed model. The VOP constdugsing the edge-
based model and it is observed that the video segmentasaitgdas two class,
one moving object and the other background. The scheme atasitor different

video sequence and even slow movements in the video couldtbetdd.
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4.1 MOVING OBJECT DETECTION

Usually, CDM is the difference of two consecutive frames.eray value of
pixels on CDM could be either high due to changes such as motigignificant
illumination changes or low due to noise and variation ianiination. These low
value changes cause improper generation of VOP. We havegedm method
of obtaining the CDM, where inspite of taking the gray levidtetence of two
consecutive frame, the difference between the label of twwsecutive frames,
are obtained followed by thresholding. The CDM obtainedchviftat of label
difference produces better result than that of using CDMhwifference in gray

level.

4.2 SPATIO TEMPORAL IMAGE MODELING

Let the observed video sequengebe considered to be 3-D volume consisting
of spatio-temporal image frames. For video, at a given timg, represents the
image at timeg and hence is a spatial entity. Each pixeljns a site s denoted
by y.; and hencey,; refers to a spatio-temporal representation of the 3-D velum
video sequences Let the observed video sequendses considered to be 3-D
volume consisting of spatio-temporal image frames. Foew®jdt a given time ,

y, represents the image at timand hence is a spatial entity. Each pixe}ins a
site s denoted by,; and hencey,, refers to a spatio-temporal representation of the
3-D volume video sequences Letlenote the segmented video sequencesrand
denote the segmentation of each video framénstead of modeling the video as
a 3-D model we adhere to a spatio-temporal modeling. We m&gdat a Markov
random Field Model and the temporal pixels are also modedédRF. WWe model
X; as Markov Random Field model and the temporal pixels areratsteled as

MRF. In particular for second order modeling in the tempadiietctions, we take
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X:, X;_1 and X;_». In order to preserve the edge features, another MRF model
is considered for the pixel of the current framg and the line fields oX;_; and
X;_o. Thus, three MRF models are used as the spatio-temporaéimadel. The
MRF model taking care of edge features, in other words theefiglds of frame
xy_1 andz;_, together withr; are modeled as MRF. It is known thatXf, is MRF

then, it satisfies the markovianity property in spatial clii@n.

P(Xst = Tyt | th = SL’qt,VQ€S, S # Q>
= P(Xst = Tst | th = Tqt, ((Lt)ens,t)

wheren; , is denoted the neighborhood of (s,t) and S denotes spatiaté af the

frame X,. For temporal MRF, the following markovianity is satisfied.
P(Xst = Tst | qu = Tpq, 4 7& tap 7& S,\V/(S,t)EV)
- P(Xst = Tst | qu = Tpq, (pv Q)Ens,t)

where V denotes the 3-D volume of the video sequence. InadplimainX;

is modeled as MRF and hence the prior probability can be egspreas Gibb’s

—U(Xt)

distributed which can be expressedsX;) = e~ 7~ where z is the partition

—U(zy)

function which is expressed as= " e , U(X,) is the energy function and
expressed aB (X;) = > .cc Ve(z;) andV,(z,) denotes the clique potential func-
tion, T denotes the temperature and is considered to be ¥W@have considered

the following clique potential function.

Ve(r) =

+otifrg # rpand(s,t), (p,t)eS
—aifrg = xpand(s,t), (p,t)eS

Vi) +0 vifrs # vgand(s,t), (¢, t)eS
tec\ L) =
—B rifxg = xgand(s,t), (¢, t)eS

43



Analogously in the temporal direction

+v rifrg # xeand(s,t), (e,t)eS
—v tifag = xgand(s,t), (e,t)eS

‘/teec (l‘) -

4.2.1 Segmentation in MAP frame work

The Segmentation problem is cast as a pixel labeling probleshy be the ob-
served video sequence and be an image frame at time t andte deasite of the
imagey;. Correspondingly; is modeled as a random field apdis a realization
frame at time t. Thusy,; denotes as a spatio-temporal co-ordinate of the grid (s,
t). Let X denotes the segmentation of the video sequenceednd Idenote the
segmentation of an image at time t. L¥t denote the random field in the spatial
domain at time t. The observed image sequenceme assumed to be the de-
graded version of the segmented image sequences X. For Exahggiven time

t, the observed framg, is considered as the degraded version of the original label
field X; . This degradation process is assumed to be Gaussian Protess the
label field can be estimated from the observed random YigldThe label field is

estimated by maximizing the following posterior probaitiistributions.

I = arg max P(X =z|Y =y) 4.1)

Wherez denotes the estimated labels. Sincés unknown it is very difficult

to evaluate (4.1), hence, using Baye’s theorem (4.1) canriteewas

PlY =yl X =2)P(X =1x)
PY =y)
Since y is known, the prior probabiliti’(Y" = y) is constant. hence (4.2)

(4.2)

T = arg max
T

reduces to
I = arg max PY =y|X =x,0)P(X =x,0) (4.3)
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Whered is the parameter vector associated withAccording to Hammerseley
Clifford theorem, the prior probability’(X = x, ) is Gibb’s distributed and is

of the following form

P(X — ZE) — e—U(:L‘,G) — 6[* Zcec[Vsc(ll?)“l"/%zsc(x)‘i’wgec(m)}] (44)

In (4.4) Vi.(z) the clique potential function in the spatial domain at time t
Viec(z) denotes the clique potential in the temporal domain gnd(z) denotes
the clique potential in the temporal domain incorporatidgesfeature. We have
proposed this additional feature in the temporal direc(#n) is called the edge-

based model. The corresponding edgeless model is

P(X =) = e U@ — o™ X Vae @)+ Viee ()]
The likelihood functionP (Y = y| X = x) can be expressed as
PY=yX=z)=Ply=x+n|X=2+0)=P(N=y—z|X =z+0)

Since n is assumed to be Gaussian and there are three cortgpresent in
color, P(Y = y| X = x) Can be expressed as
1 T p—1
P(N=y—z|X,0) = —— e 200K y-2) (4.5)
(2m)ndet [k]
Where Kk is the covariance matrix. Assuming decorrelatiothefthree RGB

planes and the variance to be same among each plane, (415 eapressed as

1 1 2
P(N =y —z|X,0) = ———¢ 22¢™ (4.6)
(2m)303

In (4.6) Variancer? corresponds to the Gaussian degradation. Hence (4.3) can

be expressed as
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T
b= arg max b o [ e o) Vi 0]

(2m)303
The a priori model having the three components is attribagseldge based model.

HU&:” +ZceC Vsa(x)"‘vtec( )+‘/teec(1')i|

4.7)

T = arg max e [
x

Maximizing (4.7) is tantamount to minimizing the

o {220

lz V:sc + ‘/tec ) + %eec(x)
ceC

} (4.8)

Z in (4.8) is the MAP estimate and the MAP estimate is obtainethb pro-
posed hybrid algorithm. The associated clique potentigdrpaters and the noise

standard deviation are selected on trial and error basis

4.2.2 Hybrid Algorithm

It is observed that SA algorithm takes substantial amoumié to converge to
the global optimum solution. SA algorithm has the attribofteoming out of the
local minima and converging to the global optimal solutidrhis feature could
be attributed to the acceptance criterion(acceptanceanpttobability). We have
exploited this feature, that is the proposed hybrid alpanituses the notion of
acceptance criterion to come out of the local minima and todss the global
optimal solution. Thus, in the hybrid algorithm, SA algbrit produces an in-
termediate solution that can be local to the optimal sotutitn order to obtain
the optimal solution, a local convergence based strateggtapted for quick con-
vergence. Towards this end, we have used Iterated Condlitidode (ICM) [17]

algorithm as the locally convergent algorithm. Thus, theppised algorithm is a

hybrid of both SA algorithm and ICM algorithm. The hybrid atghm’s working
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principle is as follows. Initially, a specific number of tirseeps of SA algorithm,

fixed by trial and error, are executed to achieve the neamabsolution. There-

after, ICM is run to converge to the desired optimal solutidrhis avoids the

undesirable time taken by SA algorithm when the solutionasesto the optimal

solution. The steps of proposed hybrid algorithm are enatedras below :

1.

2.

10.

11.

12.

Initialize the temperature,,.
Compute the enerdy of the configuration.
Perturb the system slightly with suitable Gaussian distuce.

Compute the new ener@y of the perturbed system and evaluate the change

in energyAU = U’ — U.

. If (AU < 0), accept the perturbed system as the new configuration Else

accept the perturbed system as the new configuration witlolaapility

exp(—AU)/t (wheret is the temperature of cooling schedule).

Decrease the temperature according to the cooling stehedu

. Repeat steps 2-7 till some prespecified number of epochs.

Compute the energdy of the configuration.
Perturb the system slightly with suitable Gaussian distuce.

Compute the new enerdjy of the perturbed system and evaluate the change

in energyAU = U’ — U.

If (AU < 0), accept the perturbed system as the new configuration,-other

wise retain the original configuration.

Repeat steps 8-12, till the stopping criterion is mete $topping criterion
is the energy(U < threshold).
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4.3 TEMPORAL SEGMENTATION

In temporal segmentation, a change detection Mask (CDMbpiaioed and this
CDM serves as a precursor for detection of foreground as agebackground.
This CDM is obtained by taking the label difference of two secutive frames
followed by thresholding. We have adopted a global thretihgimethod such as
Otsu’s method for thresholding the image. The results, tiained are verified
and compensated by historical information, to enhancedgmentation results of
the moving object. Thus the results obtained are comparéttiat of the CDM

constructed with taking intensity difference of two congee frames. Where we
found that label difference as that of intensity differegoee better results. The
historical information of a pixel means whether or not theepbelongs to the

moving object parts in the previous frame. This is repre=gas follow

H={h|0 < s < (M —1)(Mz — 1)} (4.9)

Where H is a matrix of size of a frame. If a pixel is found to hakg = 1
, then it belongs to moving object in the previous frame; otliee it belonged
to the background in the previous frame. Based on this inédion, CDM is
modified as follows. If it belongs to a moving object part ir tprevious frame
and its label obtained by segmentation is same as one of tresponding pixels
in the previous frame, the pixel is marked as the foregroued & the current

frame.

4.4 VOP GENERATION

The Video Object Plane (VOP) is obtained by the combinatibtremporal seg-
mentation result and the original video image frame. In @gscene we consider

objects as one class and background as the other thus hawiugcéass problem
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of foreground and background. Therefore, the temporal seggtion results yield
two classes. We denofé)M; and BM; as the foreground and background part of
the C'D M, respectively. The region forming foreground part in the penal seg-
mentation is identified as object and is obtained by the $etgtron of temporal

segmentation and original frame as
VOP = num(FM; N y;)

Where the num (.) is the function counting the number of pigehing the

region of interest.

4.4.1 Modification in CDM

By and large CDM is the difference of two consecutive framidge gray value of
pixels on CDM could be either high due to changes such as motigignificant
illumination changes or low due to noise and variation ianiination. These low
value changes cause improper generation of VOP. We havegedm method
of obtaining the CDM, where inspite of taking the gray levitetence of two
consecutive frame, the difference between the label of twsecutive frames,
are obtained followed by thresholding. The CDM obtainedhwvitiat of label
difference produces better result than that of using CDMhwifference in gray

level.

4.5 CENTROID CALCULATION ALGORITHM

Using a optimal threshold value and the VOP available foripres frame the
temporal segmentation of the current frame is obtained.clinster of the object
region is transformed to a gray level image, where the olyggion is differed
from the background region by two gray level either 255. Which can be given

as,
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255 if it isin object
Tr =
o Otherwise.

where the centroidz,, , 7,, ) of the binary temporal segmented image is given

as,

N ZieT {L’nC(Z)
v ¢ ZieT C(Z) ( )
- _ ZierYnic(i) (4.11)

Yne = ZieT C(Z)

4.6 SIMULATION AND RESULT DISCUSSION

The two video models edge less and edgebased model haveekesthwith three
different video sequences, namely Suzie, Akiyo and Mothieylvideo sequences.
For these two models, the two different strategies are adiophile obtaining the
CDMs. The first one is when the original frame is consideratithe second one
iIs when the estimated label frames are considered. In altakes we have con-

sidered RGB color model.

Fig. 4.2 shows the results of the Suzie video sequence. Thi@arsequence
is shown in Fig. 4.2(a). It can be seen from the original saqadhat there is
slow movements of the object in different frames such as Bd8l4. Besides, the
reference frame is not available. Hence temporal segmentaiethod would fail

in this case.

Hence, the spatio-temporal segmentation together witletingoral segmen-

tation is used to detect the video objects. The ground tnages for spatial
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segmentation are shown in Fig. 4.2(b). For spatial segrtientd has been as-
sumed to be Gaussian. The standard deviatidar this process i$.34 while
the MRF model parameters are= 0.01, 5 = 0.007 and~ = 0.001. These
parameters are considered for different video images ardated in Table. 4.2.
The spatio-temporal based segmentation using edgelesxdgetiased model are
shown in Fig. 4.2(d) and 4.2(e) the sharpness in lips of tie feas been ob-
served while the lips are smoothed in case of edgeless mbldelcorresponding
JSEG result is shown in Fig. 4.2(c). It can be observed treaptrt of the face
is merged with the hair part and similarly there are more lassified labels in
this. This is also reflected in the percentage of misclassifio error provided in
Table. 4.1. As seen from the Table. 4.1. the error for JSEG5iPercentage
which is quite high as compared@at and0.3 for edgeless and edgebased model.
Even though the misclassification errors are close in baltéises, the sharpness
of the features has been preserved. However in other casesithappreciable
amount of difference in error between edge less and edgelaggeoaches. The
temporal segmentation as obtained using the original \ségoence are shown in
Fig. 4.2(f) and the corresponding VOPs are shown in Fig.g3 ®fere it can be
observed that the object could be separated from the baaskdrd=ven for slow

movement of the objects in frames, this method could deltecobjects.

Similar observation are also made for other two video secgeare shown in
Fig. 4.3 and Fig. 4.4 shows the Akiyo news reading video secgi&here there
are slow movements of the different parts of the body. It sevbed that the JISEG
groped the whole faces one class while the edgebased medelped the edges.
The misclassification is again low in case of edgebased mdteltemporal seg-
mentation and VOPs are shown in Fig. 4.3(f) and (g). For slawements, the

object could be detected.
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The third video sequence, as shown in Fig. 4.4(a) has movsntiggt can
be viewed as moderate and even in this case also the edgebadetiproved to
be better as corroborated from the misclassification efiemporal segmentation
and VOPs are shown in Fig. 4.4(f) and Fig. 4.4(g). As obsenvélte VOPSs there
are some background pixels present in the edges of the helaalsmat the top
of the head. All the above results used original frames toprgemthe CDMs and

hence the VOPs. The model parameters for the sequence areigivable. 4.2

In the subsequent part we consider the label frames to otitai€DMs as
opposed to the original frames. It is found that the objeetected using the la-
bel frames and edge based model is more precise than usioggn®al frames.
The movements again are slow as well as moderately fast amabjbct could be
detected. The Grandma video sequence is shown in Fig. 4.5hjlects detected
using original frames are shown in Fig. 4.5(f). It can be ob=é that near the
shoulder some background part has reflected and hence #ssdobelong to the
object part. Fig. 4.5(i) shows the objects detected usiadabel frames and it is
seen that the object could be detected properly without askdround part. The
model parameters and the misclassification error is giv@alite. 4.2. and.Table.
4.3. Thé+'in Fig. 4.5(i) indicates the centroid of the object detectadhis case
also edge based model proved to be better for slow movinghj8imilarly Fig.
4.8(d) observation can be made for the Akiyo video sequenoersin Fig. 4.6.
The edgebased model with label frames for temporal segt@midetected ob-
jects more efficiently than edgeless model using originqisaces. Thus can be
seen from the results shown in case of Fig. 4.6 and Fig. 4.8.Tfadfic video
sequence as shown in Fig. 4.9, 4.10 and 4.11, with a modgfattlmovements,

the proposed scheme could detect the vehicles without assimgiparts. Fig. 4.8
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shows the result for a single object i.e car was seen from4=id)(i), with the use
of label frames it could be detected properly. Fig. 4.11 showltiple objects in
the scenes and the moving object could be detected as seign thFL. The third

traffic sequence also corroborate the above findings.

Thus, for slow as well as moderately fast movements the edgedomodel

with label frames proved to be better than edge less model.
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(@)

N
T
Frame: f-1
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Figure 4.1: (a) MRF modeling in the spatial direction (b) MRF modelingitey two
previous frames in the temporal direction (¢) MRF with twaidnal frames with line
fields to take care of edge features
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(e) Edgebased Result of Suzie Video Sequence Frame Nd.5,8,1

YV Y

(f) Temporal Segmentation Result of Suzie Video Sequenam€&mo.5,8,11
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L3

(9) Extracted VOP of Suzie Video Sequence Frame No.5,8,11

Figure 4.2:Detection of Moving Object in Suzie Video Sequence

= o .‘*_ — ‘
(a) Original Akiyo Video Sequence Frame No0.75,88,101

(e) Edgebased Result of Akiyo Frame No0.75,88,101
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() Temporal Segmentation Result of Akiyo Frame No.75,88,1

l ( 2 J. .) g 0 S i I 1 (
(9) Extracted VOP of Akiyo Frame No.75,88,101

Figure 4.3:Detection of Moving Object in Akiyo Video Sequence

(a) Original Mother Baby Video Sequence Frame No0.65,74,83

L ! i .t L} :{L ..'
(b) Ground Truth of Mother baby Frame No0.65,74,83

—'3’4.: | i

(c) JSEG Results for Mother Baby Frame No0.65,74,83

-. 5 nlalh - .q{"'l ) .
(d) Edgeless Result of Mother Baby Frame No0.65,74,83
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(e) Edgebased Result of Mother Baby Frame No0.65,74,83

- k [ TR . a5

(f) Temporal Segmentation Result of Mother Baby Frame NG483

i B i b AR RO,

(g) Extracted VOP of Mother Baby Frame No0.65,74,83

Figure 4.4:Detection of Moving Object in Mother Baby Video Sequence

Video FrameNo. | FEdgeless | FEdgebased | JSEG
5 0.40 0.30 4.50
Suzie 8 0.35 0.10 5.50
11 0.45 0.1 7.50
75 0.80 0.60 2.00
Akiyo 88 1.20 0.90 2.50
101 2.70 0.90 2.50
65 1.10 0.20 4.70
Mother Baby 74 2.80 1.00 9.90
83 1.70 0.10 7.10

Table 4.1: Percentage of Misclassification Error
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(f) Detected Moving Object of Frame No.12,13,14,15 usirsults(e)
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(g) Temporal Segementation result of Frame No. 12,13,14sltty CDM of Label Frames

(i) Tracked Object of Frame No0.12,13,14,15 using result (h)

Figure 4.5:VOP Generation of Grandma video sequences

(a) Original Frame No0.75,76,77,78

(c) Segmentation of Frame No0.75,76,77,78 with Edge basedp@ond MRF Model
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(d) Segmentation result with JSEG Scheme

X

(f) Detected Moving Object of Frame No.75, 76 77 78 u3|r£thB(e)

Fy

(g) Temporal Segementation result of Frame No.75,76 7L7$W&] CDM of Label Frames

N

I / _|"_-.
\ '.'f ‘{ 4

(h) Detected Moving Object of Frame No0.75,76,77,78 usnsngllte(g)

X(

(|) Tracked Object of Frame No0.75,76, 77 78 using result (h)

! i,
\ '.'f ‘{ 4
Figure 4.6:VOP Generation of Akiyo video sequences
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(f) Detected Moving Object of Frame No.4,5,6,7 using resgalt
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(9) Temporal Segementation result of Frame N.,5,6,7gL@M of LabeFrames

(h) Detected Moving Object of Frame No 4,5,6,7 using re@)lt

Figure 4.7:VOP Generation of Container video sequences

(d) Segmentatlon result with JSEG Scheme

63



vy y

(e) Temporal Segementatlon result of Frame No 5,6,7,8)uBDM of Orlglnal Frames

(f) Detected Moving Object of Frame No.5,6,7,8 using resgalt

VYV VY

(g9) Temporal Segementation result of Frame No.5,6,7,8uSIbM of Label Frames

(i) Tracked Object of Frame No.5,6,7,8 using result (h)

Figure 4.8:VOP Generation of Suzie video sequences

(a) Original Frame No.3,4,5,6
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(d) Segmentation result with JSEG Scheme

.

(e) Temporal Segementation result of Frame No.3,4,5,&uDM of segmented Frames

(f) Detected Moving Object of Frame No0.3,4,5,6 using resgalt

(9) Temporal Segementation result of Frame No.3,4,5,6uSIDM of segmented Frames
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(h) Detected Moving Object of Frame No.3,4,5,6 using resgjt

(i) Tracked Moving Object of Frame No.3,4,5,6 using reghits

Figure 4.9:VOP Generation of Traffic video Car sequences

(d) Segmentation of Frame No.3,4,5,6 with Edge based ConthblRF Model
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(e) Temporal Segementation result of Frame No.3,4,5,&uSDM of Original Frames

(f) Detected Moving Object of Frame No.3,4,5,6 using resgalt

(g9) Temporal Segementation result of Frame No.3,4,5,6uSIbM of Label Frames

(h) Detected Moving Object of Frame No.3,4,5,6 using re@)lt

Figure 4.10:VOP Generation of Canada Traffic video sequences

(a) Original Frame No.3,4,5,6

(b) Ground truth of Frame No.3,4,5,6
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(d) Segmentation result with JSEG Scheme

(f) Detected Moving Object of Frame No.3,4,5,6 using resgalt

(9) Temporal Segementation result of Frame No.3,4,5,6uSIDM of segmented Frames

(h) Detected Moving Object of Frame No.3,4,5,6 using resg)t
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(i) Tracked Moving Object of Frame No0.3,4,5,6 using reggits

Figure 4.11:VOP Generation of Bus video sequences

VIDEO Q@ I} v o
Suzie 0.01 | 0.007| 0.001| 3.34
Akiyo 0.009| 0.008| 0.007| 2.0
Mother & Daughter| 0.01 | 0.007| 0.005| 5.5
Grandma 0.05 | 0.009| 0.007| 5.19
Container 0.01 | 0.009| 0.001| 2.44
Traffic Car 0.01 | 0.009| 0.007| 3.0
Traffic Cannada | 0.01 | 0.009| 0.007| 3.0
Traffic Bus 0.01 | 0.009| 0.007| 3.0

Table 4.2:Compond MRF Model Parameters for diffrent videos
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Figure 4.12:Energy plot of different Video Sequences
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Video FrameNo. | JSEG | Edgebased
12 6.82 0.24
Grandma 13 3.77 0.30
14 4.29 0.25
15 4.20 0.29
75 6.20 0.12
Akiyo 76 4.90 0.12
77 5.50 0.10
78 5.40 0.10
4 2.55 0.10
Container 5 6.44 0.14
6 4.61 0.17
7 4.46 0.15
4 2.55 0.10
Suzie 5 6.44 0.14
6 4.61 0.17
7 4.46 0.15
3 9.56 0.75
Traf ficCar 4 10.44 0.41
5 7.56 0.65
6 22.05 0.61
3 6.10 0.18
Traf ficBus 4 5.27 0.40
5 4.97 0.44
6 5.10 0.39
3 5.95 0.1
CanadaTraf fic 4 8.23 0.41
5 16.65 0.52
6 7.1 0.46

Table 4.3: Percentage of Misclassification Error
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Chapter 5

DETECTION OF SLOW MOVING
VIDEO OBJECTS USING
COMPOUND MARKOV RANDOM
FIELD MODEL

Often, moving object detection in a video sequence has beteeved a variant of
temporal segmentation methods. For slow moving video éhjectemporal seg-
mentation method fails to detect the objects. In this Chrapte propose a Markov
random Field (MRF) model based scheme to detect slow movisnrea video
sequence. In order to enhance the efficacy of the earliensefiea new MRF
model for video sequences is proposed. In the frame segsighege are changes
from frame to frame because of the object in the video. Wemsghese changes
not to be abrupt ones and hence are expected to have a tempayaborhood
dependency. These changes in the consecutive frames astatied MRF [26].
Therefore the proposed a priori MRF model of the video secei¢gikes in to ac-

count these changes of the frames together with the edgesporal direction.

In this piece of work, we propose a scheme to detect slowlyingoebjects in

a video sequence. The movement could be slow enough to bedvbgdifferent
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existing temporal segmentation. A spatio-temporal schismpeoposed to obtain
spatial segmentation of a given frame and, in the sequelthessame results for
temporal segmentation. The spatio-temporal scheme isulated as a pixel la-
beling problem and the pixel labels are estimated using M#Bron [25]. MRF
model is used to model the label process. In this model tloe gistribution takes
into account the spatial distribution of a given frame, iiat¢ions in a temporal
direction, edgemaps in temporal direction. The edge malps he preserving
the edges of the moving objects. in order to detect slow mdsnga take in to
account the changes in the different frames, slow momermtsideo could be ob-
tained. In spatio-temporal framework, observed frameesveid as a degradation
of the label process. This degradation of the label proseassumed to be Gaus-
sian. The spatio-temporal segmentation results thusrwateare used to obtain
temporal segmentation, which in turn used to construct tdeovobjects plane
and hence detection of objects. The MRF model parametess heen selected
on trial and error basis. It is found that spatial segmennieftor every frame of
the sequence is computationally intensive. In order toecedhe computational
burden, we obtain the spatial segmentation of the initeaiiie and next use it as
the initials one for the next frame. ICM (lterative Conditad Mode) algorithm
[17] is used to obtain the spatial segmentation of the nexh&. The spatial seg-
mentation, thus obtained is used as the initial one for thseguent frames. The
proposed scheme has been tested for a wide variety of sezpiand it is ob-
served that the model incorporating changes could detecithv moving objects
successfully. The ground truth image constructed manu@hg results obtained
by the proposed method are compared with the JSEG [14] meitddt is found
that the proposed method outperformed JSEG in terms of asisification error.
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5.1 SPATIO-TEMPORAL IMAGE MODELING

Let the observed video sequengdse considered to be 3-D volume consisting of
spatio-temporal image frames. For video, at a given timg represents the im-
age at time and hence is a spatial entity. Each pixeljns a site s denoted hy;
and hencey,; refers to a spatio-temporal representation of the 3-D veluideo
sequences Lat denote the segmented video sequencesaddnote the segmen-
tation of each video framg,. Instead of modeling the video as a 3-D model we
adhere to a spatio-temporal modeling. We matiglhs a Markov random Field
Model and the temporal pixels are also modeled as MRF. We modes Markov
Random Field model. The a priori distribution takes carehefspatial model of
X;, the temporal modeling taking careXf, X; | and.X,_, for second order, edge
feature modeling in temporal directions. In order to desémiv changes of the ob-
ject position, we also incorporate the change model intoaetc We compute the
changes from consecutive changes frames and the changasarecorporated
in the a priori model. We compute the changes finding out tlaagl detection
mask. In order to preserve the edge features, another MREImsdonsidered
for the pixel of the current frame,; and the line fields of;_; andz;_». Thus,
four MRF models are used as the spatio-temporal image mobeltwo temporal
direction MRF models are shown in Fig. 1. (a) and (b). Fig. d). dorrespond
to the interaction of pixet,; with the corresponding pixels of,_; andz;_, and
respectively. The MRF model taking care of changes in teadmbrection of the
framex;_; andz,_, together withx; are modeled as MRF. It is known thatif,

is MRF then, it satisfies the markovianity property in sgatieection

P(Xst = Tst | th - xqtavqesv S 7& Q)

= P(Xst = Tst | th = Tqt, (q,t)éns,t)
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wheren; , is denoted the neighborhood of (s,t) and S denotes spatiaté af the

frame X,. For temporal MRF, the following markovianity is satisfied.

P(Xst = Tst | qu = qu7 q 7£ t,p # S,V(S,t)EV)

= P(Xo = 75 | Xpg = Tpg, (P, Q)eMs 1)

where V denotes the 3-D volume of the video sequence. InadplimainX;

is modeled as MRF and hence the prior probability can be egpreas Gibb's

—U(Xt)

distributed which can be expressedsX;) = e~ 7~ where z is the partition

—U(zy)

function which is expressed as= Y, e~ 7, U(X,) is the energy function and

expressed a8 (X;) = > .cc Ve(z;)) andV,(z,) denotes the clique potential func-
tion, T denotes the temperature and is considered to be ¥W@have considered

the following clique potential function.

Vila) = { tasifa # wpand(s ), (p,)eS

—atifrgy = xyand(s,t), (p,t)eS

+0 vifrs # vgand(s,t), (¢,t)eS
%ec(x) =
—B rifrg = xgand(s,t), (¢, t)eS
Analogously in the temporal direction
+v rifrg # xeand(s,t), (e,t)eS
‘/teec(x) =
—v tifag = xeand(s,t), (e,t)eS
For the change model, the CDM for different frames are ddtedhwith the
CDM, the clique potential function is defined as

Vn () +0 rifrg # xqand(s,t), (¢, t)eS
tch =
=0 rifrgy = xqand(s,t), (¢, t)eS
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(i)

(@)

Frame: f-1

Frame : f

Line field: f-1

Line field:f

Line field: f-2

Change Frame: A f-1

Change Frame: Af-2

(d)

Figure 5.1: (a) MRF modeling in the spatial direction (b) MRI6deling taking
two previous frames in the temporal direction (c) MRF witlotadditional frames
with line fields to take care of edge features (d) MRF with twarmge frame to

incorporate changes

76



5.1.1 Spatio-temporal Segmentation in MAP frame work

The Segmentation problem is cast as a pixel labeling problezhy be the ob-
served video sequence and be an image frame at time t andte deasite of the
imagey,. Correspondingly; is modeled as a random field apdis a realization
frame at time t. Thusy,; denotes as a spatio-temporal co-ordinate of the grid (s,
t). Let X denotes the segmentation of the video sequenceetnyd Idenote the
segmentation of an image at time t. L€t denote the random field in the spatial
domain at time t.X; is assumed to be MRF and for proper spatial segmentation
we model the prior probability incorporating the followin@) Clique potential
function in the temporal direction are incorporated. (iheTedge maps of each
frames is computed and the edge feature in the temporatidings considered to
preserve the edges.

Since, we focus on the detection of slow moving video objediée have
modeled the changes from frame to frame in the MRF-MAP fraorkw The
Change Detection Mask (CDM) of consecutive frames has beterrdined and
the changes are denoted As(;_;. In the prior model ofX; , the changes at
AX;_ 1 andAX; , atframeg — 1 andt — 2 are incorporated. The corresponding
cligue potential function is included in the prior distrtmn of X; .The observed
image sequences are assumed to be the degraded version of the segmented
image sequences X. For example at a given time t, the obséameéY; is con-
sidered as the degraded version of the original label fi§ld This degradation
process is assumed to be Gaussian Process. Thus, the |abeafide estimated
from the observed random field . The label field is estimated by maximizing

the following posterior probability distributions.

I = arg max P(X =z|Y =y,) (5.1)
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Wherez denotes the estimated labels. Sineés unknown it is very difficult to

evaluate (5.1), hence, using Baye’s theorem (5.1) can bheewas

PlY =yl X =2)P(X =1x)
PY =y)

(5.2)

T = arg max
T

Since y is known, the prior probabiliti’(Y" = y) is constant. hence (5.2)

reduces to
& = arg max PY =yl X=z0)P(X ==x,0) (5.3)

Wheref is the parameter vector associated witlAccording to Hammerseley
Clifford theorem, the prior probability’(X = z,0) is Gibb’s distributed and is

of the following form

P(X — x,) — 6-U($,9) — e[* chc[Vsc(m)‘l"/tec(1')+‘/teec(x)+v;tch(x)]] (54)

In (5.4) V.(x) the clique potential function in the spatial domain at timéd.(z)
denotes the clique potential in the temporal domainignd(z) denotes the clique
potential in the temporal domain incorporating edge feaandV;., (z)denotes
clique potential incorporating change feature. We hav@@sed this additional
feature in the temporal direction.(5.4) is called the edgelbl model. The corre-

sponding edgeless model is

P(X =) = ¢ V@0 — o™ X Vae(@)+Viee ()]
The likelihood functionP (Y = y|X = x) can be expressed as

PY=ylX=2)=Ply=xz+nX=2+0)=P(N=y—z|X=x+10)
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Since n is assumed to be Gaussian and there are three cortgpresent in

color, P(Y = y| X = z) Can be expressed as

PN =y — 2] X,0) = ——— 300K ) (5.5)
(2m)ndet [K]

Where k is the covariance matrix. Assuming decorrelatiothefthree RGB

planes and the variance to be same among each plane, (515 eapressed as

1
P(N=y—2|X,0) = ——¢ 3202 (5.6)
(2m)303
In (5.6) Variancer? corresponds to the Gaussian degradation. Hence (5.3) can be

expressed as

T
& = arg max b e%[*[ZcecWSC(I)*Vtec(m)“’teec(x”vﬁch(x)]]]

(2m)303
The a priori model having the three components is attribatetthe edgebased

model. In the following the clique potential correspondiogCDM of different

frames have been introduced. This is called the change Inaséel.

—lly—=|?
i» — arg max |:€_[ leQ ]+ZceC Vsc(l‘)‘f'vtec($)+‘/teec(1‘)+Vtch($)] (57)

Maximizing (5.7) is tantamount to minimizing the

T = arg min 5

Z ‘/sc + ‘/tec ) + V;feec(x> + %ch(x>] }(58)
ceC

z in (5.8) is the MAP estimate and the MAP estimate is obtainethb pro-
posed hybrid algorithm. The associated clique potentigdrpaters and the noise

standard deviation are selected on trial and error basis.
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5.2 VOP GENERATION

The Video Object Plane (VOP) is obtained by the combinatibremporal seg-
mentation result and the original video image frame. In @gscene we consider
objects as one class and background as the other thus hawuagcéass problem
of foreground and background. Therefore, the temporal seggtion results yield
two classes. We denofé)M; and B M, as the foreground and background part of
the C'D M, respectively. The region forming foreground part in the penal seg-
mentation is identified as object and is obtained by the seietion of temporal
segmentation and original frame ©®) P = num(F M, N y;) .Where the num (.)

is the function counting the number of pixel forming the pagof interest.

5.3 RESULTS AND DISCUSSION

Five different video sequences have been considered watalihe change based
MRF model. The a priori MRF distributions of the change basextlel have
additional model parameters besides edge based modelisloatbe, the model
parameterg;; andyu, have also been selected on a trial and error basis. Fig. 5.2
shows the Grandma video sequences. Fig. 5.2(d) shows thal segmentation
of edge based model and Fig. 5.2(i) shows results due to elrangel. The cor-
responding tracked objects are shown in Fig. 5.2(h) and %ig(l). The model
parameters selected are given in Table. 5.2, and the nagatason error is in
Table. 5.1. From Fig. 5.2(i) there are some misclassifiedlpix the shoulder of
the Grandma where as seen from Fig. 5.2(l)'tHesymbol indicates the centroid
of the object. The change based MRF model with the label freoudd better
detect the object than the edge based model. As observed prekiious section
the JISEG method yields segmentation result having mordamsstication error

than edgebased model.
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Similar observations are also made with the Akiyo video sege shown in
Fig. 5.3. In this case, comparing 5.3(f) and 5.3(l), it iseiyed that there are
some background information because of use of originalésawhere as with the
use of label frames the result has improved and the resd@tBigther improved

by use of the change based model.

Fig. 5.4 shows another video sequence with slow moving thjés observed
the spatial segmentation accuracy in case of change manehigarable with that
of the edgebased model. The detected objects in case ofehasgd model are
comparable with that of edgebased model with some of thedvaakd noise
being eliminated. Analogous observation are also madehfoContainer video
sequence shown in Fig. 5.5. A flag which could not be detectegeply could
be detected in case of change based model. Fig. 5.6 showssihiésrobtained
for the traffic sequence which has multiple objects in th@scés observed from
Fig. 5.6(k) and the change based model could detect the mmbpect while
other objects have been static and hence considered backhredgebased also
produced similar result with some dots as the backgrounsendilence even in
multiple scene the proposed method could track the objastseen from Table.
5.1 the misclassification error for traffic sequence is ldv@sscompared to JSEG

and edgebased model.
Thus, the change based MRF model exhibited improved acgcasamompared

to the edgebased model. The moving objects in this sequende be detected

for slow as well as moderately fast moving sequences
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(d) Segmentation of Frame No.12,13,14,15 with Edge basedpBond MRF Model,

e)/ele

(e) Temporal Segementation result of Frame No. 12,13, 145ty CDM of Original Frames

(f) Detected Moving Object of Frame No.12,13,14,15 usirsults(e)
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(g) Temporal Segementation result of Frame No. 12,13,14sirtg CDM of Label Frames

(i) Segmentation of Frame No.12,13,14,15 with Change Model

2332

() Temporal Segementation result of Frame No. 12,13,1dslisg CDM of Label Frames

() Tracked Object of Frame No0.12,13,14,15 using result (k)

Figure 5.2:VOP Generation of Grandma video sequences
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tation of Frame No0.75,76,77,78 with Edge basadoGond MRF Model

S |
(d) Segmen

(e) Temporal Segementation result of Frame No.75,76, A&y CDM of Original Frames

N / 2\
| | P N | | RS Y./
(f) Detected Moving Object of Frame No0.75,76,77,78 usirsults(e)
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(g) Temporal Segementation result of Frame No0.75,76,70s#& CDM of Label Frames

'I.' " '_-.
i ’{

(h) Detected Moving Object of Frame No0.75,76,77,78 usisglt€g)

X

(i) Segmentation of Frame No.75,76,77,78 with Change Model

FYFY

() Temporal Segementation result of Frame No0.75,76 717157@ CDM of Label Frames

] ‘-’ {1

I '.' ,|__'.
1 "" 4 .i:i"

(k) Detected Moving Object of Frame No.75,76,77,78 uswm;mfg)

X

‘-’ { £

(I) Tracked Object of Frame No0.75,76,77,78 using result (k)

|l
Figure 5.3:VOP Generation of Akiyo video sequences
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(d) Segmentatlon of Frame No 5,6,7,8 W|th Edge based CompMRF Model

Y VY

(e) Temporal Segementation result of Frame No 5,6,7 agLG[nM of Original Frames

(f) Detected Moving Object of Frame No.5,6,7,8 using resgalt
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(g9) Temporal Segementation result of Frame No.5,6,7,8uSIbM of Label Frames

(i) Segmentation of Frame No.5,6,7,8 with Change Model

VYV VY

(i) Temporal Segementation result of Frame No.5,6,7,80u6DM of Label Frames

i 1 3 4 y ’" _ _- l
(I) Detected Moving Object of Frame No.5,6,7,8 using regglt

Figure 5.4:VOP Generation of Suzie video sequences
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(

egmentation result with JSEG Scheme

me No.3,4,5,6 with Edgg based ConmpMRF M_odel
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(g9) Temporal Segementation result of Frame N.,4,5,6;]lL§IDM of LabeFrames

mi

0] Segmentatlon of Frame No.3,4,5, 6 W|th Change Model

(j) Temporal Segementation result of Frame No.3,4,5,60u6BM of Label Frames

(k) Detected Moving Object of Frame No.3,4,5,6 using re§llt

Figure 5.5:VOP Generation of Container video sequences
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(d) Segmentation of Frame No.3,4,5,6 with Edge based ContpbRF Model

(e) Temporal Segementation result of Frame No.3,4,5,&GDM of Original Frames

(f) Detected Moving Object of Frame No.3,4,5,6 using resgalt
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(g) Temporal Segementation result of Frame No.3,4,5,6uSIDM of Label Frames

(h) Detected Moving Object of Frame No.3,4,5,6 using re@)lt

f

(i) Segmentation of Frame No.3,4,5,6 with Change Model

(i) Temporal Segementation result of Frame No.3,4,5,60u6DM of Label Frames

(k) Detected Moving Object of Frame No.3,4,5,6 using reglt

Figure 5.6:VOP Generation of Cannada Traffic video sequences
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Video FrameNo. | JSEG | Edgebased | ChangeM odel
12 6.82 0.24 0.40
Grandma 13 3.77 0.30 0.40
14 4.29 0.25 0.39
15 4.20 0.29 0.12
75 6.20 0.12 0.12
Akiyo 76 4.90 0.12 0.18
77 5.50 0.10 0.19
78 5.40 0.10 0.22
4 2.55 0.10 0.15
Container 5 6.44 0.14 0.15
6 4.61 0.17 0.23
7 4.46 0.15 0.24
4 2.55 0.10 0.24
Suzie 5 6.44 0.14 0.24
6 4.61 0.17 0.24
7 4.46 0.15 0.24
3 5.95 0.1 0.19
CanadaTraf fic 4 8.23 0.41 0.16
5 16.65 0.52 0.13
6 7.1 0.46 0.21

Table 5.1: Percentage of Misclassification Error

VIDEO a 154 ¥ o pl | p2
Grandma | 0.05 | 0.009| 0.007| 5.19| 0.1 | 0.01
Akiyo 0.009| 0.008| 0.007| 2.0 | 0.1 |0.01
Suzie 0.01 | 0.007| 0.001| 3.34| 0.1 | 0.01
Container | 0.01 | 0.009| 0.001| 2.44| 0.1 | 0.01
Traffic Video| 0.01 | 0.009| 0.007| 3.0 | 0.01| 0.01
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Chapter 6

AN EVOLUTIONARY BASED
SLOW AND FAST MOVING
VIDEO OBJECTS DETECTION
SCHEME USING COMPOUND
MRF MODEL

It has been observed in the previous proposed scheme thatl §ggmentation
of each frame has to be obtained to find out temporal segn@mté&patial seg-
mentation of every frames is a time consuming procedure andeéhthe object
detection scheme takes appreciable amount of time. Thisd®the feasibility

of real time implementation. In order to reduce the componal burden, we

compute the spatial segmentation of a given frame using tbpoged spatio-
temporal approach. The spatial segmentation of subsedpaemés are obtained
starting from the segmentation of given frame with adaptasitrategy. Detec-
tion of video object at any frame is obtained using the fraogether with the

temporal segmentation. Spatial segmentation only onedranobtained using

spatio-temporal formulation of previous section [25].

In this piece of work, we propose a scheme that detects slomelisas fast
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moving objects. The proposed scheme is a combination oiosfethporal seg-
mentation and temporal segmentation. In this approachpierospatio-temporal
segmentation once for a given frame and thereafter, foregputent frames, the
segmentation is obtained by the evolution of the initialtEpeemporal segmen-
tation. We have proposed a Compound MRF model that takesot#ne spatial

distribution of the current frame,temporal frames, edgesria the temporal di-
rection. The MRF model parameters are selected on a triakaod basis. This
problem is formulated using MAP estimation principles [3bhe pixel labels are
obtained using the proposed hybrid algorithm.For the syeseat frames the ini-
tial segmentation evolves to obtain the spatial segmemtaiihis spatio-temporal
segmentation combined with temporal segmentation yidldsMOP and hence
Video Object detection. In our scheme for temporal segntiemawe use the
segmented frames as opposed to the original frames. Thigsrebtained by pro-
posed methods are compared with that of the JSEG [14] metitbd & observed

that the proposed method is found to be better than formeirotie context of

misclassification error.

6.1 PROPOSEDAPPROACHOF OBJECT DETEC-
TION

In this approach, we obtain the spatial segmentation ofradranown as the ini-
tial frame, The spatial segmentation is formulated in spegmporal framework
using edge based MRF model as in Section. 4. Hybrid algorithused to ob-
tain the MAP estimates of the pixel labels. Thereafter, sagation of successive
frames are obtained by evolving the labels of the initiaifes with the proposed
evolution strategy. Thus, estimation of labels of othemiea are not necessary.
In order to construct the VOP, temporal segmentation isiobthwith the labels

of different frames as opposed to the original frames. Ththy of the labels are
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being used to obtain the temporal segmentation (Globastimding is used for
to obtain the CDM). The VOP are constructed using the temm@gmentation
and the original frame sequence. Thus scheme avoids timeagisth of labels of
each frame. This reduces the computational burden and nitdkeasible for real

time implementation.

6.2 EVOLUTIONARY APPROACH BASED SEG-
MENTATION SCHEME

In order to detect fast moving objects, temporal segmemtaisually used and for
slow moving objects spatio-temporal segmentation has toolled with tem-
poral segmentation. Spatio-temporal segmentation in WP frame work is
computational intensive and hence computing spatial segahen of each frame
would incur high computational burden. Hence, we suggestdhowing evolu-
tionary approach to obtain spatial segmentation.

Lety; denotes the current frame anddenotes the corresponding spatial segmen-
tation. The next frame is denoted by, , and x4y denotes the initial spatial

segmentation for thg,, ;th frame.x ., 4); is obtained as follows,

T(ttdyi = Te— | Yera — Yt | TYitrd(yera—ye) (6.1)

Wherey; 4 ) denotes the change portion of tié frame to be replaced

Yt+d—Yt
in the tth segmented frame,. x4y serves as the initial spatial segmentation
for (¢t + d)th frame. lterated Conditional Mode (ICM) is run on the+ d)th

frame starting frome,.q); to obtain ther, 4. This process repeated to obtain

spatio-temporal segmentation of any other frame.

95



6.3 ITERATED CONDITIONAL MODE ALGORITHM

Since it is difficult to maximize the joint probability of an RF, Besag proposed
a deterministic algorithm called Iterated Conditional MedICM) which max-
imizes local conditional probabilities sequentially. TI@M algorithm uses the
greedy strategy in the iterative local maximization. Gittea datar and the other
Iabels,zfgk,)i, the algorithm sequentially updates eaﬁﬂ into zi(’““) by maximizing
P(z; | x,z5_;), the conditional probability, with respect to. Two assumptions

are made in calculating(z; | x, zs_y):

1. The observation componentg z», zs... z,, are conditionally independent
givenz and eachy; has the same known conditional density function; |

z; dependent only on;. Thus
(x| 2) = []plz: | 2) (6.2)
2. The second assumption is thatlepends on the labels in the local neigh-
borhood, which is the Markovianity.

From the two assumptions and the Bayes theorem, it folloats th
P(z | ,25-) < p(x; | z:)P(z | 2n,) (6.3)

Obviously,P(z; | x;, zk,) is much easier to maximize tha(z | z), which is the
point of ICM. Maximizing (4.18) is equivalent to minimiziripe corresponding

posterior energy using the following rule.

Zfﬂ «—— argmax U(Zz' ‘ Ty, ](\7]?> (6-4)
Zi
The result obtained by ICM depends very much on the inititirestor (> and
the ICM is locally convergent[35].
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6.4 SIMULATION AND RESULT DISCUSSION

We have considered four types of video sequences as show.if.E, Fig. 6.2,
Fig. 6.3 and Fig. 6.4. Fig. 6.1 and Fig. 6.4 corresponds tw slovements of the
sequence where as Fig. 6.2 and Fig. 6.3 corresponds to \edeesces with fast
moving objects. Fig. 6.1(a) shows Grandma image of 12th),32nd and 87th
frame. It is observed from these frames that there are slangds. The corre-
sponding ground truth image constructed manually are shiowig. 6.1(b). Fig.
6.1(c) shows the spatial segmentation obtained using th&EModel (Com-
pound markov Random Field Model) and hybrid algorithm. TheRvmodel pa-
rameters chosen are= 0.05, 3 = 0.009,~ = 0.007, 0 = 5.2. Fig.6.1(c) evolves
to produce the initial segmentation results correspontbntg, 24, 30 and 37th
frame as shown in Fig. 6.1(d). Using 37 th frame crude resufig. 6.1(d)
as the crude segmentation, ICM is run to obtain the segmentat 37th frame
as shown in Fig. 6.1(e). Analogously for the 62nd frame sedat®n result of
37th frame evolves to obtain crude segmentation of 62nddrasnshown in Fig.
6.1(f). ICM is run starting in 62nd frame crude result of F&1(f) and the seg-
mented results obtained for 62nd frame is shown in Fig. 6. Rgnilarly result is
obtained for 87th frame from evolving crude result of 87#mfie. The temporal
segmentation result obtained using the segmented restésith of original frames
are shown in Fig. 6.1(k) and the corresponding VOPs are shiowig. 6.1(1).
It is observed from these VOP that the objects (i.e Grandntia slow moments)
in different frames have been detected. Temporal segnmemiaging the original
frames are shown in 6.1(0). It is observed from these figuraisthere are some
white portion appearing near the solder of the Grandma #aatd to misclassifi-
cation. Thus, temporal segmentation obtained using thexeetpd frame yields
better VOPs than that of using the original frames. The tesldtained by JSEG

method is shown in Fig. 6.1(j). Th&age of misclassification error is given in
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Table. 6.2 and it can be observed that the proposed methdddsasisclassifica-

tion error as compared to JSEG method.

The time required for execution of the edgebased schemelsetQvhile the
time required for the evolving scheme is 9sec. Thus theretisi@a saving of
order 10. The scheme implemented iantium4(D), 3GHz, L2 cache 4M B
, IGBRAM, 667FSB PC. The execution time required for other sequences also
are much less as compared to the edgebased model.

The second video considered is the Akiyo video sequence@snsim Fig.
6.2. Fig. 6.2(c) show the spatial segmentation of 75th frasneg spatio-temporal
formulation and hybrid algorithm. The MRF model parametaes tabulated in
Table. 6.1. The evolutionary strategy is applied to 75tiniao obtain segmen-
tation of 79, 83, 87 and 95th frame as shown in Fig. 6.2(d). lI€un on 95th
frame crude result and the final segmentation is obtaineldo®s in Fig. 6.2(e)
. Other segmented result obtained using the evolving proeed shown in Fig.
6.2(g) and (i) .Segmentation of JSEG is shown in Fig. 6.Z())e video objects
could be detected properly. The third example considerdaei€ontainer video
sequence as shown in Fig. 6.3. Fig. 6.3(n) shows the deteativideo objects
with the evolving scheme and it is observed that the objedlddoe tracked with-
out any background effect.The time taken by the proposeeiselis also 10 times
less that of obtaining spatial segmentation of each frahmee4th example consid-
ered is the claire video sequence shown in Fig. 6.4. Simbaeorations are also
made in this case. Fig. 6.4(l) shows the tracked object u$iadgabel maps in
CDMs. Where as using original frames the results are showAginé.4(0). The
object detected using the label frame based CDMs are soeebetter than that
of using original frames. Thus the evolutionary approactebdescheme has much

less computational burden and hence is viable from real tiomplementation
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VIDEO Q@ I} v o
Grandma| 0.05 | 0.009| 0.007| 5.19
Akiyo 0.009| 0.008| 0.007| 2.0
Container| 0.01 | 0.009| 0.001| 2.44
Claire | 0.009| 0.008| 0.007| 1.00

Table 6.1: Parameters for diffrent videos of the given vieo

strategy.
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Video FrameNo. | Fvolving | JSEG
12 0.24 6.82

Grandma 37 0.15 4.65
62 0.15 4.5

87 0.12 3.88

75 0.12 6.20

Akiyo 95 0.10 1.62
115 0.15 1.65

135 0.15 1.80

4 0.10 2.55

Container 12 0.11 2.55
20 0.13 1.51

24 0.13 2.08

3 0.41 2.95

Claire 7 0.39 2.47
11 0.76 2.91

15 0.76 291

Table 6.2: Percentage of Misclassification Error

Video FrameNo. | EdgeBased | Evolving
Grandma 37 104 9
62 104 9
87 104 9
Akiyo 95 82 8
115 82 8
135 82 8
Container 12 112 12
20 112 12
28 112 12
Claire 7 94 8
11 94 8
15 94 8

100

Table 6.3: Time required for execution of the programme iooBd




(b) Ground truth of Frame No.12,37,62,87

(c) Segmentation of Frame No.12 with Edge based Compound M&tel

(f) Evolving Crude Result of Frame No. 41,47,53,62
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(g) Segmentation of Frame No.62 using Evolving Scheme

(j) Segmentation Result using JSEG Scheme

2233

(k) Temporal Segmentation Result using Segmented Resw CD

() VOP Extracted using Temporal Segmentation Result (i)
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(m) Tracked Moving Object

2322

(n) Temporal Segmentation Result using Original Frame CDM

(o) VOP Extracted using Temporal Segmentation Result (k)

Figure 6.1:VOP Generation for Grandma Video using Evolving Scheme

AN

(a) Original Frame No0.75,95,115,135

/
|

Lt

(

(b) Ground truth of Frame N0.75,95,115,135

(c) Segmentation of Frame No.75 with Edge based Compound M&tel
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(d) Evolving Crude Result of Frame No. 79,83,87,95

. 100,105,110,115

(h) Evolving Crude Result of Frame

(i) Segmentation of Akiyo video Frame No.115 using Evolviitheme
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)] Segmentatlon Resul using JSEG Scheme

Fy

(k) Temporal Segmentatlon Result using Segmented ReSLM CD

\B) | SReY § ARe)

(o) VOP Extracted using Temporal Segmentatlon Result (m)

Figure 6.2:VOP Generation for Akiyo Video
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(f) Evolving Crude Result of Frame No. 14,16,18,20
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(h) Evolvmg Crude Result of Frame No. 22,24,26, 28

(j) Segmentatlon Result usmg JSEG Scheme

H

(k) Temporal Segmentatlon Result using Segmented Reswit CD

(I) VOP Extracted by Evolving Scheme using Temporal Segatant Result (i)
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(n) VOP Extracted using Temporal Segmentation Result (k)

Figure 6.3:VOP Generated using Container Video

(b) Ground truth of Frame No.3,7,11,15

(c) Segmentation of Frame No.3 with Edge based Compound MBdéeM

(d) Evolving Crude Result of Frame No. 4,5,6,7
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(e) Segmentation of Frame No.7 using Evolving scheme

(f) Evolving Crude Result of Frame No. 8,9,10,11

(g) Segmentation of Frame No.11 using Evolving Scheme

(h) Evolving Crude Result of Frame No. 12,13,14,15

(i) Segmentation of Frame No0.15 using Evolving Scheme

() Segmentation Result using JSEG Scheme
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.

(k) Temporal Segmentation Result using Segmented Res CD

(m) Tracked Moving Object

(o) VOP Extracted using Temporal Segmentation Result (k)

Figure 6.4:VOP Generated using Claire Video
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Chapter 7

VIDEO OBJECT DETECTION
USING MRF MODEL AND
ADAPTIVE THRESHOLDING

Detecting regions of changes in video frames is of widespraterest due to
a large number of applications in diverse disciplines. Qeathetection is widely
used in video processing and analysis. Change detectieardsers employ many
common processing steps and core algorithms [3]. The chawagé& may result
from a combination of underlying factors, including ap@eee or disappearance
of objects, motion of objects relative to the backgroundstmape changes of ob-
jects. In addition, stationary objects can undergo chaimgbsghtness or color.
A key issue is that the change mask should not contain unitaoor nuisance
forms of change, such as those induced by camera motiomrseoise, illumi-
nation variation, nonuniform attenuation, or atmosphahsorption. The notions
of significantly different and unimportant vary by applicet, which sometimes
makes it difficult to directly compare algorithms. Estinmgtithe change mask is
often a first step toward the more ambitious goal of changerstanding: seg-
menting and classifying changes by semantic type, whiclllystequires tools
tailored to a particular application. Image differencimfjdwed by thresholding

is a popular method for change detection [9]. Thresholdiagga pivotal role in
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such change detection methods. Many thresholding metrenasiieen proposed
in literatures, however, few of them are specific to chandgedi®n. Threshold-
ing methods can be classified into gray-level distributiasdal [34] and spatial

properties based [24].

In this chapter we have obtained the temporal segmentatioense using the
notion of adaptive thresholding and feature entropy. Istaxy temporal segmen-
tation CDM, we have obtained from the original frames andgldahresholding.
The performance detoriates when the frames are noisy atiariin conditions
of illumination is there. Hence, the notion of adaptive #ivelding has been ap-
plied. The scheme also failed to give a good performanceeifeths a object
present in a background of multiple class. So a modified CDIdraposed to
obtain the change detection between the frames. we havesgdntropy based
adaptive thresholding to obtain appropriate CDMs and hémeenoving object
parts of the video sequence. However, the spatio-tempegahentation in MRF-
MAP framework, as mentioned in the previous section is ug@dbtain the spatial
segmentation. This spatial segmentation is combined wi#ptive thresholding
based temporal segmentation to construct the VOPs and tbhusgnobject de-
tection. The results obtained using adaptive thresholdifigund to be superior

to that of using global thresholding method.

7.1 ADAPTIVE THRESHOLDING

The problem that arises when illumination is not sufficignthiform may be tack-
led by permitting the threshold to vaaglaptively(or dynamically over the whole
image. In principle, there are several way of achieving.tlse involves mod-

eling the background the background within the image. Aawotb to work out
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a local threshold value for each pixel by examining the ramfgatensities in its
neighborhood. A third approach is to split the image intasdges and deal with
them independently. Though this last method will clearly mto problems at the
boundaries between subimages, and by the time these prohkara been solved
it will look more like one of the other two methods. Ultimatehll such methods
must operate on identical principles. The differencesarighe rigor with which
the threshold is calculated at different locations and éaimount of computation
required in each case. In real-time applications the proldenounts to finding
how to estimate a set of thresholds with a minimum amount ofputtation. The
problem can sometimes be solved rather neatly in the fotigwway. On some
occasions-such as in automated assembly applicatiogagdssible to obtain an
image of the background in the absence of any objects. Tipisaap to solve the
problem of adaptive thresholding in rigorous manner, sieetedious task of
modeling the background has already been carried out. Hawsyme caution is
needed within this approach. Objects bring with them noy shladows (which
can in some sense be regarded as part of the objects), buaraksaditional ef-
fect due to the reflections they cast over the background Hret objects. This
additional effect is nonlinear, in the sense that it is neagsto add not only the
difference between the object and the background intemsiach case but also
an intensity that depends on the products of the reflectanuairs of objects.
Since the threshold used for each pixel depends on the docafithe pixel
in terms of the subimages, this type of thresholding is adapt.et us consider
an example. All the subimages that didn’t contain a bountiatween object and
background had variances of less than 75. All subimagestong boundaries
had variances in excess of 100. Each subimage with variaeegéeg than 100 was
segmented with a threshold computed for that subimage asigpgf the global

thresholding algorithm. There may be three approachesrfdiniy the threshold
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a m1 T2 T3 T4
TS 76 77 T3
T3 T10 711 T12

Figure 7.1:Image having sizé// x N is divided into 12 non-overlapping subimages,
each of sizex x b, is thresholded by different threshol@d, T2, ..., T'12.
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in adaptive thresholding:
1. The Chow and Kaneko Approach
2. Local Thresholding Approach

3. Adaptive Window Approach

7.2 CHOW AND KANEKO APPROACH

Chow and Kaneko [36] proposed a method in 1972 which is widetpgnized
as the standard technique for adaptive thresholding. topas a thoroughgoing
analysis of the background intensity variation, making t&mpromises to save
computation. In this method , the image is divided into a fagarray of overlap-
ping subimages, and individual intensity histograms arestacted for each one.
Those that are unimodal are ignored since they are assuntéd pmvide any
useful information that can help in modeling the backgroimensity variation.
However, the bimodal distributions are well suited to thiskt These are individ-
ually fitted to pairs of Gaussian distributions of adjustalight and width, and
the threshold values are located. Thresholds are then fdyndterpolation, for
the unimodal distributions. Finally, a second stage ofrpa&ation is necessary to
find the correct thresholding value at each pixel.

One problem with this approach is that if the individual suages are made
very small in an effort to model the background illuminatimore exactly, the
statistics of the individual distributions become wor$eit minima become less
well defined, and the thresholds deduced from them are netaignificant i,e. it
does not pay to make subimages too small and that ultimaidyyeocertain level
of accuracy can be achieved in modeling the backgroundsmiay. The situation
is highly data dependent, but little can be expected to beeglaby reducing the

subimage size belod2 x 32 pixels. Chow and Kaneko employed6 x 256 pixel
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images and divided these intda< 7 array of64 x 64 pixel subimages with0%
overlap.

Overall, this approach involves considerable computatad in real-time ap-
plications it may well not be viable for this reason. Howeteis type of approach

is of considerable value in certain medical, remote sensing space applications.

7.3 LOCAL THRESHOLDING APPROACH

In real-time applications the alternative approach meibearlier is often more
useful for finding local thresholds. It involves analyzimgensities in the neigh-
borhood of each pixel to determine the optimum local thr&lihg level. Ideally,
the above histogram technique would be repeated at each puxethis would
significantly increase the computational load of this algeeomputationally in-
tensive technique. Thus, it is necessary to obtain the mtaimation by an effi-
cient sampling procedure. One simple means of achievisgsho take a suitably
computed function of nearby intensity values as the thigsl@ften the mean of
the local intensity distribution is taken, since this is mgle statistics and gives
good results in some cases.For example, in astronomicglesnstars have been
thresholded in this way.

Another frequently used statistic is the mean of the maxinamch minimum
values in the local intensity distribution. Whatever treesiof the two main peaks
of the distribution, this statistic often gives a reasoradstimate of the position
of the histogram minimum. The theory presented earlier shinat this method

will only be accurate if
1. the intensity profiles of object edges are symmetrical,

2. noise acts uniformly everywhere in the image so that thdthsi of two

peaks of the distribution are similar, and
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3. the heights of the two distributions do not differ marked|

Sometimes these assumptions are definitely invalid-fomg@, when looking
for(dark) cracks in eggs or other products. In such casesdan and maximum
of the local intensity distribution can be found, and a tho#dcan be deduced

using the statistic
T = mean — (mazimum — mean) (7.2)

where the strategy is to estimate the lowest intensity inbifight background
assuming the distribution of noise to be symmetrical. Uséhefmean here is
realistic only if the crack is narrow and does not affect tladug of the mean
significantly. If it does, then the statistic can be adjudtgduse of an ad-hoc

parameter
T = mean — k(maximum — mean) (7.2)

wherek may be as low as 0.5.

This method is computationally less intensive but they araesvhat unreli-
able because of the effects of noise. All these methods wetkonly if the size
of the neighborhood selected for estimating the requireestiold is sufficiently
large to span a significant amount of object and backgroundndny practical
cases, this is not possible and the method then adjustkatseheously, for ex-
ample, so that it finds darker spots within dark objects a$ agesegmenting the

dark objects themselves.

7.4 ADAPTIVE WINDOW BASED APPROACH

One of the primary disturbances sources id from unevenitighivhich often
exists in the capturing of an image, especially during figddration. The main

causes for uneven lighting are:
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1. the light may not be always stable

2. the object is so large such that it creates an uneventdistn of the light,

and

3. the background is unable to be optically isolated fromdshs of other

objects.

One possible solution to this problem is to partition the ighmage into cer-
tain small windows, and then use those existing methodsésliold each small
window. This process is called thresholding in partitioméddows. The smaller
the window size is, the better the result will be. Howeverewlthe window size
becomes too small, it can produce the problem of homogeneomdows, i.e.,
windows contain only background or object pixels. As a consace, black ar-
eas called ghost objects will occur after thresholding.réfuege, there is a need to
develop a new technique for automatically selecting wind@® in order to ob-
tain optimal result i.e., adaptive window selection. Tleishinique is based on the
pyramid data structure manipulation, and the window sizdesptively selected

according to Lorentz information measure.

7.5 ENTROPY

The entropy of a system as defined by Shannon [37] gives a meeatour ig-

norance about its actual structure. In the context of in&drom theory, shannon’s
function is based on the concept that information gain fronewent is inversely
related to its probability of occurrence. The logarithmehhvior of entropy is

considered to incorporate the additive property of infaiora
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7.5.1 Shannon’s entropy

Shanon defined the entropy of an state system as

H=—- Zpi log, p; (7.3)

wherep; is the probability of occurrence of the evergnd
Yopi=1 0<p <1 (7.4)

In case of a binary system, the entropy becomes

H =plogyp— (1 —p) logy(1 —p) (7.5)

The entropy H is claimed to express a measure of ignorancet dbe actual
structure of the system. In order to explain why such an esgpoe is taken as
a measure of ignorance, let us critically examine the pbpby behind shanon’s
entropic measure with an example given below.

Suppose a six-faced die, covered with a box, is placed oneaall someone
is asked to guess the number on the top most face of the diee 8ia exact state
of the die is not known, he/she can describe the state of theydthe probabil-
ity distribution of occurrences of different faces on thp.tdn other world, the
state of the die can be expressed by specifying = 1,2, ..., 6; wherep; is the
probability that theth face is the topmost face. Obviously,

6
0<p; <1 and > p=1
=1
When the box is opened, the state of the die becomes knowndadigve gain
some information. A very natural question arises, How muébrmation did we
gain ?
Let pr, = max; p; :the most probable event apg = min, p; :the least proba-

ble event. Now, if th&th face appears on the top, the gain in information would
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be minimum, whereas the occurrence of th&: face on the top would result in
the maximum gain.

Thus we see that the gain in information from an event is sefgrrelated
to its probability of occurrence.This, of course, intuiliy seems all right. For
example, if somebody says, "The sun rises in the east”, foemation content of
the statement is practically nil. On the other hand if onesséye is ten feet in
height”, the information content of the statement is veghhias it is an unlikely

event. A commonly used measure of such a gain is

Al =log, (1/p1) = —log, (p:) (7.6)
In order to justify the logarithmic function, the followirgpints can be stated:

1. It gives additive property of information. To make it malear, suppose
two independent evenis andn with probabilities of occurrencg,, andp,,

have occurred jointly, then the additive property says

where(p,, - p,) is the probability of the joint occurrence of the events m
and n. Thus the additive property can be stated as follows.iffformation
gain from the joint occurrence of more than one event is eigule sum of

information gain from their individual occurrence.

2. The gainin information from an absolutely certain eveiz&ro, i.e. Al (p; =

1) = 0.

3. Asp; increases)\I(p;) decreases. Gain in information from the experiment

can be written as
H=FE(AI) =-— Zpi log, p; (7.8)
The value of H denotes the entropy (shanon’s entropy) ofybtem.
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7.5.2 Entropic measures for image processing

Based on the concept of Shanon’s entropy, different authers defined entropy
for an image and its extension to fuzzy sets. Let us conslieset measures
and the associated problems when applied to image progeasihrecognition
problems.

Let X = [X (m,n)]pxg be animage of siz€ x @, whereX (m, n) is the gray
value at(m,n); X(m,n) € G, =0,1,..., L — 1, is the set of gray levels. L&Y,
be the frequency of the gray levelThen

L—-1

Y Ni =P x Q= N(say) (7.9)

=0
Lets consider the gray level histogramXfan L— symbol source, independently
from the underlying image. In addition to this, they alsousssd that these sym-
bols are statistically independent.

Following Shanon’s definition of entropy from (7.3), the reply of image
(histogram) is defined as

L-1

H=— Z p; logy pi (7.10)

7.6 PROPOSED METHODS

The proposed method of section 3.4 based on the Lorentzniafiton measure
and is greatly dependent on the proper choice of initial windgize. In order
to ameliorate this situation, we propose a method of windoawing instead of

window merging.

7.6.1 Window growing based on feature entropy

The basic notion of window growing is to fix the window sizerpairily focussing

on the information measure of the image at different scal@ther words, fixing
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the size of the window not only depends on the entropy of tliseh window but
also the feature entropy of the window. The edges of the wirate considered as
the features and the feature entropy is computed. Sincedidpe map represents
the image information at a different scale, the entropy & $icale also plays
a pivotal role for image segmentation. Thus, the basic nasao capture the
information at a different scale. It is known that entropy te
¢ 1
H, = Zpi log, (—) (7.11)
i=1 Di
wherep; is the probability distribution of théh gray value,H,, denotes entropy
of the window,G denotes the total number of gray values. Over a given window,
the edge map is computed and the entropy of the edge map is
¢ 1
Hyp = py, log, (—) (7.12)
=1 Py
whereH,,; denotes the entropy of the edge map of the window. The fofigwi

are the two proposed window growing criterion.
case |: WG-I
The window is fixed if the following is satisfied
H, >Th (7.13)
whereTh is selected based on the entropy of the total image.
case Il: WG-II

The following criterion is considered for window fixing aftidne grow of the win-

dow.

H,>Th

subject to the constraint, H,y > Thy (7.14)
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IHTIL

(mta)x(nth)

Imt2alxint2b)

Figure 7.2: lllustration of Window growing method

(mtalxinth)

imt2alxinti2b)

Figure 7.3: lllustration of Window growing method
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The threshold§'h andT'h for the above inequality are chosen based on the total
entropy of the image and that of edge map respectively. Eoafly, it is found
that the thresholds are closer to the entropy of the wholgéwand whole edge
map.

Figure 4.1 shows the illustration of window growing methédtst a window
of sizem x n is chosen and it is merged with sizex b to make a window of size
(m+ a) x (n + b) and so on till condition is not satisfied. Figure 4.2 shows,tha
after fixing of one window, another of size x n started from adjacent side. The

followings are the salient steps of the algorithm.
Algorithm
1. Choose a window of size.

2. Determine the entropy from the gray value distributiortred considered

window.

3. Compute the edge map and determine the entropy of the edgefihe

window.

4. Choose two thresholdsh andT'h; and test the conditions of the (7.13) and
(7.14).

5. If the window is fixed, then start from the next window. Iftfixed, then

increase the window size ly) — 25.

(o2}

. Repeat steps 2-5 till he whole image is exhausted.

7.7 PROPOSED CDMs

Usually, CDM is obtained by taking the difference of the ora frames, which

fails to give satisfactory result in case of a object presetiit multiple class back-
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ground, situation where there is less variation in the geaell of the object.
Hence, a modified CDM is proposed. Initially we take the abisotifference
of the estimated labels of consecutive frames iyg #ndy; _; are two consecutive

frames, and;; andz;_, are the estimated labels a new sequence is obtained using

Ta—y = |Ty — 21| (7.15)

a new sequence af;_; is created and the CDM is the difference of this con-

secutive frames of this sequence. Thus, the modified CDM is

CD My, = [T(a-1), — T(a-1),.| (7.16)

This C'DM,, is subjected to adaptive thresholding to obtain tempomginsanta-

tion.

7.8 OBJECTDETECTION USING ADAPTIVE THRESH-
OLDING

In this scheme also the spatial segmentation of each fraoi#ased. The spatio-
temporal framework as given in Section. 4 is used to obtaridbels of a given
frame. The video sequence is modeled as Compound edgebd®EdchiMi the
pixel labeling problem is formulated using MAP estimatiaiterion. The MAP
estimates are obtained using the hybrid Algorithm. Thusstatial segmentation

of individual frames are obtained.

The proposed adaptive thresholding is used to obtain thpdeahsegmenta-
tion. Initially the CDMs are obtained using difference oé thstimated labels and
because of noise where the CDM becomes noisy. This noisy Giiidn used for

the temporal segmentation yields noises and hence wromgtodbgtection. The
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proposed entropy based adaptive thresholding schemedsu§®Ms to obtain
the moving objects while eliminating noises. The windowvgrgy based adap-
tive scheme is used to obtain a accurate CDMs. The tempagyaiesgation is
obtained with the CDMs while using the history of the pixdléés. Thereafter the
VOPs are constructed and hence the object is detected slacheme, the noises

in CDMs that otherwise have falsely detected moving objartsavoided.

7.9 SIMULATION AND RESULTS DISCUSSION

In this chapter the object detection is based on spatial setation and tempo-
ral segmentation. The edgebased MRF model is used and theddifkRates are
obtained by Hybrid Algorithm. In simulation five differenk@mples have been
considered. The first example is the Grandma video sequenskaavn in Fig.
7.4. The edge based MRF model is used and the spatial segroemsaobtained
as shown in Fig. 7.4(c). The temporal segmentation is obtausing the CDM
and global thresholding. These are shown in Fig. 7.4(e). dljject detected
is shown in Fig. 7.4(f) where there are some background pireflected in the
foreground. Some noisy pixels are still present with thedoound. Temporal
segmentation obtained using adaptive thresholding is shiowig. 7.4(g) where
it can be observed that noisy pixels are absent and hencetéeted objects us-
ing this are shown in Fig. 7.4(h). It can be seen that the brackgl pixels earlier
reflected is absent and the objects are detected corredtlthartracking is done

accordingly. The MRF model parameters are tabulated ineTabl.

The second example considered is the Claire Video sequé&oeensn Fig.
7.5. As observed from Fig. 7.5(e) in the temporal segmentatising global

thresholding, some portion of the object such as portiom fthe head is miss-
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ing. In case of the temporal segmentation using adaptiestimding, the above
missing portion appear in the object. Hence, in the detgoéetof the moving
object is the complete object itself. Thus, adaptive tho&ihg could eliminate

the background noises and hence the moving objects coulddiest!.

The next three sequences are traffic sequences with singlagnabjects or
multiple moving objects. Fig. 7.6 shows the results forfitasequence having
three moving objects. The global thresholding approacéated two objects(Car
and the man) as shown in Fig. 7.6(f). As observed from Fig(hJ,&sing adap-
tive thresholding approach two object could be detected.ti@nsecond traffic
sequence as shown in Fig. 7.7, the single object is detectedse of adaptive
thresholding where as in global thresholding the back porif the car is missing
as seen from Fig. 7.7(e). Fig. 7.8 shows the case of multigeimy objects
and global thresholding approach produce results with maisging parts of the
moving object as seen from Fig. 7.8(e) and Fig. 7.8(f). Fig(lM) shows the
results obtained using adaptive thresholding approackrevit can be seen that

all the parts of the moving object has been detected.

The last example is shown in Fig. 7.9 where the original frauae blurred
ones. Use of global thresholding in temporal segmentatamlbts of missing
parts of the moving objects as seen from Fig. 7.9(e). Adaptivesholding could
detect the objects fully as shown in Fig. 7.9(h). Thus theppsed adaptive

thresholding could take care of blurred situation.
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(d)Segmentation result with JISEG Scheme

2333

(e)Temporal Segementation result of Frame No.12,37,6258%y CDM of segmented Frames

(HDetected Moving Object of Frame No.12,37,62,87 usirgyits(e)
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2338

(g)Temporal Segementation result of Frame No0.12,37,62s8% proposed CDM and adaptive thresholding

(D Tracked Moving Object of Frame No0.12,37,62,87 usingus$g)

Figure 7.4:VOP Generation of Grandma video sequences

(c) Segmentation of Frame No.3,7,11,15 with Edge based GontbMRF Model
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(HDetected Moving Object of Frame No.3,7,11,15 using ltsée)

(g)Temporal Segementation result of Frame No.3,7,11,kgysoposed CDM and adaptive thresholding

(i) Tracked Moving Object of Frame No.3,7,11,15 using regg)

Figure 7.5:VOP Generation of Claire sequences
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(d)Segmentation result with JSEG Scheme

- ‘I

(e)Temporal Segementation result of Frame No.3,4,5,&USDM of Label Frames

(HDetected Moving Object of Frame No.3,4,5,6 using refyit
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(g)Temporal Segementation result of Frame No.3,4,5,6usiaposed CDM and adaptive thresholding

(h)Detected Moving Object of Frame No.3,4,5,6 using resgjt

Figure 7.6:VOP Generation of Canada Traffic Video sequences

(c) Segmentation of Frame No.3,4,5,6 with Edge based ContbMRF Model

132



(d)Segmentation result with JISEG Scheme

(e)Temporal Segementation result of Frame No.3,4,5,&uGMDM of segmented Frames

(HDetected Moving Object of Frame No.3,4,5,6 using regalt

(g)Temporal Segementation result of Frame No.3,4,5,6usiaposed CDM and adaptive thresholding

(h)Detected Moving Object of Frame No.3,4,5,6 using re¢g)t

() Tracked Moving Object of Frame No.3,4,5,6 using reggls

Figure 7.7:VOP Generation of Traffic video sequences
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e . ——

(c) Segmentation of Frame No.3,4,5,6 with

.,

(HDetected Moving Object of Frame No.3,4,5,6 using regalt
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(c) Segmentation of Frame No.3,4,5,6 with Edge based ConthMRF Model
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(d)Segmentatlon result with JISEG Scheme

(e)TemporaI Segementation result of Frame No.3,4,5 EigLGIDM of segmented Frames

(h)Detected Moving Object of Frame No.3,4,5,6 using resgjt

Figure 7.9:VOP Generation of Sequence video sequences
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VIDEO Q@ I} ~y o
Grandma 0.05 | 0.009| 0.007| 5.19
Claire 0.009| 0.008| 0.007| 1.00
Traffic Cannada| 0.01 | 0.009| 0.007| 3.0
Traffic Car 0.01 | 0.009| 0.007| 3.0
Traffic Sequence 0.009| 0.008| 0.007| 3.0
Traffic Car-2 0.01 | 0.008| 0.007| 4.0
Traffic Bus 0.01 | 0.009| 0.007| 3.0

Table 7.1: Parameters for diffrent videos of the given vieo
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Video FrameNo. | Fvolving | JSEG

12 0.24 6.82

Grandma 37 0.15 4.65

62 0.15 4.5

87 0.12 3.88

3 0.41 2.95

Claire 7 0.39 2.47

11 0.76 291

15 0.76 291

3 0.1 5.95

CanadaTraf fic 4 0.41 8.23
5 0.52 16.65

6 0.46 7.1

3 0.75 9.56
Traf ficCar 4 0.41 10.44
5 0.65 7.56
6 0.61 22.05
3 1.41 15.03
Traf ficSequence 4 1.25 11.50
5 1.33 15.19
6 0.84 17.73

3 1.53 7.02

Traf ficCar — 2 4 1.54 7.82
5 2.37 6.49

6 1.37 5.83

3 6.10 0.18

Traf ficBus 4 5.27 0.40
5 4.97 0.44

6 5.10 0.39

Table 7.2: Percentage of Misclassification Error
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Chapter 8
CONCLUSION

In this dissertation, the problem of slow as well as fast mgwideo objects
detection is addressed. Initially the existing temporghsentation with CDMs
could detect fast moving video objects but failed with sloaming video objects.
In the scheme it has been assumed to have the reference ftdtan.in practice
reference frame may not be available. Therefore the proldarmulated using

spatio-temporal framework.

The spatial segmentation problem is considered in supegwisode where the
model parameters are assumed to be known a priori. A compgdiRieimodel is
proposed to model the video sequence. In the first case, theragstribution
of the model takes care of the pixel distribution of a framatsly and also the
pixel distribution in the temporal directions. This is ealledge less MRF model.
The edge features in the temporal directions are extractédree MRF a priori
distribution is modified to take edge features in the temipdiractions besides
the edge features in the spatial domain. This model has be@®edas the edge
based model. The spatial segmentation problem is fornmtlkea pixel labeling
problem and the pixel labels are estimated using MAP esitimatiterion. Simu-

lated Annealing algorithm used to obtain the MAP estimatdsas been observed
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that SA is computationally involved and hence takes appbdéeiamount of time
to converge to the solution. Hence, a Hybrid Algorithm exiptg the globally
convergent features of SA and the local convergent featfri€3M is proposed to
obtain the MAP estimates. The proposed algorithm is foutetmuch faster than
that of SA. It is approximately 10 or more times faster thaat thf SA. The only
bottleneck was to fix the epochs for global convergence omlsaind error basis.
The results obtained by the Hybrid Algorithm are found to benparable with
that of SA. Thus a substantial saving in computational timdat be achieved. As
far as the proposed MRF model is concerns, it is proved to keffanrent model
for modeling the video sequences. The only bottleneck okteme is that the

model parameters are selected on a trial and error basis.

The performance of the scheme could further be improved laynging the
model. The changes of the frames were obtained by taking iffexeshce is
CDMs were obtained. The CDMs for difference are assumedve $@ame tempo-
ral dependence and continuity and hence the changes ammatiged as MRFs.
Hence, the a priori distribution of MRF distribution not gdok care of the edges
of the temporal sequences but also took into account thegelsan the temporal
direction. This model is known as the Change based MRF mobaks model
proved to be more efficient than the other models. Tempogahsatation in this
case is obtained using CDMs together with the history of #ieels. Here the
CDMs are obtained by taking the difference of the estimadedlks of each frame
rather than the original frames. This scheme with this mpdeled to be best
among edge based and edgeless approaches. The above selygite compu-
tationally involved because in spatial segmentation ofyeireage frame has to
be obtained. This prohibited from the idea of running theesaé for real time

sequences.
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In order to make a viable scheme from the practical stand pamevolution-
ary approach based segmentation scheme is proposed. brh@me, segmen-
tation of only one frame has to be obtained by spatio-temp@ae with MAP
estimation principle. The rest of the label maps of difféfeames are obtained
by evolving the label map of the initial frame with the propdsevolution strat-
egy. This reduced the computational burden appreciably, feading a stepping
stone for real time implementation. Here also the temp@gireentation uses the
labels of different frames as opposed to the original frartdsas been observed
that there are some errors in the object detection and trgcki was due to the
presence of noise in the CDMs reflected from original franresadation of illu-

mination in the original frames.

Hence, to take care of such situations an entropy basediagldpteshold
strategy is proposed to eliminate the noises in CDMs. Th@teat segmentation
and the VOPs thus constructed are found to be better thathelt methods. All
the proposed scheme are supervised in native because #megqiars are selected
on trial and error basis. the schemes can be made unsugkwitbeestimation of
model parameters together with the labels. Model paranestenation is worth

pursuing. Fusing label fields to obtain improve resultsse aorth pursuing.
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