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ABSTRACT 

Many electronic devices, instruments and sensors exhibit inherent nonlinear input-output 

characteristics. Nonlinearity also creeps in due to change in environmental conditions such as 

temperature and humidity. In addition, aging of the sensors also introduce nonlinearity. Due to 

such nonlinearities direct digital readout is not possible. As a result the devices or sensors are 

used only in the linear region of their characteristics. In other words the usable range of these 

devices gets restricted due to nonlinearity problem. The accuracy of measurement is also 

affected if the full range of the instrument is used. The nonlinearity present in the 

characteristics is usually time-varying and unpredictable as it depends on many uncertain 

factors stated above. Hence the prime objective of the thesis is to study the nonlinearity 

problem associated with these devices and suggest novel methods of circumventing these 

effects by suitably designing intelligent systems. In the present investigation, sensors such as, 

capacitive pressure sensor (CPS), linear variable differential transformer (LVDT) and control 

valve actuator are selected for adaptive linearization. In corporation of the intelligent inverse 

model is in series with the nonlinear device alleviates the associated nonlinearity and permits 

accurate measurement for the full dynamic range. The existing fixed type nonlinearity 

compensators are not be effective for time varying nonlinear devices. However, adaptive 

techniques using Artificial Neural Network (ANN) are better candidates for solving such 

problems. Therefore, in the present thesis, the following major tasks have been carried out.  

(i) Development of adaptive system identification model (direct model) of the CPS for 

analyzing the inherent time varying nonlinearity present in their characteristics mainly 

due to the variation in temperatures, 

(ii) Development of an inverse model of the CPS for the full range of operations and 

placing in series with the device for achieving time varying nonlinearity compensation. 

These models (direct and inverse) have been developed using: 

(a) Adaptive tap-delay filter  

(b) The Multi-Layer Perceptron (MLP)  

(c) The Radial Basis Function based Neural Network (RBFNN) 

(d) The Functional-Link Artificial Neural Network (FLANN) 
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(iii) To assess the performance of the direct and inverse models in real-time 

implementation, fixed-point analysis is required. Hence, the effect of fixed-point 

implementation of the low complexity FLANN based direct and inverse model of the 

CPS has been analyzed. The performance of fixed-point FLANN model at different 

word lengths has been evaluated.  

(iv) An adaptive nonlinear compensator (or inverse model) of the LVDT by taking the 

experimental data has been developed. Different ANN models used to develop the 

adaptive nonlinear compensators are: 

(a) The MLP 

(b) The FLANN 

(c) The Cascaded FLANN (CFLANN) 

This models when connected in series with the LVDT offers extended linearity 

characteristics. The overall system provides accurate measurement for the whole range. 

The performance comparison in terms of computational complexity and accuracy of 

measurement of various models has been made.  

(v) Nonlinearity compensator of equal percentage control valve actuator have also been 

developed using the following adaptive techniques:  

(a) The LMS filter 

(b) The MLP 

(c) The FLANN 

The performance of various adaptive models and their comparisons has been assessed using 

three typical sensors. It is demonstrated that the FLANN model provides quite satisfactory 

performance and involves less complexity. Hence the FLANN based intelligent models are 

preferable compared to the MLP and RBFNN based compensators. 
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Chapter 

1 
 

 

Introduction 
 

 

 

HE SENSORS are devices which, for the purpose of measurement, turn physical 

input quantities into electrical output signals, their output-input and output-time 

relationship being predictable to a known degree of accuracy at specified environmental 

conditions. The definition of sensors or transducers according to The Instrument Society of 

America is “a device which provides a usable output in response to a specified measurand”. Here the output is 

an ‘electrical quantity’ and measurand is a ‘physical quantity’ [1.1-1.3]. It can also be defined as an 

element that senses a variation in input energy to produce a variation in another or same form of 

energy is called a sensor, whereas, transducer involves a transduction principle which converts a 

specified measurand into an usable output. 

T 

This Chapter deals with the fundamental of the sensors and their characteristics. Section 1.1 

deals with the sensor fundamental along with its characteristics. The literature survey is discussed 

in Section 1.2. Problem formulation of the thesis is depicted in Section 1.3. Finally the Chapter-

wise organization of the thesis is presented in Section 1.4.  
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I N T R O D U C T I O N  

1.1 Sensor Fundamentals 

The sensor consists of several elements or blocks such as sensing element, signal conditioning 

element, signal processing element and data presentation element [1.2]. 

Sensing element: This is in contact with the process and gives an output which depends in some 

way on the variable to be measured. Examples are: thermocouple where millivolt emf depends 

on temperature, capacitive pressure sensor where capacitance of a chamber depends on 

pressure, linear variable differential transformer where emf at the secondary coil depends on 

displacement, etc. 

If there is more than one sensing element in a system, the element in contact with the process is 

termed the primary sensing element, the others secondary sensing elements. 

Signal conditioning element: This takes the output of the sensing element and converts it into a form 

more suitable for further processing, usually a dc voltage, dc current or frequency signal. 

Examples are: deflection bridge which converts an impedance change into a voltage change, 

amplifier which amplifies millivolts to volts, etc. 

Signal processing element: This takes the output of the conditioning element and converts it into a 

form more suitable for presentation. Examples are: analog-to-digital converter (ADC) which 

converts a voltage into a digital form for input to a computer; a microcontroller which calculates 

the measured value of the variable from the incoming digital data. 

Data presentation element: This presents the measured value in a form which can be easily 

recognized by the observer. Examples are: a simple pointer-scale indicator, chart recorder, and 

alphanumeric display etc.  

 

Sensing 
element 

Signal 
conditioning 

element 

Signal 
processing 

element 

Data 
presentation 

element 

Input Output
 

True 
value 

Measured 
value 

 
Fig. 1.1 General structure of a sensor
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I N T R O D U C T I O N  

1.1.1 Characteristics of Sensor 

Sensors or all measurement systems, have two general characteristics [1.3], i.e. (i) static 

characteristics, and (ii) dynamic characteristics. 

The Static characteristics comprise of: 

(a) Accuracy: These characteristics specified by error. And it is given by, 

( )% 100a m t tx x xε = − ×  (1.1)

where t is for true value, m for measured value and variable x stands for measurand. This is often 

expressed for the full scale output and is given by, 

( ) 100% m t
fso

fso

x x
xε − ⋅=  (1.2)

Obviously,  

fso aε ε≤  

For multi error systems the overall performance in terms of error can be assessed either through 

(i) the worst case approach which assumes that all errors add in the same direction so that the 

overall error is very high being the linear sum of all the performance errors, or through (ii) the 

root mean square approach which is optimistic as well as practical, when the total performance 

error can be assessed as, 

1
2

2
o i

i
ε ε⎧ ⎫

= ⎨ ⎬
⎩ ⎭
∑  (1.3)

(b) Precision: It describes how far a measured quantity is reproducible as also how close it is to 

the true value.  
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I N T R O D U C T I O N  

A term repeatability is similar to precision 

which is the difference in output y at a given 

value of the input x when this is obtained in 

two consecutive measurements. It may be 

expressed as % Full-scale Output (FSO). Fig. 

1.2 shows the repeatability.  

(c) Resolution: It is defined as the smallest 

incremental change in the input that would 

produce a detectable change in the output. 

This is often expressed as percentage of the 

measured range, MR. The measured range is defined as the difference of the maximum input 

and the minimum input, max minx x MR− = . For a detectable output , if the minimum 

change in x is (

y∆

)min
x∆ , then the maximum resolution is  

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

x (% range)

y 
(%

 F
SO

)

xm

Repeatabilty

Fig. 1.2 Repeatability in y-x coordinates

( ) ( )max min
% 100R x= ∆ MR  (1.4)

Over the range of operation an average resolution has also been defined as 

( ) ( )
1

% 100
N

av i
i

R x n MR
=

= ∆ ⋅∑  (1.5)

(d) Minimum Detectable Signal (MDS): Noise in a sensor occurs due to many reasons - 

internal sources, or, fluctuations due to externally generated mechanical and electromagnetic 

influences. Details of noise are considered on individual merits and often an equivalent noise 

source is considered for test purposes. 

If the input does not contain any noise the minimum signal level that produces a detectable 

output from the sensor is determined by its noise performance or noise characteristics. For this, 

the equivalent noise source is connected to the input side of the ideal noiseless sensor to yield an 

output which is the actual output of the sensor. The MDS is then taken as the RMS equivalent 

input noise. When a signal exceeds this value it would be detectable signal. 

(e)Threshold: This is the smallest input change that produces a detectable output at zero value 

condition of the measurand. 
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I N T R O D U C T I O N  

(f) Sensitivity (S): This is defined as the ratio of the incremental output ( ) to incremental 

input ( ), i.e.  

y∆

x∆

S y= ∆ ∆x  (1.6)

In normalized form this is written as 

( ) ( )nS y x y= ∆ ∆ x  (1.7)

If sensitivity changes or the output level changes with time, temperature and/or any other 

parameters without any change in input level, drift is said to occur in the system which often 

leads to instability. 

(g) Selectivity and Specificity: The output of a sensor may change when affected by 

environmental parameters or other variables and this may appear as an unwanted signal. The 

sensor is then said to be non-selective. It is customary to define selectivity or specificity by 

considering a system of n sensors each with output yk (k=1, 2, …, n). The partial sensitivity Sjk is 

defined as the measure of the kth sensor to these other interfering quantities or variables xj as 

jk kS y jx= ∆ ∆  (1.8)

A selectivity matrix would thus be obtained with Sjk as jkth entry. Obviously, an ideal selective 

system will have only the diagonal entries Sjj in the selectivity matrix. An ideally specific system is 

characterized by having a matrix with a single element in the diagonal. The selectivity λ  is: 

1

, 1, 2,...,jj
n

jk jj
k

S
Min j n

S S
λ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥−⎢ ⎥⎣ ⎦
∑

 (1.9)

Thus, for a selective group the denominator tends to zero and λ →∞ . Also, specificity is a 

special case of selectivity. 

 5



I N T R O D U C T I O N  

(h) Nonlinearity: The deviation from linearity, which itself is defined in terms of superposition 

principles, is expressed as a percentage of the full scale output at a given value of the input. 

Nonlinearity can, however, be specified in two different ways: 

• deviation from best fit straight line obtained by regression analysis, and 

• deviation from a straight line joining the end points of the scale. 

These are shown in Figs. 1.3 (a) and (b). The maximum nonlinearity in the first method is always 

less than the maximum nonlinearity in the second method. 
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b a Fig. 1.3 Nonlinearity with (a) best-fit characteristics, (b) end-points characteristics 

A consequence of nonlinearity is distortion, which is defined as the deviation from an expected 

output of the sensor or transducer. It also occurs due to presence of additional input 

components. 

If deviation at each point of the experimental curve is negligibly small from the corresponding 

point in the theoretical curve or a curve using least square or other standard fits, the sensor is 

said to have conformance which is quantitatively expressed in % FSO at any given value of the 

input. 

(i) Hysteresis: It is the difference in the output of the sensor y for a given input x when x 

reaches the value in upscale and downscale directions as shown in Fig. 1.4. The causes are 

different for different types of sensors. In magnetic types, it is lag in alignment of the dipoles, 

while in semiconductor types it is the injection type slow traps producing the effect, and so on. 

 6



I N T R O D U C T I O N  
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(j) Output Impedance: It is a characteristic, which is to be considered on individual merit. It 

puts great restriction in interfacing, specifically in the choice of the succeeding stage. 

(k) Isolation and Grounding: Isolation is necessary to eliminate or at least reduce undesirable 

electrical, magnetic, electromagnetic and mechanical coupling among various parts of the system 

and between the system and the environment. Similarly, grounding is necessary to establish a 

common node among different parts of the system with respect to which potential of any point 

in the system remains constant. 

The dynamic characteristics involve determination of transfer function, frequency response, 

impulse response and step response and then evaluation of the time-dependent outputs. The 

two important parameters in these connections are: 

• Fidelity determined by dynamic error, and 

• Speed of response determined by lag. 

For determining the dynamic characteristics different inputs are given to the sensor and the response 

characteristics are to be studied. With step input, the specifications in terms of the time constant 

of the sensor are to be made. Impulse response as well as its Fourier transform are also to be 

considered for time domain as well as frequency domain studies. 

Environmental Parameters: The external variables such as temperatures, pressure, humidity, 

vibration, etc. which affects the performance of the sensor. Aging is also an important parameter 

 7



I N T R O D U C T I O N  

of the sensor. These parameters are not the ones that are to be sensed. For any environmental 

parameters, the performance of the sensor can be studied in terms of its effect on the static and 

dynamic characteristics. For this study, one environmental parameter at a time is considered variable 

while others are fixed. 

1.2 Literature Survey 

The capacitive pressure sensor (CPS), in which the capacitance of a chamber changes with 

application of pressure finds extensive applications because of its low power consumption 

and high sensitivity. It is observed that many sensors exhibit nonlinear input-output 

characteristics. Due to such nonlinearities direct digital readout is not possible. As a 

result we employ the sensors only in the linear region of their characteristics. Generally, 

CPSs are known to have no turn-on temperature drift, high sensitivity, robust structure and 

is less sensitive to environmental effects [1.4]. However, its output is nonlinear with respect 

to input changes and the sensitivity in the near linear region is not high enough to ignore 

many stray capacitance effects [1.5]. Several studies have been carried out to fulfill the 

demand of low cost, high sensitivity, resolution and mass producibility. The nonlinear 

response characteristics of these sensors give rise to several difficulties including on-chip 

interface, direct digital readout and calibration. Nonlinearity also creeps in due to change in 

environmental conditions such as temperature and humidity. In addition aging of the 

sensors also introduces nonlinearity. Hence, to achieve an easy digital interface for direct 

readout, the response characteristics of the sensor should be linear and independent of 

variations in the environmental conditions such as temperature, humidity and aging. To 

compensate the nonlinear response characteristics of the CPS, several techniques have been 

suggested. A switched-capacitor charge balancing technique [1.6], a ROM based look-up 

table method and a nonlinear encoding scheme have been proposed [1.7]. And also the 

demand of low-cost and small range linear output requirements have led to the 

development of the piezo-resistance bridge-based integrated pressure sensor. A thin-

diaphragm diffused piezo-resistive pressure sensor for biomedical instrumentation has been 

developed using monolithic IC techniques. Integrated circuit technology offers several 

important advantages in the fabrication of pressure sensors for biomedical instrumentation. 

In particular, the ability to control geometries precisely on very small dimensions promises 

to allow the fabrication of sensors which combine small size with reliability and stability. 
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Furthermore, the ability to batch fabricate such transducers should make them relatively 

inexpensive. Pressure transducers which depend on the piezo-resistive effect have several 

advantages over those based on other pressure sensitive effects. Piezo-resistive transducers 

operate at low stress levels, exhibit a resistance change which is a linear function of 

pressure over a wide range and have high sensitivity to pressure changes. Because of this 

high sensitivity, stylus arrangements to achieve pressure multiplication are not needed; this 

fact simplifies the assembly into a completed package [1.8]. Also for nonlinearity estimation 

and to obtain a direct digital readout of a CPS, an Artificial Neural Network (ANN) based 

modeling technique has been proposed with quite satisfactory performance [1.9,1.10]; 

however without any consideration of change in the ambient temperature. When we take 

temperature into consideration, and the ambient temperature changes frequently, the 

situation becomes very complicated and in this case the problem becomes two-dimensional 

(2-D) and adaptive signal processing techniques are required to make necessary corrections 

to obtain a correct digital readout. A scheme of microcomputer based 2-D lookup table 

method has been proposed [1.11]. Another method of ∆-Σ demodulator and complex 

signal processing techniques for the sensor model have also been reported [1.12].  

By taking temperature into consideration, a 3-layer Multi-Layer Perceptron (MLP) based ANN 

has been proposed for auto-calibration and nonlinear compensation of a CPS [1.13], under 

variation of ambient temperature. In this method switched capacitor circuit (SCC) converts the 

change in capacitance into an equivalent voltage. The intelligent behavior is implanted into the 

sensor by training the ANN to adapt to a temperature range of -200 C to 700 C. In the direct 

modeling, the ANN is trained in a parallel mode to estimate the capacitance of the CPS. This 

model may be used for the purpose of on-line fault detection and quality control of the sensor 

during its production. In the inverse modeling, the ANN is trained in a series mode to estimate 

the applied pressure which is independent of ambient temperature. A plug-in-module (PIM) is 

proposed to implement the scheme on-line.  

In many control system applications Linear Variable Differential Transformer (LVDT) 

plays an important role to measure the displacement [1.1,1.14]. The performance of 

the control system depends on the performance of the sensing element. It is observed 

that the LVDT exhibits the same nonlinear input-output characteristics. Due to such 

nonlinearities direct digital readout is not possible. As a result we employ the LVDTs 

 9



I N T R O D U C T I O N  

only in the linear region of their characteristics. In other words their usable range gets 

restricted due to the presence of nonlinearity. If the LVDT is used for full range of its 

nonlinear characteristics, accuracy of measurement is severely affected.  

The nonlinearity present is usually time-varying and unpredictable as it depends on 

many uncertain factors. Attempts have been made by many researchers to increase the 

range of linearity of LVDT. In the conventional design of LVDT sophisticated and 

precise winding machines are used to compensate the nonlinearity effects. The 

nonlinearity compensation can also be achieved by square coil method in which the 

core moves perpendicular to the axis instead of along the axis [1.14]. A self-

compensated LVDT has been modeled using a dual secondary coil which is insensitive 

to the variation in excitation current and frequency [1.15]. Some DSP techniques have 

been employed in LVDT to achieve better sensitivity and to implement the signal 

conditioning circuits [1.16-1.18].  

The control valve actuators are the most common actuators in the process industries. They 

are found in process plants, manipulating flows to maintain controlled variable at their set 

points. A control valve acts as a variable restriction in a process pipe. By changing its opening 

it changes the resistance to flow and, thus, the flow itself [1.19]. As discussed earlier 

sections, many instruments or sensors exhibit inherent nonlinear input-output 

characteristics. The same effect is also observed in case of the control valve actuators. The 

equal percentage control valve actuator devices have nonlinearities in their inherent flow 

characteristics. But when it is put in a pipe line, it acts as nearly linear control valve, called 

installed characteristics. But this linearity depends on the pressure difference across the valve. 

As the pressure difference across the valve varies, it is always required to compensate to get 

very accurate linear characteristics. These nonlinearities cannot be compensated using 

feedback linearization techniques because they do not appear in the feedback path but 

rather in the feed-forward path. Some of other fundamental actuator nonlinearities include 

friction, deadzone, saturation, backlash and hysteresis. Amongst these the friction, the 

deadzone and the saturation are static nonlinearities, whereas the backlash and the hysteresis 

are dynamic nonlinearities.  

Attempts have been made by many researchers to compensate the static and dynamic nonlinearities 

present in the actuators. The nonlinear effect due to friction is common in all mechanical 
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systems. So it cannot be avoided in control systems. Different friction models and their 

compensation techniques are proposed in [1.20,1.21]. [1.22] described an observer based friction 

compensation for a dynamical model. Robust adaptive friction compensation of the static 

friction model is given in [1.23], and using reinforcement adaptive learning neural networks in 

[1.24]. The deadzone effect is present in many electro-mechanical systems. Standard techniques 

for overcoming deadzone are variable structure control and dithering [1.25]. The deadzone 

compensation in nonlinear systems using artificial neural networks (ANN) is proposed in [1.26]. 

Backlash and hysteresis nonlinearities usually appear in the feedforward path, and their 

compensators are based on applications of dynamic inversion of nonlinear systems. Tao and 

Kokotovic [1.27], developed adaptive backlash and hysteresis compensation. The dynamic 

inversion is well known technique in aerospace applications. A compensated inverse dynamics 

approach using adaptive and robust control techniques is presented in [1.28]. The magnitude and 

the rate of actuator inputs exhibit the saturation nonlinearities. When an actuator has reached 

such an input limit, it is said to be “saturated”, since efforts to further increase the actuator 

output would not result in any variation of the output. To overcome this problem, the general 

actuator saturation compensator scheme is developed in [1.29]; Design of a robust anti-windup 

controller based on the Lyapunov approach to accommodate the constraints and disturbance is 

described in [1.30]. Both static and dynamic compensators using neural networks are considered 

in [1.31]. 

1.3 Problem Formulation 

The sensors exhibit nonlinear characteristics which limit the dynamic range of these devices. As 

a result the direct digital readout of the output is not possible for the whole input range of the 

sensors. In addition the full potential of the sensors cannot be utilized. Thus there is a real 

challenge for designing and implementing novel sensors which circumvent the nonlinearity 

problems associated with them. In recent past few attempts have been made but not much has 

been achieved in this direction. The second problem is the accuracy of measurements in these 

sensors which is greatly affected by aging of the sensor, temperature and humidity variations.  

Both these issues detoriate the accuracy of measurement. Therefore nonlinearity compensation 

is required to achieve accurate measurement under adverse conditions. Most of the existing 

nonlinearity compensation techniques work well for fixed and known type of nonlinearities. But 
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in actual practice the nonlinearity behavior of the sensors changes with time and is usually 

unknown. The adaptive inverse model of the CPS can be designed and connected in series with 

these devices, so that the associated nonlinearity can be compensated and direct digital readout is 

possible for the whole input range. A scheme of direct modeling and inverse modeling of the 

CPS using different ANN structure has been developed. The direct modeling is proposed for 

calibration of inputs and estimation of internal parameters of the CPS. The purpose of the direct 

model is to obtain an ANN model of the CPS in such a way that the outputs of the CPS and the 

ANN match closely. Once a model of the CPS is available, it may be used for fault detection of 

the sensor. The CPS (interfaced with SCC) output provides a voltage signal proportional to the 

capacitance change due to the applied input pressure. And the inverse modeling is proposed for 

estimation of applied input pressure. The adaptive inverse model can be developed using Least 

Mean Square (LMS) algorithm, Recursive Least Square (RLS) algorithm [1.32,1.33], and 

Adaptive Kalman Filtering (AKF) [1.32]. The intelligent techniques such as Artificial Neural 

Networks (ANN) [1.34-1.36], Fuzzy Logic (FL) and Neuro-Fuzzy algorithms [1.37] are also 

potential candidates for developing adaptive inverse model of these devices.  

In this thesis the following burning issues relating CPS, LVDT, and control valve actuators are 

analyzed and solution to these problems has been suggested. The adaptive modelings of these 

instruments have been carried out using LMS and different ANN techniques. The direct modeling 

of these devices provides information about the degree of nonlinearity and how it changes with 

the change in environment. The adaptive inverse model of these nonlinear instruments have also 

been developed taking environmental conditions into account. Different efficient ANN 

structures such as Multi-Layer Perceptron (MLP) [1.34,1.38], Functional-Link ANN (FLANN) 

[1.39-1.41], and Radial Basis Function based NN (RBFNN) [1.34-1.37,1.42] have been 

designed for nonlinear compensation and their performance has been assessed through fictitious 

data of the CPS. The proposed techniques are novel ones and are shown to yield excellent 

performance. The simulation results for CPS, LVDT and control valve actuator for achieving 

adaptive linearization under different conditions are also presented in this thesis. 

The LVDT exhibits nonlinearity behaviour similar to the CPS when the core is moved 

towards any one of the secondary coils. In the primary coil region (middle) of the 

characteristics, the core movement is almost linear. Because of that, the range of 

operation is limited to the primary coil region only. Different attempts have been made 
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for the linearity enhancement of LVDT. In this thesis, adaptive nonlinearity 

compensators have been designed using different ANN structures such as MLP, 

FLANN and cascaded FLANN (CFLANN) based model. 

The control valve plays an important role in process industries, the linear type is the most 

suitable control valve due to its linear relationship between input and output. But the linear type 

is associated with constant sensitivity for which the pressure is also remains constant. So the 

application gets restricted. To compensate the nonlinearity present in the equal percentage 

control valve, an adaptive inverse model have been proposed by using different adaptive 

algorithms such as LMS, MLP and FLANN techniques. A comparative study has been made 

between these three models, and observed that the LMS based inverse model is more efficient 

and computationally less complex.  

1.4 Chapter-wise Organization 

The chapter-wise organization of the thesis is outlined below. 

Chapter-1 Introduction 

Brief Introduction  

1.1 Sensor Fundamentals 

1.1.1 Characteristics of Sensors 

1.2 Literature Survey  

1.3 Problem Formulation 

1.4 Chapter-wise Organization 

References 

Chapter-2 Intelligent Techniques and Algorithms 

Brief Introduction 

2.1 Adaptive Techniques 

2.1.1 Least Mean Square (LMS) Algorithm  

2.1.2 Recursive Least Square (RLS) Algorithm 

2.2 Artificial Neural Network (ANN) 

2.2.1 Single Neuron Structure 

2.2.2 Multilayer Perceptron (MLP) 

2.2.3 Functional-Link Artificial Neural Network (FLANN) 

 13



I N T R O D U C T I O N  
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2.3 Summary and Discussion 
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3.2.2 Inverse Modeling 

3.3 Simulation Studies 

3.3.1 The MLP based Direct Modeling 

3.3.2 The MLP based Inverse Modeling 

3.3.3 The FLANN based Direct Modeling 

3.3.4 The FLANN based Inverse Modeling 

3.3.5 The RBFNN based Direct Modeling 

3.3.6 The RBFNN based Inverse Modeling 

3.4 Summary and Discussion 

References 
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Chapter 

2 
 

 

Intelligent Techniques and 
Algorithms 
 

 

 

N RECENT YEARS, a growing field of research in “Adaptive Systems” has resulted in a 

variety of adaptive automations whose characteristics in limited ways resemble certain 

characteristics of living systems and biological adaptive processes. An adaptive automation 

is a system whose structure is alterable or adjustable in such a way that its behavior and 

performance improves by its environment. A simple example of an adaptive system is the 

automatic gain control used in radio and television receiver. The most important factor in 

adaptive system is its time-varying and self-adjusting performance. Their characteristic depends 

upon the input signal. If a signal is applied to the input of adaptive system to test its response 

characteristic, the system adapts to this specific input and thereby changes its parameters. The 

adaptation procedure is carried out using different algorithms such as the Least Mean Square 

(LMS), Recursive Least Square (RLS) [2.1,2.2] etc. In many real world problems these algorithms 

do not perform satisfactorily. Hence, based on the different neural architecture of human brain, 

I 
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different Artificial Neural Algorithms are developed [2.3-2.6]. These are capable of mapping the 

input and output nonlinearly.  

This Chapter deals with different types of adaptive algorithms, which are used as a tool to 

compensate nonlinearity problem of different sensors. The present Chapter is organized as 

follows: Section 2.1 deals with the adaptive filtering techniques mainly the LMS and RLS 

algorithms. Different types of Artificial Neural Network (ANN) such as Multi-Layer Perceptron 

(MLP), Functional-Link ANN (FLANN) and Radial Basis Function based Neural Network 

(RBFNN) along with their associated training algorithms are discussed in Section.2.2 and its 

subsections. Finally the summary and discussion is presented in Section 2.3. 

2.1 Adaptive Techniques 

Filter is a primary subsystem in any signal processing system. Filters are employed to remove 

undesirable signal components from the desired signal. In Adaptive Filters the coefficients can 

be changed from time to time depending on the situation. Here the filter updates its coefficients 

from the knowledge of the past input and the present error. The error is generated from the 

reference input and actual output. The update procedure depends upon the different algorithms 

used. 

2.1.1 Least Mean Square (LMS) Algorithm  

The general architecture of the LMS based adaptive filter is depicted in Fig. 2.1. The X is 

Nth input pattern having one unit delay in each instant. This process is also called as 

adaptive linear combiner [2.1,2.2]. Let [ ]T
1k k k k Lx x x− −=X … 1+  form of the L-by-1 

tap input vector. Where L-1 is the number of delay elements; these inputs span a 

multidimensional space denoted by kℵ . Correspondingly, the tap weights 

form the elements of the L-by-1 tap weight vector. The 

output is represented as, 

( )

T

0 1 1k k k L kw w w −
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y w x
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The output can be represented in vector notation as 

T T
k k k ky = =X W W Xk

d

k

 (2.2)

Generally for the adaptive linear combiner the other data include a “desired response” or 

“training signal”, .  This is accomplished by comparing the output with the desired 

response to obtain an “error signal” e  and then adjusting or optimizing the weight vector to 

minimize this signal. The error signal is, 

k

k

k ke d y= −  (2.3)

The weights associated with the network are then updated using the LMS algorithm [2.1]. 

The weight updates equation for nth instant 

( ) ( ) ( )1k kw n w n w n∆+ = + k  (2.4)

It can be further derived as 

( ) ( ) ( ) T1 2k k kw n w n e nη+ = + ⋅ ⋅ ⋅Xk

2

 (2.5)

where η is the learning rate parameter (0 ≤  η ≤ 1). This procedure is repeated till the Mean 

Square Error (MSE) of the network approaches a minimum value. The MSE at the time index k 

may be defined as, kE eξ ⎡ ⎤= ⎣ ⎦ , where [ ].E  is the expectation value or average of the signal.  
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Fig. 2.1 Adaptive filter using LMS algorithm
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2.1.2 Recursive Least Square (RLS) Algorithm  

The RLS algorithm basically minimizes the sum of squared errors up to last signal sample 

[2.2]. The recursive weight update equation is given by: 

( ) ( ) ( ) ( ) ( )1111 1 +++Γ+=+ − nenxnnwnw xx  (2.6)

where, 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )nxnnx

nxnnxn
nn T

xx
T

xx
T

xx
xxxx 1

11
11

1
1 −

−−
−−

Γ+
ΓΓ

−Γ=+Γ  (2.7)

and, 

( ) ( ) ( )∑
=

=Γ
n

k

T
xx kxkxn

0

 (2.8)

Under low noise conditions the convergence is guaranteed within 2N iterations where N is the 

filter order. 

2.2 Artificial Neural Network (ANN) 
Artificial neural network (ANN) takes their name from the network of nerve cells in the 

brain. Recently, ANN has been found to be an important technique for classification and 

optimization problem [2.3-2.5]. McCulloch and Pitts have developed the neural networks 

for different computing machines. There are extensive applications of various types of 

ANN in the field of communication, control and instrumentation. The ANN is capable of 

performing nonlinear mapping between the input and output space due to its large parallel 

interconnection between different layers and the nonlinear processing characteristics. An 

artificial neuron basically consists of a computing element that performs the weighted sum 

of the input signal and the connecting weight. The sum is added with the bias or threshold 

and the resultant signal is then passed through a nonlinear function of sigmoid or 

hyperbolic tangent type. Each neuron is associated with three parameters whose learning 

can be adjusted; these are the connecting weights, the bias and the slope of the nonlinear 

function. For the structural point of view a NN may be single layer or it may be multilayer. 
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In multilayer structure, there is one or many artificial neurons in each layer and for a 

practical case there may be a number of layers. Each neuron of the one layer is connected 

to each and every neuron of the next layer. The functional-link ANN is another type of 

single layer NN. In this type of network the input data is allowed to pass through a 

functional expansion block where the input data are nonlinearly mapped to more number 

of points. This is achieved by using trigonometric functions, tensor products or power 

terms of the input. The output of the functional expansion is then passed through a single 

neuron. 

The learning of the NN may be supervised in the presence of the desired signal or it may be 

unsupervised when the desired signal is not accessible. Rumelhart developed the Back-

propagation (BP) algorithm, which is central to much work on supervised learning in MLP [2.3]. 

A feed-forward structure with input, output, hidden layers and nonlinear sigmoid functions are 

used in this type of network. In recent years many different types of learning algorithm using the 

incremental back-propagation algorithm [2.8], evolutionary learning using the nearest neighbor 

MLP [2.9] and a fast learning algorithm based on the layer-by-layer optimization procedure [2.10] 

are suggested in literature. In case of unsupervised learning the input vectors are classified into 

different clusters such that elements of a cluster are similar to each other in some sense. The 

method is called competitive learning [2.11], because during learning sets of hidden units 

compete with each other to become active and perform the weight change. The winning unit 

increases its weights on those links with high input values and decreases them on those with low 

input values. This process allows the winning unit to be selective to some input values. Different 

types of NNs and their learning algorithms are discussed in sequel. 

2.2.1 Single Neuron Structure 

 

 

 

 

( )nα

• •
 • 

( )jw n

Output
( )y n( ).ϕ  ∑

Input

x1 
Activation 
Function

x2 

xN 

Fig. 2.2. Structure of a single neuron
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The basic structure of an artificial neuron is presented in Fig. 2.2. The operation in a neuron 

involves the computation of the weighted sum of inputs and threshold [2.3-2.5]. The resultant 

signal is then passed through a nonlinear activation function. This is also called as a perceptron, 

which is built around a nonlinear neuron; whereas the LMS algorithm described in the preceding 

sections is built around a linear neuron.  The output of the neuron may be represented as, 

( ) ( ) ( ) ( )
1

N

j j
j

y n w n x n nϕ α
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑  (2.9)

where  is the threshold to the neurons at the first layer, ( )nα ( )jw n  is the weight associated 

with the  input, N is the no. of inputs to the neuron and thj ( ).ϕ  is the nonlinear activation 

function. Different types of nonlinear function are shown in Fig. 2.3. 

 ( )h vϕ  

-1 
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+1 +1
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( )t vϕ
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+1
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( )s vϕ

(c)
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( )p vϕ

v v v

(d) 

 
v   

 

 
(a) 

 Fig. 2.3. Different types of nonlinear activation function, 
(a) Signum function or hard limiter, 
(b) Threshold function, 
(c) Sigmoid function, 
(d) Piecewise Linear 

 

 

Signum Function: For this type of activation function, we have 

( )
1 0
0 0
1 0

if v
v if v

if v
ϕ

>⎧
⎪= =⎨
⎪− <⎩

 (2.10)

Threshold Function: This function is represented as, 

( )
1 0
0 0

if v
v

if v
ϕ

≥⎧
= ⎨ <⎩

 (2.11)

 25



I N T E L L I G E N T  T E C H N I Q U E S  A N D  A L G O R I T H M S  

Sigmoid Function: This function is S-shaped, is the most common form of the activation 

function used in artificial neural network. It is a function that exhibits a graceful balance 

between linear and nonlinear behaviour.  

( ) 1
1 avv

e
ϕ −=

+
 (2.12)

where  is the input to the sigmoid function and  is the slope of the sigmoid function. 

For the steady convergence a proper choice of  is required.  

v a

a

Piecewise-Linear Function: This function is  

( )

11,             
2

1 1,   +
2 2

10,            
2

v

v v v

v

ϕ

⎧ ≥ +⎪
⎪
⎪= > >⎨
⎪
⎪

−

≤ +⎪⎩

 (2.13)

where the amplification factor inside the linear region of operation is assumed to be unity. 

This can be viewed as an approximation to a nonlinear amplifier. 

2.2.2 Multi-Layer Perceptron (MLP) 

In the multilayer neural network or multilayer perceptron (MLP), the input signal propagates 

through the network in a forward direction, on a layer-by-layer basis. This network has been 

applied successfully to solve some difficult and diverse problems by training in a supervised 

manner with a highly popular algorithm known as the error back-propagation algorithm [2.3,2.4]. 

The scheme of MLP using four layers is shown in Fig. 2.4. ( )ix n  represent the input to the 

network, jf  and  represent the output of the two hidden layers and kf ( )ly n  represents the 

output of the final layer of the neural network. The connecting weights between the input to the 

first hidden layer, first to second hidden layer and the second hidden layer to the output layers 

are represented by  respectively. ,  and ij jk klw w w
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 Fig. 2.4 Structure of multilayer perceptron 

If P1 is the number of neurons in the first hidden layer, each element of the output vector 

of first hidden layer may be calculated as, 

( )
1

N

j j ij i j
i

f w x nϕ α
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ,  11, 2,3,... , 1, 2,3,...i N j P= =  (2.14)

where jα  is the threshold to the neurons of the first hidden layer, N is the no. of inputs 

and ( ).ϕ  is the nonlinear activation function in the first hidden layer of (2.12) type. The 

time index n has been dropped to make the equations simpler. Let P2 be the number of 

neurons in the second hidden layer. The output of this layer is represented as, and may 

be written as 

kf

1

1

P

k k jk j k
j

f w fϕ α
=

⎡ ⎤
= ⎢

⎣ ⎦
∑ + ⎥ ,   k=1, 2, 3, …, P2 (2.15)

where, kα  is the threshold to the neurons of the second hidden layer. The output of the 

final output layer can be calculated as 

( )
2

1

P

l l kl k
k

y n w f lϕ α
=

⎡ ⎤
= ⎢

⎣ ⎦
∑ + ⎥ ,    l=1, 2, 3, … , P3 (2.16)
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where, lα is the threshold to the neuron of the final layer and P3 is the no. of neurons in 

the output layer. The output of the MLP may be expressed as 

( ) ( )
2 1

1 1 1

P P N

l n kl k jk j ij i j k
k j i

y n w w w x n lϕ ϕ ϕ α α
= = =

⎡ ⎤⎛ ⎞⎧ ⎫
= +⎢ ⎥⎨ ⎬⎜ ⎟

⎩ ⎭⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ α+ +

(

 (2.17)

Back-propagation (BP) Algorithm 

 

Σ
Back-Propagation 

Algorithm 

( )ly n

( )d n
( )le n

-
+

x1 

 
x2 

 

 

Fig. 2.5 Neural network using BP algorithm 

An MLP network with 2-3-2-1 neurons (2, 3, 2 and 1 denote the number of neurons in the 

input layer, the first hidden layer, the second hidden layer and the output layer respectively) 

with the back-propagation (BP) learning algorithm, is depicted in Fig. 2.5. The parameters 

of the neural network can be updated in both sequential and batch mode of operation. In 

BP algorithm, initially the weights and the thresholds are initialized as very small random 

values. The intermediate and the final outputs of the MLP are calculated by using (2.14), 

(2.15.), and (2.16.) respectively. 

The final output )ly n  at the output of neuron , is compared with the desired output 

 and the resulting error signal 

l

( )d n ( )le n is obtained as 

( ) ( ) ( )l le n d n y n= − (2.18)

The instantaneous value of the total error energy is obtained by summing all error signals 

over all neurons in the output layer, that is 
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( ) ( )
3

2

1

1
2

P

l
l

n eξ
=

= ∑ n (2.19)

where P3 is the no. of neurons in the output layer.  

This error signal is used to update the weights and thresholds of the hidden layers as well as 

the output layer. The reflected error components at each of the hidden layers is computed 

using the errors of the last layer and the connecting weights between the hidden and the 

last layer and error obtained at this stage is used to update the weights between the input 

and the hidden layer. The thresholds are also updated in a similar manner as that of the 

corresponding connecting weights. The weights and the thresholds are updated in an 

iterative method until the error signal becomes minimum. For measuring the degree of 

matching, the Mean Square Error (MSE) is taken as a performance measurement. 

The updated weights are, 

( ) ( ) ( )1+ = +∆kl kl klw n w n w n  (2.20)

( ) ( ) ( )1+ = + ∆jk jk jkw n w n w n  (2.21)

( ) ( ) ( )1+ = + ∆ij ij ijw n w n w n  (2.22)

where, ( ) ( ) ( ),  and ∆ ∆ ∆kl jk ijw n w n w n  are the change in weights of the second hidden 

layer-to-output layer, first hidden layer-to-second hidden layer and input layer-to-first 

hidden layer respectively. That is, 

( ) ( )
( ) ( ) ( )

( )

( )
2

1

2 2

2

l
kl

kl kl

P

l kl k l
k

d n dy n
w n e n

dw n dw n

e n w f f

ξ
µ µ

µ ϕ α
=

∆ = − =

⎡ ⎤
′= +⎢ ⎥
⎣ ⎦
∑ k

 (2.23)

Where, µ  is the convergence coefficient ( 0 1µ≤ ≤ ). Similarly the ( ) ( ) and ∆ ∆jk ijw n w n  

can be computed [2.3]. 

The thresholds of each layer can be updated in a similar manner, i.e. 
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( ) ( ) ( )1l ln nα α α+ = + ∆ l n  (2.24)

( ) ( ) ( )1k kn nα α α+ = + ∆ k n  (2.25)

( ) ( ) ( )1j jn nα α α+ = +∆ j n  (2.26)

where, ( ) ( ) ( ),  and l k jn nα α α∆ ∆ ∆ n  are the change in thresholds of the output, hidden 

and input layer respectively. The change in threshold is represented as, 

( ) ( )
( ) ( ) ( )

( )

( )
2

1

2 2

2

l
l

l l

P

l kl k l
k

d n dy n
n e

d n d n

e n w f

ξ
α µ µ

α α

µ ϕ α
=

∆ = − = n

⎡ ⎤
′= +⎢ ⎥
⎣ ⎦
∑

 (2.27)

2.2.3 Functional-link Artificial Neural Network (FLANN) 

Pao originally proposed FLANN and it is a novel single layer ANN structure capable of 

forming arbitrarily complex decision regions by generating nonlinear decision boundaries 

[2.7]. Here, the initial representation of a pattern is enhanced by using nonlinear function 

and thus the pattern dimension space is increased. The functional link acts on an element 

of a pattern or entire pattern itself by generating a set of linearly independent function and 

then evaluates these functions with the pattern as the argument. Hence separation of the 

patterns becomes possible in the enhanced space. The use of FLANN not only increases 

the learning rate but also has less computational complexity [2.13]. Pao et al [2.12] have 

investigated the learning and generalization characteristics of a random vector FLANN and 

compared with those attainable with MLP structure trained with back propagation 

algorithm by taking few functional approximation problems. A FLANN structure with two 

inputs is shown in Fig. 2.6. 

Mathematical Derivation of FLANN 

Let X is the input vector of size N×1 which represents N number of elements; the nth 

element is given by: 
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( ) ,1nn x n N= ≤ ≤X  (2.28)

Each element undergoes nonlinear expansion to form M elements such that the resultant 

matrix has the dimension of N×M.  

The functional expansion of the element nx by power series expansion is carried out using 

the equation given in (2.29) 

n
i l

n

x
s

x
⎧

= ⎨
⎩

for 1                  
for 2,3, 4, ,

i
i M
=
= …

 (2.29)

where . 1, 2, ,l M= "

For trigonometric expansion, the 

( )
( )

sin

cos

n

i n

n

x

s l x
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for 2,4, ,     
for 3,5, , +1

i
i M
i Ml x

π

π

⎧
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⎪
⎪⎩

=
=
=

…
…

 (2.30)

Where 1,2, , 2l = " M . In matrix notation the expanded elements of the input vector E, is 

denoted by S of size N×(M+1).  

The bias input is unity. So an extra unity value is padded with the S matrix and the 

dimension of the S matrix becomes N×Q, where ( )2Q M= + . 

Let the weight vector is represented as W having Q elements. The output is given as y

w
1

Q

i i
i

y s
=

= ∑  (2.31)

In matrix notation the output can be, 

T= ⋅Y S W  (2.32)
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At kth iteration the error signal ( )e k  can be computed as  

( ) ( ) ( )e k d k y k= −  (2.33)

Let  denotes the cost function at iteration k and is given by ( )kξ

( ) ( )2

1

1
2

P

j
j

k eξ
=

= ∑ k  (2.34)

where P is the number of nodes at the output layer.  

The weight vector can be updated by least mean square (LMS) algorithm, as 

ˆ( 1) ( ) (
2

w k w k k)µ
+ = − ∇  (2.35)

where  is an instantaneous estimate of the gradient of ˆ ( )k∇ ξ  with respect to the weight 

vector . Now ( )w k

( ) [ ( ) ( )]ˆ ( ) 2 ( ) 2 ( )y k w k s kk e k e k
w w w
ξ∂ ∂ ∂

∇ = = − = −
∂ ∂ ∂

 

        2 ( ) ( )e k s k= −  (2.36)

Substituting the values of in (2.35) we get ˆ ( )k∇

( ) ( ) ( ) ( )1w k w k e k s kµ+ = +  (2.37)

where µ denotes the step-size ( )0 µ 1≤ ≤ , which controls the convergence speed of the 

LMS algorithm. W
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Fig. 2.6 Structure of the FLANN model
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2.2.4 Radial Basis Function based NN (RBFNN) Technique 

The Radial Basis Function based neural network (RBFNN) consists of an input layer made 

up of source nodes and a hidden layer of large dimension [2.3-2.5,2.14]. The number of 

input and output nodes is maintained same and while training the same pattern is 

simultaneously applied at the input and the output. The nodes within each layer are fully 

connected to the previous layer as shown in the Fig. 2.7. The input variables are each 

assigned to a node in the input layer and pass directly to the hidden layer without weights. 

The hidden nodes contain the radial basis functions (RBFs) which are Gaussian in 

characteristics. Each hidden unit in the network has two parameters called a center (µ), and 

a width (σ) associated with it. The Gaussian function of the hidden units is radially 

symmetric in the input space and the output of each hidden unit depends only on the radial 

distance between the input vector x and the center parameter µ for the hidden unit. 

( )1x n  
αm1

Σ ( )y n  

αm2

αm3

αmk

Input

Output  

Σ 
+ - 

αmo

( )e n  

( )2x n

( )N

RBF  
Algorithm 

+1

 x n

 

 

 

 

 

( )d n   

 

Fig. 2.7 Structure of radial basis function based neural network  

The Gaussian function gives the highest output when the incoming variables are closest to 

the center position and decreases monotonically as the distance from the center decreases. 

The response of each hidden unit is scaled by its connecting weights (αmi’s) to the output 

units and then summed to produce the final network output and. The overall network 

output  at the time index n is therefore ( )y n
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( ) ( )0
1

K

m mk k
k

y n xα α φ
=

= +∑ j ;        1, 2,...,j N=  (2.38)

For each input jx , N represents the no. of inputs, K = number of hidden units, αmk =  

connecting weight of the  kth hidden unit to output layer, αmo = bias term, m is the number 

of output. 

The value of ( )k jxφ  is given by 

2

2

1( ) exp( )k j j k
k

x xφ µ
σ

= − −  (2.39)

Where µk is the center vector for the kth hidden unit and σk is the width of the Gaussian 

function and  denotes the Euclidean norm. 

The parameters of the RBFNN are updated using the RBF algorithm. The RBF algorithm 

is an exact analytical procedure for evaluation of the first derivative of the output error with 

respect to network parameters. In the present paper we apply a three layer RBF network 

with nonlinear output units. 

Let the error vector at the nth instant is ( ) ( ) ( ) ,e n d n y n= − where = desired output 

vector and  = estimated output vector. Let 

( )d n

( )y n ( ) ( )21
2 P

n eξ = ∑ n . The update equations 

for the center and width of the Gaussian function as well as the connecting and bias 

weights are derived as  

( ) ( ) ( )1k kn nµ µ µ+ = + ∆ k n  (2.40)

( ) ( ) ( )1k kn nσ σ σ+ = + ∆ k n  (2.41)

( ) ( ) ( )1mk mk mkn nα α α+ = + ∆ n  (2.42)

( ) ( ) ( )0 01m m mn nα α α+ = + ∆ 0 n  (2.43)
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where ( )k nµ∆ ,  are the change of the centers and spread of the Gaussian 

functions; the 

( )k nσ∆

( ) ( )

( )

mk nα∆  and 0m nα∆  are the change in weights and the threshold of the 

RBFNN. These are computed by taking the partial derivative of  with respect to 

different network parameters. The key equations obtained are stated in (2.44) to (2.47). 

nξ

( ) ( ) ( ) ( )
2 j k

k k j 2
k k

x
mk

µ
µ n η ηe n x α

µ σ
ξ φ

−∂
∆ = − =

∂
 (2.44)

( ) ( ) ( ) ( )
2

2

j k
k k j m 3

k k

x
k

µ
σ n η ηe n x α

σ
ξ φ
σ

−∂
∆ = − =

∂
 (2.45)

( ) ( ) ( )mk k j
mk

α n η ηe n x
α
ξ φ∂

∆ = − =
∂  (2.46)

( ) ( )m0
m0

α n η ηe n
α
ξ∂

∆ = − =
∂  (2.47)

where η is the learning rate parameter ( 0 1η≤ ≤ ). By applying each input patterns, the 

change in center location, width of the Gaussian function as well as the connecting weights 

and bias weights are calculated.  

2.3 Summary and Discussion 

The various adaptive techniques used in the thesis are presented in this Chapter. The single 

layer network or perceptron and an adaptive filter using the LMS algorithm are naturally 

related, as evidenced by their weights updates. However, the perceptron and LMS 

algorithm differ from each other in some fundamental respects:  

 The LMS algorithm uses a linear neuron, whereas the perceptron uses the nonlinear 

neuron. 

 The learning process in the perceptron is performed for a finite number of 

iterations and then stops. In contrast, continuous learning takes place in the LMS 

algorithm.  
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For MLP, the back propagation learning is the standard algorithm. The back-propagation 

algorithm derives its name from the fact that the partial derivatives of the cost function 

(performance measure) with respect to the free parameters (synaptic weights and biases) of 

the network are determined by back-propagating the error signals (computed by output 

neurons) through the network, layer by layer. 

The structure of an RBFNN is unusual in that the constitution of its hidden units is entirely 

different from that of its output units. Each hidden node consists of a Gaussian function. 

The learning algorithm of RBFNN is more or less equivalent to LMS algorithm. 
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Chapter 

3 
 

 

Direct and Inverse modeling of 
Capacitive Pressure Sensor using 
Intelligent Techniques 
 

 

 

HE CAPACITIVE PRESSURE SENSOR (CPS), in which the capacitance of a 

chamber changes with the application of pressure, finds extensive usage because of its 

low power consumption and high sensitivity as discussed in Chapter-1. The CPS 

exhibits nonlinearity in its transfer characteristics [3.1-3.3]. This prevents its direct digital readout 

and restricts its dynamic range. The second problem is the accuracy of measurements in these 

sensors, which is greatly affected specially by aging of the sensor as well as variations in 

environmental temperature and humidity. These changes also introduce nonlinearity in the 

device characteristics, which is usually time varying and unpredictable as it depends on many 

uncertain factors.  

T 
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This chapter deals with the design and development of the direct model as well as the inverse 

model of the CPS. The direct model estimates the CPS; alternatively it develops the electronic 

model of the CPS. This scheme is very similar to a system identification problem in control 

systems. This adaptive model of the sensor is developed using different ANN techniques such 

that the outputs of the sensor and the model will be identical. And the inverse model 

compensates the nonlinearity present in the sensor. It is analogous to the channel equalization 

scheme of a digital communication system to cancel the adverse effect of the channel. 

Section 3.1 deals with the mathematical modeling of the CPS. In Section 3.2, the direct modeling 

of the CPS along with the simulation results of all types of ANN modeling has been discussed. 

The inverse modeling along with the simulation results has been depicted in Section 3.3. Finally, 

Section 3.4 shows the summary and discussion on different models developed. 

3.1 Capacitive Pressure Sensor (CPS) 

3.1.1 Model of CPS 
P A commonly used CPS is shown in Fig. 3.1. Here one 

plate is a fixed metal disc and the other is a flexible flat 

circular diaphragm, clamped around its circumference 

[3.2,3.3]. The dielectric material is air (

Inlet 

39

Diaphragm

Chamber 

d(r) 
r 

Substrate (Fixed Disc)

Fig. 3.1 Typical structure of a CPS

R 

t
1ε ≈ ). The 

diaphragm is an elastic sensing element which is bent into 

a curve by the applied pressure P (Nm-2). The deflection 

 at any radius  is given by, ( )d r r

d0 

( ) ( ) ( )
2

22 2
3

13
16

d r R r P
Et
ρ−

= −  (m) (3.1)

where, R = radius of the circular diaphragm (m), t = thickness of diaphragm (m), E =Young’s 

modulus or elastic modulus (Nm-2), and ρ =Poisson’s ratio. 

The capacitance of the chamber is, 

( ) ( )0 0
0

2R

r
rC P dr

d d r
πε ε=
−∫  (3.2)
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where, 0ε  is the permittivity of free space (vacuum), and rε  is the relative permittivity or 

dielectric constant of the insulating material.  

Putting the value of , obtained in (3.1), into (3.2) and integrating it, the capacitance may be 

expressed as a function of the fractional pressure : 

( )d r

x

( ) ( )1
0

1 tanhC x C x
x

−=  (3.3)

where 

(3.4)( )
max

1Px
P

= ≤  

( )
3

0
max 42

16
3 1

t dEP
Rρ

=
−

 (3.5)

It is clear that  is the maximum allowed pressure which causes a center deflection equal to 

the chamber depth . The offset capacitance (C ) when 

maxP

0d 0P0 =  is, 

2
0

0
0

rRC
d

π ε ε
=  (3.6)

Expanding (3.3) by Taylor series, we have 

( )

( ) ( )

0
0

2
0

2 1
1 2 3

1

n

n

xC x C
n

x
C O

x

∞

=

=
+

−
≅ +

−

∑

x

 

 

 

(3.7)

Where ( )2O x  denotes the residual term of second-order and is considered to be negligible. It is 

seen that some of the practical sensors use stepped or square diaphragms for better sensitivity. 

Even though the diaphragm construction is different for the capacitive sensors, their response 

characteristics are hyperbolic in nature and can be expressed by the relationships provided in 

(3.3) and (3.7): 
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( ) ( )0 0
1
1

xC x C C C x
x
α−

= = + ∆
−

 (3.8)

Where 

( ) 0
1
1

C x C x
x
α−

∆ =
−

 (3.9)

The parameters α  and  of each sensor are determined by the measured capacitances. Error 

between the measured and approximated values is less than 1%. Therefore, a CPS can be 

regarded reasonable as a nonlinear capacitor. Plot of (3.8) is shown in Fig. 3.2, and it is observed 

that the CPS is quite nonlinear in its full range.  
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Fig. 3.2 Range of linear region of the CPS

 

Input-output relation of CPS taking pressure (P) and temperature (T) as inputs: 

The input/output equation for the CPS [3.4-3.8] as a function of pressure (P) and temperature 

(T) is, 

( )
( ) ( ) ( ) ( )

0

0 1 0 2

, /

, ,
NC C P T C

C P T C g T C P T g T

=

= + ∆
 

 
(3.10)
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Where, CN is the normalized capacitance. C0 is the sensor capacitance when  at the 

reference temperature T

0P =

0; When pressure is applied to the CPS, the change in capacitance, 

( )0 0,C P T C γ∆ = ⋅ , where, 

1
1N

N

P
P
αγ −

=
−

 (3.11)

where, α = sensitivity parameter of the CPS which varies with the geometrical structure, 

maxN normalized pressureP P P= = P ( is the maximum permissible applied pressure).max

Assume that the change in capacitance (or voltage) with respect to temperature is linear. 

Hence, the linear functions are, ( ) ( ) ( ) i N1,2ig i⋅ =  and, 1ig T Tβ= + ⋅ , where, 

0

max

normalized temperatureNT
T

T T−
= = , and iβ  is the coefficients which determines the 

influence of the temperature on the sensor characteristics. Hence, (3.10) can be rewritten as 

(3.12), and the characteristics of the CPS is at different temperatures is shown in Fig. 3.3.  

( ) ( )1 2
11 1
1N N N

N

C T P
P NTαβ β−

= + ⋅ + ⋅ + ⋅
−

 (3.12)
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Fig. 3.3 Range of linear region of the CPS at different temperatures 
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3.1.2 Switched Capacitor Circuit (SCC) 

 

 

 

 

 

 

 

+

-

RV

0V

φ
φ

( )C P

SC
φ

φ
φ

φ

Fig. 3.4 Switched Capacitor Interface circuit

Fig. 3.4 shows a switched capacitor circuit (SCC) for interfacing the CPS [3.5,3.6], where ( )C P  

denotes the CPS. As defined earlier, the SCC output provides an equivalent voltage signal 

proportional to the capacitance change in the CPS due to applied pressure. The circuit operation 

can be controlled by a reset signal φ . When ( )1 5vφ = + , ( )C P  charges to the reference 

voltage  while the capacitor  is discharged to ground. And, when RV SC 1φ = , the total charge 

 stored in the ( ). RC P V ( )C P  is transferred to  and producing an output voltage, 

, where 

SC

( )0V K C P= ⋅ R SK V C= − . It may be noted if ambient temperature changes, then the 

SCC output also changes though the applied pressure remains same. By choosing proper values 

of  and , the normalized SCC output can be adjusted in such a way that . The 

SCC does not take into account the effect of temperature variation in the voltage measurement. 

The intelligent behavior is implemented in the sensor by training the RBFNN to adapt any 

temperature change. 

SC RV NV C= N

3.2 Development of Intelligent Models of the CPS 

A scheme of direct modeling and inverse modeling [3.7] of the CPS using different ANN 

structure has been proposed in this section. The direct modeling is proposed for calibration of 

inputs and estimation of internal parameters of the CPS. And the inverse modeling is proposed 

for estimation of applied input pressure.  
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3.2.1 Direct Modeling 
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Fig. 3.5 A scheme of direct modeling of a CPS and SCC using ANN based model 

The direct modeling is analogous to that of the system identification problem in control system. 

The purpose of the direct model is to obtain an ANN model of the CPS in such a way that the 

outputs of the CPS and the ANN match closely. Once a model of the CPS is available, it may be 

used for fault detection of the sensor. The CPS (interfaced with SCC) output provides an 

equivalent voltage signal proportional to the capacitance change due to the applied input 

pressure [3.4, 3.8]. By applying pressure to the CPS, the response is the change in capacitance 

value with respect to the applied pressure. By connecting the switched capacitor interface circuit 

(SCC) [3.9, 3.10] with the CPS to get the equivalent voltage signal proportional to the change in 

capacitance is obtained. Fig. 3.5 represents a scheme of direct model of the CPS using ANN 

based approach. Since the temperature also affects the output voltage of the sensor, both 

normalized pressure ( ) and normalized temperature ( ) are used as input to the CPS. The 

output voltage ( ) of the CPS and that of the ANN model (

NP NT

NV NV ′ ) are compared to produce the 

error signal, . This error information is used to update the ANN model. The model of CPS 

has been developed by separately applying all types of neural models such as MLP, FLANN and 

RBFNN.  

e

3.2.2 Inverse Modeling 
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Fig. 3.6 Development of an inverse ANN model of CPS 
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A scheme of inverse modeling of a CPS using different ANN techniques for estimation of 

applied pressure is shown in Fig. 3.6. This is analogous to the channel equalization scheme 

used in a digital communication receiver to cancel the adverse effects of the channel on the 

data being transmitted. To obtain a direct digital readout of the applied pressure, an inverse 

model of the CPS may be used in cascade with it to compensate for the adverse effects on 

the CPS output due to the nonlinear response characteristics and the variations with 

ambient temperature. The generation of training-set and test-set patterns is similar to that 

of the direct modeling scheme. However, in the inverse modeling scheme, the normalized 

temperature  and the CPS output V  are taken as input patterns, and the normalized 

input pressure  is taken as the desired output pattern in the ANN model.  

NT

P

N

N

3.3 Simulation Studies 

Different ANN technique based direct and inverse models have been simulated extensively in 

MATLAB 7.0 environment. The SCC output voltage  is obtained experimentally at the 

reference temperature of 25

NV
0C for different values of normalized pressure chosen between 0.1 

and 0.7 with an interval of 0.05. Thus, these 13 pairs of input-output data constitute a set of 

patterns at the reference temperature. The functions ( ) ( )1 2and g t g t  are generated by taking 

the values of 1 and 2β β  to -2.0×10-3 and 7.0×10-3. The geometrical structure of the CPS α  is 

taken as 0.64. From the available CPS pattern set at the reference temperature, i.e., , and 

with the knowledge of functions 

NP C∼ N

( ) ( )1 2and g t g t , eight sets of patterns (each containing 13 

pairs of input-output data) are obtained at an interval of 100C ranging from -200C to 1000C. 

Details of each ANN based direct and inverse modeling is described below: 

3.3.1 The MLP based Direct Modeling 

Simulation studies for MLP network are carried out to obtain a direct model of the CPS. 

For the simulation study, a two-layer MLP with a 3-5-1 structure is chosen for direct 

modeling of a CPS as shown in Fig. 2.4 of Chapter 2. (3, 5, and 1 denote the number of 

nodes including the bias units in the input layer, the first layer, i.e. the hidden layer and the 

output layer of the ANN, respectively) [3.8]. The hidden layer and the output layer contains 

the tanh(.) type activation function. The back-propagation (BP) algorithm [3.12], in which 
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both the learning rate and the momentum rate are chosen as 0.5 and 1 respectively, is used 

to adapt the weights of the MLP. The normalized temperature ( ) and the normalized 

applied pressure ( ) are used as input pattern, and the SCC output ( ) is used as the 

desired pattern to the MLP. After application of each pattern, the ANN weights are 

updated using the BP algorithm. Completion of all patterns of all the training sets 

constitutes one iteration of training. To make the learning complete and effective, 10,000 

iterations are made to train the ANN. Then, the weights of the MLP are frozen and stored 

in an EPROM. During the testing phase, the frozen weights are loaded into the MLP 

model. Then the inputs,  from the test set are fed to this model. The model 

output is computed and compared with the actual output to verify the effectiveness of the 

model. The CPS response characteristics of the chosen values at different temperatures 

 are plotted in Fig. 3.7.   
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Fig. 3.7 Plots of true and estimated forward characteristics of the CPS at –200 C, 300 C and 700 C by MLP 

3.3.2 The MLP based Inverse Modeling 

In the inverse modeling the same MLP with a 3-5-1 structure is chosen for simulation [3.8]. The 

MLP is trained in a similar manner as in the case of direct modeling. In this case also, all the 13 

patterns corresponding to temperature values -200C, 300C and 700C are applied during training. 

The learning rate and the momentum parameter are as same as in the direct modeling i.e. 0.5 and 

1 respectively. The MLP is trained for 10,000 iterations using the BP algorithm; the evolved 
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weights are frozen, and stored in the memory. In the testing phase, the CPS output  is 

applied as input to the MLP network along with the normalized temperature . Then, the 

estimated pressure  is obtained from the output of the MLP model. The plots of inverse 

model at different temperatures  are shown in Fig. 3.8. 
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Fig. 3.8 Plots of forward, inverse and overall characteristics of the CPS by MLP; (a) at –200C, (b) at 300C; 
and (c) at 700C. 
Axes Parameters: 
PN = Normalized pressure 
VN = Normalized voltage (output of the CPS+SCC) 
PN

’ = Estimated pressure 
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3.3.3 The FLANN based Direct Modeling 

As stated in Chapter 2, the FLANN is a single layered network [3.9,3.10]. Two different 

experiments are carried out to obtain the direct model of the CPS. In the first case the power 

series FLANN with 10 number of functional expansions of each input ( ) and one 

product term  is taken. Second is the trigonometric expansion (sin(.) and cos(.) 

expansions) of input with the product term of 

 and NP NT

N NP T⋅

N NP T⋅  are considered. The learning rate is 

chosen as 0.035 in both the FLANN update algorithms is used to update the weights of the 

FLANN model. The normalized temperature ( ) and the normalized applied pressure ( ) are 

used as the input patterns, and the SCC output (

NT NP

NV CN= ) is used as the desired pattern to the 

FLANN model. 10,000 iterations are used (for both the cases) for training of these FLANN 

models completely. Then, the weights of the FLANN models are frozen and stored in the 

memory. During the testing phase the inputs,  are fed to this model. The FLANN 

model output is computed and compared with the actual output to verify the effectiveness of 

these proposed models. The results of the modeling of CPS using two FLANN structures are 

shown in Fig. 3.9 (a) and (b). 

and NP NT
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Fig. 3.9 Plots of true and estimated forward characteristics of the CPS at –200 C, 300 C and 1000 C
(a) power series FLANN (b) trigonometric series FLANN 
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3.3.4 The FLANN based Inverse Modeling 

For the inverse modeling of the CPS the power series and the trigonometric FLANNs are 

successfully trained. In case of the power series FLANN, 12 number of expansions of each 

input ( ) along with the product term of the inputs are computed. The desired signal 

to the model is the input applied pressure, . To train the network effectively, 50,000 iterations 

are chosen. The learning rate is set at 0.025. In trigonometric FLANN model, 10 sets of sin(.) 

expansions and 10 sets of cos(.) expansions with the product term are also obtained. In this case 

the learning rate is 0.03. Both the FLANN models are trained similar to that of direct modeling. 

All 13 patterns of inputs corresponding to temperature values of -20

 and NV NT

NP

0C to 1000C with an interval 

of 100C are applied during the training period until the training is complete. Once the ANN 

model is successfully trained, the weights are frozen for testing. The plots of the inverse model 

of the power series FLANN and the trigonometric FLANN models at different temperature 

values of -200C, 300C and 1000C are shown in Fig. 3.10 and Fig. 3.11 respectively. From the 

computed results, it is observed that the trigonometric FLANN model yields improved results 

compared to the power series counterpart. 
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Fig. 3.10 Plots of forward, inverse and overall characteristics of the CPS by power series FLANN; 
(a) at –200C, (b) at 300C; and (c) at 1000C. 
Axes Parameters: 
PN = Normalized pressure 
VN = Normalized voltage (output of the CPS+SCC) 
PN

’ = Estimated pressure 
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Fig. 3.11 Plots of forward, inverse and overall characteristics of the CPS by trigonometric FLANN; 
(a) at –200C, (b) at 300C; and (c) at 1000C. 
Axes Parameters: 
PN = Normalized pressure 
VN = Normalized voltage (output of the CPS+SCC) 
PN

’ = Estimated pressure 

 

 

 

3.3.5 The RBFNN based Direct Modeling 

Unlike the MLP, the RBFNN is a single layered network [3.12,3.13]. The detailed theory of 

RBFNN is depicted in Chapter 2. For the simulation, an RBFNN with a 2-6-1 structure is 

chosen for direct modeling of a CPS. (2, 6, and 1 denote the number of nodes in the input layer, 

the first layer including the bias units, i.e. the hidden layer and the output layer of the ANN, 

respectively) [3.14]. The update algorithm, in which both the learning rate is chosen as 0.05, is 

used to adapt the weights of the RBFNN. The normalized temperature ( ) and the normalized 

applied pressure ( ) are used as input pattern, and the SCC output ( ) is used as the 

desired pattern to the RBFNN. In this case the temperature range is -50

NT

NP NV C= N

0C to 800C. After 

application of all patterns, the ANN weights are updated using the update algorithm. This 

process is repeated till the mean square error (MSE) is minimized. Once the training is complete, 
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the RBFNN model will be equivalent to the CPS. To make the training successful, 10,000 

iterations are needed. Once the training is complete the weights of the RBFNN can be frozen. 

During the testing phase, the frozen weights of RBFNN model are used for testing. Then the 

inputs,  from the test set are fed to this model. The model output is computed and 

compared with the actual output to verify the effectiveness of the model. The plot of the direct 

modeling at various temperatures, are shown in Fig. 3.12. 
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Fig. 3.12 Plots of true and estimated forward characteristics of the CPS at –500 C, 100 C and 800 C by 
RBFNN 

 

3.3.6 The RBFNN based Inverse Modeling 

For inverse model, same 2-6-1 structured RBFNN has been chosen for simulation. Each hidden 

node contains a radial basis type function [3.14]. The output of the CPS ( ) and the normalized 

temperature ( ) are the inputs to the RBFNN based inverse model. The normalized input 

pressure is then compared with the output of the inverse model 

NV

NT

NP′  and produces error signal. 

Then the weights of the network are trained by the update algorithm to match both the outputs. 

In the updation process the learning rate is chosen as 0.001. And 50,000 iterations are needed to 

successfully train the network. The plots of inverse model at different temperatures 

 are shown in Fig. 3.13. 0 0 050 ,10  and 80T C C= − C
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Fig. 3.13 Plots of forward, inverse and overall characteristics of the CPS by RBFNN; (a) at –500C, (b) at
100C; and (c) at 800C. 
Axes Parameters: 
PN = Normalized pressure 
VN = Normalized voltage (output of the CPS+SCC) 
PN

’ = Estimated pressure 
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3.4 Summary and Discussion 

This chapter presents the development of direct modeling and the inverse modeling of the CPS 

with various ANN techniques. The direct modeling is proposed to estimate the nonlinearity 

present in a CPS. It is more or less equivalent to the system identification problem in control 

systems. The direct model is also used for fault detection of the sensor. Various ANN (MLP, 

FLANN and RBFNN) based direct models are proposed in this chapter.  

Inverse models are developed to compensate the nonlinearity present in a CPS. The inverse 

modeling is analogous to the channel equalization problem in communication system. The 

inverse model is itself a nonlinear system; however its characteristics is the inverse of the sensor 

characteristics. It is connected in cascade with the sensor to achieve the overall linearity over a 

wide range. It has been developed by using different ANN techniques. It is observed that the 

linearity is high in case of MLP and RBFNN. However, if we increase the number of expansions 

in FLANN, the percentage of linearity can be high. The FLANN network involves less 

computational complexity but provides satisfactory performance. Therefore FLANN based 

models are easily implementable and may be preferred for real-time applications.  
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Chapter 

4 
 

 

Performance Evaluation of Fixed-
Point FLANN based CPS model 
 

 

 

HIS CHAPTER deals with the fixed-point analysis of the FLANN based direct and 

inverse model of the CPS. To assess the performance of the direct and the inverse 

model in actual implementation a fixed-point analysis is required. In the previous 

Chapter it is proposed that the FLANN model involves less computational complexity offering 

almost similar performance as that of other types of ANN [4.1-4.2]. Due to involvement of less 

computational complexity and better performance, the power series FLANN is considered for 

implementation. Computer simulation studies have been carried out to demonstrate the 

performance of fixed-point FLANN structures of both the direct and the inverse models of the 

CPS. This is primarily contributed by the word lengths used in the implementation. The present 

study has been made to assist to choose the desired word length for implementation.  

T 
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In Section 4.1, the fixed-point analysis of the CPS for both direct and inverse modelings has 

been carried out. Section 4.2 deals with the simulation studies of fixed-point implementation. 

The effect of word lengths on the performance of the CPS is demonstrated in Section 4.3.  

4.1 Fixed-point Analysis  

The input-output relation of the CPS as a function of pressure ( ) and temperature ( ) 

is derived in (3.12) of Chapter-3.  In this fixed-point analysis, the inputs  are 

represented into  with t-bits. We denote these variables as,  

NP NT

 and N NP T

N F( ) ( ) and N F
P T

( ) ( ) ( ) ( ),    and   ,N N NF F
P scale P t T scale T t= = N

( )

 (4.1)

where, 

,scale x t  is a function, which represents the input x in t-bits. 

Then (3.12) (of Chapter-3) can be written as, 

( ) ( ) ( )( ){ }1 2, , ,N F
V add f T mul f T tγ= , t

( )

( )

 (4.2)

where,  

, ,add x y t  is the function that calculates fixed-point addition of the inputs x and y, with 

t-bits. 

Similarly,  is the function that performs the fixed-point multiplication of inputs x 

and y, using finite length of t-bit. 

, ,mul x y t

4.1.1 Fixed-point FLANN Algorithm for Direct Modeling 

Fig. 4.1 shows a direct modeling scheme of a CPS, where ( ) ( and N F
P T )N F

 stands for fixed-

point representation of PN and TN respectively. Similarly ( ) ( )N F
′ and N F

V V  represent the fixed-

point outputs of a CPS and fixed-point FLANN model. In fixed-point mode the error signal is 
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also represented by ( ) . The magnitude of the fixed-point variables depends on the word 

length and the type of arithmetic used to represent the numbers.  
F

e

 

Σ
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Algorithm 
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Fig. 4.1 A scheme of direct modeling of a CPS using fixed-point FLANN model  

Algorithm 

The output of the fixed-point FLANN model VN′  is calculated by expanding the input 

elements nonlinearly into power series expansion as, 

2 3 4
1 2 3 4 5

2 3 4
6 7 8 9 10           

N N N N N N

N N N N

V w P w P w P w P w P

w T w T w T w T w T

′ 5

5
N

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +

⋅ + ⋅ + ⋅ + ⋅ + ⋅
 (4.3)

Using fixed-point operations (4.3) may be expressed as, 

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
FFFNFFN

FFNFFN

FFNFFN

F
N

TwTw

TwPw

PwPw

V
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅++⋅

+⋅+⋅+

+⋅+⋅

=⎟
⎠
⎞⎜

⎝
⎛ ′

5
10

2
7

6
5

5

2
21

              

               

 

(4.4)

Thus (4.4) can be obtained by summing up the partial fixed-products. 

The power terms of inputs can be computed in fixed-point mode as, 

( ) ( ) ( )( )
( ) ( ) ( )( )

1

1

, ,

, ,

i i
N N N FF F

i i
N N N FF F

P mul P P

T mul T T

+

+

=

=

t

t
,   for i = 0,1,2,3,4. (4.5)
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These power terms are multiplied in fixed-point arithmetic with the respective weights to give 

fixed point results as, 

( )( )1 1, ,N F
x mul w P t=  

( )( )2
2 2 , ,N F

x mul w P t=  

( )( )3
3 3, ,N F

x mul w P t=  

( )( )4
4 4 , ,N F

x mul w P t=  

( )( )5
5 5 , ,N F

x mul w P t=  

( )( )6 6 , ,N F
x mul w T t=  

( )( )2
7 7 , ,N F

x mul w T t=  

( )( )3
8 8 , ,N F

x mul w T t=  

( )( )4
9 9 , ,N F

x mul w T t=     

(4.6)

Similarly the fixed-point additions are performed on these partial products as, 

( )1 1, ,y add x x t= 2

)2+

 

(1 , ,i i iy add y x t+ = ,   for i = 0,1,2, ... , 8. 
(4.7)

Finally, the overall fixed-point output of the FLANN is given by, 

( ) 9N
F

V y′ =  (4.8)

The FLANN algorithm is used in fixed-point mode to update the weights [4.5,4.6]. It can 

be expressed as, 

( )( ) ( )( ) ( ) ( )( )1 2i iF F
w n w n e n x nλ+ = +

F
 (4.9)

The second term is, 
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(4.10)( )( ) ( )( )( )( ) ( )( )( )( )2, , , , , ,
F F

w n mul mul mul e n t x n t tλ⎛ ⎞∆ = ⎜ ⎟
⎝ ⎠F

 

( )( ) ( )( ) ( )( )( )1 ,i iF F
w n add w n w n t+ = ∆ ,

F
 (4.11)

where [x(n)]F is the fixed-point representation of the FLANN input vectors computed as 

before,  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 5 2 5
F F F F F

             N N N N N NF F
x n P P P T T T⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ (4.12)

The details of fixed-point FLANN based direct model is depicted in the Fig. 4.2. 
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Fig. 4.2 Direct modeling of CPS using fixed-point FLANN used for simulation study 
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Algorithm 

Referring to Fig. 4.3 and 4.4, the estimated output from the fixed-point power series 

FLANN model of 5th order expansion can be computed as,  

( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

2 5
1 2 5

2 5
6 7 10  

N N NF FF F
N

F
N N NF F FF F F F

W V W V W V
P

W T W T W T

⎛ ⎞⋅ + ⋅ + + ⋅
⎜ ⎟′ = ⎜ ⎟

⋅ + ⋅ + + ⋅⎜ ⎟
⎝ ⎠

F F

 

where 

(4.13)

( )N F
V  is the t-bit representation of output of the CPS, and N F

 is the t-bit 

representation of normalized temperature.  

he FLANN model can be calculated similar to the direct 

modeling and may be represented by: 

)
N N NF F

, for i = 0,1,2,3,4. (4.14)

The partial products of the FLANN model is termed as,  

, ,

( )T

The other power terms of inputs to t

( ) ( ) ( )(
( ) ( ) ( )( )

1

1

, ,

, ,

i i
N N N FF F

i i

V mul V V t

T mul T T t

+

+

=

=

( )( )1 1 N F
X mul W V t=  

( )( )tVWmulX FN22  ,, 2=

( )( )tVWmulX FN33  ,, 3=

( )( )tVWmulX FN44  ,, 4=

( )( )tVWmulX FN55  

( )

,, 5=

( )tTWmulX FN ,,66 =  

( )( )tTWmulX FN77  

( )( )3
8 8 , ,N

,, 2=

X mul W T t=  

X mul W T t=  

F

( )( )4
9 9 , ,N F

(4.15)
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( )( )5, ,X mul W T t=  10 10 N F

Now by addi t-bits each gives rise to, 

( ), ,Y add X X t=

( )1 2, ,i i iY add Y X t+ += , for i = 1, 2, … 8. 
(4.16)

Hence the overall output of the fixed-point FLANN model is given by, 

9N
F

P Y

ng all these fixed-point products in 

1 1 2  

( )′ =  (4.17)

in fixed-point mode is given The FLANN algorithm used to update the weights [4.3] by,  

( ))( ( )( ) ( ) ( )( )i iF F F
W n e n X nλ+  (4.18)

( )( )

1 2W n + =

The second term is, 

( )( ) ( )( ) ( )( )( )( ), , , , ,
F F F

mul mul e n t X n t tλ ⎞
⎜ ⎟
⎝ ⎠

 (4.19)

(

2,W n mul ⎛∆ =

Thus, (4.22) can be obtained as, 

( )) ( )( ) ( )( )( )1 , ,add W n W n t+ = ∆  (4.20)i iF F F
W n

where, ( )
F

X n⎡ ⎤  is the fixed-point representation of FLANN input vectors computed as 

before  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 5 2 5
F F F F F

             N N N N N NF F
X n V V V T T T⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

 (4.21)

 

 

⎣ ⎦
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The fixed-point FLANN based inverse model for simulation is d in the Fig. 4.4. 

hich is a function of both pressure and 

temperature, is assumed to have the nonlinear form as in (3.12). The direct modeling block 

ditions, 

0.8 at a step of 0.1,  

,  

simulated. In the fixed-point FLANN model, the word length t is varied between 4-bit to 16-bit 
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Fig. 4.4 Inverse modeling of CPS by fixed-point FLANN used for simulation study 

( )Fe

 

 

 

 

 

 

 

4.2 Simulation Studies  

Both the fixed-point direct and inverse models shown in Figs. 4.3 and 4.4 of the CPS are 

simulated in this section. The actual CPS model, w

is simulated for the following con

PN = 0.0 to 

T = 300C

α = 0.7,  

β1 = -2.0×10-3 and β2 = 7.0×10-3

The CPS and the SCC blocks are mathematically represented by (4.2). The output of this sensor 

is given by VN. The same input is applied to the FLANN model and the corresponding output 

is calculated by (4.4). Both infinite precision as well as finite precision FLANN models are 
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at an interval of 4-bit. The output of the FLANN model is represented as VN′. The two outputs 

are compared and the error is used to update the parameter of the FLANN model. After some 

iterations of training the minimum mean square error attains a steady state value, at that point of 

time the training is stopped and the FLANN parameters are frozen. Now fresh normalized 

pressure is applied and the corresponding outputs of the CPS, both floating-point FLANN and 

fixed-point FLANN models are obtained.  The plots of fixed-point FLANN model outputs are 

shown in Fig. 4.5. The plots clearly indicate that at low bit length (e.g. t = 4 and 8-bit) the match 

between true and estimated response is observed to be poorer. The agreement improves when 

the bit length is increased to 12 and it becomes excellent when the bit length is 16. Thus the bit 

length substantially affects the response of the direct model. 

 

 

 

 

 

 

 

 

 
Fig. 4.5 Simulation results of fixed-point FLANN direct model at 300C, of the word lengths t = 4, 8, 12 
and 16-bits. 
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The plot of the fixed-point FLANN based inverse model is shown in Fig. 4.4. In this case 

the inverse model is connected in series and is of fixed-point type. The same parameters, as 

used for direct model, are used for this simulation also. The results of simulations (direct, 

inverse and resultant) at different bit lengths and at different temperatures are shown in 

Figs. 4.6 through Fig. 4.8 [4.4,4.5]. These plots clearly show that at low bit length, the 

resultant plot between ( ) ( ) and N NF F
P P′  are not quite linear. This means that at low bit 

length (e.g. t = 8-bit) the linearization offered by fixed-point FLANN model is poor. Fig. 
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4.6 shows the performance of the inverse model corresponding 8-bit representation of 

data.  
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Fig. 4.6 Plots of forward, inverse and overall characteristics of the CPS by fixed-point FLANN at t = 8-
bits; (a) at –100C, (b) at 1000C. 
Axes Parameters: 
(PN)F = fixed-point normalized pressure 
(VN)F = fixed-point normalized voltage (output of the CPS+SCC) 
(PN’)F = fixed-point estimated pressure 
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When the bit length is increased to 12 the linearization behaviour improves. This is shown 

in Fig. 4.7 (a) and (b).  
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Fig. 4.7 Plots of forward, inverse and overall characteristics of the CPS by fixed-point FLANN at t = 12-
bits; (a) at –100C, (b) at 1000C. 
Axes Parameters: 
(PN)F = fixed-point normalized pressure 
(VN)F = fixed-point normalized voltage (output of the CPS+SCC) 
(PN’)F = fixed-point estimated pressure 
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At 16-bit word length the fixed-point effect is greatly reduced which is evident from Fig. 

4.8.  
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Fig. 4.8 Plots of forward, inverse and overall characteristics of the CPS by fixed-point FLANN at t = 16-
bits; (a) at –100C, (b) at 1000C. 
Axes Parameters: 
(PN)F = fixed-point normalized pressure 
(VN)F = fixed-point normalized voltage (output of the CPS+SCC) 
(PN’)F = fixed-point estimated pressure 
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4.3 Summary and Discussion 

In floating-point implementation the performance of the direct and inverse models of various 

sensors is quite good. However, it is shown that the word length greatly affects the linearity 

performance of these sensors. Thus to achieve an appreciation performance, judicious choosing 

of word length is very helpful. The present Chapter provides in-depth information on this 

burning issue.  
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Chapter 

5 
 

 

Nonlinear Compensation of LVDT 
using Different ANN Techniques 
 

 

 

HIS CHAPTER deals with the nonlinearity compensation of Linear Variable 

Differential Transformer (LVDT). In many practical control systems LVDT is used as 

the sensing element for displacement [5.1,5.2]. The performance of the control system 

depends upon the performance of the sensing elements. Many researchers have worked to 

design LVDT with high linearity [5.3-5.7]. In its conventional design methodology achieving 

high linearity involves complex design task. Sophisticated and precise winding machines are used 

to achieve that. It is difficult to have all LVDT fabricated in a factory at a time to be equally 

linear. LVDT having different nonlinearity present in a control system malfunctions at times 

because of the difference in sensor characteristics.  

T 

In Section 5.1, the electrical characteristics of LVDT are presented. Section 5.2 deals with the 

nonlinearity compensation of LVDT and its experimental set-up. The simulation studies are 
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carried out using different ANN models (MLP, FLANN and CFLANN) and the experimental 

dataset of a standard LVDT is dealt in Section 5.3. The results obtained from different models 

and their computational complexities are presented in Section 5.4. The summary and discussion 

of this Chapter is depicted in Section 5.5. 

5.1 Linear Variable Differential Transformer (LVDT) 

The LVDT consists of the primary coil and the secondary coil. The secondary coil itself has 

two coils connected differentially for providing the output. The two secondary coils are 

located on the two sides of the primary coil on the bobbin or sleeve and these two output 

windings (secondary coils) are connected in opposition to produce zero output at the 

middle position of the armature [5.1,5.2]. The lengths of primary and two identical halves 

of the secondary coils are b and m respectively. The coils have an inside radius ri and an 

outside radius of r0. The spacing between the coils is d. Inside the coils a ferromagnetic 

armature of length La and radius ri (neglecting the bobbin thickness) moves in an axial 

direction. The number of turns in the primary coil is np and ns is the number of turns in 

each secondary coil. The cross-sectional view of LVDT is shown in Fig. 5.1. 

Primary  

 

 

 

   

   

m b m
d d

ri 

r0 

La 
L1 L2 

Sec. I 
S1 

Armature

Sec. II 
S2 

 

Fig. 5.1 Cross-sectional view of an LVDT 

With a primary sinusoidal excitation voltage, Vp and the current Ip (r.m.s.) of frequency f, 

the r.m.s. voltage  induced emf in the secondary coil S1e 1 [5.1] is, 

( )
3

22
1 17

0

24 ,
10 ln

p p s

i a

fI n n L be x
r r mL

π +
= ⋅ ⋅  
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and in coil S2, 

( )
3

21
2 27

0

24 .
10 ln

p p s

i a

fI n n L be x
r r mL

π +
= ⋅ ⋅  

where  

1x  = Distance penetrated by the armature towards the secondary coil S1, and 2x  = 

Distance penetrated by the armature towards the secondary coil S2, 

The differential voltage e e is thus given by 1 2e= −

( )2
1 21e k x k x= −  (5.1)

where ( 1 2
1
2

)x x x= −  is the armature displacement and,  

( )
( ) ( )

3
0 0 1

1 7
0

16 2
 

10 ln
p p s

i a

fI n n b d x x
k V

r r mL
π −+ +

= m  (5.2)

with  ( )0 1
1
2 2x x x= +  and  

( )2
0 0

1
2k b d x x= + +  (5.3)

k2 is a nonlinearity factor in (5.1), the non-linearity term ε being  

2
2k xε =  (5.4)

For a given accuracy and maximum displacement the over-all length of the transducer is 

minimum for 0x b= ,assuming that at maximum displacement the armature does not 

emerge from the secondary coils. Taking the length of armature , neglecting 2d 3 2L b d= +a

compared with b and using (5.2), (5.1) can be simplified as  
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( )

3 2

7 2
0

16 2 1
10 ln 3 2

p p s

i

fI n n b xe
r r m b

π ⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
 (5.5)

For a given primary sinusoidal excitation, the secondary output voltage e is nonlinear with 

respect to displacement . This is shown in Fig. 5.2 in which the linear region of the plot is 

indicated as 

x

mx . This limitation is inherent in all differential systems and methods of 

extending the range have been proposed by various authors mainly by appropriate design 

and arrangement of the coils. Some of these are: 

(i) Balanced linear tapered secondary coils. But the improvement in linearity is not 

significant [5.3].  

(ii) Over-wound linear tapered secondary coil improves the linearity to a certain extent 

[5.4].  

(iii) Balanced over-wound linear tapered secondary coils. Its performance is similar to 

(ii) [5.5].  

(iv) Balanced profile secondary coils helps in extending linearity range by proper 

profiling of the secondary coils [5.6].  

(v) Use of complementary tapered winding extends the linearity range but the winding 

is quite complicated as it involves sectionalised winding [5.7]. 

All these methods improve the linearity performance to some extent and are based on 

improvement on constructional design. The methods are nonelectronic in nature and hence are 

nonadaptive. As a result they do not account for the nonlinearity contributed due to 

environmental changes. Hence there is a need to devise intelligent methods for adaptively 

compensating the nonlinearity contributed due to internal construction and temperature 

variation of LVDT. Incorporating the sensing feature of malfunctioning and adaptively 

compensating capability makes the LVDT an intelligent one. 
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 Fig. 5.2 Range of linear region of LVDT

5.2 Nonlinearity Compensation of LVDT 

 The proposed nonlinearity compensation scheme is shown in Fig. 5.3. In this scheme the 

LVDT can be controlled by a displacement actuator. The main controller gives an actuating 

signal to the displacement actuator, which displaces the core of the LVDT. The differential 

voltage of the LVDT after being demodulated does not keep linear relationship with the 

displacement. The nonlinearity compensator can be developed by using different ANN 

techniques like MLP, FLANN and cascaded FLANN. The output of the ANN based 

nonlinearity compensator is compared with the desired signal (actuating signal of the 

displacement actuator) to produce an error signal. With this error signal, the weight vectors 

of the ANN model are updated. This process is repeated till the mean square error (MSE) 

is minimized. Once the training is complete, the LVDT together with the ANN model acts 

like a linear LVDT with enhanced dynamic range. 

 

Displacement 
Actuator LVDT

Controller

x�  
Σ 

- ANN based 
nonlinearity 
compensator

x e  
 

+  

 

 Fig. 5.3 Scheme of an intelligent nonlinearity compensation of LVDT 
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The practical set-up of the LVDT along with the ANN based nonlinearity compensator 

after the training is shown in Fig. 5.4. 

 

 LVDT
x 

ANN
model 

x�

 

 Fig. 5.4 Practical set-up of LVDT after training

The percentage of linearity (PEL) of the LVDT can be computed as  

( ) *100
desired output estimated output

PEL
desired output

−
=  (5.6)

5.3 Simulation Studies 

To demonstrate the effectiveness these ANN based nonlinear compensators, computer 

simulation studies are carried out using experimental data obtained from a typical LVDT 

having following specifications.  

Number of turns in two secondary coils, S1 and S2, ns = 3300 turns each wound over it 

uniformly with the two coils separated by a Teflon ring.  

Core diameter is, 2ri = 4.4 mm,  

Core length is, La = 4.5 mm.  

The primary sinusoidal excitation voltage, Vp = 10V (peak-to-peak) of frequency, f = 5 

kHz. Vp is 6.712 Vrms.  

Primary winding resistance, rp = 260ohm.  

Secondary winding resistance, sr1 = 426.8 ohm.  

Secondary winding resistance, sr2 = 414 ohm. 

Two secondaries are wound in opposite directions. The pitch is kept around 0.02-0.03 mm. The 

experimentally measured data is presented in Table-5.1. 
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TABLE-5.1: EXPERIMENTAL MEASURED DATA 
 

Displacement 
(x in mm) 

Differential Output voltage 
(erms) 

Demodulated voltage 
output (e) 

-30 4.085 -5.185 
-25 3.956 -5.017 
-20 3.731 -4.717 
-15 3.221 -4.039 
-10 2.359 -2.896 
-5 1.273 -1.494 

Null position, 0 0.204 0.001 
5 1.153 1.462 
10 2.226 1.810 
15 3.118 3.962 
20 3.748 4.799 
25 4.050 5.225 
30 4.085 5.276 

5.3.1 MLP based Nonlinearity Compensator 

The differential or demodulated voltage e  at the output of LVDT is normalized by dividing 

each value with the maximum value. The normalized voltage output e  is subjected to input to 

the MLP based nonlinearity compensator. In case of the MLP, we used different neurons with 

different layers. However, the 1-100-50-1 network is observed to perform better hence it is 

chosen for simulation. Each hidden layer and the output layer contains tanh(.) type activation 

function. The output of the MLP based nonlinearity compensator is compared with the 

normalized input displacement of the LVDT. The BP algorithm, in which both the learning rate 

and the momentum rate are chosen as 0.02 and 1 respectively, is used to adapt the weights of the 

MLP. Applying various input patterns, the ANN weights are updated using the BP algorithm. 

To enable complete learning, 10,000 iterations are made. Then, the weights of the various layers 

of the MLP are frozen and stored in the memory. During the testing phase, the frozen weights 

are used in the MLP model. Fig. 5.5 shows the nonlinearity compensation of LVDT by MLP. In 

this model the PEL is obtained to be 3.1120 %. 
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Fig. 5.5 Response due to MLP (1-100-50-1) network  

5.3.2 FLANN based Nonlinearity Compensator 

In case of the FLANN model, the differential output of the LVDT is functionally 

expanded. In this case we have used trigonometric functional expansion because it provides 

better nonlinearity compensation compared to others. The expanded elements are then 

multiplied with a set of weights, and then summed to yield the final output. The output of 

the FLANN model is compared with the normalized input displacement of the LVDT to 

give the error signal. Using the error and the input to the inverse model the weights are 

updated by the simple Least Mean Square (LMS) algorithm. Two different experiments are 

carried out using the same data set of Table-5.1. The first experiment is carried out with 

less number of functional expansions i.e. P=10 with 10,000 iterations. In the second 

experiment the number of functional expansions is chosen to be 50 and the number of 

iterations is 5,000. Fig. 5.6 shows the response of the LVDT and the nonlinear 

compensator for the first experiment. Fig. 5.7 shows the same results for the second 

experiment. From these plots, it is observed that there is significant improvement in 

linearity by FLANN based compensator with P=50. The model FLANN with 10 functional 

expansions has achieved PEL about 0.3251 %; whereas with 50 functional expansions the 
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PEL value has increased to 5.12×10-15 %. Therefore in the second experiment the 

nonlinearity compensation is better than the first one [5.13].  
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Fig. 5.6 Response due to trigonometric series FLANN with P = 10 
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Fig. 5.7 Response due to trigonometric series FLANN with P = 50 
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5.3.3 CFLANN based Nonlinearity Compensator 

The linearity characteristics of LVDT can further be improved by the proposed method by 

employing Cascaded FLANN (CFLANN) structure, which essentially consists of two-stage 

FLANN models. In this case each FLANN structure uses less number of nonlinear expansions 

as compared to that needed for one-stage FLANN. Fig. 5.8 shows a 2-stage nonlinear expansion 

scheme of the differential voltage . The differential voltage e  at the output of LVDT is 

subjected to trigonometric expansion (M

e

1 values) to achieve nonlinearly mapped values. These 

are then multiplied with a set of weights and then added to produce an intermediate output 

(stage-I). This output value undergoes further expansion (M2 values) which are then weighted 

and summed to generate the final output (stage-II). It is compared with the desired signal 

(actuating signal of the displacement actuator) to produce an error signal. With this error signal, 

the weight vectors (2 sets) of the CFLANN model are updated. This process is repeated till the 

mean square error (MSE) is minimized. Once the training is complete, the LVDT together with 

the proposed model acts like a linear sensor with enhanced dynamic range. 
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 Fig. 5.8 Structure of CFLANN model

Mathematical Derivation of CFLANN 

Let E be the input vector of size N×1 which represents N number of elements; the nth 

element is given by: 

( ) ,1nn e n N= ≤ ≤E  (5.7)
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Each element undergoes nonlinear expansion to form M1 elements such that the resultant 

matrix has the dimension of N×M1.  

The trigonometric expansions of  are computed as ne

(
( )

sin

cos

n

q n

n

e

s m

m e

π

π

⎧
⎪⎪= ⎨
⎪
⎪⎩

)e                1

1

for 1                   
for 2, 4, ,     
for 3,5, , +1

q
q M
q M

=
=
=

…
…

 (5.8)

where 11, 2, , 2m M= " . In the proposed expansion M1 is always an even number. For 

example, if 1n =  and  we have 1 6M = 1, 2,3,  and 1, 2, ,7.m q= = …  Then the expanded 

elements are  

( )
( )
( )
( )
( )
( )

1 1

2 1

3 1

4 1

5 1

6 1

7 1

,
sin ,

cos ,

sin 2 ,

cos 2 ,

sin 3 ,

cos 3 .

s e
s e

s e

s e

s e

s e

s e

π

π

π

π

π

π

=

=

=

=

=

=

=

 

In matrix notation the expanded elements of the input vector E, is denoted by SQ of size 

N×(M1+1).  

The bias input is unity. So an extra unity value is padded with the SQ matrix and the 

dimension of the SQ matrix becomes N×Q, where ( )1 2Q M= + . 

Let the weight vector of stage-I be represented by WQ having Q elements. The output of 

stage-I, is given as 1y

1
1

Q

q q
q

y s
=

= ⋅∑ w  (5.9)
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In matrix notation the output can be, 

T
1 Q Q= ⋅Y S W  (5.10)

In the ordinary FLANN model, the final output  is compared with the desired response. 

The weights, w

1y

q are updated by using least mean square (LMS) algorithm [5.11]. 

However, in case of CFLANN, the output of stage-I,  is further expanded nonlinearly to 

M

1y

2 elements each. Hence the functional expansion results 

( )
( )

1

1

1

sin

cos

r

y

s l

l y

π

π

⎧
⎪⎪= ⎨
⎪
⎪⎩

y  2

2

for 1                   
for 2, 4, ,    
for 3,5, , +1

r
r M
r M

=
=
=

…
…

 (5.11)

where 21, 2, , 2.l M= "  Here M2 is an even number. The matrix form of the nonlinearly 

expanded elements is represented by SR having dimension N×(M2+1).  

In the same way as stage-I, the bias input is included to form SR with dimension N×R, 

where . Let W( 2 2R M= + )

w

R be the weight vector of stage-II with R elements. The output 

of IInd stage is given by 

2
1

R

r r
r

y s
=

= ⋅∑  (5.12)

In matrix notation the final output is obtained as 

T
2 R R= ⋅Y S W  (5.13)

At kth iteration the error signal ( )kε  can be computed as  

( ) ( ) ( )2k d k y kε = −  (5.14)
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where  is the desired signal which is same as the control signal given to the ( )d k

displacement actuator. 

Let  denote the cost function at iteration k and is given by ( )kξ

( ) ( )2

1

1
2

J

j
j

k kξ ε
=

= ∑  (5.15)

where J is the number of nodes at the final output layer.  

The weight vectors (of both stage-I and stage-II) can be updated by back-propagation (BP) 

algorithm, [5.12] as 

( ) ( ) ( )1r rw k w k w k+ = + ∆ r  (5.16)

( ) ( ) ( )1q qw k w k w k∆+ = + q  (5.17)

where,  

( ) ( )
( )r

r

k
w k

w k
ξ

η
∂

∆ = − ⋅
∂

 (5.18)

where η is the learning-rate parameter (0 ≤  η ≤ 1). The minus sign accounts for gradient 

descent in weight space. (5.18) can be solved to yield 

( ) ( )r rw k k sη δ∆ = ⋅ ⋅ r  (5.19)

where  is the local gradient and is defined as, ( )r kδ

( ) ( )
( )

( )
2

r

k
k

y k

k

ξ
δ

ε

∂
= −

∂

=

 (5.20)

Similarly the change in weights of stage-I is given by 

 81



N O N L I N E A R  C O M P E N S A T I O N  O F  L V D T  U S I N G  D I F F E R E N T  A N N  
T E C H N I Q U E S  

( ) ( )
( )q

q

k
w k

w k
ξ

η
∂

∆ = − ⋅
∂

 (5.21)

( ) ( )q qw k k sη δ∆ = ⋅ ⋅ q  (5.22)

where  is the local gradient of stage-I and is defined as ( )q kδ

( ) ( )
( )

( ) ( )( )
1

1

q

j

k
k

y k

k w y k

ξ
δ

ε ϕ

∂
= −

∂

′= ⋅ ⋅

 (5.23)

where ( )( )1rs y kϕ=  and is obtained by functionally expanding ( )1y k .  is the 

first order derivative of 

( )( 1y kϕ′ )

( )( )1y kϕ .  

Simulation studies are carried out using the same experimental data of Table: 5.1, but 

employing the CFLANN model developed in this Chapter. In this case 12 trigonometric 

expansions are taken in stage-I and 4 expansions in stage-II respectively and the PEL is 

found to be 3.41×10-15 % [5.15]. The plot of CFLANN model is shown in Fig. 5.9.  
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Fig. 5.9 Plots of response of the CFLANN model, 

Nonlinearly mapped inputs = 12 (stage-I), 4 (stage-II) 
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5.4 Computational Complexity 

In this section the computational complexity of MLP, FLANN and CFLANN models is 

evaluated and compared. In case of MLP, the structure chosen is 1-H1-H2-1, i.e. number of 

input, hidden layer-1, hidden layer-2, and output nodes are 1, H1, H2, 1, respectively. Three 

basic computations, i.e. addition, multiplication and computation of tanh(.) are involved in 

forward path of the MLP; whereas in FLANN and CFLANN, along with the additions and the 

multiplications, some extra computations are required for calculating sin(.) and cos(.) functions. 

In FLANN, the order chosen is P. The total number of elements after P numbers of 

trigonometric expansion is M=2P+1.  The computational complexity involved during the 

training period is not considered as this operation is performed offline.  Table 5.2 presents the 

operation units during normal operation of various ANN models. 

TABLE-5.2: COMPUTATIONAL COMPLEXITY 

Network Addition Multiplication tanh(.) sin(.)/cos(.) Percentage of Linearity 

MLP  
(1-100-50-1) 

5150 
(100+5000+50) 

5301 
(200+5050+51) 151 --- 3.1120% 

FLANN  
(1-22-1) 21 22 --- 20 

(10+10) 0.0033% 

FLANN  
(1-52-1) 51 52 --- 50 

(25+25) 5.12×10-15% 

CFLANN  
(1-14-6-1) 18 20 --- 16 

(12+4) 3.41×10-15% 

From Table-5.2, it is evident that the CFLANN model drastically reduces the computational 

complexity. It also offers better linearity compared to MLP and FLANN models (1-22-1). The 

1-52-1 FLANN model though offers almost similar linearity as CFLANN; its complexity is 

much higher.  

5.5 Summary and Discussion 

Different efficient ANN based nonlinearity compensators for LVDT are developed in this 

Chapter. The nonlinearity compensation capability of MLP is poor; the PEL is about 3.1120 %. 

The high order FLANN based nonlinearity compensator improves the linearity quite 

appreciably but involves more computations. To reduce the computational complexity of the 

FLANN model, the CFLANN structure is proposed here. With reduced number of expansions 

at each stage, the CFLANN model provides better performance compared to others. In Table-
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5.2, it is noted that the CFLANN (1-14-6-1) model employs 18 additions, 20 multiplications and 

16 numbers of sin(.)/cos(.) expansions as compared to 51 additions, 52 multiplications and 50 

numbers of sin(.)/cos(.) expansions needed for FLANN model. Thus, considering performance 

and computational complexity, it is observed that the proposed 2-stage FLANN model is 

preferred one compared to other models studied in this Chapter.  
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Chapter 

6 
 

 

Adaptive Nonlinear Compensation of 
Control Valve Actuator using Soft 
Computing Techniques 
 

 

 

HE CONTROL VALVE ACTUATORS are the most common actuators in the 

process industries. They are found in process plants, manipulating flows to maintain 

controlled variable at their set points. A control valve acts as a variable restriction in a 

process pipe. By changing its opening it changes the resistance to flow and, thus, the flow itself 

[6.1]. The equal percentage control valve actuator devices have nonlinearities in their inherent 

flow characteristics. But when it is put in a pipe line, it acts as nearly linear control valve, called 

installed characteristics. The linearity depends on the pressure difference across the valve. As the 

pressure difference across the value varies, it is always required to compensate to get very 

accurate linear characteristics. Some of other fundamental actuator nonlinearities include friction, 

deadzone, saturation, backlash and hysteresis. Amongst these the friction, the deadzone and the 

saturation are static nonlinearities, whereas the backlash and the hysteresis are dynamic 

T 
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nonlinearities. Various attempts have been made by many researchers to compensate the static 

and dynamic nonlinearities present in the actuators [6.3-6.10]. The motivation of this Chapter is to 

develop the efficient adaptive inverse models with less computational complexity to compensate 

the nonlinearity effect of the equal percentage control valve actuator characteristics. 

The rest of the Chapter is organized as follows. In Section 6.1, the operation of different control 

valve characteristics is presented. Section 6.2 develops the proposed adaptive inverse algorithms 

required to develop the intelligent model and their simulation studies. Finally, the summary and 

discussion are presented in Section 6.3. 

6.1 Control Valve Actuator  

The control valve is essentially a 

variable resistance to the flow of a 

fluid, in which the resistance and 

therefore the flow, can be changed by 

a signal from a process controller. The 

cross sectional view of a control valve 

is shown in Fig. 6.1. The function of a 

control valve is to vary the flow of 

fluid through the valve by means of a 

change of pressure to the valve top. 

The relation between the flow through the valve and the valve stem position (or lift) is 

called the valve characteristics. It may be differentiated as inherent flow characteristics and 

installed flow characteristics. The inherent flow characteristics refers to the characteristics observed 

with constant pressure drop across the valve. Where as the installed flow characteristics refers to 

the characteristic observed when the valve is in service with varying pressure drop and 

other changes in the system. The relation between the flow through the valve and the valve 

stem position (or lift) is called the valve characteristics [6.1, 6.2]. 

Fig. 6.1 Cross-sectional view of a control valve actuator

ACTUATOR

Stem 
VALVE

Delivery Supply 

Packing 

Diaphragm

Seat Plug

Air Signal

In general, the flow through a control valve for a specific fluid at a given temperature can 

be expressed as 
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( )1 0, ,q f L p p= 1   (6.1)

where q = volumetric flow rate,  

 L = valve stem position (or lift) 

 p0 = upstream pressure 

 p1 = downstream pressure 

The inherent valve characteristics is determined for fixed values of p0 and p1, for which (6.1) 

becomes 

( )2q f L=  (6.2)

Let, max max and m q q x L L= = , whe re qmax is the flow when the valve stem is at its 

maximum lift Lmax (valve is full open), x is the fraction of maximum lift, and m is the 

fraction of maximum flow. 

Hence (6.2) can be rewritten as 

( )max maxm q q f L L= =  

or, ( )m f x=  (6.3)

The sensitivity may be represented as 

dms
dx

=  (6.4)

In terms of valve characteristics, valves can be divided into three types: decreasing 

sensitivity, linear and increasing sensitivity. For the decreasing sensitivity type, the 

sensitivity (slope) decreases with m and it is known as “quick opening flow characteristics”. 

For the linear flow characteristics, the sensitivity is constant and the characteristic is a 

straight line. For the increasing type, the sensitivity increases with flow and it is also known 

as “equal percentage valve”.  

Mathematically the linear flow characteristics can be represented as 
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dm
dx

α=  (6.5)

where α  is a constant. And assuming that the valve is shut tight when the lift is at lowest 

position, we have . For a single-seated valve that is not badly worn, the valve 

can be shut off for . 

0 at 0m x= =

0x =

Integrating (6.5) and introducing the limits 0 at 0m x= =  and 1 at 1m x= =  gives 

1 1

0 0

dm dxα=∫ ∫  (6.6)

By solving this we get 1α = . 

For 1α = , (6.5) can now be integrated to give 

m x=  (linear valve) (6.7)

Hence the linear type valves are commonly used in liquid level loops and in other processes 

where the pressure drop across the valve is fairly constant.  

For the equal percentage valve, the slope can be 

dm m
dx

β=  (6.8)

where β is constant. Integration of (6.8) gives 

0 0

m x

m

dm dx
m

β=∫ ∫  (6.9)

or, 
0

ln m x
m

β=  (6.10)

where m0 is the flow at . 0x =
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The basis for calling the valve characteristics equal percentage can be by rearranging (6.8) in 

the form 

    and    dm mdx x
m m

β β∆
= = ∆  (6.11)

in this form it can be seen that an equal fractional (or percentage) change in flow ( )m m∆  

occurs for a specified increment of change in stem position ( )x∆ , regardless of where the 

change in stem position occurs along the change the characteristic curve. 

The term β can be expressed in terms of m0 by inserting 1 at 1m x= =  into (6.10). The 

result is 

0

1ln
m

β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

Then (6.9) for m gives 

0
xm m eβ=  (equal percentage valve) (6.12)

m0 is the flow at . m0x = 0 cannot be zero since there may be some leakage when the stem is 

at its lowest position. For some valves, especially large ones, the valve manufacturer 

intentionally allows some leakage at minimum lift ( )0x =  to prevent binding and wearing 

of the plug and seat surfaces.  

The Rangeability (R) is defined as the ratio of maximum flow to minimum controllable 

flow over which the valve characteristic is followed, 

max

min,controllable

mR
m

=  (6.13)

The main constraint in equal percentage valve is low rangeability. The rangeability mainly 

depends on the term m0. For example, if 0 0.02m = , the rangeability is 50. The application of 
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these valves requires in services where large variations in pressure drop are expected or in 

services where a small percentage of the total system pressure drop is to be taken. 

6.2 Adaptive Inverse Models  

The practical setup of the interfacing of the inverse model with the control valve actuator is 

shown in Fig. 6.2. This figure depicts that the adaptive inverse model is connected in series with 

the actuator to compensate the associated varying nonlinearity of the actuator. 

In this section we have employed three types of inverse models (LMS, MLP and FLANN) for 

nonlinearity compensation of the control valve actuator and their performance in terms of 

convergence speed, MSE level, accuracy and computational complexity has been compared. 

Brief discussion of each network and its mathematical derivation is mentioned in Chapter 2. The 

simulation studies of all types of adaptive inverse model are dealt in this section. 

Control valve 
Actuator Σ 

error 

Inverse 
Model 

x m x

 

 

 
x 

 Fig. 6.2 Set-up for compensating nonlinearity of control valve actuator  

6.2.1 LMS based Inverse Model 

The detail of the LMS algorithm [6.11] is already reported in Chapter 2. The input flow  varies 

from 1 to 15 psig with an increment of 1 psig. Accordingly the output of the control valve is 

calculated by (12). The normalized output of the control valve serves as the input to the inverse 

model and the output of that is compared with the normalized pressure.  In this case, the order 

of the tap is 20. The learning rate of the updation algorithm is taken as 0.1. To make the model 

effective, 5000 iterations are used to train the inverse model. The weights of the network are 

frozen after updation. The PEL is achieved as 4.48×10

x

-15 %. The overall response of the model 

is shown in Fig. 6.3.  
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Fig. 6.3 Plots of response of the LMS based inverse model 

6.2.2 MLP based Inverse Model 

In case of the MLP, (1-50-30-1) network has been taken for the development of the inverse 

model of the actuator. Each hidden and the output layer consists of a nonlinear activation 

function of tanh(.) type [6.12]. The weights of the network are updated by using the back 

propagation algorithm. The learning rate and the momentum parameter of the algorithm are 

chosen as 0.02 and 1 respectively. The number of iterations is chosen as 10000 to effectively 

train the network. The response of the actuator along with the response of the compensation 

network is plotted in Fig. 6.4. 
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Fig. 6.4 Plots of response of the MLP based inverse model 
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Once the training is complete, the weights of the network are frozen in the memory. In this case, 

the PEL is obtained as 0.3106 %.  

6.2.3 FLANN based Inverse Model 

In this case, the output of the control valve actuator is functionally expanded into 50 elements. 

The FLANN structure is formed as 1-52-1, including the original input and the bias term. There 

are 52 weight elements in the network, and these are updated by employing the LMS algorithm. 

The learning rate is taken as 0.01. For successfully training the network, 10000 iterations are 

chosen. In this case the PEL is 7.70×10-5 %. Once the training is over, the coefficients are stored 

and frozen in the memory. For testing phase, the inverse model is connected in series with the 

control valve. The change of output of the control valve with respect to the input pressure is fed 

to this inverse model. The FLANN model output is computed and compared with the actual 

output to verify the effectiveness of the model [6.13]. The plot of the FLANN based inverse 

model is shown in Fig. 6.5. 
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 Fig. 6.5 Plots of response of the FLANN based inverse model 

6.3 Summary and Discussion 

In this Chapter, three adaptive inverse models have been proposed. A comparative study 

between of these three models has been carried out through simulation study. It is observed that 

the LMS based inverse model offers better linearity performance compared to others. The LMS 
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based inverse model is simple to implement and offers improved performance compared to 

others. This is because the actuator offers less nonlinearity which does not require MLP and 

FLANN structures.  
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7 
 

 

Conclusions  
 

 

 

HE overall conclusions of the thesis are the following:  T 
(1) It investigates on the nonlinearity issues relating to three typical sensors: 

(i) The CPS 

(ii) The LVDT 

(iii) The control valve actuators. 

(2) The nonlinearity problem gives rise to the following difficulties: 

(i) Non accuracy in measurement 

(ii) Limitation of dynamic range (linearity region) 

(iii) Full potentiality of the sensor cannot be utilized. 

(3) The nonlinearity problem arises due to: 
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(i) Environmental changes such as change in temperature, humidity and atmospheric 

pressure 

(ii) Aging 

(iii) Constructional limitations. 

(4) In this thesis adaptive and intelligent methods for compensation of nonlinearities have 

been proposed and have been applied to three typical sensors. 

(5) These methods are based on the following structures: 

(i) MLP 

(ii) FLANN 

(iii) CFLANN 

(iv) RBFNN 

The learning algorithms employed in the thesis are: 

(i) LMS algorithm in FLANN 

(ii) BP algorithm in MLP and CFLANN 

(iii) RBF learning algorithm 

(6) Basically nonlinear compensation has been achieved through  

(i) Direct modeling of the sensors 

(ii) Inverse modeling of the sensors 

(7) Exhaustive simulation studies of various methods show that MLP and RBFNN 

structures provide improved linearity compensation performance but involves more 

computations and tedious to implement. However, the proposed FLANN and 

CFLANN based solutions offer quite satisfactory performance and involve low 

complexity.  

(8) The thesis also presents the fixed-point implementation of the FLANN based direct and 

inverse models of the sensors.  
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7.1 Scope for Further Research Work 

Many further research work may be carried out on the same and related topics.  

(1) For developing the inverse model, supervised learning has been used. It has employed 

training data. In many situations the training data is not available. In absence of such 

data, training can be carried out by employing blind techniques which are known as 

unsupervised method. Investigation is needed to develop nonlinear compensator using 

blind techniques such as higher order statistics (HOS).  

(2) The investigation made in this thesis can also be extended to other types of sensors and 

instruments. 

(3) Practical implementation of the inverse model as a plug-in-module, cascading it with 

physical sensors and using the combined ones for real-time applications is very 

important. Further research work can be carried out in this direction.  

(4) FPGA implementation of the proposed nonlinearity compensators can be carried out as 

further research work. 
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