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Abstract

Noise Suppression from images is one of the most important concerns in digital

image processing. Impulsive noise is one such noise, which may corrupt images

during their acquisition or transmission or storage etc. A variety of techniques are

reported to remove this type of noise. It is observed that techniques which follow

the two stage process of detection of noise and filtering of noisy pixels achieve

better performance than others. In this thesis such schemes of impulsive noise

detection and filtering thereof are proposed.

Two models of impulsive noise are considered in this thesis. The first one is Salt

& Pepper Noise (SPN) model, where the noise value may be either the minimum

or maximum of the dynamic gray scale range of the image. And, the second one

is Random Valued Impulsive Noise (RVIN) model, where the noise pixel value is

bounded by the range of the dynamic gray scale of the image.

Two of the proposed schemes deal with SPN model where as other four deal

with RVIN model of noise. The first scheme is based on second order difference

of pixels in order to identify noisy pixels. The second scheme for SPN model uses

fuzzy technique to locate contaminated pixels. The contaminated pixels are then

subjected to median filtering. This detection–filtration is done recursively so that

filtered pixels take part in the detection of noise in the next pixel.

In the four proposed schemes for RVIN model adaptive threshold selection is

emphasized. Incorporation of adaptive threshold into the noise detection process

led to more reliable and more efficient detection of noise. Based on the noisy image

characteristics and their statistics, threshold values are selected.

Extensive simulations and comparisons are done with competent schemes. It is

observed, in general, that the proposed schemes are better in suppressing impulsive

noise at different noise ratios than their counterparts.
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Chapter 1

Introduction

A major portion of information received by a human from the environment is vi-

sual. Hence, processing visual information by computer has been drawing a very

significant attention of the researchers over the last few decades. The process of

receiving and analyzing visual information by the human species is referred to as

sight, perception or understanding. Similarly, the process of receiving and analyz-

ing visual information by digital computer is called digital image processing [1].

An image may be described as a two-dimensional function I.

I = f(x, y) (1.1)

where x and y are spatial coordinates. Amplitude of f at any pair of coordinates

(x, y) is called intensity I or gray value of the image. When spatial coordinates

and amplitude values are all finite, discrete quantities, the image is called digital

image [2].

Digital image processing may be classified into various subbranches based on

methods whose: [2]

• input and output are images and

• inputs may be images where as outputs are attributes extracted from those

images.

Following is the list of different image processing functions based on the above

two classes.

• Image Acquisition
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• Image Enhancement

• Image Restoration

• Color Image Processing

• Multi-resolution Processing

• Compression

• Morphological Processing

• Segmentation

• Representation and Description

• Object Recognition

For the first seven functions the inputs and outputs are images where as for the

rest three the outputs are attributes from the input images. With the exception of

image acquisition and display most image processing functions are implemented in

software. Image processing is characterized by specific solutions, hence the tech-

nique that woks well in one area can be inadequate in another. The actual solution

of a specific problem still requires a significant research and development [3].

Out of the ten subbranches of digital image processing, cited above, this thesis

deals with image restoration. To be precise, the thesis devotes on a part of the

image restoration i.e. noise removal from images, stated in the Problem Definition.

This is chapter is organized as follows. Image Restoration is discussed in Sec-

tion 1.1 followed by a broad classification of filters in Section 1.2. The problem

definition is described in Section 1.3. Different performance measures for compar-

ison are described in Section 1.4. Review of different existing schemes and their

performance analysis is done in Section 1.5. Motivation behind carrying out the

work is stated in Section 1.6. Organization of the thesis is outlined in Section 1.7.

Finally, Section 1.8 provides the chapter summary.

2



1.1 Image Restoration

1.1 Image Restoration

The first encounter with digital image restoration in the engineering community

were in the area of astronomical imaging. It primarily began with the efforts of

scientists involved in the space programs of both the United States of America

and the former Soviet Union in the 1950s and early 1960s. These programs were

responsible for producing many incredible images of our solar system, which were

at that time unimaginable. However, the images obtained from the various plan-

etary missions of the time were subject to many photographic degradations. The

22 pictures produced during the Mariner IV flight to Mars in 1964 were later esti-

mated to cost almost $10 million just in terms of the number of bits transmitted

alone [4].

The degradations were as a result of substandard imaging environments, the

vibration in machinery and spinning and tumbling of the spacecraft. Rapidly

changing refractive index of the atmosphere was also one of the reasons. Pic-

tures from the manned space mission were also blurred due to the inability of the

astronaut to steady himself in a gravitation less environment while taking pho-

tographs. Extraterrestrial observations were degraded by motion blur as a result

of slow camera shutter speed, relative to rapid spacecraft motions. The degra-

dation of images was no small problem. Any loss of information due to image

degradation is devastating as it reduces the scientific value of these images. Not

surprisingly, astronomical imaging is still one of the primary applications of digital

image restoration today.

In the area of medical imaging, image restoration has certainly played a very

important part. Restoration has been used for filtering noise in X-rays, mam-

mograms, and digital angiographic images [5]. It also finds its utility in Mag-

netic Resonance Imaging (MRI) [6]. Another application of image restoration in

medicine is in the area of Quantitative Auto-Radiography (QAR). Images, in this

area, are obtained by exposing X-ray sensitive film to a radioactive specimen.

QAR is performed on post-mortem studies, and provides a higher resolution than

techniques such as Positron Emission Tomography (PET), X-ray Computed To-
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1.1 Image Restoration

mography (CAT), and MRI, but still needs to be improved in resolution in order

to study drug diffusion and cellular uptake in the brain. Digital image restoration

techniques can contribute significantly for this [7].

Another application of this field is the use of digital techniques to restore aging

and deteriorated films. The idea of motion picture restoration is probably most

often associated with the digital techniques used not only to eliminate scratches

and dust from old movies, but also to colorize black-and-white films. Only a

small subset of the vast amount of work being done in this area can be classified

under the category of image restoration. Much of this work belongs to the field of

computer graphics and enhancement. Nonetheless, some very important work has

been done recently in the area of digital restoration of films. Digital restoration of

the film  ̏Snow White˝and the  ̏Seven Dwarfs˝by Walt Disney, which originally

premiered in 1937 [8] are few to cite.

Image restoration has also received some notoriety in the media, and particu-

larly in the movies of the last decades. The climax of the 1987 movie  ̏No Way

Out˝was based on the digital restoration of a blurry Polaroid negative image. The

1991 movie  ̏JFK˝made substantial use of a version of the famous Zapruder 8mm

film of the assassination of the US President John F. Kennedy. It is no surprise

that digital image restoration has been used in law enforcement and forensic sci-

ence for a number of years. The restoration of poor quality security video tapes,

blurry photographs of license plates and crime scenes are often needed when such

photographs can provide the only link for solving a crime. Clearly, law enforce-

ment agencies all over the world have made, and continue to make use of digital

image restoration ideas in many forms.

One of the most exciting areas of application for digital image restoration is

that in the field of image and video coding. Even though coding efficiency has

improved and bit rates of coded images have reduced, there is another problem

of blocking artifacts which needs significant research. These are as a result of

the coarse quantization of transform coefficients used in typical image and video

compression techniques. Usually, a Discrete Cosine Transform (DCT) will be

4



1.1 Image Restoration

applied to prediction errors on blocks of 8×8 pixels. Intensity transitions between

these blocks become more and more apparent when the high-frequency data is

eliminated due to heavy quantization. Already, much has been accomplished to

model these types of artifacts, and develop ways of restoring coded images as a

post-processing step to be performed after decompression [9–11].

Digital image restoration is being used in many other applications as well. Just

to name a few, restoration has been used to restore blurry X-ray images of aircraft

wings to improve aviation inspection procedures. It is used for restoring the motion

induced effects present in still composite frames, and, more generally, for restoring

uniformly blurred television pictures. Printing applications often require the use

of restoration to ensure that halftone reproductions of continuous images are of

high quality. In addition, restoration can improve the quality of continuous images

generated from halftone images. Digital restoration is also used to restore images

of electronic piece parts taken in assembly-line manufacturing environments. Many

defense-oriented applications require restoration, such as that of guided missiles,

which may obtained distorted images due to the effects of pressure differences

around a camera mounted on the missile. All in all, it is clear that there is a very

real and important place for image restoration technology today.

Image restoration is distinct from image enhancement techniques, which are

designed to manipulate an image in order to produce results more pleasing to

an observer, without making use of any particular degradation models. Image

enhancement refers to the techniques of improvement of visual appearance of the

image so as to be more appealing to the human. On the other hand restoration

emphasizes on getting back the original image as far as possible from the degraded

one. Thus the goal of image enhancement is very different from that of restoration.

Better representation of image is obtained through image enhancement techniques,

however, it would not be possible to define what enhancement exactly means, as

an enhancement to one may be a noise to another [12].

Image reconstruction techniques are also generally treated separately from

restoration techniques, since they operate on a set of image projections and not

5



1.1 Image Restoration

on a full image. Restoration and reconstruction techniques do share the same

objective, however, which is that of recovering the original image, and they end

up solving the same mathematical problem, which is that of finding a solution to

a set of linear or nonlinear equations.

Digital image restoration is a field of engineering that studies methods used

to recover an original scene from degraded observations. Developing techniques

to perform the image restoration task requires the use of models not only for

the degradations, but also for the images themselves. Image restoration problem

is a subset of Inverse Problem. In general, in inverse problems, the values of a

certain set of functions are estimated from the known properties of other functions.

Consider the following relationship

L({fi}, {gj}) = 0 (1.2)

where L is an operator, the function, {fi}, are sought, and the values of the func-

tions, {gj}, are known. When the problem is well poised, the existence of solution

is assured. Also there exists a unique solution for a given problem. However, in

the presence of noise, the uniqueness of solution is not assured.

The image degradation and subsequent restoration may be depicted as in Fig-

ure 1.1(a). In this thesis, however, only noise part of entire degradation is dealt

with, which is shown in Figure 1.1(b). The following section provides a broad

classification of restoration filters.

Function H

Degradation

η( x, y)

Restoration

Filter (s)

g( x, y)
Restored

Image
f ( x, y)

True

Image

Noise

( x, y)f̂

(a)

η( x, y)

Restoration

Filter (s)

g( x, y)
Restored

Image
True

Image
f ( x, y)

Noise

(b)

Figure 1.1: (a) Model of the image degradation/restoration process, (b) Model of
the Noise Removal Process.
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1.2 Filters

1.2 Filters

Image restoration, usually, employs different filtering techniques. Filtering may be

done either in spatial domain or in frequency domain. In this thesis different spatial

domain restoration techniques are studied and proposed. Broadly, filters may be

classified into two categories: Linear and Nonlinear. The filtering methodologies

are described below.

1.2.1 Linear Filters

In the early development of image processing, linear filters were the primary tools.

Their mathematical simplicity with satisfactory performance in many applications

made them easy to design and implement. However, in the presence of noise the

performance of linear filters is poor. They tend to blur edges, do not remove impul-

sive noise effectively, and do not perform well in the presence of signal dependent

noise [13].

Mathematically, a filter may be defined as an operator L(· ), which maps a

signal x into a signal y:

y = L(x) (1.3)

When the operator L(· ) satisfies both the superposition and proportionality prin-

ciples, the filter is said to be linear. Two-dimensional and m-dimensional linear

filtering is concerned with the extension of one-dimensional filtering techniques

to two and more dimensions. If impulse response of a filter has only finite num-

ber of non-zero values, the filter is called a finite impulse response (FIR) filter.

Otherwise, it is an infinite impulse response (IIR) filter [14].

If the filter evaluates the output image only with the input image, the filter

is called non-recursive. On the other hand, if the evaluation process requires

input image samples together with output image samples, it is called recursive

filter [3, 13, 15]. Following are the few main types of filters:

• Low-pass filter: Smooths the image, reducing high spatial frequency noise

components.
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1.2 Filters

• High-pass filter: Enhances very low contrast features, when superimposed

on a very dark or very light background.

• Band-pass filter: Tends to sharpen the edges and enhance the small details

of the image.

1.2.2 Nonlinear Filters

Nonlinear filters also follow the same mathematical formulation as in (1.3). How-

ever, the operator L(· ) is not linear in this case. Convolution of the input with

its impulse response does not generate the output of a nonlinear filter. This is

because of the non-satisfaction of the superposition or proportionality principles

or both [13–15].

Gray scale transformations [1, 2, 16] are the simplest possible nonlinear trans-

formations of the form (1.3). This corresponds to a memoryless nonlinearity that

maps the signal x to y. The transformation

y = t(x) (1.4)

may be used to transform one gray scale x to another y. Histogram modification

is another form of intensity mapping where the relative frequency of gray level

occurrence in the image is depicted. An image may be given a specified histogram

by transforming the gray level of the image into another. Histogram equalization

is one such methods that is used for this purpose. The need for it arises when

comparing two images taken under different lighting conditions. The two images

must be referred to the same base, if meaningful comparisons are to be made.

The base that is used as standard has a uniformly distributed histogram [1,2,16].

Of course, a uniform histogram signifies maximum information content of the

image [17]. Figure 1.2 gives a graphical representation of the various families of

nonlinear filters [13].

Order statistic filters [13, 15] for noise removal are the most popular class

nonlinear filters. A number of filters belongs to this class of filters, e.g., the

median filter, the stack filter, the median hybrid filter etc. These filters have

found numerous applications in digital image processing.
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1.2 Filters

Homomorphic
Filters

Quadratic
Filters

Filters
Polynomial

Filters
Morphological

Nonlinear
Mean
Filters

Order Statistics Filters

FILTERS

Median
Filters

NONLINEAR FILTERS

Figure 1.2: Nonlinear Filter Family

There exists some ap-

proaches that utilizes geomet-

ric features of signals. Their

origin is basic set operations

for image processing. These

filters are called morphological

filters and find applications in

image processing and analysis.

Biomedical image processing,

shape recognition, edge detec-

tion, image enhancement are

few other areas, where it is

used extensively [1, 2, 13, 15,

16].

One of the oldest class of nonlinear filters, which have been used extensively

in digital signal and image processing, are homomorphic filters and their exten-

sions. These filter class find its applications in image enhancement, multiplicative

and signal dependent noise removal, speech processing and also in seismic signal

processing [1, 2, 13, 15, 16].

Adaptive filtering has also taken advantage of nonlinear filtering techniques.

Non-adaptive nonlinear filters are usually optimized for a specific type of noise

and signal. However, this is not always the case in many applications especially in

image processing. Images can be modeled as two-dimensional stochastic processes,

whose statistics vary in the various image regions and also from applications to

applications. In such situations, adaptive filters become the natural choice and

their performance depends on the accuracy of estimation of certain signal and

noise statistics [1, 2, 13, 15, 16].

Considerable attenuation has been given nonlinear estimation of signals cor-

rupted with noise. Despite impressive growth in last few decades, nonlinear fil-

tering techniques still lack a unifying theory that encompasses existing nonlinear

9
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processing techniques.

1.3 Problem Definition

Different types of noise frequently contaminate images. Impulsive noise is one

such noise, which may affect images at the time of acquisition due to noisy sensors

or at the time of transmission due to channel errors or in storage media due to

faulty hardware. Two types of impulsive noise models are described below.

Let Yi,j be the gray level of an original image Y at pixel location (i, j) and

[nmin, nmax] be the dynamic range of Y . Let Xi,j be the gray level of the noisy

image X at pixel (i, j) location. Impulsive Noise may then be defined as:

Xi,j =

⎧⎨
⎩

Yi,j with 1 − p

Ri,j with p
(1.5)

where, Ri,j is the substitute for the original gray scale value at the pixel location

(i, j). When Ri,j ∈ [nmin, nmax], the image is said to be corrupted with Random

Valued Impulsive Noise (RVIN) and when Ri,j ∈ {nmin, nmax}, it known as Fixed

Valued Impulsive Noise or Salt & Pepper Noise (SPN). Pixels replaced with RVIN

and their surroundings exhibit very similar behavior. These pixels differ less in

intensity, making identification of noise in RVIN case far more difficult than in

SPN.

The difference between SPN and RVIN may be best described by Figure 1.3.

In the case of SPN the pixel substitute in the form of noise may be either nmin(0)

or nmax(255). Where as in RVIN situation it may range from nmin to nmax.

1.4 Performance Measures

The metrics used for performance comparison of different filters (exists and pro-

posed) are defined below.

a. Peak Signal to Noise Ratio (PSNR)

PSNR analysis uses a standard mathematical model to measure an objective

difference between two images. It estimates the quality of a reconstructed

10
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0 255{0,255}

(a)

0 255[0,255]

(b)

Figure 1.3: Representation of (a) Salt & Pepper Noise with Ri,j ∈ {nmin, nmax},
(b) Random Valued Impulsive Noise with Ri,j ∈ [nmin, nmax]

image with respect to an original image. The basic idea is to compute a single

number that reflects the quality of the reconstructed image. Reconstructed

images with higher PSNR are judged better. Given an original image Y of

size (M ×N) pixels and a reconstructed image Ŷ , the PSNR(dB) is defined

as:

PSNR(dB) = 10 log10

⎛
⎜⎝ 2552

1
M×N

∑M
i=1

∑N
j=1

(
Yi,j − Ŷi,j

)2

⎞
⎟⎠ (1.6)

b. Percentage of Spoiled Pixels (PSP )

PSP is a measure of percentage of non-noisy pixels change their gray scale

values in the reconstructed image. In other words it measures the efficiency

of noise detectors. Hence, lower the PSP value better is the detection, in

turn better is the filter performance.

PSP =
number of non-noisy pixels changed their gray value

total number of non-noisy pixels
× 100 (1.7)

1.5 Literature Survey

Noise removal from a contaminated image signal is a prominent field of research

and many researchers have suggested a large number of algorithms and compared

their results. The main thrust on all such algorithms is to remove impulsive noise

11
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while preserving image details. These schemes differ in their basic methodologies

applied to suppress noise. Some schemes utilize detection of impulsive noise fol-

lowed by filtering whereas others filter all the pixels irrespective of corruption.

In this section an attempt has been made for a detail literature review on the

reported articles and study their performances through computer simulation. We

have classified the schemes based on the characteristics of the filtering schemes

and described are below.

A. Filtering without Detection

In this type of filtering a window mask is moved across the observed image.

The mask is usually of size (2N+1)2, where N is a positive integer. Generally

the center element is the pixel of interest. When the mask is moved starting

from the left-top corner of the image to the right-bottom corner, it performs

some arithmetical operations without discriminating any pixel.

B. Detection followed by Filtering

This type of filtering involves two steps. In first step it identifies noisy pixels

and in second step it filters those pixels. Here also a mask is moved across

the image and some arithmetical operations is carried out to detect the noisy

pixels. Then filtering operation is performed only on those pixels which are

found to be noisy in the previous step, keeping the non-noisy intact.

C. Hybrid Filtering

In such filtering schemes, two or more filters are suggested to filter a cor-

rupted location. The decision to apply a particular filter is based on the

noise level at the test pixel location or performance of the filter on a filtering

mask.

All those filtering schemes that are reviewed are described in this section under

their respective head.
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A. Filtering without Detection

As discussed in the previous section, this technique does not detect contaminated

pixels. It applies the filtering mechanism through out the subject without dis-

criminating any pixel.

A1. Moving Average [2]

This is a simple linear filter. Average of all pixels of a sliding window is replaced

with the pixel of interest.

Ŷi,j =
1

m × n

∑
(u,v)∈Smn

Xu,v (1.8)

where, X is the noisy image, Ŷ is the restored image and Smn is the sliding window

of size m× n centered around (i, j). Its performance both in subjective as well as

objective way is very poor.

A2. Median (3 × 3) A3. Median (5 × 5) [2]

The median filter (1.9) is one of the most popular nonlinear filters. It is very

simple to implement and much efficient as well. But the cost is that it blurs the

image and edges are not preserved. It acts like a low pass filter which blocks all

high frequency components of the image like edges and noise, thus blurs the image.

Ŷi,j = MEDIAN(u,v)∈Smn (Xu,v) (1.9)

Depending upon the sliding window mask there may be many variations of

median filter. Here we have reviewed two such variations. Median (3 × 3) filter

makes use of a 3×3 sliding window, whose center pixel is replaced with the median

value of all the 9 pixels of the window. This kind of filter is helpful when noise is

scattered throughout the image. Whereas median (5 × 5) filter replaces the pixel

of interest i.e. the center pixel with the median value of all the 25 pixels of the

sliding window. When noise appears in blotch, this type of filter works better.

But for other situations it produces disappointing results.
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A4. WM1 k = 1 A5. WM k = 2 [18–21]

This is another nonlinear median filter, which favors the center pixel than others.

Let the window size be (2n + 1)2 and L = 2n(n + 1). The filter is defined as:

Ŷ 2k
i,j = MEDIAN{Xi−u,j−v, (2k)�Xi,j| − h ≤ u, v ≤ h} (1.10)

where 2k is the weight given to pixel (i, j), and � represents the repetition opera-

tion. Hence in a 3× 3 window Ŷ 2k
i,j is the median of (9 + 2k) gray values with the

center value of the window repeated (2k + 1) times. Ŷ 0
i,j is the standard median

filter, where as Ŷ 2k
i,j becomes identity filter when k ≥ L. Two variations of WM

(with k = 1 and k = 2) have been simulated. When the noise percentage is low,

both the filters work better but beyond 10% of noise the performance starts dete-

riorating. If noise appears as blotch in a window, it leaves the blotch as it is as if

no filtering has been done.

B. Detection followed by Filtering

Such filtering schemes differentiate between noisy and non-noisy pixels. These

filters, in general, consist of two steps. Detection of noisy pixels is followed by

filtering. Filtering mechanism is applied only to the noisy pixels.

B1. Rank-Ordered Mean [22]

This is an adaptive approach to solve the restoration problem in which filtering

is conditioned on the current state of the algorithm. The state variable is defined

as the output of a classifier that acts on the differences between the current pixel

value and the remaining ordered pixel values inside a window centered around the

pixel of interest.

This scheme is undoubtedly one of the robust and simple scheme but it fails

in preserving the finer details of the image.

1WM: Weighted Median

14



1.5 Literature Survey

B2. Progressive-Switching Median [23]

It is a median based filter, which works in two stages. In the first stage an impulse

detection algorithm is used to generate a sequence of binary flag images. This

binary flag image predicts the location of noise in the observed image. In the

second stage noise filtering is applied progressively through several iterations.

This filter is a very good filter for fixed valued impulsive noise but for random

values the performance is abysmal.

B3. Adaptive Center Weighted Median Filter [19]

This work is an improvement of previously described Center Weighted Median

(CWM) filter. It works on the estimates based on the differences between the

current pixel and the outputs of the CWM filters with varied center weights.

These estimates decide the switching between the current pixel and median of the

window.

This is a good filter and is robust for a wide variety of images. But it is

inefficient in recovering the exact values of the corrupted pixels.

B4. Adaptive Two-Pass Median [24]

As the name suggests it employs median filter on the noisy image twice. This

adaptive system tries to correct for false replacements generated by the first round

of median filtering operation. Based on the estimated distribution of the noise,

some pixels changed by first median filter are replaced by their original values and

kept unchanged in the second median filtering. And in the second round it filters

out the remaining impulses.

Even though the filter gives some good results in terms of noise suppression

but spoiling of good pixels is more and it results in overall poor performance.

B5. Accurate Noise Detector [25]

This filter justifies its name by detecting noise to the perfection. Based on Pro-

gressive Switching Median Filter, it generates an edge flag image to classify the

pixels of noisy image into ones in the flat regions and edge regions. The two types
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of pixels are processed by different noise detector. When noise is very high pre-

vention of false-detection and non-detection becomes difficult. Therefore, another

iteration is dedicated for verification of the noise flag image.

This scheme exhibits good performance on images not only with low noise

density but also with high percentage of corruption. But all these come at the

cost of computational complexity which is very high and not at all suitable for

real time applications.

B6. SM2 (5 × 5) B7. SM (7 × 7) B8. SM (9 × 9) [26]

This is also a two stage process, where in the first stage noise detection is carried

out and in the second stage filtering is done. The noisy image is convolved with a

set of convolution kernels. Each of the kernels are sensitive to edges in a different

orientation. The minimum absolute value of these four convolutions is used for

impulse detection by comparing with a threshold. By varying the size of kernel

different variations of SM may be obtained. Three such variations of SM are

reviewed here in this paper.

Because of its four kernels it detects noise effectively even in those images

where the edge density is more. But when the kernel size increases to 7 × 7 and

9 × 9 it fails in doing so. Also it fails in preserving finer details.

B9. Differential Ranked Impulse Detector [27]

This is another nonlinear technique which also works in two stages. It aims at

filtering only corrupted pixels. Identification of such pixels is done by comparing

signal samples within a narrow rank window by both rank and absolute value.

The first estimate is based on the comparison between the rank of the pixel of

interest and rank of the median. The second estimate is based on the brightness

value which is analyzed using the median.

It is a good filter in low noise conditions but the performance slightly degrades

in beyond 20% of noise. It also leaves noise blotch without correcting.

2SM: Switching Median
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B10. Enhanced Ranked Impulse Detector [27]

This scheme is an alteration of the scheme described above. Here the brightness is

analyzed by calculating the difference of pixel of interest with its closest neighbors

in the variational series.

Its performance is very good at low noise but fails miserably at noise density

more than 20%.

B11. Advanced Impulse Detection Based on Pixel-Wise MAD [28]

This scheme is based on modified median of absolute deviation from median

(MAD). MAD is used to estimate the presence of image details. An iterative

pixel wise modification of MAD is used here that provides a reliable removal of

impulses. Its performance is more than average and fails when the edge density is

more.

B12. Minimum-Maximum Exclusive Mean [29]

This is a simple nonlinear, robust filter that centers around two windows of size

3×3 and 5×5. It checks for a particular range of gray level in the 3×3 windows. If

it fails it goes to 5× 5 window. If average of all the pixels of that particular range

is more than certain value then that pixel is replaced with the average, otherwise

it is left intact. This is one of the good schemes because of its simplicity and easy

implementation.

B13. Peak and Valley [30]

This recursive nonlinear filter is composed of two conditional rules. It compares the

test pixel with surrounding neighbor pixels for some conditions. It then replaces

the pixel of interest with the most conservative surrounding pixel. This scheme

is computationally efficient over others but at the same time it spoils non-noisy

pixels to a greater extent.
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B14. Detail preserving impulsive noise removal [31]

Unlike thresholding techniques, it detects noisy pixels non-iteratively using the

surrounding pixel values. It is based on a recursive minimum maximum method

of Peak and Vally scheme. When the image contains numerous edges like Bab-

bon,Clown etc. this technique totally fails.

B15. Signal-Dependent Rank Ordered Mean [32]

This is one of the most efficient nonlinear algorithms to suppress impulsive noise

from highly corrupted images. Based on detection-estimation strategy, this algo-

rithm replaces the identified noisy pixel with rank ordered mean of it surroundings.

C. Combined Filtering

Two or more filters are employed in this type of filtering mechanism. In addition

to this a switch is used whose logic helps in switching among the employed filters.

The switch may take output of individual filter into consideration or by some other

means to decide which filter should be employed for a particular window such that

the final output would be the best.

C1. Tri-State Median Filtering [33]

This combined filter comprises of standard median filter, identity filter, center

weighted median filter and a switching logic. Noise detection is realized by an

impulse detector, which takes the outputs from the standard median and center

weighted median filters and compares them with the center pixel value in order to

make a tri-state decision. The switching logic is controlled by a threshold value.

Depending on this threshold value, the center pixel value is replaced by the output

of either SM filter or CWM filter or identity filter. This is one of the good schemes

reviewed in this paper.

C2. Two-Output Filter [34]

The two-output nonlinear filter is based on the subsequent activation of two re-

cursive filtering algorithms that operates on different subsets of input data. One
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subset is the right-bottom 3×3 sub-window and the other one is left-top 3×3 sub-

windows of a 4×4 sliding window. Two center pixels of both 3×3 sub-windows are

updated at each step. Rank ordered filtering is used to remove impulsive noise.

This is a good scheme and gives very good result under fixed valued impulsive

noise conditions. But under random valued impulsive noise it fails miserably.

C3. MRHF3-1 C4. MRHF-2 C5. MRHF-3 [35]

This is a class of non-linear filters called Median Rational Hybrid Filters based on

a rational function. The filter output is the result of a rational operation taking

into account three sub function. In all the three operations the central operation

is CWM.

In MRHF-1 the CWM gives φ2 and two FIR sub filters give φ1 and φ3. The

rational function on φ1, φ2 and φ3 decides which of the filter is most suitable.

In MRHF-2 the sub-filters are four unidirectional median filters. Mean of two

median filters gives φ1 and mean of other two gives φ3. And the CWM gives φ2.

The rational function decides based on these three φ values.

In MRHF-3 two bidirectional median filter give φ1 and φ3. Together with φ2 from

CWM the rational function takes the decision.

Spoiling of non-noisy pixels is high in all the three filters. When compared among

the three, the MRHF-2 outperforms other two.

1.5.1 Results and Discussions

Lena image corrupted with RVIN (1% to 30% of noise) is subjected to the different

filtering schemes discussed above and their performance is measured using metrics

(1.6) and (1.7). Table-1.1 lists the PSNR where as Table-1.2 lists the PSP of

different filters. Figures 1.4– 1.6 depict the performance of each scheme in their

respective groups.

The performance in PSNR of Group-A schemes is depicted in Figure 1.4.

The performance of A1 is very poor in comparison to others. A3’s performance

is steady, which is around 30dB. A5 is in commanding position at very low noise

3MRHF: Median Rational Hybrid Filter
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density but flunks at other situations. A2 is better in the upper half where as A4

is better in the lower half of noise density.

Group-B performance is depicted in Figure 1.5. B15 is one of the filters that

outperforms rest all. When comparing other schemes it can be seen that, in the

very low noise density (around 1%) B6 and B9 outperforms all others. When the

density increases (low noise, 5%–15%) B3, B4, B10 and B11 performs equally good

but B6 and B9 decline drastically. When the density further increases (medium

noise, 20%–30%), all the schemes perform more or less same. But B3 and B4 are

slightly better than others in this range of noise.

Figure 1.6 unequivocally depicts that C1 is not only the winner in Group-C

but also outperforms all other schemes in the same group. Performances of C3,

C4 and C5 are almost same where as C2 produces very very poor results.

Some of the schemes, whose performance is better in SPN model of noise are

also compared. Figure 1.10 shows the PSNR (dB) variations and Figure 1.11 PSPs

of such schemes.

1.6 Motivation

The last section reveals many things about the existing restoration schemes. Most

of the reported schemes work well under SPN but fails under RVIN, which is more

realistic when it comes to real world applications. Even though some of the re-

ported methods [19, 24–28, 31, 32, 34–36] claim to be adaptive, they are not truly

adaptive for the simple reason of not considering the image and noise characteris-

tics. These schemes generally use a threshold value for the identification of noise.

A predefined parameter is compared with this threshold value. If it exceeds, the

pixel is marked as contaminated otherwise not. Usually the threshold value used is

either a constant or a set of four/five values. A threshold, which is optimal in one

environment may not be good at all in a different environment. By environment

we mean, the type of image, characteristic and density of noise.

Further, there has been little or no usage of soft computing techniques in the

reported schemes. Soft computing methodologies mimic the remarkable human

20



1.7 Thesis Organization

capability of making decision in ambiguous environment. It embraces approxi-

mate reasoning, imprecision, uncertainty and partial truth. There exists scope for

improving the detector’s performance using softcomputing techniques.

These facts motivated us:

• to work towards improved and efficient detectors for identifying contami-

nated pixels.

• to devise adaptive thresholding techniques so that noise detection would be

more reliable.

• to exploit the computational power of soft computing techniques in pre-

dicting the threshold value by adapting to the environment with a greater

ease.

1.7 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 proposes two restoration schemes for images contaminated with

Salt & Pepper Noise. The first one is based on second order difference of

pixels to identify noisy pixels which subsequently uses median filtering on

the identified pixels only. The second scheme utilizes fuzzy technique to

detect noise in a given window of an image. When compared with other

existing techniques, the proposed schemes show good performance.

Techniques proposed in Chapter 3 are based on second order difference

of pixels with adaptive threshold value in order to identify Random Valued

Impulsive Noise from images. Three different ways of selecting the threshold

value are proposed. In the first method an equation is fitted to make the

decision process adaptive to the noise and image characteristics. The sec-

ond approach uses an artificial neural network trained with backpropagation

algorithm to detect noisy pixels. And the third scheme uses an improved

neural network i.e. functional link artificial neural network to estimate the
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threshold. Comparative analysis with most recent techniques reveal that our

techniques are better in terms of noise suppression.

The last proposed scheme, presented in Chapter 4, also utilizes an artifi-

cial neural network, but with more emphasis on selection of proper input

parameters to be used. Two different parameters are used in this scheme,

which reduces the training time considerably and the noise detection be-

comes more accurate. Exhaustive simulations on different standard images

and subsequent comparisons reveal that this proposed scheme outperforms

existing schemes both qualitatively as well as quantitatively.

Finally Chapter 5 presents the concluding remark, with scope for further

research work.

1.8 Summary

The fundamentals of digital image processing, sources of noise and types of noise

in an image, the existing filtering schemes and their merits and demerits and the

various image metrics are studied in this chapter. Applications of soft computing

techniques have been underutilized in the surveyed schemes. To derive the benefits

of this paradigm, investigation has been made in this thesis to develop some novel

schemes in the area of image restoration.
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Table 1.1: Comparative Results in PSNR (dB) of different filters for Lena image
corrupted with RVIN of varying strengths

Noise ⇒ 1% 5% 10% 15% 20% 25% 30%

Filters ⇓
A1 28.16 26.76 24.19 22.44 21.07 20.01 19.11

A2 35.04 33.96 32.81 31.65 30.25 28.94 27.39

A3 30.95 30.4 29.82 29.22 28.48 27.96 27.32

A4 38.19 36.11 33.99 31.76 29.32 27.30 25.25

A5 41.16 36.05 31.26 27.73 24.87 22.70 20.88

B1 31.64 31.01 30.25 29.60 28.86 28.15 27.39

B2 31.95 31.28 30.81 30.05 29.27 28.54 27.84

B3 36.08 34.77 33.37 32.21 31.12 29.02 28.02

B4 35.32 34.15 32.94 31.88 30.59 29.40 28.19

B5 31.51 30.33 29.03 28.23 27.18 26.59 25.84

B6 40.55 35.01 31.84 29.71 27.97 26.66 25.43

B7 33.9 31.86 30.3 29.01 27.57 26.59 25.60

B8 30.48 29.31 28.09 27.11 26.03 25.18 24.22

B9 42.08 36.01 32.12 28.89 26.40 24.35 22.68

B10 39.21 36.06 33.85 31.64 30.80 28.91 27.22

B11 37.10 35.47 33.55 31.72 29.52 27.34 25.39

B12 38.93 33.47 30.06 27.63 25.67 24.13 22.73

B13 35.99 34.68 32.89 30.93 28.36 26.48 24.35

B14 36.87 33.34 29.53 26.62 24.37 22.64 21.07

B15 42.90 38.68 35.80 33.95 32.24 30.90 29.63

C1 39.49 36.06 34.01 31.61 29.09 28.46 27.88

C2 31.92 24.92 21.97 20.21 18.91 17.95 17.06

C3 30.97 29.38 27.03 24.89 23.02 21.46 20.13

C4 32.01 30.24 27.73 25.47 23.50 21.84 20.42

C5 31.59 30.02 27.73 25.56 23.62 22.02 20.60
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Table 1.2: Comparative Results in PSP of different filters for Lena image corrupted
with RVIN of varying strengths

Noise ⇒ 1% 5% 10% 15% 20% 25% 30%

Filters ⇓
A1 98.99 99.08 99.13 99.18 99.32 99.45 99.56

A2 66.71 67.4 68.12 68.45 69.14 69.63 69.97

A3 78.23 78.84 79.43 79.73 80.34 80.77 80.98

A4 40.58 40.28 39.7 39.34 38.99 38.67 38.27

A5 22.84 21.77 20.60 19.52 18.40 17.61 16.92

B1 96.85 97.03 97.25 97.39 97.53 97.78 97.96

B2 00.00 00.05 00.09 00.05 00.11 00.00 00.22

B3 06.36 06.70 07.06 07.55 07.89 08.57 09.38

B4 59.01 59.52 60.05 60.56 61.14 61.74 62.29

B5 00.00 00.00 00.02 00.05 00.08 00.06 00.00

B6 00.13 00.17 00.21 00.26 00.32 00.44 00.58

B7 01.27 01.49 01.62 01.96 02.29 02.88 03.37

B8 03.63 04.06 04.49 05.22 06.03 07.13 08.47

B9 00.09 00.09 00.1 00.12 00.12 00.16 00.17

B10 01.17 01.21 01.33 01.49 01.79 02.21 02.75

B11 08.70 08.81 08.90 09.05 09.20 09.50 10.08

B12 00.33 00.60 01.24 02.21 03.62 05.37 07.68

B13 51.46 51.86 52.31 52.71 53.43 53.85 54.41

B14 25.63 23.87 21.98 19.93 18.25 17.13 15.63

B15 0.28 0.28 0.33 0.32 0.34 0.40 0.47

C1 00.74 00.79 00.89 00.99 01.16 01.14 01.59

C2 00.01 00.03 00.05 00.06 00.09 00.09 00.13

C3 99.12 99.15 99.18 99.19 99.2 99.21 99.22

C4 92.79 93.34 93.87 94.39 94.99 95.34 95.87

C5 92.28 92.72 93.16 93.62 94.14 94.45 94.91
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Figure 1.4: PSNR (dB) variations of Lena image corrupted with RVIN by Group-A
schemes
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Figure 1.5: PSNR (dB) variations of Lena image corrupted with RVIN by Group-B
schemes
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Figure 1.6: PSNR (dB) variations of Lena image corrupted with RVIN by Group-C
schemes
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Figure 1.8: PSP variations of Lena image corrupted with RVIN by Group-B
schemes
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Figure 1.9: PSP variations of Lena image corrupted with RVIN by Group-C
schemes

27



1.8 Summary

0 5 10 15 20 25 30
15

20

25

30

35

40

45

P
SN

R
 (

dB
)

Noise Percentage

SM(5X5)
MED(3X3)
MED(5X5)
PnV
WM(k=1)
WM(k=2)
TMED
ATMED

Figure 1.10: PSNR (dB) variations of Lena image corrupted with SPN
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Figure 1.11: PSP variations of Lena image corrupted with SPN
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Chapter 2

Efficient Impulsive Noise
Removal Schemes

Two of the proposed schemes for eliminating impulsive noise from digital images

are presented in this chapter. Salt & Pepper Noise (SPN) model of impulsive

noise (Section 1.3) is considered here. The first scheme, Decision Directed Median

Filter, is described in Section 2.1. The second scheme, Fuzzy Impulsive Noise

Detection, is based on fuzzy logic which is discussed in Section 2.2. Comparison

of the two proposed schemes with some of the existing schemes is presented in

Section 2.3. Finally, the chapter is concluded with a brief summary in Section 2.4.

2.1 Decision Directed Median Filter

Usually the pixels located in the neighborhood of a test pixel are correlated to

each other and they possess almost similar characteristics. Most of the reported

impulse detection schemes exploit this feature of pixels. The scheme proposed

here is one such novel technique of impulsive noise detection-suppression strategy

from corrupted images. This scheme is simple but efficient and works alternatively

in two phases: detection of noisy pixels followed by median filtering.

Methodology of the proposed scheme is outlined in Section 2.1.1. The al-

gorithm is presented in Section 2.1.2 followed by the filtering algorithm in Sec-

tion 2.1.3.
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2.1 Decision Directed Median Filter

2.1.1 Methodology

In a practical situation, since the probability p (1.5) is less than 1, all the pixels of

a digital image are not corrupted with the impulsive noise. In addition, when the

probability of corruption is not cent percent, it is expected that the noisy pixel

be surrounded by at least some healthy pixels. However, this assumption is not

true as the noise density becomes very high. In any case, the total number of

corrupted pixels is less than the total number of pixels in the image. Hence, it

is not required to perform filtering operation on every pixel for eliminating the

impulsive noise. Rather, it is computationally economical to filter only the cor-

rupted pixels leaving the healthy pixels unchanged. This approach reduces the

blurring effect in the restored image, as the magnitude of healthy pixels is not

affected by filtering. Basically, the noise removal method proposed in this paper

constitutes two tasks: identification of corrupted pixels and filtering operation

on those corrupted pixels. Thus the effectiveness of this scheme lies on the ac-

curacy and robustness of detection of noisy pixels and efficiency of the filtering

methodology employed. Many researchers [19, 33, 37, 38] have suggested various

methods for locating the distorted pixels as well as filtering techniques. Each of

these methods has different shortcomings and hence fails to reproduce images very

close to original ones. These are either over-filtering distortion, blurring effect or

high computational involvement. In addition, as the density of the impulsive noise

is gradually increased, the quality of the image recovered by the existing methods

correspondingly degrades. The scheme proposed here, is an improved impulsive

noise detection scheme followed by recursive median filtering to overcome many

of the shortcomings observed in the existing methods.

To achieve this objective, it is necessary to devise an effective impulse detection

scheme prior to filtering operation. The proposed scheme employs a second order

difference based impulse detection mechanism at the location of a test pixel. The

mathematical formulation of the proposed method is presented in (2.1),

Ŷi,j =

⎧⎨
⎩

Zi,j if di,j = 0

Xi,j if di,j = 1
(2.1)
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2.1 Decision Directed Median Filter

where, di,j is the decision index that controls the filtering operation and estimates

the filtered output Ŷi,j from the observed image Xi,j and filtered pixel value Zi,j. If

the impulse detector determines that the center pixel of test window is noisy, then

di,j = 0, otherwise di,j = 1. When di,j = 0, the corrupted pixel undergoes median

filtering. On the other hand di,j = 1, the window is skipped and the process is

repeated. Unlike in conventional methods, the filtering operation is performed

selectively based on the decision of the impulse detector. Hence the proposed

method is named as Decision Directed Median Filter (DDMF). The schematic

diagram of the proposed filtering scheme is shown in Figure 2.1.

X

Corrupted Image X
(t)

3x5 windower

activate

3x3 windower Impulse Detector

Median Filter

X
(w)

di,j =0

di,j =1

Select Next Window Select Next Window

Find Median

Figure 2.1: Schematic Diagram of the Proposed Filter

2.1.2 The DDMF Algorithm

The detailed algorithm for impulse detection and filtering is described below.

i. Choose a test window X(t) of size 3× 5 located at the top-left corner of the

observed image X.

X(t) =

⎛
⎜⎜⎜⎝

Xi−1,j−2 Xi−1,j−1 Xi−1,j Xi−1,j+1 Xi−1,j+2

Xi,j−2 Xi,j−1 Xi,j Xi,j+1 Xi,j+2

Xi+1,j−2 Xi+1,j−1 Xi+1,j Xi+1,j+1 Xi+1,j+2

⎞
⎟⎟⎟⎠ (2.2)

Consider a 3 × 3 sub-window X(w) from X(t) as:

X(w) =

⎛
⎜⎜⎜⎝

Xi−1,j−1 Xi−1,j Xi−1,j+1

Xi,j−1 Xi,j Xi,j+1

Xi+1,j−1 Xi+1,j Xi+1,j+1

⎞
⎟⎟⎟⎠ (2.3)
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2.1 Decision Directed Median Filter

ii. Compute the first order 3 × 4 difference matrix f (d) from X(t) as:

f (d) =

⎛
⎜⎜⎜⎝

f
(d)
i−1,j−1 f

(d)
i−1,j f

(d)
i−1,j+1 f

(d)
i−1,j+2

f
(d)
i,j−1 f

(d)
i,j f

(d)
i,j+1 f

(d)
i,j+2

f
(d)
i+1,j−1 f

(d)
i+1,j f

(d)
i+1,j+1 f

(d)
i+1,j+2

⎞
⎟⎟⎟⎠ (2.4)

where f
(d)
i+k,j+l = X

(t)
i+k,j+l − X

(t)
i+k,j+l−1, k = −1, 0, 1 and l = −1, 0, 1, 2.

iii. Compute the second order 3 × 3 difference matrix s(d) from f (d) as:

s(d) =

⎛
⎜⎜⎜⎝

s
(d)
i−1,j−1 s

(d)
i−1,j s

(d)
i−1,j+1

s
(d)
i,j−1 s

(d)
i,j s

(d)
i,j+1

s
(d)
i+1,j−1 s

(d)
i+1,j s

(d)
i+1,j+1

⎞
⎟⎟⎟⎠ (2.5)

where s
(d)
i+p,j+q = f

(d)
i+p,j+q+1 − f

(d)
i+p,j+q, p = −1, 0, 1 and q = −1, 0, 1.

iv. Apply the following rule for impulse detection at pixel Xi,j :

– If s
(d)
i,j is a high magnitude negative quantity then Xi,j is corrupted by

a positive impulsive noise.

– If s
(d)
i,j is a high magnitude positive quantity then Xi,j is corrupted by

a negative impulsive noise.

Since the objective is to detect the presence of an impulsive noise rather than

its type, compute the absolute value of the second order difference, |s(d)|.

v. A decision index d, for the test pixel at i, j is obtained by passing s(d) through

a hard limiter H that saturates at a threshold value θ. The output of the

hard limiter is given by:

di,j = H(|s(d)
i,j |) =

⎧⎨
⎩

0 if |s(d)
i,j | > θ

1 otherwise
(2.6)

vi. Apply the binary decision rule for impulse detection at Xi,j as:

– If di,j is zero, then the test pixel Xi,j is corrupted by impulsive noise

and invoke the filtering operation to substitute the gray level of the test

pixel with a filtered gray value. Then go to step (vii).
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2.1 Decision Directed Median Filter
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Figure 2.2: Typical window Selection for an M × N Image in DDMF

– If di,j equals to one, then the test pixel is healthy. Skip the test window

and go to step (vii).

vii. Shift the moving window X(t) by one column from left to right and top to

bottom as shown in Figure 2.2.

viii. Repeat steps (ii) through (vi) for all the windows in the row.

ix. Obtain the next sliding window by shifting it down by one row.

x. Repeat the steps (ii) through (vii) till the complete image is covered.

2.1.3 Recursive Median Filtering Algorithm

Based on the algorithm corrupted pixels are identified across the image. Then

the filtering operation is carried out only on those distorted pixels. The recursive

filtering operation computes the median value of a 3×3 window X(w) surrounding

the corrupted center pixel and substitutes this value at the location of the faulty

pixel unlike the conventional median filter. In the next adjacent window, the

healthiness of its center pixel is tested considering the gray level of the already

filtered pixel rather than that of the original one. Mathematically,

Ŷi,j =

⎧⎨
⎩

Yi,j if di,j = 1

Zi,j otherwise
(2.7)
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2.2 Fuzzy Impulsive Noise Detection

where,

Zi,j = median{X(w)
i−k,j−l, (k, l) ∈ X(w)} (2.8)

2.2 Fuzzy Impulsive Noise Detection

In this section, a fuzzy based filtering scheme namely Fuzzy Impulsive Noise De-

tection (FIND) is proposed. It employs a fuzzy detection scheme to identify pixels

corrupted with impulsive noise and subsequently filter the noisy pixels using re-

cursive median filter. The detector is responsible for ascertaining the healthiness

of a pixel in a test window by utilizing the gray level information in its neigh-

borhood. The median filtering is applied to corrupted locations only leaving the

non-corrupted ones intact. Such selective filtering operation prevents from edge

jittering and blurring of images.

Section 2.2.1 describes the methodology of the proposed scheme. The algo-

rithm is outlined in Section 2.2.2.

2.2.1 Methodology

The proposed filtering scheme is a selective one and consists of two stages: decision-

making regarding the presence of impulsive noise (salt & pepper) at a test pixel

location and median filtering only of corrupted pixels. Hence, detection operation

is carried out at all locations but filtering is performed only at selected locations.

From the corrupted image a 3 × 3 window is selected and a fuzzy detection is

employed to derive a decision regarding the presence of impulse at the center

pixel. Accordingly, the center pixel is replaced with the median value of the pixels

in its neighborhood prior to the selection of the next window. The overall block

diagram of the combined filter structure is depicted in Figure 2.3.

Window by
Sliding

Selection of

Corrupted Image

Fuzzy Detection of

at the center pixel

Impulsive Noise

Median Filter

Recursive

NO

YES

Replacement of filtered pixel

Signal to choose next window

Figure 2.3: Block Diagram of the Proposed Filter
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2.2 Fuzzy Impulsive Noise Detection

2.2.2 The FIND Algorithm

The impulse detection for the proposed filter is based on the fuzzy inference logic.

In any fuzzy application, the challenge lies in fuzzification and defuzzification pro-

cess [39]. In our case, we use a triangular fuzzy membership function that utilizes

only two linguistic variables. In the following, the proposed FIND algorithm is

outlined stepwise.

i. Select the first test window of size 3 × 3 from the corrupted image X and

let Xi,j represent the center pixel.

Xw =

⎛
⎜⎜⎜⎝

Xi−1,j−1 Xi−1,j Xi−1,j+1

Xi,j−1 Xi,j Xi,j+1

Xi+1,j−1 Xi+1,j Xi+1,j+1

⎞
⎟⎟⎟⎠ (2.9)

ii. Convolve Xw with the two kernels (2.10) and (2.11) to obtained ∆1 and ∆2

respectively.

K1 =

⎛
⎜⎜⎜⎝

1
4

0 1
4

0 −1 0

1
4

0 1
4

⎞
⎟⎟⎟⎠ (2.10)

K2 =

⎛
⎜⎜⎜⎝

0 1
4

0

1
4

−1 1
4

0 1
4

0

⎞
⎟⎟⎟⎠ (2.11)

iii. Apply Mamdani fuzzy model for two-input one-output with nine-rules as

stated in Table 2.1.

Table 2.1: Fuzzy Rules for Impulse Detection

∆2

Small Medium Large

Small Less Noise Less Noise More Noise

∆1 Medium Less Noise More Noise More Noise

Large More Noise More Noise More Noise
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2.2 Fuzzy Impulsive Noise Detection

iv. Compute the strength of each linguistic variable using triangular fuzzy mem-

bership functions as shown in Figure 2.4. Let the membership functions for

Small, Medium and Large be denoted as µsmall, µmedium, and µlarge respec-

tively.

a b c d e f0

LargeMediumSmall

µ

∆

1

Figure 2.4: Fuzzy Membership Function

v. Evaluate the fuzzy rules using Zadeh logic for AND implication. The firing

strength of membership functions to different rules are evaluated as:

m1 = min [µsmall(∆1), µsmall(∆2)]

m2 = min [µsmall(∆1), µmedium(∆2)]
...

m9 = min [µlarge(∆1), µlarge(∆2)]

(2.12)

vi. Construct the consequent membership function as shown in Figure 2.5 from

nine active rules for a system with two inputs and one output.

vii. Obtain a crisp value (M) from the fuzzy set (Defuzzification) by using center-

of-gravity method and apply to a decision process as given below.

di,j =

⎧⎨
⎩

0 if M belongs to noisy class

1 otherwise
(2.13)

viii. Invoke the median filtering on Xi,j using Xw as described in Section 2.1.3,

if di,j = 0 else go to step (viii).

ix. Shift the test window column wise and then row wise to cover the entire

image pixels.

x. Repeat steps (ii) through (ix) for all windows.
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2.2 Fuzzy Impulsive Noise Detection
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Figure 2.5: Construction of consequent membership function and defuzzification
by center-of-gravity method
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2.3 Simulations and Results

Table 2.2: PSNR (dB) of different schemes at 15% of noise on different images

Lisa Girl Clown Gatlin

SM5 × 5 28.66 28.43 24.78 30.70

MED3 × 3 34.19 30.63 22.75 31.19

MED5 × 5 27.71 27.41 21.75 28.45

PnV 28.97 29.47 21.79 28.32

WMedk = 1 29.87 28.63 23.47 28.43

WMedk = 2 22.85 21.76 20.70 21.84

TMED 28.26 27.29 20.45 29.84

ATMED 28.03 27.05 20.13 29.75

DDMF 40.70 38.00 34.00 42.40

FIND 30.25 32.46 25.85 35.05

2.3 Simulations and Results

The proposed schemes in this chapter are simulated and their performance is

compared with some of the recently reported schemes. Median (MED(3× 3)) and

(MED(5×5)) [2], Switching-Median (SM(5×5)) [26], Weighted Median (WM(k =

1)) and (WM(k = 2)) [18], Peak and Valley (PnV) [30], TMED and ATMED [40]

are the compared schemes. Lena image is corrupted with Salt & Pepper Noise with

density ranging from 1% to 30%. These images are then subjected to filtering by

the proposed schemes along with the above listed schemes. The PSNR (dB) (1.6)

and PSP (1.7) thus obtained are plotted in Figures 2.6 and 2.7.

Similar experiments are conducted with four other standard images (Lisa,Girl,

Clown, and Gatlin). Tables 2.2 and 2.3 lists the PSNR dB and PSP obtained at

15% of noise density.

Two more subjective comparisons are also done. Figure 2.8(a) is the true

image of Lena and Figure 2.8(b) is the noisy version (20% SPN). Figures 2.8(c) to

2.8(l) shows the restored images. Similarly Figure 2.9 shows the restored images

of Peppers corrupted with 20% of SPN.

38



2.3 Simulations and Results
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Figure 2.6: PSNR (dB) variations of Restored Lena image corrupted with SPN of
varying strengths
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Figure 2.7: PSP variations of Restored Lena image corrupted with SPN of varying
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2.3 Simulations and Results

(a) True Image (b) 15% Noisy (c) SM (5 × 5)

(d) MED (3 × 3) (e) MED (5 × 5) (f) Peak & Valley

(g) WM (k = 1) (h) WM (k = 2) (i) TMED

(j) ATMED (k) DDMF (l) FIND

Figure 2.8: Impulsive Noise filtering of Lena image corrupted with 20% of SPN
by different filters
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2.3 Simulations and Results

(a) True Image (b) 20% Noisy (c) SM (5 × 5)

(d) MED (3 × 3) (e) MED (5 × 5) (f) Peak & Valley

(g) WM (k = 1) (h) WM (k = 2) (i) TMED

(j) ATMED (k) DDMF (l) FIND

Figure 2.9: Impulsive Noise filtering of Peppers image corrupted with 15% of SPN
by different filters
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2.4 Summary

Table 2.3: PSP of different schemes at 15% of noise on different images

Lisa Girl Clown Gatlin

SM5 × 5 0.12 0.41 2.67 30.70

MED3 × 3 40.00 56.28 51.98 31.19

MED5 × 5 48.85 65.02 56.46 28.45

PnV 29.36 43.84 45.98 28.32

WMedk = 1 18.80 32.11 31.85 28.43

WMedk = 2 8.19 15.42 17.85 21.84

TMED 99.59 99.46 99.57 29.84

ATMED 99.69 99.12 99.78 29.75

DDMF 6.20 11.10 10.00 42.40

FIND 1.98 2.03 2.46 35.05

2.4 Summary

Two different noise suppression approaches are proposed in this chapter. Based on

the second order difference the first scheme uses a threshold to determine impulses.

In the fuzzy approach, two parameters are generated from the image. These

parameters are then subjected to different stages of fuzzy techniques to identify

the noise location. As can be seen from the plots both the proposed schemes

outperforms the existing schemes. One of limitations of these two techniques are

that they use fixed value of threshold.
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Chapter 3

Adaptive Threshold for Impulsive
Noise Detection

This chapter and the chapter followed by this deal with Random Valued Impul-

sive Noise (RVIN) model of impulsive noise (Section 1.3). All the three schemes

presented in this chapter are based on second order difference of pixels, which

is described in Section 3.1. These schemes vary in the way threshold values are

selected for impulse detection. The need for adaptive threshold is described in Sec-

tion 3.2. The first scheme, Second Order Differential Impulse Detector (SODID) is

discussed in Section 3.3. ANN based Adaptive Thresholding for Impulse Detection

(ANNAT) is the second scheme presented in Section 3.4. In Section 3.5, the third

scheme FLANN based Adaptive Threshold Selection for Detecting Impulsive Noise

in Images (FLANNAT) is presented. Section 3.6 presents a comparison of the

three proposed schemes with some of the existing schemes. Finally, Section 3.7

provides the summary of the chapter.

3.1 Second Order Difference of Pixels

For the sake of simplified explanation, one-dimensional derivative is focused here.

The derivatives of a digital function are defined in terms of differences. The first

derivative must be:

i. zero in the areas of constant gray level values i.e. flat segment,

ii. nonzero at the onset of a gray level step or ramp and along the ramp.
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3.1 Second Order Difference of Pixels

First−Order Derivative

Second−Order Derivative

Gray Level Profile

Figure 3.1: Gray level profile, first-order and second-order derivative of an image

Similarly, the second derivative must be:

i. zero in the flat areas and along ramps of constant slopes,

ii. nonzero at the onset and end of a gray level step or ramp.

As derivatives are found for digital quantities whose values are finite, the maximum

possible gray level change is also is finite, and the shortest distance over which

that change can occur is between adjacent pixels. First-order derivative of a one-

dimensional function f(x) may be defined as:

∂f

∂x
= f(x + 1) − f(x) (3.1)

Similarly, second-order derivative may be defined as:

∂2f

∂x2
= f(x + 1) + f(x − 1) − 2f(x) (3.2)

Figure 3.1 shows a horizontal gray level profile of the edge between two regions.

Also the first and second derivatives of the gray level profile are shown in the figure.
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3.1 Second Order Difference of Pixels

From left to right along the profile, the first derivative is positive at the points of

transition into and out of the ramp ; and is zero in the flat segment. The second

derivative is zero except at the transition points [2].

This behavior of second difference is exploited in the proposed schemes. An

impulse is nothing but the change in gray level profile of an image. The second

difference of an impulse will result in a spike. Also there will be a spike for an edge.

In order to differentiate between these two spikes, a threshold value is required.

Selection of this threshold is an important task and is described in the next section.

3.1.1 Algorithm

The proposed algorithm consists of two passes described as below:

Pass One

i. Choose a window X(t) of size 3 × 5 located at the top-left corner of the

observed image X.

X(t) =

⎛
⎜⎜⎜⎝

Xi−1,j−2 Xi−1,j−1 Xi−1,j Xi−1,j+1 Xi−1,j+2

Xi,j−2 Xi,j−1 Xi,j Xi,j+1 Xi,j+2

Xi+1,j−2 Xi+1,j−1 Xi+1,j Xi+1,j+1 Xi+1,j+2

⎞
⎟⎟⎟⎠ (3.3)

Consider a 3 × 3 sub-window X(w) from X as:

X(w) =

⎛
⎜⎜⎜⎝

Xi−1,j−1 Xi−1,j Xi−1,j+1

Xi,j−1 Xi,j Xi,j+1

Xi+1,j−1 Xi+1,j Xi+1,j+1

⎞
⎟⎟⎟⎠ (3.4)

ii. Compute the first order 3 × 4 difference matrix f (d) from X(t) as:

f (d) =

⎛
⎜⎜⎜⎝

f
(d)
i−1,j−1 f

(d)
i−1,j f

(d)
i−1,j+1 f

(d)
i−1,j+2

f
(d)
i,j−1 f

(d)
i,j f

(d)
i,j+1 f

(d)
i,j+2

f
(d)
i+1,j−1 f

(d)
i+1,j f

(d)
i+1,j+1 f

(d)
i+1,j+2

⎞
⎟⎟⎟⎠ (3.5)

where f
(d)
i+k,j+l = X

(t)
i+k,j+l − X

(t)
i+k,j+l−1, k = −1, 0, 1 and l = −1, 0, 1, 2.
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3.2 Adaptive Threshold Selection

iii. Compute the second order 3 × 3 difference matrix s(d) from f (d) as:

s(d) =

⎛
⎜⎜⎜⎝

s
(d)
i−1,j−1 s

(d)
i−1,j s

(d)
i−1,j+1

s
(d)
i,j−1 s

(d)
i,j s

(d)
i,j+1

s
(d)
i+1,j−1 s

(d)
i+1,j s

(d)
i+1,j+1

⎞
⎟⎟⎟⎠ (3.6)

where s
(d)
i+p,j+q = f

(d)
i+p,j+q+1 − f

(d)
i+p,j+q, p = −1, 0, 1 and q = −1, 0, 1.

iv. The decision index di,j at (i, j) is then computed as:

di,j =

⎧⎨
⎩

0 if
∣∣∣s(d)

i,j

∣∣∣ > θ1

1 otherwise
(3.7)

Select threshold θ1 as described in Sections 3.2– 3.5.

v. Use median filter on the noisy pixels only to remove noise from the pixel

(i, j) with the sub-window as in (3.4).

vi. Shift the window X(t) one by one column from left to right and top to bottom

(as shown in Figure 3.2(a)) and for all windows repeat the steps (ii) through

(vi).

Pass Two

i. Repeat steps (i) through (vi) of Pass One (as shown in Figure 3.2(b)) with

X(t) order as 5×3, f (d) order as 4×3, and the threshold value as θ2 in place

of θ1.

3.2 Adaptive Threshold Selection

Threshold plays an important role in deciding healthiness of a pixel. If a predefined

parameter of a test pixel exceeds the threshold value, it is termed as contaminated.

Further, the solution to image restoration problem depends very much on the

type of image, characteristics and density of noise. Hence, there can not be one

threshold value, which will be a panacea to all situations. A constant threshold

value may not provide satisfactory performance for all circumstances. In other
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3.2 Adaptive Threshold Selection
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Figure 3.2: Window Selection for an M × N Image

words, threshold selection should be carefully done and preferably it should be

an adaptive one. It should adapt to its environment dynamically and give an

optimal value. In next three sections three different ways of selecting threshold

are presented.

As said earlier, threshold depends on its environment. Environment means,

the type of image, characteristic of noise and its density. In order to select a

threshold, some of the image parameters are required. Steps for selecting image

parameters that represents an image aptly are described below.

For any given image and at a particular noise condition the threshold value θ

is varied in a wide range to obtain a set of mean squared error (MSE) values in
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3.2 Adaptive Threshold Selection

order to establish a relation. For example:

i. An image (say Lena) is corrupted with impulsive noise of densities 1%, 5%,

10%, 15%, 20%, 25%, and 30%.

ii. The first noisy image Lena1 (the subscript is for 1% of noise) is subjected

to the proposed algorithm outlined in Section 3.1.1 by varying the threshold

value θ between 0 and 1.

iii. Corresponding to each θ one mean squared error (MSE) is obtained. The

minimum among those MSEs is recorded as MSE
(Lena1)
min . Also the corre-

sponding threshold value is recorded as optimal threshold value θopt.

iv. Steps (ii) and (iii) are repeated for other noisy Lena, i.e. Lenai, i ∈
{5, 10, 15, 20, 25, 30}.

v. Repeat steps (i) to (iv) for other standard images like Lisa, House, Peppers

etc.

Figures 3.3(a), 3.3(b), 3.3(c) and 3.3(d) show the relation between θopt and

MSEmin for Lena, Lisa, House and Peppers images respectively.

From these plots (Figure 3.3) it is, in general, observed that the minimum MSE

and the corresponding threshold bear an exponentially decaying relation. This is

true for all other images. In a practical situation, the use of MSE or noise ratio

to predict the threshold is ruled out as they need knowledge of the original image

for computation. However, to alleviate this problem analysis have been made as

follows. The minimum MSE is inversely proportional to optimal threshold value

i.e.

MSEmin ∝ 1

θopt
(3.8)

also the noise percentage is inversely proportional to optimal threshold value, given

as:

η ∝ 1

θopt

(3.9)

where, η is the noise percentage. Also it is known that:

η ∝ σ2 (3.10)
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3.2 Adaptive Threshold Selection
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Figure 3.3: Variation of Minimum MSE at different Threshold values
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3.3 Second Order Differential Impulse Detector

and,

η ∝ µ (3.11)

where, µ and σ2 are the mean and variance of the noisy image respectively.

From the above four equations it may be established that both the mean and

variance of a noisy image are proportional to the MSEmin and hence these two

parameters may be used for threshold selection.

3.3 Second Order Differential Impulse Detector

Using the assumptions in Section 3.2 let the plots of Figure 3.3 be represented as:

θ = Ae−Bσ2

+ C (3.12)

where, θ is the optimum threshold value corresponding to MSEmin,

σ2 is variance of the noisy image,

A, B and C are constants to be evaluated.

By the steps described in Section 3.2, we can have a set of parameters such as σ2

and corresponding θ. Let xi denote the σ2 values and yi denote the corresponding

θ values.

The equation in 3.12 may otherwise be written as:

y = aebx + c (3.13)

To get the value of c consider three pairs of (xi, yi) i.e. (x1, y1), (x2, y2) and (x3, y3)

such that the three abscissas are in arithmetic progression.

By putting these values on (3.13)

y1 = aebx1 + c ⇒ y1 − c = aebx1 ⇒ y1 − c = akx1

y2 = aebx2 + c ⇒ y2 − c = aebx2 ⇒ y2 − c = akx2

y3 = aebx3 + c ⇒ y3 − c = aebx3 ⇒ y3 − c = akx3

where, k = eb.
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3.3 Second Order Differential Impulse Detector

By multiplying the first and third terms:

(y1 − c)(y3 − c) = akx1 · akx3

= a2 · kx1+x3

= a2 · k2x2

= (a · kx2)2

= (y2 − c)2

⇒ y1y3 − cy3 − cy1 + c2 = y2
2 − 2y1y3 + c2

⇒ c =
y1y3 − y2

2

y1 + y3 − 2y2

(3.14)

Rewriting the Equation 3.13 as:

y = aebx + c

⇒ y − c = akx

⇒ ln(y − c) = ln(akx)

⇒ ln(y − c) = ln(a) + x ln(k)

⇒ Y = A + Bx (3.15)

where, Y = ln(y − c), A = ln(a) and B = ln(k).

Now the nonlinear equation (3.13) is represented as a linear equation.

The abscissas yi can be written in the form of Yi.

Divide the set of values of (xi, Yi) into two halves.

Find x̄1, x̄2, Ȳ1, Ȳ2 and then fit them onto:

Ȳ1 = A + Bx̄1

Ȳ2 = A + Bx̄2 (3.16)

Values of A and B can be found by solving the above two simultaneous equations.

Values of a and b can be found by putting A and B values in the Equation 3.15.

A = ln(a)

⇒ a = eA (3.17)
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3.4 ANN based Adaptive Thresholding
for Impulse Detection

B = ln(k)

= ln(eb)

⇒ b = B (3.18)

Hence, by using Equations 3.14, 3.17 and 3.18 the curve (3.13) can be fitted.

The values of A, B and C are obtained and the curve for threshold θ may

therefore be expressed as:

θ = (−0.0036 − j0.1114)e(−23.3371+j77.0754)σ2

+ 0.2540 (3.19)

Similarly the threshold value θ1 used during the second pass of the proposed

scheme for noise detection and filtering in vertical direction may be estimated

by observing the minimum MSE of an image at different noise conditions. It is

experimentally verified that θ1 is directly proportional to θ and therefore may be

expressed as:

θ1 = kθ (3.20)

where k is experimentally found to be 1.42.

3.4 ANN based Adaptive Thresholding

for Impulse Detection

Artificial Neural Network (ANN) is a massively parallel distributed processor. It

has a natural tendency to store knowledge and make them available for further

use. ANN serves as a potential tool in numerous applications. The ANN based

signal detection and filtering schemes are robust, accurate and work well under

nonlinear situations [3].

An artificial neuron receives inputs from a number of other neurons or from

external stimulus. A weighted sum of these inputs constitutes the arguments to a

nonlinear activation function. The resulting value of the activation function is the

output of the neuron. This output gets distributed along weighted connections to

other neurons. The actual manner in which these connections are made defines

the flow of information in the network and called architecture of the ANN. The
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3.4 ANN based Adaptive Thresholding
for Impulse Detection

method used to adjust the weights is the process of training the network is called

the learning rule. The learning may be supervised or unsupervised [3]. Genuine

neural networks are those with at least two layers of neurons—a hidden layer and

an output layer. The hidden layer neurons should have nonlinear and differentiable

activation functions. The nonlinear activation functions enable a neural network

to be a universal approximator. The problem of representation is solved by the

nonlinear activation functions [41].

Input Layer Hidden Layer Output Layer

Threshold

bias

Mean

Variance

bias

Figure 3.4: Multi-Layer Perceptron Structure of Threshold (θ1) Estimator.

Here in this section a simple 2–3–1 ANN (Figure 3.4) is used to adapt the

image environment and to provide an optimal threshold value for impulsive noise

detection. Both the noisy image characteristics (Section 3.2) mean (µ) and vari-

ance (σ2) of Lisa, House, Gatlin and Peppers images are obtained. These two

parameters along with corresponding θopt of these four images are used here to

train the suggested neural network using the conventional Backpropagation algo-

rithm. µ and σ2 of the noisy image are the two inputs to the network and θopt

is the target output of the network. The training convergence characteristics ob-

tained is shown in Figure 3.5. The neural network with trained weights are used to

obtained threshold subsequently. It is seen that the network predicts an accurate

threshold for images that are not used for training as well.
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3.5 FLANN based Adaptive Threshold Selection
for Detecting Impulsive Noise in Images
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Figure 3.5: Convergence Characteristics of the Network

The threshold value thus obtained is used in the first pass of the algorithm. The

output image of the first pass is then subjected to second pass of the algorithm.

In the second pass a different θ is used. Mean and variance of the output image

of the first pass is first calculated. These two values are then fed to the network

to get the new threshold value.

3.5 FLANN based Adaptive Threshold Selection

for Detecting Impulsive Noise in Images

Another variation of artificial neural network is the Functional Link Artificial

Neural Network (FLANN). It is basically a flat net and the need of the hidden

layer is removed. Training of FLANN by backpropagation algorithm becomes very

simple. Also the network has lesser computational load and faster convergence

rate than multilayer perceptrons. The functional expansion effectively increases

the dimensionality of the input vector and hence the hyperplanes generated by the

FLANN provides greater discrimination capability in the input pattern space [42,

43].

54



3.5 FLANN based Adaptive Threshold Selection
for Detecting Impulsive Noise in Images

The proposed detector is shown in Figure 3.6. It is a two layers structure.

The parameters used in this training are same as that of previous section. Mean

and variance are the two inputs functionally expanded in the input layer with the

trigonometric polynomial basis functions given by:

{1, µ, sin(πµ), · · · , sin(Nπµ), cos(πµ), · · · , cos(Nπµ),

σ2, sin(πσ2), · · · , sin(Nπσ2), cos(πσ2), · · · , cos(Nπσ2)}

In order to calculate the error, the actual output on the output layer is compared

with the desired output. Depending on this error value, the weight matrix between

the input–output layers is updated using backpropagation learning algorithm. The

training convergence characteristics of the network is shown in Fig. 3.7.
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Figure 3.6: Functional Link Artificial Neural Network (FLANN) Structure for
Threshold Estimation

This threshold value is used in the first pass of the algorithm to detect impulses

in the horizontal direction. The filtered image obtained after the first pass is then

subjected to second pass of the algorithm, where impulses are detected in vertical

fashion. In the second pass a different θ is used. Using the mean and variance

of the output image of the first pass new threshold value for the second pass is

computed.
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Figure 3.7: Convergence Characteristics of the Network

3.6 Simulations and Results

The three proposed schemes are simulated with some of the best performing

schemes reviewed in Section 1.5. Adaptive Two-Pass Median filter (2-Pass) [24],

Adaptive Center Weighted Median Filter (ACWMF) [19], Signal Dependent-Rank

Ordered Mean (SD-ROM) [32], Tri-State Median (TSM) [33] and Pixel Wise MAD

(PWMAD) [28] are used for comparison. Lena image is corrupted with Random

Valued Impulsive Noise of 1% to 30% noise densities. These noisy images are sub-

jected to filtering by the three proposed schemes (SODID, ANNAT and FLAN-

NAT) along with the above five existing schemes. The PSNR (in dB) and PSP

(in percentage) thus obtained are plotted in Figures 3.10 and 3.11.

Similarly, simulations are conducted with other standard images like Lisa,Girl,

Clown, Gatlin, Bridge, Boat and Peppers. Table 3.1 lists the PSNR obtained at

15% and 20% of RVIN. Another listing is shown in Table 3.2 of PSP at the same

noise densities.
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3.6 Simulations and Results

Table 3.1: PSNR (dB) of different adaptive schemes at 15% and 20% of noise on
different images

Lisa Girl Clown Gatlin Bridge Boat Peppers

2Pass 31.34 29.62 22.84 31.59 25.77 29.33 31.55

ACWMF 31.78 30.04 22.56 31.62 25.36 28.87 32.98

PWMAD 30.50 29.28 23.02 30.66 26.07 29.25 31.29

15% SD-ROM 31.98 31.31 24.33 32.77 27.48 30.75 32.00

RVIN TSM 32.05 31.05 23.88 32.46 27.08 30.51 33.04

SODID 30.71 30.19 24.52 31.71 26.76 29.59 31.87

ANNAT 29.86 30.20 22.97 31.67 26.68 29.98 32.04

FLANNAT 31.79 30.17 23.59 31.83 17.42 28.93 32.15

2Pass 30.46 28.41 22.25 30.45 25.09 28.32 30.14

ACWMF 30.97 29.92 23.56 31.34 24.82 28.10 31.50

PWMAD 28.26 27.73 22.16 28.77 24.99 27.57 29.04

20% SD-ROM 30.86 29.92 23.59 31.51 26.55 29.50 31.40

RVIN TSM 30.95 29.69 23.28 31.30 26.28 29.35 31.41

SODID 28.89 28.66 22.82 30.14 25.82 28.41 30.24

ANNAT 29.90 29.11 22.38 30.67 25.83 28.81 30.55

FLANNAT 30.37 28.14 21.69 29.49 16.64 28.18 30.48

Two subjective comparisons are also made in Figures 3.8 and 3.9. The former

figure shows the restored images of Lena corrupted with 15% of noise density and

the later one shows restored images of Peppers corrupted with a noise density of

20%.

The performance of the proposed schemes in terms of PSNR(dB) are better

than most of the schemes except SDROM and TSM. However, the three proposed

schemes are computationally better than the above two techniques (listed in Ta-

ble 3.3). This is verified by simulating the schemes in MatLab 6.5, Microsoft Win-

dows XP (SP2) Operating System and Intel Pentium IV–2.40GHz with 512MB of

RAM.
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Table 3.2: PSP of different adaptive schemes at 15% and 20% of noise on different
images

Lisa Girl Clown Gatlin Bridge Boat Peppers

2Pass 35.23 51.76 51.95 31.75 54.73 67.30 67.41

ACWMF 6.93 13.29 38.68 5.57 27.98 15.27 0.55

PWMAD 7.35 11.05 24.85 4.00 15.83 13.95 10.53

15% SD-ROM 0.14 0.93 10.29 0.39 3.06 1.04 0.34

RVIN TSM 0.22 2.62 17.51 0.98 7.94 2.55 0.57

SODID 4.84 11.56 19.94 8.34 15.54 13.00 12.16

ANNAT 4.65 11.16 36.87 8.11 15.36 11.16 10.55

FLANNAT 11.82 62.63 54.04 13.11 0.01 73.98 23.65

2Pass 35.67 58.10 52.98 33.24 55.71 67.50 67.45

ACWMF 0.60 0.43 12.60 0.41 28.69 15.80 0.57

PWMAD 7.06 7.82 22.78 5.03 15.10 13.18 10.05

20% SD-ROM 0.18 0.40 9.86 0.33 3.10 1.11 0.37

RVIN TSM 0.31 1.21 21.07 1.00 8.2986 2.82 0.73

SODID 6.52 16.74 24.37 10.10 18.75 16.85 15.92

ANNAT 6.25 17.84 42.46 10.10 18.50 14.70 14.11

FLANNAT 40.17 65.59 56.85 12.38 0.06 74.21 55.98

Table 3.3: Computational time consumed by different Schemes for removing im-
pulsive noise from Lena image corrupted with 15% of RVIN

Scheme Time (sec)

2-PASS 151.27

ACWMF 416.03

PWMAD 244.68

SDROM 11.20

TSM 77.14

SODID 10.86

ANNAT 11.97

FLANNAT 11.16
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3.6 Simulations and Results

(a) True Image (b) 15% Noisy

(c) 2-Pass (d) ACWMF (e) PWMAD

(f) SDROM (g) TSM

(h) SODID (i) ANNAT (j) FLANNAT

Figure 3.8: Impulsive Noise filtering of Lena image corrupted with 15% of RVIN
by different adaptive threshold schemes
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3.6 Simulations and Results

(a) True Image (b) 20% Noisy

(c) 2-Pass (d) ACWMF (e) PWMAD

(f) SDROM (g) TSM

(h) SODID (i) ANNAT (j) FLANNAT

Figure 3.9: Impulsive Noise filtering of Peppers image corrupted with 20% of RVIN
by different adaptive threshold schemes
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Figure 3.10: PSNR (dB) variations of Restored Lena image corrupted with RVIN
of varying strengths by different adaptive threshold schemes
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Figure 3.11: PSP variations of Restored Lena image corrupted with RVIN of
varying strengths by different adaptive threshold schemes
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3.7 Summary

3.7 Summary

Three different ways of determining the threshold values are presented. The first

scheme calculate the threshold using an equation. Even though it provides good

results, it needs the true image before hand, which is impractical. This problem is

overcome easily by using neural network. A variation of neural network, FLANN is

also used to determine the threshold value. The proposed schemes’ performances

are poor when compared with some of the schemes. However, computationally

the proposed schemes are well off.
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Chapter 4

Improved Adaptive Impulsive
Noise Suppression

In this chapter an improved scheme for suppressing random valued impulsive noise

of varying strengths from corrupted images is proposed. The threshold value sug-

gested here for the detection of noisy pixels is an adaptive one, which is derived

from an artificial neural network. Emphasis is put on right kind of input and the

training patterns. With appropriate choice of patterns the assiduous task of train-

ing has become effortless and also the detection of noise has become reliable. The

proposed scheme is presented in Section 4.1. Competent schemes are compared

and analyzed with the proposed scheme with competent schemes in Section 4.2.

Finally Section 4.3 summarizes the chapter.

4.1 Improved Adaptive Noise Suppression

Many different techniques are used to determine whether a given pixel is affected

with impulses. Some of these techniques are relatively simple, on other hand

some others are complex. Whatever may be the technique, they first identify

the location of corruption and apply some filtering mechanism on those identified

pixels.

The proposed scheme is also one such scheme that is based on estimation–

suppression strategy. It decides the sanctity of a pixel based on the output of an

artificial neural network (ANN). The network is first trained with a set of training

patterns. Two different parameters are used for training. The first parameter
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4.1 Improved Adaptive Noise Suppression

is the pixel wise median of the absolute deviation from the median [28] and the

second parameter is the rank ordered absolute difference [44]. The first parameter

helps in separating the noisy image from the image details, where as the second

parameter concentrates on detecting small impulses that are replaced with the

true image during contamination.

Sections 4.1.1 and 4.1.2 describes the first and second parameters respectively.

Section 4.1.3 presents the underlying algorithm.

4.1.1 Pixel-Wise MAD

Let xij , mij and dij represent pixels with coordinates (i, j) of noisy image, median

image and absolute deviation image, respectively. Also, let xij , mij and dij denote

matrices whose elements are pixels of the corresponding images contained within

the (2K + 1) × (2K + 1) size window W , centered around at position (i, j). The

median image and absolute deviation image may be defined as in (4.1) and (4.2)

respectively.

mij = median(xij) (4.1)

dij =| xij − mij | (4.2)

The median of the absolute deviations from the median, MAD, is defined as

in (4.3).

MADij = median(| xij − median(xij) |) (4.3)

Pixel-Wise MAD is defined as in (4.4).

PWMADij = median(dij) = median(| xij − mij |) (4.4)

Pixel-Wise MAD, described in an iterative manner in (4.5), is a modified ver-

sion of MAD [mad].

d
(n+1)
ij =| d

(n)
ij − median(d

(n)
ij ) | (4.5)

Where d
(0)
ij is defined in (4.2) and n = 0, 1, 2, 3, and 4. However, in the proposed

work only one iteration is performed.
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4.1 Improved Adaptive Noise Suppression

4.1.2 Rank-Ordered Absolute Difference

Let x = (x1, x2) be the location of the pixel under consideration, and let

Ωx(N) := {x + (i, j) : −N ≤ i, j ≤ N} (4.6)

be the set of pixels in a (2N + 1)× (2N + 1) neighborhood centered at x for some

non-negative integers N . With N = 1, Ωx(1) represents a (3×3) window centered

at x.

Let the set of pixels excluding the center pixel be defined as:

Ω0
x = Ωx(1) − {x} (4.7)

For each pixel y ∈ Ω0
x, let the absolute difference between gray value of the pixels

x and y be defined as:

dx,x = |Ix − Iy| (4.8)

Then find rank of the eight dx,y values such that ri(x) ≤ ri+1(x), r = 1, · · · , 7.

Hence, Rank-Ordered Absolute Differences (ROAD) may then be defined as:

ROADm(x) =

m∑
i=1

ri(x) (4.9)

where 2 ≤ m ≤ 7. In the simulation m is taken as 4 to find ROAD4(x).

The following is an example of ROAD statistic generation.

Original Neighborhood =

⎛
⎜⎜⎜⎝

154 183 83

160 210 222

115 190 75

⎞
⎟⎟⎟⎠

Absolute Differences =

⎛
⎜⎜⎜⎝

56 27 127

50 – 12

95 20 135

⎞
⎟⎟⎟⎠

Four smallest absolute differences: r1 = 12, r2 = 20, r3 = 27, and r4 = 50

65



4.1 Improved Adaptive Noise Suppression

ROAD = Σ4
i=1ri = 12 + 20 + 27 + 50 = 109

This statistic provides a measure of how close a pixel value is to its four similar

neighbors.

4.1.3 The IANS Algorithm

The proposed Improved Adaptive Noise Suppression (IANS) algorithm is based

on the two methods described above. It needs two parameters as inputs to a

neural network to decide the healthiness of a pixel. At first training patterns are

generated to train the network. Lena image of size 128×128 is corrupted with 15%

of Random Valued Impulsive Noise. 300 number of noisy patterns and another 300

number of noise-free patterns are generated. Each pattern consists of statistics

obtained from Section 4.1.1 and 4.1.2 and their noise status i.e. noisy or noise-free.

These training pattern are then trained with a (2–4–4–1) artificial neural network

(Figure 4.1) by feeding them at random. The convergence characteristics of the

network is shown in Figure 4.2. It can be seen from the plot that the convergence

rate is very fast.

Input Layer First Hidden Layer Second Hidden Layer Output Layer

Threshold

bias bias

bias
PWMAD

ROAD

Figure 4.1: BPN structure for threshold estimation
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Figure 4.2: Convergence characteristics

4.2 Simulations and Results

The proposed scheme IANS is simulated on some standard images like Lena,

Lisa,Girl, Clown, Gatlin, Bridge, Boat and Peppers etc. Lena image is corrupted

with Random Valued Impulsive Noise of 1–30% noise densities. The seven noisy

images thus generated are passed through the proposed IANS along with Signal

Dependent-Rank Ordered Mean (SD-ROM) [32], Tri-State Median (TSM) [33] and

Pixel Wise MAD (PWMAD) [28]. These are the few best performer in terms of

noise suppression. The simulated result of PSNR (in dB) is plotted in Figure 4.5

and that of PSP (in Percentage) in Figure 4.6.

Few more comparisons are listed in the form of tables. Table 3.1 lists the PSNR

of various images corrupted with 15% and 20% of noise. Similar observations of

PSP are listed in Table 4.2.

The figures in 4.3 and 4.4 shows the images of restored Lena and restored

Peppers corrupted with 15% and 20% of noise densities respectively.
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4.3 Summary

Table 4.1: PSNR (dB) of different schemes at 15% and 20% of noise on different
images

Lisa Girl Clown Gatlin Bridge Boat Peppers

PWMAD 30.50 29.28 23.02 30.66 26.07 29.25 31.29

15% SD-ROM 31.98 31.31 24.33 32.77 27.48 30.75 32.00

RVIN TSM 32.05 31.05 23.88 32.46 27.08 30.51 33.04

IANS 38.65 34.94 24.30 34.71 27.42 31.06 35.14

PWMAD 28.26 27.73 22.16 28.77 24.99 27.57 29.04

20% SD-ROM 30.86 29.92 23.59 31.51 26.55 29.50 31.40

RVIN TSM 30.95 29.69 23.28 31.30 26.28 29.35 31.41

IANS 37.07 33.42 23.81 32.66 26.65 29.99 33.46

Table 4.2: PSP of different schemes at 15% and 20% of noise on different images

Lisa Girl Clown Gatlin Bridge Boat Peppers

PWMAD 7.35 11.05 24.85 4.00 15.83 13.95 10.53

15% SD-ROM 0.14 0.93 10.29 0.39 3.06 1.04 0.34

RVIN TSM 0.22 2.62 17.51 0.98 7.94 2.55 0.57

IANS 0.31 1.11 15.34 1.26 7.53 2.56 0.95

PWMAD 7.06 7.82 22.77 5.03 15.10 13.18 10.05

20% SD-ROM 0.18 0.40 9.86 0.33 3.10 1.12 0.37

RVIN TSM 0.31 1.21 21.07 1.00 8.30 2.82 0.73

IANS 0.40 1.39 16.14 1.56 8.29 2.94 1.11

4.3 Summary

The proposed IANS is an efficient scheme in terms of noise detection and suppres-

sion. Two of the existing schemes are exploited here to make an efficient detector.

When compared with the best reported schemes, it is found that the proposed one

outperforms them.
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4.3 Summary

(a) True Image (b) 15% Noisy (c) PWMAD

(d) SDROM (e) TSM (f) IANS

Figure 4.3: Subjective comparison of impulsive noise removal of Lena image cor-
rupted with 15% of RVIN by different filters

(a) True Image (b) 20% Noisy (c) PWMAD

(d) SDROM (e) TSM (f) IANS

Figure 4.4: Subjective comparison of impulsive noise removal of Peppers image
corrupted with 20% of RVIN by different filters
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Figure 4.5: PSNR (dB) plot of Restored Lena image corrupted with RVIN of
varying strengths
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Figure 4.6: PSP plot of Restored Lena image corrupted with RVIN of varying
strengths
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Chapter 5

Conclusions

The work in this thesis, primarily focuses on impulsive noise suppression from

images. Schemes for adaptive threshold selection for noise detection have also

been devised. The work reported in this thesis is summarized in this chapter.

Section 5.1 lists the pros and cons of the work. Section 5.2 provides some scope

for further development.

5.1 Achievements and Limitations of the work

Two models of impulsive noise are considered in the thesis. One is Salt & Pepper

Noise (SPN) and the other is Random Valued Impulsive Noise (RVIN). Then in

subsequent chapters (Chapter 2–4) some novel schemes are proposed. Salient

points of the thesis, highlighting the contribution at each stage, are presented

below.

The first contribution is Decision Directed Median Filter (DDMF), which sup-

presses SPN from images. It is based on second order difference of pixels. The

second difference of a test pixel is compared with a predefined threshold to de-

termine its healthiness. The second contribution, Fuzzy Impulsive Noise Detector

(FIND), also deal with SPN. Two parameters of a test window are supplied to a

fuzzy membership function. Upon constructing the consequent membership func-

tion and subsequent defuzzification a decision is made on the noise status of the

center pixel of the window. The restored images of these two schemes exhibit

the desirable properties of edge and detail preservation. The inherent correlation
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5.2 Further Development

among the pixels is exploited in these two schemes. However, it has a drawback

of not making the threshold as adaptive.

Next three proposed schemes deal with RVIN and are based on second order

difference of pixels. These three schemes primarily proposes three different tech-

niques to select threshold in order to make noise detection process more reliable.

In Second Order Differential Impulse Detector (SODID) an equation for threshold

as function of variance of the noisy image pixels is fit to locate noise in the image.

It needs a nonlinear equation to be fitted, which is a bit cumbersome as the true

image statistics may not be available all the time.

ANN based Adaptive Thresholding for Impulse Detection (ANNAT) is another

contribution that uses a simple artificial neural network (ANN) to determine the

threshold value. A variation of ANN i.e. Functional Link ANN (FLANN) is

used in another contribution namely FLANN based Adaptive Threshold Selection

for Detecting Impulsive Noise in Images (FLANNAT). These two neural network

approach use mean and variance of noisy image as input parameters of the network.

Comparisons reveal that there are some better techniques in terms of PSNR.

However, the proposed schemes computationally efficient.

The last contribution Improved Adaptive Noise Suppression also deals with

removal of RVIN from images. Based on two different image statistics namely

Pixel-Wise MAD and Rank Ordered Absolute Difference, this technique utilizes

an ANN to predict the threshold value. In terms of PSNR this scheme outperforms

its counterparts. Also it preserves image details and edges. These superiority in

performance comes at the cost of computational overhead.

5.2 Further Development

To conclude this thesis, following are some points that may lead to some better

and interesting results.

In this thesis, noise detection is mostly covered and for noise filtration median

filter is used. Research may be undertaken to devise better filtration techniques.

This technique together with a best detection technique can result in optimal
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5.2 Further Development

restoration of degraded image.

As it has been stated that the existing as well as proposed techniques are com-

putationally expensive, investigation may be carried out in this direction. Devel-

opment of parallel algorithms can also be done to counter attack the computational

overhead.
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