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ABSTRACT 

 

                     

 
 

 

 

 

 

The growing environment awareness demands the use of nature fibres as 

reinforcement materials in commercial. The natural fibres however are hydrophilic in 

nature and their composites undergo environmental degradation during service. 

Hygrothermal conditioning on as received jute fabric at different temperatures of hot-

press have been studied in the present investigation. These composites are usually 

subjected to various loading conditions. Therefore, an attempt has been made to study 

the tensile properties of the composites. Fractography studies were carried out to 

study the fracture surface under SEM. It is noticed that the major mode of failure is 

due to fibre pullout and matrix cracking. The result from the hygrothermal studies 

shows the decrease in strength values of the composites on prolong exposure to humid 

environment. 
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1. INTRODUCTION 
1.1 Introduction 

The most important types of natural fibres used in composite materials are flax, hemp, 

jute, kenaf, and sisal due to their properties and availability. Jute is an important bast 

fibre with a number of advantages. Jute has high specific properties, low density, less 

abrasive behaviour to the processing equipment, good dimensional stability and 

harmlessness. Jute textile is a low cost eco-friendly product and is abundantly 

available, easy to transport and has superior drapability and moisture retention 

capacity. It is widely being used as a natural choice for plant mulching and rural road 

pavement construction. The biodegradable and low priced jute products merge with 

the soil after using providing nourishment to the soil. Being made of cellulose, on 

combustion, jute does not generate toxic gases.  

 Due to jute’s low density combined with relatively stiff and strong behaviour, the 

specific properties of jute fibre can compare to those of glass and some other fibres. 

  

Table 1.1: Properties of jute fibre in comparison with other fibres 

 

 

The natural fibres can be used to reinforce both thermosetting and thermoplastic 

matrices. 

Thermosetting resins, such as epoxy, polyester, polyurethane, phenolic, etc. are 

commonly used today in natural fibre composites, in which composites requiring 

higher performance applications. They provide sufficient mechanical properties, in 

particular stiffness and strength, at acceptably low price levels. Compared to 
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compounds based on thermoplastic polymers, thermoset compounds have a superior 

thermal stability and lower water absorption. However, in the case of the demand for 

improved recycling and in combination with new long fibre reinforced thermoplastic 

(LFT) processing, thermoplastic polymers have been expected to substitute the 

thermoset polymers. 

Considering the ecological aspects of material selection, replacing synthetic fibres by 

natural ones is only a first step. Restricting the emission of green house effect causing 

gases such as CO2 into the atmosphere and an increasing awareness of the finiteness 

of fossil energy resources are leading to developing new materials that are entirely 

based on renewable resources.  

The natural fibre composites can be very cost effective material for following 

applications:  

- Building and construction industry: panels for partition and false ceiling, partition 

boards, wall, floor, window and door frames, roof tiles, mobile or pre-fabricated 

buildings which can be used in times of natural calamities such as floods, cyclones, 

earthquakes, etc.  

- Storage devices: post-boxes, grain storage silos, bio-gas containers, etc. 

- Furniture: chair, table, shower, bath units, etc. 

- Electric devices: electrical appliances, pipes, etc. 

- Everyday applications: lampshades, suitcases, helmets, etc. 

- Transportation: automobile and railway coach interior, boat, etc. 

- Toys 

The reasons for the application of natural fibres in the automotive industry include [1, 

2]: 

- Low density: which may lead to a weight reduction of 10 to 30%. 

- Acceptable mechanical properties, good acoustic properties. 

- Favourable processing properties, for instance low wear on tools, etc. 

- Options for new production technologies and materials. 

- Favourable accident performance, high stability, less splintering. 

- Favourable ecobalance for part production. 

- Favourable ecobalance during vehicle operation due to weight savings. 

- Occupational health benefits compared to glass fibres during production. 

- No off-gassing of toxic compounds (in contrast to phenol resin bonded wood and 

recycled cotton fibre parts). 



 9

- Reduced fogging behaviour. 

- Price advantages both for the fibres and the applied technologies. 

 

Besides the advantages mentioned above, the natural fibre composites possess also 

some disadvantages. The main disadvantage is the poor compatibility between a 

hydrophobic polymer matrix and the hydrophilic fibres. This leads to the formation of 

weak interfaces, which result in poor mechanical properties of the composites. Other 

important disadvantages of the natural fibre composites are the high sensitivity of 

natural fibres towards water and the relatively poor thermal stability. Water 

absorption on composites is an issue to be considered since the water absorbed by the 

fibres in the composite could lead to swelling and dimensional instability and to a loss 

of mechanical properties due to  

 

Fig.1.1. Plant fibre applications in the current Mercedes-Benz R-class [2] 

the degradation of the fibres and the interface between the fibre and matrix [3, 4, 5, 6, 

7, 8]. 
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2. LITERATURE REVIEW 

2.1. Natural fibres and their chemical compositions 

Climatic conditions, age and the digestion process influences not only the structure of 

fibres but also the chemical composition. Component mean values of plant-fibres are 

shown in Table 2.1. With the exception of cotton, the components of natural fibres are 

cellulose, hemi-cellulose, lignin, pectin, waxes and water soluble substances, with 

cellulose, hemi-cellulose and lignin as the basic components with regard to the 

physical properties of the fibres.  

 
Table 2.1: Composition of different cellulose based natural fibres 
 

 
 
 

2.2. Mechanical properties of natural fibres 

Natural fibres are in general suitable to reinforce plastics (thermosets as well as 

thermoplastics) due to their relative high strength and stiffness and low density (Table 

3). The characteristic values for flax and soft-wood-kraft-fibres reach levels close to 

the values for glass-fibres, types E (“E” because of their early use in electronic 

applications and today the most typically used glassfibres reinforcing plastics in non-

aggressive media). Nevertheless and also obvious in(Table 3), the range of the 

characteristic values, as one of the drawbacks for all natural products, is remarkably 

higher than those of glass-fibres, which can be explained by differences in fibre 

structure due to the overall environmental conditions during growth. Natural fibres 

can be processed in different ways to yield reinforcing elements having different 
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mechanical properties. The elastic modulus of bulk natural fibres such as wood is 

about 10 GPa. Cellulose fibre with 

moduli up to 40 GPa can be separated from wood, for instance, by chemical pulping 

processes.Such fibres can be further subdivided by hydrolysis followed by mechanical 

disintegration into microfibrils with an elastic modulus of 70 GPa. Theoretical 

calculations of the elastic moduli of cellulose chains have given values of up to 250 

GPa, however, there is no technology available to separate these from microfibrils. 

 

Table 2.2: Mechanical properties of natural fibres as compared to conventional 

reinforcing fibres 

 

 

 

As in the case with glass-fibres, the tensile strength of natural fibres also depends on 

the test length of the specimens which is of main importance regarding reinforcing 

efficiency. The actual tensile strength of a single fibre is typically given for a test 

length of zero as in the case for glassfibres. The tensile strength of flax-fibres is 

significantly more dependent on the length of the fibre than for the case of glass-

fibres. Compared to this, the tensile strength of pineapple-fibres is less dependent on 

the length, while the scatter of the measured values for both is located mainly in the 

range of the standard deviation. This dependence, strength vs. test length, could be 
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seen as degree or the homogenity or amounts of defects of a fibre or a material in 

general. Hydrophilic nature is a major problem for all cellulose-fibres if used as 

reinforcement in plastics. 

The moisture content of the fibres, dependent on content of non-crystalline parts and 

void 

content of the fibre, amounts up to 10 wt. % under standard conditions. The 

hydrophilic nature of natural fibres influences the overall mechanical properties as 

well as other physical properties of the fibre itself. 

 

2.2. Jute fibres 

2.2.1. Properties of jute fibres 

The need for using jute fibres in place of the traditional glass fibre partly or fully as 

reinforcing agents in composites stems from its: 

• Lower specific gravity (1.29) and higher specific modulus (40 GPa) of jute 

compared 

with those of glass (2.5 & 30 GPa respectively), 

• Jute fibre is 100% bio-degradable. 

• It has high tensile strength, low extensibility, and ensures better breathability of 

fabrics, 

• It has good insulating and antistatic properties, as well as having low thermal 

conductivity. 

 

2.2.2. Advantages of jute fibres 

Apart from much lower cost and renewable nature of jute, much lower energy 

requirement for the production of jute (only 2% of that for glass) makes it attractive as 

a reinforcing fibre in composites. Jute fibre is recyclable and thus environment 

friendly starting from the seed to expired fibre, as the expired fibres can be recycled 

more than once. Jute fibres are easily available and these are environment friendly. 

 

2.2.3. Uses of jute fibres 

Jute has entered various diversified sectors, where natural fibres are gradually 

becoming better substitution. Among these industries are paper, celluloid products 

(films), nonwoven textiles (for car interiors and other uses), composites (pseudo-
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wood), and geotextiles. The jute composites may be used in everyday applications 

such as lampshades, suitcases, paperweights, helmets, shower and bath units. They are 

also used for covers of electrical appliances, pipes, post-boxes, roof tiles, grain 

storage silos, panels for partition & false ceilings, bio-gas containers, and in the 

construction of low cost, 

mobile or pre-fabricated buildings which can be used in times of natural calamities 

such as floods, cyclones, earthquakes, etc. 

2.2.4. Limitation of jute fibre composites 

Unfortunately, all mechanical and other physical properties of natural fibres are 

influenced by their growing conditions, fibre processing technique and, as for other 

fibre types, by the fineness of the fibre and sample test-length. Although, as with most 

of the other plant-based natural fibres, cellulose forms the main structural component 

of jute, the non-cellulosic components e.g., lignin and hemicellulose, also play an 

important part in determining the characteristic properties of the fibres.  

There is, however, a major drawback associated with the application of jute fibres for 

reinforcement of resin matrices. Due to presence of hydroxy and other polar groups in 

various constituents of jute fibre, the moisture uptake is high (approx. 12.5% at 65% 

relative humidity & 20o C) by dry fibre and 14.6% by wet fibre. All this leads to (i) 

poor wettability with resin and (ii) weak interfacial bonding between jute fibre and the 

relatively more hydrophobic matrices. Environmental performance of such 

composites is generally poor due to delamination under humid conditions. With 

increase in relative humidity upto 70%, the tenacity and Young’s modulus of jute 

increases but beyond 70%, a decrease is observed.  

 

2.5. Polyester 

Cure at room or elevated temperature. It has good chemical resistance. 

Limitations:- emission of styrene, shrinkage on curing (7-10%) 

The term polyester covers a very large chemical family of which “unsaturated resins” 

covering orthophthalic, isophthalic, vinyl esters and blends form the largest single 

group of fibre reinforced thermosets. They are usually manufactured by reacting 

together dihydric alcohols (glycols) and dibasic organic acid, either or both of which 

contain a double-bonded pair of C atoms. By elimination of water between the acids 

and glycols, ester linkages are formed, producing a long chain molecule comprising 
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alternate acid and glycol units. The polymer chain is dissolved in a reactive organic 

solvent, usually styrene monomer or methyl methacrylate, vinyl toluene or alpha-

methyl styrene. With heat and a chemically activated free radical initiation, the 

polyester and the reactive diluents crosslink to form 3-D non melting network.   The 

reaction is in a kettle at 170-2000C with components in equal molecular ratio and 

water eliminated.  

 Polyester resins are cured by organic peroxides which initiate a free radical 

copolymerization reaction. This can occur at room temperature, under heat (60-900 C) 

or by UV or visible light radiation. The catalyst system comprises organic peroxides 

(initiators) which are activated by accelerators or promoters. The resin begins to cure 

as soon as the initiator is added, the speed of reactivity depending on the temperature, 

resin and catalyst reactivity.    

 

2.6. Tensile Properties 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1: Tensile Properties of jute fibre, fabric and composites 

Fig. 1 shows the stress–strain diagram for jute fibre and jute fabric. Jute fibre exhibits 

stiffer characteristics as compared to jute fabric. This is due more to initial stretching 

of the fabric than the nature of the fibre. For both fibre and fabric, the curves are 

initially horizontal due to the stretching effect caused by removing slack from the 

system. Strands in the fabric break at different times as each fibre can stretch 

independently and break individually when reaching their breaking stress. The failure 

mode is by progressive breaking of the fibres. It has been observed that strands in the 
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fabric begin to fail from the centre of the fabric and propagate width-wise on either 

side. The ultimate tensile strength and the tangent modulus of elasticity after initial 

stretching of the ‘as received’ jute fibre is found to be 120 MPa and 3.75 GPa; 

corresponding values for jute fabric are 85 MPa and 0.8 GPa. The variation in the 

values of strengths may be due to: (i) the assumption that the cross-sectional area of 

each yarn is circular, (ii) the difference in the strength of individual fibres in the fabric 

arising out of process defects. 

The tensile strength of a composite material is mainly dependent on the strength and 

modulus of fibres, the strength and chemical stability of the matrix and the 

effectiveness 

of the bonding strength between matrix and fibres in transferring stress across the 

interface [10]. Fig. 2 shows the stress–strain diagram for four jute laminates and a 

polyester resin. The initial linear portion of the jute laminate curves shows the elastic 

behaviour of the composite. The deviation from linearity is an indication of the 

beginning 

of initial matrix cracking, and the first major change in slope in the curve is the sign 

of a major crack in the matrix or the beginning of fibre failure. The first fibre failure 

occurs at a stress level of 26 MPa (approx.) and the corresponding resin stress is 5.5 

MPa for the same amount of strain. The rest of the drops in the curves are indications 

of progressive failure of fibres as the applied load increases, and the end of the curve 

represents the ultimate stress which is due to fibre fracture and may be fibre pull-out. 

However, the failure mode exhibits breakage and little pull-out of fibres. The average 

values of ultimate tensile strength, initial tangent modulus and Poisson’s ratio for 

these composites are 60 MPa, 7 GPa and 0.257, respectively, and corresponding 

values for polyester resin are 12.1 MPa, 1.4 GPa and 0.38. The values obtained by the 

rule of mixture are 63 MPa and 1.12 GPa. The difference in the initial tangent 

modulus obtained from experiment and rule of mixture is due to initial stretching and 

the nature of the fibres. 
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2.7. Hygrothermal Effects:- 

 

 

Fig. 2.2: Percentage moisture pickup vs square root of conditioning time 

The amount of moisture absorption by FRP composites in humid conditions is a 

function of time and temperature [7]. Fig. 1 is representative of the moisture 

absorption kinetics in FRP composites. The first region shows a marked linearity 

indicating Fickian absorption, where the moisture is absorbed according to Fick’s 

second law of diffusion. Following this a saturation level is achieved, which is 

indicated by the horizontal region of the curve. The amount of moisture absorbed 

depends on the partial pressure of the moisture in the surrounding and the moisture in 

the composite. Once a temporary equilibrium is reached, a saturation region is 

attained. Prolonged exposure to hygrothermal environment results in the third stage of 

the curve clearly indicating non-Fickian moisture absorption kinetics. Fickian and 

non-Fickian moisture absorption kinetics have been explained by Li-Rong Bao and 

coworkers [8]. The diffusion properties of the interface may be different from those of 

the bulk matrix probably due to the formation of a boundary layer. When the fraction 
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of matrix in the interface region is significant, moisture transport may be considerably 

affected. 

Surface absorption and diffusion through the matrix is the primary mechanism for 

moisture pick up in most of the well fabricated composite materials during the initial 

period of exposure [10]. The composite materials contain cracks and micro voids in 

the matrix. These are formed during the polymerization of the matrix. The free 

polymer chains get entangled with each other and create these micro voids in the 

matrix [11]. These micro voids are the major sites for the moisture pick ups in the 

composite materials, especially during the initial period. Gradually when the moisture 

diffuses inside the matrix, it starts to interact chemically with the polymer.  

This is marked by a chemical phenomenon called matrix hydrolysis [7]. When this 

mechanism is spread through out the composite in a wider range, then the over all 

chemistry of the polymer is significantly affected. Thus the adhesion between the 

fiber and the matrix is compromised stupendously, causing the de-bonding at the fiber 

matrix interface [12]. Finally, the composite fails completely, when its constituents 

separates out from each other. In other words, the composite fails when the interface 

between the fiber and the matrix collapses completely. Thus the failure of the 

composite deals with surface chemistry of the fiber-matrix interface due to physical, 

chemical and physico-chemical changes of the matrix during its service conditions. 

The exposure of composite at higher temperature enhances the matrix cracking due to 

mismatch in thermal strain. There is also a possibility of polymerization in them. The 

crosslinking during the polymerization process results in an increased number of 

micro voids in the composites. Consequently, there exists more sites for moisture pick 

ups. Hence samples subjected to 64 hours of treatment show less resistant to failure 

than the 4 hours conditioned samples.   

Exposure to elevated temperature can result in degradation of mechanical properties, 

cracking, chalking and flaking of polymers [8]. The first form of damage in laminated 

composite is usually matrix microcraks. These microcraks are transverse to the 

loading direction and are thus called transverse cracks. Matrix microcracks cause 

degradation in properties in composite laminates and also act as precursors to other 

forms of damage leading to laminate failure. Delamination is a critical failure mode in 

composite structure. The interfacial separation caused by the delamination may lead 

to premature buckling of laminates, excessive intrusion of moisture and stiffness 
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degradation. While in some cases a delamination may provide stress relief and 

actually enhance the performance of a composite component.  

 
 
Fig. 2.3: Diffusion paths for water adsorption in composites 

 

 

 

 

 

 

 

 

 

 

 



 20

 

 

Chapter 3 

 
 

  EXPERIMENTAL 

   WORK 

 

 

 

 

 
 

 

 



 21

3. EXPERIMENTAL WORK 

� 3.1. Preparation of composite 

� By hand laying technique 

� Resin=60% of fabric weight 

� Hardener=2.6% of resin weight 

� Accelerator=2% of resin weight 

� The mixture of polyester resin with the given weight % of hardener 

and accelerator was applied in between as received jute fabric pieces to 

get alternate layers of resin matrix and jute fabric reinforcement. 

� A hot–plate setup was constructed and the laminates were hot pressed 

at three different temperatures 60, 80 and 1000C under 2 ton load for 8 

minutes with the help of a hydraulic press to enhance the rate of curing 

and bring out uniform distribution of resin mix. 

� The green composite is then left out to atmosphere for 48 h under a 

load of 8kg for avoiding relaxation. 

�  The specimens were then cut from the laminate for tensile test with 

the help of hacksaw according to the specific standard. 

� 3.2. Hygrothermal Treatment 

The specimens were  hygrothermally conditioned in a humidity cabinet where 

the conditions were maintained at a temperature of 600C and 95% relative humidity 

(RH). The humidity cabinet had an inbuilt thermometer for temperature and 

hygrometer for relative humidity measurements. The temperature variation was 

maintained between 0-0.50C whereas the RH variation was allowed in the 0-1% 

range. The composite laminates were placed on perforated trays. The hygrothermal 

conditioning was carried out for different lengths of time ranging from four to sixty-

four hours. 

� 3.3. Tensile Testing 

Tensile studies were carries out to determine the  as tensile yield strength, tensile 

strength at break (ultimate tensile strength), tensile modulus (Young's modulus), 

elongation at yield and break and energy to yield and break point. 

Tensile tests were performed in an Instron 1195 machine in accordance with a 

specific standard. 
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Fig.3.1: Dimensions of a tensile specimen 

 

wc- Width of narrow section = 11mm, 

wo- Width overall = 25mm, 

T- Thickness = 3 – 4mm, 

G- Gauge length = 40mm, 

Lo- Length overall = 120mm, 

D- Distance between grips = 70mm. 
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4. RESULTS & DISUSSION 
 The tensile test results for samples hot-pressed at 60, 80 and 1000C and 

subjected to hygrothermal treatment for 4, 16 and 64 hours is given as follows. A set 

of samples, hot-pressed at different temperatures, was not given any hygrothermal 

treatment. Their tensile values were obtained and the results compared.  

 

Longitudinal Tensile Stress of laminate pressed at room temperature was found to be 

39.68 MPa 

 
Temperature of hot press = 600C 
 
 
Sl. 
No. 

Duration of  
Hygrothermal 
Treatment 
(hrs) 

UTS 
(MPa) 

Displacemnt 
at break 
(mm) 

Energy 
to 
yield 
point 
(J) 

Dry 
Weight  
(in g) 

Weight 
after 
treatment 
(in g) 

%age 
increase 

1 0 79.04 1.208 1.918    
2 0 82.58 1.080 2.028    
3 0 48.96 0.998 0.988    
        
4 4 46.47 1.190 .1469 8.72 8.92 2.29  
5 4 85.31 1.739 .7766 10.83 11.01 1.66 
6 4 79.31 1.309 .5678 9.17 9.45 3.05 
7 4 78.60 1.201 .6510 8.38 8.66 3.34 
8 4 80.79 1.483 .7263 10.18 10.46 2.75 
        
9 16 43.38 1.291 .1454 8.37 8.77 4.78 
10 16 81.46 1.382 .3926 10.00 10.34 3.40 
11 16 75.68 1.501 .3509 9.56 9.91 3.66 
12 16 67.15 1.208 .3482 9.92 10.30 3.83 
13 16 78.33 1.684 .4978 8.26 8.70 5.33 
        
14 64 76.13 1.135 .9796 9.30 9.68 4.09 
15 64 71.06 1.391 .3554 9.36 9.72 3.85 
16 64 66.02 1.236 .3433 8.93 9.35 4.70 
17 64 71.10 1.456 .4433 10.85 11.36 4.70 
 
Table 4.1: Experimental results obtained for samples hot-pressed at 600C and 

subjected to hygrothermal treatment for 0,4,16 and 64 hours 
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In the above table, data obtained from sample no. 3, 4 and 9 were not considered for 

analysis as these values showed deviation from the rest of the data. 

 
 
 
 
 
 
Temperature of hot press = 800C 
 
 
Sl. 
No. 

Duration of  
Hygrothermal 
Treatment 
(hrs) 

UTS 
(MPa) 

Displacement 
at break 
(mm) 

Energy 
to 
yield  
point 
(J) 

Dry 
Weight  
(in g) 

Weight 
after 
treatment 
(in g) 

%age 
increase 

1 0 83.24 1.142 1.951    
2 0 84.69 1.087 2.045    
        
3 4 76.82 1.421 .5421 10.22 10.42 1.96  
4 4 87.88 1.529 .5378 9.65 9.86 2.18 
5 4  90.51 1.595 1.074 10.41 10.66 2.40 
6 4 87.06 1.437 .9414 10.29 10.53 2.33 
        
7 16 84.5 1.245 .5893 9.92 10.23 3.13 
8 16 77.5 1.505 .5896 9.35 9.67 3.42 
9 16 95.55 1.364 .6921 9.17 9.52 3.82 
10 16 81.59 1.382 .5962 9.76 10.15 4.20 
11 16 78.99 1.410 .8159 10.02 10.45 4.29 
        
12 64 63.84 1.144 .2840 9.39 9.74 3.73 
13 64 100.20 1.474 .4356 9.39 9.75 3.83 
14 64 58.71 1.545 .3926 10.25 10.67 4.09 
15 64 72.08 2.035 .8298 10.43 10.93 4.71 
16 64 51.25 0.989 .3672 9.64 10.07 4.46 
   
 
 
Table 4.2: Experimental results obtained for samples hot-pressed at 800C and 

subjected to hygrothermal treatment for 0,4,16 and 64 hours 
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Temperature of hot press = 1000C 
 
 
Sl. 
No. 

Duration of  
Hygrothermal 
Treatment, t   
(in hrs) 

UTS 
(MPa) 

Displacemnt 
at break 
(mm) 

Energy 
to 
yield 
point 
(J) 

Dry 
Weight  
(in g) 

Weight 
after 
treatment 
(in g) 

%age 
increase 

1 0 75.91 1.044 .8510    
2 0 79.69 1.117 .9599    
3 0 62.68 0.879 .6166    
4 0 65.69 0.732 .9234    
        
5 4 63.79 1.117 .5866 8.40 8.63 2.74 
6 4 61.57 1.199 .4484 9.88 10.11 2.33 
7 4 75.63 1.071 .6597 8.49 8.72 2.71 
8 4 66.68 1.275 .5260 9.04 9.30 2.88 
9 4 67.45 1.300 .6645 9.89 10.14 2.53 
        
10 16 64.34 1.401 .2984 9.47 9.90 4.54 
11 16 66.01 1.080 .3877 8.73 9.17 5.04 
12 16 51.96 1.199 .3326 9.54 9.96 4.40 
13 16 57.71 1.318 .2187 8.46 8.89 5.08 
14 16 73.08 1.437 .6254 8.93 9.31 4.26 
15 16 65.27 1.391 .4108 10.08 10.52 4.37 
        
16 64 51.89 1.172 .3305 11.04 11.45 3.71 
17 64 46.55 1.227 .2460 10.97 11.39 3.83 
18 64 70.57 1.748 .6780 9.10 9.54 4.84 
19 64 77.56 1.556 .4702 9.55 10.03 5.03 
 
Table 4.3: Experimental results obtained for samples hot-pressed at 1000C and 

subjected to hygrothermal treatment for 0,4,16 and 64 hours 

 

4.1. Deductions from Stress-Strain curve: 

 

(i) (4 hrs):- The slope of the plot is high. That means the samples are more 

elastic in nature. The load is bore by the fibre rather than the matrix. From 

the drop in 800C, it is clear that the fibre bearing the load suffers from 

pullout and then fractures. 800C shows high strength and ductility, 1000C 

shows progressive failure.  

(ii) (16 hrs):- Most of the plots show brittle behavior. The termination of the 

plot at a point signifies that the bonding between the matrix and fibre is 
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weak and the fracture is due to the breakage of fibres embedded in the 

matrix. This may be either due to matrix fracture or due to fibre pullout. It 

may also be due to fibre breakage when the bonding between the fibre-

matrix interfaces is strong.  

 

The series of ups and down in the curve may indicate successive fibre 

failure. A large load is required to break a single fibre, then the crack 

propagates through the matrix, when a drop in stress is seen. The 

remaining fibres then share the load and another fibre fracture occurs. This 

may be the case when the bonding between the fibre and matrix is strong 

enough to transfer the load, serving its purpose effectively.  

(iii)  (64 hours): The curve is seen to rise steadily until it fractures. The initial 

linear portion of the plot shows the elastic nature of the composite. The 

nature of the graph shows the failure is brittle in nature and there is a sharp 

breaking point.         

The drop in stress at the point of fracture may indicate fibre pullout as 

for the same level of strain the value of stress is decreasing. Another 

reason may be that it is due to the fracture of the matrix. The matrix may 

have become stiffer due to loss of toughness and thus unable to transfer the 

load from one fibre to another. The crack formed at the interface would 

have propagated through the matrix due to the loss of crack-blunting 

property of the matrix. 

Samples hot pressed at 800C show progressive fracture of fibres. 

 

 
Table 4.4: Average values of Longitudinal Tensile Stress corresponding to the first 
fibre failure 
 
 
         Temp. of 
press 
Time 

600C 800C 1000C 

0 hrs 80.81 MPa 83.97 MPa 70.99 MPa 
4 hrs 81.00 MPa 85.57 MPa 67.02 MPa 
16 hrs 75.66 MPa 83.63 MPa 63.06 MPa 
64 hrs 71.08 MPa 69.22 MPax 61.64 MPa 
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Table 4.5:  
 
Average values of Displacement corresponding to first fibre failure 
 
 
         Temp. of 
press 
Time 

600C 800C 1000C 

0 hrs 1.144 mm 1.115 mm 0.943 mm 
4 hrs 1.433 mm  1.495 mm  1.192 mm 
16 hrs 1.444 mm 1.381 mm 1.304 mm 
64 hrs 1.305 mm 1.437 mm 1.199 mm 
 
 
Table 4.6:  
 
Average value of Energy at yield point 
 
  
         Temp. of 
press 
Time 

600C 800C 1000C 

0 hrs 1.973 J 1.998 J 0.838 J 
4 hrs 0.680 J 0.774 J 0.577 J 
16 hrs 0.397 J 0.657 J 0.379 J 
64 hrs 0.530 J 0.462 J 0.432 J 
 
 
 
Fig. 4.1: Average Longitudinal Tensile Stress of samples hot-pressed at 60, 80 and 
1000C  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

  

Average Longitudinal Tensile Stress

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Duration of Hygrothermal Treatment, t (in hours)

S
tr

es
s 

(M
P

a)

60

80

100



 29

Fig. 4.2: Displacement at break of samples hot-pressed at 60, 80 and 1000C  
           
           
      

 
 
 
 
 
 
 
 
 
 
 
 

  
 

Fig. 4.3: Energy to yield point of samples hot-pressed at 60, 80 and 1000C  
     

 
 
 
 
 

  
 
 

 

 

 

 

The average longitudinal stress value is seen to decrease with the duration of 

hygrothernal treatment. There is a slight increase in the value of stress when the 

samples hot-pressed at 60 and 800C are subjected to 4 hours of hygrothermal 

conditioning which is in contrast to the decrease for samples hot-pressed at 1000C. 

With further exposure for long durations the ultimate tensile strength is found to a 

decrease in all the three cases. The increase in values for 60 and 800C hot pressed 

sample may be because of cross-linking of the UP resin facilitated by an exposure to 

constant temperature at 600C. This may have lead to an increase in the bonding 

between the fibre and matrix at the interface. It can also be seen from the energy-time 

plot that there is a marked loss in energy to yield point for the first 4 hours of 

hygrothermal treatment. In the case of hot-pressing at 1000C, the samples may have 
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undergone complete curing and all the sites for cross-linking must have participated in 

the reaction leaving behind no empty sites for additional polymerization. The 

exposure to 600C would have no effect then. The matrix may have become stiffer due 

to loss of toughness. 

The other explanation for the increase in the strength values for short 

hygrothermal exposure may be due to relieve of curing stresses in the matrix. 

Adsorption of moisture by the fibre and matrix components in the matrix would cause 

swelling stresses to develop, which are of opposite nature to that of curing stresses. 

The moisture absorbed as water molecules may indulge in hydrogen bonding with the 

fibre as well as the matrix. This may enhance the strength by further polymerization. 

   Increase in exposure time leads to low strength values. The adsorbed 

moisture interacts chemically with the matrix. The first water molecules are adsorbed 

directly into the hydrophilic groups at the fibre and after that the other water 

molecules are attracted either other hydrophilic groups or they may form further 

layers on top of the water molecules already adsorbed. This leads to poor adhesion 

with the resin matrix, ultimately causing debonding. The fracture depends on the 

strength of the fibre-matrix interface. Also it depends on the toughness and strength of 

the matrix. The reduced values of displacement at break and energy at yield point may 

be due to plasticization of matrix because of moisture uptake. This helps in the 

propagation of fracture and accounts for the low strength values.  

 
The fracture as observed in the composite samples can be classified into the 

following types:- 

(i) By fibre pullout only 

(ii) By fibre pullout and tearing of the fibres due to adhesion mechanisms 

induced by reactions at the fibre-matrix interface. 

(iii) By tearing of the fibres only when there is no pullout as the fibres are 

completely impregnated by the matrix 

(iv) By shear yielding of matrix and tearing from the fibre. 
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4.2. Hygrothermal Behaviour:- 
 
Table 4.7: %age weight gain after hygrothermal treatment 
 
 
         Temp. of 
press 
Time 

600C 800C 1000C 

4 hrs 2.70 g 2.22 g 2.64 g 
16 hrs 4.06 g 3.77 g 4.39 g 
64 hrs 4.34 g 4.16 g 4.35 g 
 
 
Fig. 4.4: Hygrothermal Diffusion of hot-pressed samples for different periods of 
exposure 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The diffusion process of water in jute FRP composites followed a Fickian 

model. This is to be expected, as the hydrophilic moieties on the fibre surface act as 

passageways for the water entry. Unexpectedly, the water uptake does not deteriorate 

the mechanical composite properties when the time of exposure was for 4 hours. In 

contrast, there is even a slight improvement in the properties for the aged sample. This 

is explained as a result of the better interfacial contact due to the swelling of the jute 

fibre, which outweighs the loss of adhesion due to the breakup of hydrogen bonds in 

presence of water.  

The moisture was first absorbed at the voids or pores present in the matrix when the 

rate of moisture in take was higher. Thus there is a fall in the rate in the absorbance, 
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as the voids available for moisture pick up reduces down. The rate continues to fall 

until there are no more defects to absorb moisture. By then, the moisture thus 

absorbed starts to interact with the matrix both chemically and physico-chemically. 

This leads to the spreading of moisture through the matrix, making the path ways for 

newer sites for moisture pick ups. Hence, during this, the rate gets enhances again till 

the newer sites are completely occupied with the moisture. This cycle of absorption, 

dissolution and diffusion continues till most of the matrix is soaked up by the 

moisture and the moisture interact with the fiber-matrix interface. Absorbed moisture 

can damage the interface over time by interrupting the hydrogen bonding within the 

matrix and fiber, thereby weakening the interface. Furthermore, stresses created by 

swelling can be very high and may eventually damage the interface. The absorption of 

moisture causes plasticization of the resin to occur with a concurrent swelling and 

lowering the glass transition temperature of the resin. This adversely affects the fiber-

matrix adhesion properties, resulting debonding at fiber/matrix interfaces, micro 

cracking in the matrix, fiber fragmentations, continuous cracks and several other 

phenomena that actually degrades the mechanical property of the composites. 

 It can be seen from the graph that the lowest %age weight gain is for the 

samples hot-pressed at 800C. It is also seen from the earlier plots that samples hot-

pressed at 800C show maximum breaking strength values, while it is low for samples 

ho-pressed at 60 and 1000C. Thus high moisture uptake results in lowering the 

resistance to fracture.  

 

4.3. Fractography by SEM Analysis :- 
 

 
Fig 4.5: Fractography of untreated and Hygrothermally treated composite.  
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The figure shows shows swelling due to absorption of moisture on the surface of the 

jute fibre.  

600C 

 
Fig. 4.6: Above- Untreated and 16 hours hygrohermally treated samples 

At 600C, it can be seen that, the major cause of fibre failure is due to fibre pull-out. 

The matrix has developed voids in them due to removal of fibre. The degree of fibre 

pullout is found to increase with duration of hygrothermal treatment. Larger number 

of voids is found on increasing the exposure time. Moisture adsorbed on the fibre 

surface is clearly visible. 

 
 
Fig. 4.7: The top left figure shows the 

matrix of untreated sample. The top 

right figure shows the matrix of 16 

hours hygrothermally treated sample at 

300X. The adjacent figure shows the 

same matrix at 500 X. 



 34

The matrix of the untreated sample shows no damage. In contrast, the hygrothermally 

treated samples show damage in their matrix. A crack is formed at the fibre-matrix, 

which leads to debonding at the interface, and finally fibre pullout occurs.  

 
1000C 

 

Fig. 4.8: Fibre region of untreated and 16 hours hygrothermally treated sample 

 

The untreated samples do not show any sign of fibre pull-out. The failure of the 

composite may be attributed to the failure of matrix. There are some signs of fibre 

breakage in the above figure in the case of hygrothermally conditioned samples. 

Mositure adsorbed onto the matrix and fibre can be seen. 

 

Fig. 4.9: Matrix cracking of untreated and 16 hours hygrothermally treated sample 

The failure in case of 1000 C hot pressed samples is due to matrix cracking. The loss 

of toughness due to complete curing of the unsaturated polyester resin doesn’t provide 

enough time for the transfer of load from matrix to fibre. The matrix behaves as a 
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rigid material and the crack in the matrix doesn’t get opportunity to blunt the tip 

resulting in loss of strength. The degradation is more when the sample is 

hygrothermally conditioned for 16 hours. The loss of material and the crack in the 

matrix is clearly visible in the above figures. 

 The reason for fibre pullout in most of the sample in contrast to fibre breakage 

can be ascertained to the fact that the bonding between the fibre and the matrix at the 

interface is weak. Hydroxyl groups(-OH) in the main backbone chain of a resin 

provide sites for hydrogen bonding to the surface of the natural fibres, which contain 

many hydroxyl groups in their chemical structure. Thus, polyester resins, having no 

hydroxyl group in its backbone chain generally has the weakest bonding, hence the 

lowest adhesive properties compared to other resins.  
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 Chapter 5 
 
 
 

     

CONCLUSIONS 
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5. CONCLUSION 

 
• Hot pressing of the laminates resulted an increase in the tensile strength. This 

may be due to enhanced cross linkage during hot pressing. 

• Optimum properties are obtained in case of hot press temperature of 800C. 100 
0C hot press indicated a loss of strength, strain to fracture and energy at yield. 

This maybe due to larger cross linkage at 1000C hot press condition resulting 

loss of ductility of the matrix. Fractographs show matrix-induced fracture in 

case of 1000C hot pressed composites. 600C hot pressed composites exhibited 

fibre pullout. 

• As expected a loss of strength, ductility and energy at yield are observed on 

hygrothermal treatment. 

• Specimens hot pressed at 800C exhibited minimum loss in properties on 

hygrothermal treatment. this further proves the superiority of 800C over 600C 

and 1000C hot press conditions. 
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