
LAYOUT PLANNING WITH ISLES:

A GENETIC APPROACH

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Mechanical Engineering

By

Manas Ranjan Sahoo

&

Ashwini Kumar Maharana

Department of Mechanical Engineering

National Institute of Technology

Rourkela

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53186917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LAYOUT PLANNING WITH ISLES:

A GENETIC APPROACH

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Mechanical Engineering

By

Manas Ranjan Sahoo

&

Ashwini Kumar Maharana

Under the guidance of

Prof. K. R. Patel

Department of Mechanical Engineering

National Institute of Technology

Rourkela

2007

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Layout Planning with Isles: A Genetic

Approach” submitted by Sri Manas Ranjan Sahoo and Sri Ashwini Kumar Maharana in

partial fulfillment of the requirements for the award of Bachelor of Technology Degree in

Mechanical Engineering at the National Institute of Technology, Rourkela (Deemed

University) is an authentic work carried out by them under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University / Institute for the award of any Degree or Diploma.

Prof. K.R.Patel

Date Dept. of Mechanical Engineering

 National Institute of Technology

 Rourkela

ACKNOWLEDGEMENT

 With great pleasure & deep sense of gratitude we would like to extent our

sincere thanks to Prof. K.R.Patel for his valuable guidance & encouragement at each

step of our project work.

 We would like to express our sincere gratitude to Prof. S.S.Mohapatra for his

guidance & encouragement at each step of the completion of our project work.

Date: - Manas Ranjan Sahoo Ashwini Kumar Maharana

Place:-

CONTENTS

 Page No.

 Abstract i

 List of Figures ii

List of Figures iii

Chapter 1 Introduction 1

Chapter 2 Overview of Plant Layouts 4

Chapter 3 Introduction to Genetic Algorithm 11

Chapter 4 Genetic Algorithm used in layout problem 13

 Population Representation 14

 Selection Policy 16

 Operators 17

Chapter 5 Algorithm for Optimization 20

Chapter 6 Results and Discussion 23

Chapter 7 Programs 44

 Program for maximizing closeness rating 45

 Program for minimizing material handling cost 60

Chapter 8 Future scope of the project 74

References 75

ABSTRACT

Plant layout problems involve distributing different resources or departments in a given plant

and achieving maximum efficiency for the services or goods being made or offered. To this

end, plants are designed to optimize production flow from the first stage (i.e. as raw material)

to finish product. However, optimization which is generally expressed either in terms of

minimization (for example, of material handling costs) or of maximization (for example, the

number of desired adjacencies in a qualitative chart) is not always feasible when real

problems or real sizes are being handled. The level of complexity may turn out considerable

as the number of parameters, restrictions and other variables considered in the study become

larger. This kind of problem has been formulated, from a mathematical view point as a static

quadratic assignment problem. However, the number of problems that are susceptible to

being solved by optimization methods is very limited. Some alternatives have been called

from the field of graph-theory, direct method algorithms, construction algorithms (such as

CORELAP), and improvement algorithms (such as CRAFT).

Genetic algorithms (GAs) can be defined as meta heuristics based on the evolutionary

process of natural systems. Since their inception, they have been applied to numerous

optimization problems with highly acceptable results. The flexibility they provide means that

restrictions, which more traditional methods of plant layout could hardly contemplate, can be

incorporated or included in the problem parameters. The ability to include isles is just one

example of this.

In this thesis work, an attempt is made to develop the algorithm for solving layout problem

with real-life restriction like aisles, used in factories for the easy transfer of materials from

one section to the other, using Genetic Algorithm.

 i

LIST OF FIGURES

 Page No.

Fig.2.1- Block Diagramming 6

Fig.2.2- Relationship Diagramming 7

Fig.2.3- Assembly Line 8

Fig.2.4- Cellular Layout 10

Fig.4.1- Roulette Wheel Selection 16

Fig.6.1- Maximizing Closeness Rating Scores for 6 depts and 34

 Population size 10

Fig.6.2- Maximizing Closeness Rating Scores for 6 depts and 35

 Population size 5

Fig.6.3- Minimizing Total Material Handling Cost for 6 depts 40

 And Population size 5

Fig.6.4- Minimizing Total Material Handling Cost for 6 depts 41

 And Population size 10

Fig.6.5- Minimizing Total Material Handling Cost for 8 depts 42

 And Population size 10

Fig.6.6- Maximizing Closeness Rating Scores for 8 depts and 43

 Population size 10

ii

LIST OF TABLES

Page No.

Table 6.1- Distance Matrix for 6 departments 24

Table 6.2- Flow Matrix for 6 departments 25

Table 6.3- Closeness Rating Matrix for 6 depts 25

Table 6.4- Distance Matrix for 8 departments 27

Table 6.5- Flow Matrix for 8 departments 27

Table 6.6- Closeness Rating Matrix for 8 depts 28

 iii

Chapter- 1

INTRODUCTION

1.1 Introduction

The optimization and finalization of a plant layout i.e. deciding the location of the

various departments involved, has been a challenge for decision makers in any industrial set

up. Plant layout deals with the arrangement of work areas and equipments to produce the

products economically and to provide good working environment for the workers. A good

plant layout should provide ease of working, less health hazards, greater safety, reduced

material handling, less congestion of materials, machines and men. Product layout, process

layout, fixed position layout and group technology are different types of layout those are

applied to different fields.

 In our project we have consider facility layout problem. Facility layout problem in a

manufacturing setting is defined as the determination of the relative locations for, and

allocation of the available space among a given number of workstation. As for example in

any job shop machines are arranged according to their function. The aim and objective of a

facility layout problem has been to minimize the cost associated with material handling of the

manufacturing system, as major expense of an industry is because of material handling. So

now-a-days each and every industrialist is looking forward to reduce the material handling

cost and for that it is required to have an optimal facility layout. An optimum assignment of

departments would depend on the various inter-facility relationships. These relationships may

be a quantitative and/or qualitative nature. The departments can also be of different sizes,

areas, shapes and the type and amount of interaction between them may also vary. Thus the

mass objective of the facility layout problem is to minimize the cost of interaction between

the various departments subject to certain constraints. The constraints to the problem are the

restricted area and there should be no overlap. The final layout generated through any

procedure should satisfy all the constraints and at the same time should achieve the objective

in the best possible way. The cost associated with material handling is expressed in terms of

the work flow and the distance between the departments. In our project work we have dealt

with combinatorial optimization problem like optimum assignment of n departments to a

fixed area. We have solved the problem with two objectives.

(a) Considering total cost

(b) Considering total closeness rating

 2

The objective function for total cost is

Minimize C=
∑∑
+=

−

=

××
n

ij

n

i

DijCijFij
1

1

1

)(

 Fij → work flow from department i to department j

 Dij → distance between the departments i and j (centroid to centroid distance)

 Cij →the unit cost to move one unit of workflow from department i to department j

 n →the number of departments.

The objective function for closeness rating—

 i=n

 TCR = ∑(closeness rating) seq [i][i+1]

 i=1

where closeness rating is being given by experts and it lies in between 0 and 1.

 But achieving optimal layout is very tiresome and deterministic techniques are not

computationally feasible. The quadratic assignment problems (QAP) formulation of the

facility layout problem belongs to the class of NP-complete problems proposed by Garey and

Johnson in 1979 and the size of the problems that can be solved by the existing optimal

methods is limited (number of departments <= 15). So in order to handle larger problem size,

suboptimal solutions are preferred over optimal solutions, those are computationally feasible.

Solutions of facility layout problems can be obtained from traditional optimization such as

direct method algorithms, construction algorithms (such as CORELAP, Moore and Lee 1967,

ALDEP, Seehof and Evans, 1967) improvement algorithms (CRAFT, Armour and Buffa,

1963). Because of some limitations of the above mentioned algorithms, recently random

search procedures such as Simulated Annealing (SA) and Genetic Algorithm (GA) have been

applied to combinatorial optimization problem. And these two methods can also be used to

tackle generalized facility layout problem i.e. problem free from constraints like unequal

areas, irregular shapes etc.

 3

Chapter- 2

OVERVIEW OF PLANT LAYOUTS

Requirements

Types

2.1 Overview of Plant Layouts

 The basic objective of a plant layout is to ensure a smooth flow of work, material, and

information through the system.

2.1.1 Requirements for effective layout:

• Minimize material handling costs;

• Utilize space efficiently;

• Utilize labor efficiently;

• Eliminate bottlenecks

• Facilitate communication and interaction between workers, between workers and their

supervisors, or between workers and customers

• Reduce manufacturing cycle time and customer service time

• Eliminate wasted or redundant movement

• Facilitate the entry, exit, and placement of material, products, and people

• Incorporate safety and security measures; Promote product and service quality

• Encourage proper maintenance activities

• Provide a visual control of operations or activities

• Provide flexibility to adapt to changing conditions

2.1.2 Basic Layouts

There are 3 basic types of layouts:

• process

• product

• fixed - position

There are 3 hybrid types of layouts

• cellular

• flexible manufacturing systems

• mixed model assembly-lines

4

2.1.3 Process Layouts

Process layouts (also known as functional layouts) is a layout that groups similar activities

together in departments of work centers according to the process or function that they

perform. It offers characteristic of operations that serve different customers different needs.

The equipment in a process layout is a general purpose one. The workers are skilled at

operating the equipment in their department. The advantage of process layout is flexibility

whereas the disadvantage is inefficiency. Process layouts are inefficient because jobs or

customers do not flow through in an orderly fashion and so backtracking is common. Also,

the workers may experience much "idle time" if they are waiting for more work to arrive

from a different department. Material storage space in a process layout must be large to

accommodate the large amount of in-process inventory. This inventory is high because

material moves from work-center to work-center waiting to be processed. Finished goods

inventory however is low because goods are being made for particular customers. Process

layouts in manufacturing firms require flexible material handling equipment (such as

forklifts) that can follow multiple paths, move in any direction, and carry large loads of in-

process goods. All areas of the facility must have timely access to the material handling

equipment. Process layouts in service firms require large aisles for customers to move back

and forth and ample display space to accommodate different customer preferences.

2.1.4 Product Layout

Product layouts (also known as assembly lines) arrange activities in a line according to the

sequence of operations that need to be performed to assemble a particular product. In product

layout each product should have its own "line". Product layouts are suitable for mass

production or repetitive operations in which demand is steady and volume is high. Its because

of this product layouts are more autonomous than process layouts. The advantage of the

product layout is its efficiency and ease of use whereas the disadvantage is its inflexibility.

Each product must have a completely different assembly-line set up in product layout. The

major concern in a product layout is balancing the assembly line so that no one workstation

becomes a bottleneck and holds up the flow of work through the line. A product layout needs

material moved in one direction along the assembly line and always in the same pattern. The

most common material handling equipment used in product layouts is the conveyor which

can be automatic (at a steady speed), or paced by the workers. In product layout the aisles are

 5

narrow because material is moved only one way and it is not moved very far. Scheduling of

the conveyors, once they are installed, is simple-the only variable is how fast they should

operate. Storage space along an assembly line is quite small because in-process inventory is

consumed in the assembly of the product as it moves down the assembly line. Finished good

inventory may require a separate warehouse for storage before they are sold.

2.1.5 Fixed-Position Layouts

Fixed-Position layouts are layouts which are used in projects in which the product is too

fragile, bulky, or heavy to move for example: ships, houses and aircraft. In this type of layout

equipment, material and workers are brought to the production site. The equipment is often

left on-site because it is too expensive to move frequently. The workers on such job sites are

highly skilled at performing the special tasks that they are requested to do. In such a process

the fixed costs would be low and variable costs would be high.

2.1.6 Designing Process Layouts

One main objective of the process layout is to minimize material handling costs. This implies

that departments that incur the most interdepartmental movement should be located closest to

one another. There are 2 techniques used to design layouts - block diagramming, and

relationship diagramming.

2.1.6.1 Block Diagramming

Fig. 2.1

Block Diagram- initial & final

6

In block diagramming historical or predicted movement of material in the existing or

proposed facility must be analyzed. This info is usually provided with a from/to chart, or load

summary chart. This gives the average number of unit loads moved between departments. A

unit load can be a single unit, a pallet of material, a bin of material, or a crate of material-

however material is normally moved from location to location. The next step in designing the

layout is to calculate the composite movements between departments and rank them from

most movement to least movement. Composite movement refers to the back-and-forth

movement between each pair of departments. Finally, trial layouts are placed on a grid that

graphically represents the relative distances between departments.

2.1.6.2 Relationship Diagramming

Fig. 2.2

Relationship Diagram

For situations in which quantitative data is hard to obtain it is more relevant to use a

relationship diagramming technique. Richard Muther developed a format for displaying

manager preferences for departmental locations, known as Muther's grid. Muther's diagram

uses codes and letters to represent how close departments are to one another. The info from

Muther's diagram can be used to make a relationship diagram to evaluate a current layout or

proposed layouts.

 7

2.1.7 Computerized layout solutions

Several computer programs exist that assist in designing process layouts. The best know are

CRAFT (Computerized Relative Allocation of Facilities Technique) and CORELAP

(Computerized Relationship Layout Planning)

Basically the computer program is given layout data and it makes a recommendation.

2.1.8 Service Layout

Most service organizations use process layouts because of the variability in customer requests

for service. Service organizations look to maximize profits per unit of display space, rather

than minimize customer flow. The layout must be aesthetically pleasing as well as functional.

2.1.9 Designing Product Layouts

The main objective of a product layout is to arrange workers or machines in a line according

to the operations that need to be performed. Thus it would seem that the layout could be

determined by following the order of assembly. To maximize efficiency on the assembly line

line-balancing must be considered.

Line balancing is an attempt to equalize the amount of work at each work station. It cuts

down on idle time for the workers. There are two constraints to line balancing - precedence

requirements and cycle time restrictions. Precedence requirements are physical restrictions on

the order in which operations are performed on the assembly line. Cycle time refers to the

maximum amount of time the product is allowed to spend at each work station if the schedule

production rate is to be reached. When designing a product layout line balancing must be

completed with these two factors being considered.

Fig. 2.3

Assembly Line

8

2.1.10 Computerized Line Balancing

Because complicated calculations are involved in line balancing software packages have been

developed to assist this process. IBM's COMSOAL (Computer Method for Sequencing

Operations for Assembly Lines) and GE's ASYBL (Assembly Line Configuration Program)

are 2 popular packages widely used in line balancing.

2.1.11 Hybrid Layouts

Hybrid layouts modify and/or combine some aspects of product and process layouts.There

are 3 hybrid layouts discussed. They are:

• Cellular layouts

• Flexible Manufacturing systems

• Mixed-model assembly lines

2.1.12 Cellular Layouts

Cellular layouts attempt to combine the flexibility of a process layout with the efficiency of a

product layout. Based on the concept of group technology (GT), dissimilar machines are

grouped into work centers, called cells, to process parts with similar shapes or processing

requirements. The layout of machines within each cell resembles a small assembly line.

Production flow analysis (PFA) is a group technology technique that reorders part routing

matrices to identify families of parts with similar processing requirements.

2.1.12.1 Advantages of cellular layout

• Reduced material and Transit time

• Reduced Setup time

• Reduced work-in-process inventory

• Better use of human resources

• Easier to control

• Disadvantages of a cellular layout

• Inadequate part families

• Poorly balanced cells

• Expanded training and scheduling of workers

9

Fig.- 2.4

Cellular Layout

2.1.13 Flexible Manufacturing Systems

A flexible manufacturing system can produce an enormous variety of items. It is large,

complex, and expensive. The emphasis for FMS is on automation. Computers run all the

machines that complete the process. Not many industries can afford traditional FMS hence

the trend is towards smaller versions call flexible manufacturing cells.

 2.1.14 Mixed-Model Assembly Lines

The problem with the traditional layout is that it does take into account consumers’ change in

demand. Others adopted a mixed-model assembly line technique instead. There are several

steps involved in a mixed-model assembly. The first step is to reduce the amount of time

needed to change over the line to produce different models. Then they trained their workers

to perform a variety of tasks and allowed them to work at more than one workstation on the

line. Then the organization must change the way the line is arranged and scheduled. There are

also several factors to consider in designing a mixed-model assembly line:

• Line Balancing

• U-shaped lines

• Flexible workforce

• Model sequencing

• Line Balancing

• The time to complete a task can vary from model to model

• When planning the completion time an array of values is used

• Otherwise, mixed-model lines are balanced in much the same way as single-model lines

 10

CHAPTER- 3

INTRODUCTION TO GENETIC ALGORITHM

3.1 Introduction to genetic algorithm

Genetic Algorithm (GA), proposed by Holland (1975), is heuristic search and

optimization techniques that imitate the natural selection and biological evolutionary process.

The characteristic features of individual species of a population are governed by the presence

or absence of genes and their position. The different traits are passed on from one generation

to the next through different biological processes, which operate on the genetic structure. By

this process of the genetic change and survival of the fittest, a population will adapt to the

environment results.

 In a genetic algorithm, an individual (any feasible solution to the problem) is an

element of population. Here the population is a subset of the solution space i.e. held in hand

at any instant the solution process. The magnitude of the population depends on the size and

the nature of the problem, and the size of computer memory being used. Each element of the

population is called a chromosome. In each generation chromosomes are selected by the

roulette wheel principle to act as parents. This principle is basically a process by which a

good parent (solution) gets a higher probability of being selected compared to the bad ones.

In GA the genetic operators commonly employed for obtaining a new population from the

current population are crossover, mutation, and a selection policy based on the survival of the

fittest principle. The crossover operator is used to produce new offspring from selected pairs

of solution in the current population. Mutation is performed by arbitrarily changing one or

more elements in the solution string. The selection policy maintains a constant population

size by allowing only better-fit solutions to survive. A constant population size is necessary

for the algorithm to converge to a stable population. As a result, eventually the population

will consist of solutions, which are well suited to the problem specifications (i.e. near

optimal).

 12

CHAPTER-4

GENETIC ALGORITM USED IN LAYOUT PROBLEM
Population Representation

Selection Policy

Operators

4.1 GENETIC ALGORITHM USED IN LAYOUT PROBLEM

4.1.1 POPULATION REPRESENTATION:

The integers denote the facilities and their positions in the string denote the positions of the

facilities in the layout. For example, in case of the 8/8 problem with two rows and four

columns, the rows are numbered 0 and 1 and the columns 0, 1, 2 and 3.The string positions

are numbered 0 to 7.The position in the layout of the i
th
 integer in the string is given by

Row: integer part of (I divided by number of columns)

Column: remainder of (I divided by number of column)

Thus for the 8/8 problem the locations are coded as follows:

 0 1 2 3

 4 5 6 7

The following assignment of the 8/8 problems

7 6 5 3

8 4 1 2

will be represented by the solution string 7 6 5 3 8 4 1 2

At the start of each run of the program, the user is asked to specify the required number of

rows and column, as well as the number of departments to be located in the layout.

Immediately the locations are coded as discussed above.

4.1.2 FEASIBILITY/INFEASIBILITY OF THE SOLUTIONS IN THE

PROBLEM:

For QAP we see that the total numbers of assignments, which are feasible, are n. However, if

the restriction that one facility should be assigned to exactly at one location is relaxed i.e.

infeasible assignments are allowed, and then the total number of assignments is
nn . The

major issue involved is that weather to allowed infeasible solutions in the population or not

 14

have been mentioned above. Here we show that, for a QAP infeasible solutions cannot be

allowed in the population. It may be easily seen the ratio of the number of feasible solutions

to the total number of solutions, allowing for infeasibility, approaches zero as n increases.

→∝n

Lim
 nn

n!
 =

→∝n

Lim
 (2∏n) n

n

n

e

n









×

 =
→∝n

Lim
ne

n)2(Π
= 0

Consequently, the probability of feasible solutions existing in a randomly generated initial

population without imposing feasible conditions becomes zero for large n. It may be noted

for n=8 only 0.2% of the total solutions are feasible. Hence in a population of 100 random

candidates not even one is expected to be feasible.

4.1.3 CALCULATION OF DISTANCE:

The method used in the software is variable size column. Suppose an arrangement, as

4,2,5,1,6,3. The dimensions of the columns for this example will be calculated as follows:

D4 D1

D2 D6

D5 D3

Column 1:

Surface to be laid out = 12 + 15 + 10 =37

Height of the surface = 8

Width of the column = 37/8 = 4.625

 15

Column 2:

Surface to be laid out = 10 + 15 + 10 =35

Height of the surface = 8

Width of the column = 35/8 = 4.375

So the distance between any two department = mod (x1-x2) + mod (y1-y2)

Where x and y is centroid of a department.

4.1.4 SELECTION POLICY:

The Roulette Wheel Method simply chooses the strings in a statistical fashion based solely

upon their relative (i.e. percentage) fitness values. To look abstractly at this method, consider

the roulette wheel below, which is based on the previous example above.

 Fig. 4.1

When selecting the three strings that will be placed in the mating pool, the roulette wheel is

spun three times, with the results indicating the string to be placed in the pool. It is obvious

from the above wheel that there's a good chance that string 10000 will be selected more than

once. This is fine. Multiple copies of the same string can exist in the mating pool. This is

even desirable, since the stronger strings will begin to dominate, eradicating the weaker ones

from the population. There are difficulties with this, as it can lead to premature convergence

on a local optimum.

 16

4.1.5 CROSSOVER:

From the above discussion we see that the solutions maintained in the population have to be

all-feasible. Hence crossover operation has to be such that it generates only feasible offspring

from a pair of feasible parents. Other desirable features are that the crossover should maintain

diversity but at the same time should maintain structural arrangements, which may be

contributing to better quality of the solutions. In the crossover operator new strings are

created by exchanging information among strings. In most crossover operators, two strings

are picked from the mating pool at random and some portions of the strings are exchanged

between the strings. A single point crossover operator is performed by randomly choosing a

crossing site along the string and by exchanging all bits on the right side of the crossing site

as shown:

 0 00 0 0 ⇒ 0 01 1 1

 1 11 1 1 1 10 0 0

Position based crossover, partially mapped crossover (PMX), order crossover (OX) are

different types of crossover operator. In this case, we have tried out the PMX for the test

problems.

4.1.6 Partially Mapped Crossover (PMX):

This type of crossover was proposed by Goldberg and Linble. It builds an offspring choosing

a subsequence arrangement from one parent and preserving the order and position of as many

arrangement as possible from the other parent.

 For example the two parents

P1 1 2 3 4 5 6 7 8 9

P2 4 5 2 1 8 7 6 9 3

would produce offspring in the following way. First the segments between cut points are

swapped (the symbol X can be interpreted as present unknown)

 17

O1 X X X 1 8 7 6 X X

O2 X X X 4 5 6 7 X X

This swapping also defined a series of mapping

0 – 4, 8 – 5, 7 – 6, 6 – 7.

Then we can fill further gene (from the original parents), for which there is no conflict.

O1 X 2 3 1 8 7 6 X 9

O2 X X 2 4 5 6 7 9 3

Finally the first X in the offspring 1 is replaced by 4, because of the mapping 1 – 4.

Similarly the second X in the offspring O1 is replaced by 5 and the X in the offspring O2 are

replaced by 1 and 8.The off springs are

O1 4 2 3 1 8 7 6 5 9

O2 1 8 2 4 5 6 7 9 3

4.1.7 Ordered Crossover:

Davis proposed this type of crossover. It built offspring by choosing a subsequence of a gene

sequence from one parent and preserving the relative order of gene from the other parents.

For example (for two cut point marked by color)

 18

P1 1 2 3 4 5 6 7 8 9

P2 4 5 2 1 8 7 6 9 3

O1 X 2 3 4 5 6 7 X 9

O2 X X 2 1 8 7 6 9 3

Reverse of P2: 9 3 4 5 2 1 8 7 6

Remove 4 5 6 7 already in the first P1

We get then 9 3 2 1 8

Finally offspring is

O1 3 4 5 1 8 7 6 9 2

 19

O2 2 1 8 4 5 6 7 9 3

CHAPTER- 5

ALGORITHM FOR OPTIMIZATION

5.1 ALGORITHM FOR OPTIMIZATION

STEP 1:

 Reproduction or Generation operator is used to generate random sequences of different

departments for a facility layout problem. The number of such sequences (species) in the

population pool and the number of departments are given as input (say n and m).

STEP 2:

Fitness value or total cost and closeness rating associated with each sequences thus generated

in the first step, are calculated using the above mentioned formula

For total cost—

 C =
∑∑
+=

−

=

××
n

ij

n

i

DijCijFij
1

1

1

)(

For closeness rating—

 i=n

 TCR = ∑(closeness rating) seq [i][i+1]

 i=1

STEP 3:

Selection policy- On the basis of total cost or total closeness rating the sequences are sorted

in descending order. Then with the help of roulette wheel algorithm two sequences are

selected.

STEP 4:

Position based crossover is used as a Crossover operator in our program. The two sequences

thus obtained from selection policy are considered to be parent strings for crossover operator.

 21

The algorithm for Position based crossover –

For example say we consider 9 departments

 Parent1 : 1 2 3 4 5 6 7 8 9

 * * * * *

and star marks indicate the fixed position. These are randomly chosen.

Parent2 : 2 6 8 1 4 9 3 7 5

 = = = = =

double underlines indicate, the departments in the positions fixed in parent will remain as it is

offspring: 1 2 3 4 9 6 7 8 5

STEP 5:

Mutation Operator

The offspring obtained in step 4 are also mutated to get two different offspring or mutated

strings. We used position-based mutation to remove a department from one potion and are

put in another in an offspring obtained from step 4.These positions are selected randomly.

STEP 6:

Again fitness value is calculated for the mutated string, thus generated in step 5

STEP 7:

Again sorting is done and the population pool matrix is updated by discarding the two strings

with strings with worst fitness value (as the pop size is always maintained constant). Thus the

new sequence is generated.

 Now from step 3 to step 7, the process is repeated for a given number of generations so

that finally all sequence is the population or generation pool (new sequence matrix) will give

some total cost.

 22

CHAPTER- 6

RESULTS AND DISCUSSION

6.1 RESULTS AND DISCUSSION

The general facility layout problem takes into account the following constraints:

(a) unequal areas

(b) irregular shapes

(c) a certain groups of unit squares should be placed together

(d) considering aisle in between certain departments

In this work, a simplified model, considering aisle in between certain departments i.e.

constraint (d) has modeled as a simplified version of generalized facility layout problem. The

area of each department is taken equal. Two objectives as mentioned in model description

have been taken into account. These two models have been considered separately and solved

using Genetic Algorithm. The two test problems that we have dealt with are as follows:

1. To find out optimal sequence of six departments with a 10cm aisle in between the

departments.

 1 6

2 5

3 4

 50 10 50

 The distance matrix, the flow matrix, and the closeness rating matrix given as input

to the program are given below

 Distance Matrix

 0 10 20 80 70 60

10 0 10 70 60 70

20 10 0 60 70 80

80 70 60 0 10 20

70 60 70 10 0 10

60 70 80 20 10 0

 Table-6.1

 24

 Flow matrix

0 10 5 8 3 7

10 0 2 5 9 1

5 2 0 4 6 8

8 5 4 0 11 9

3 9 6 11 0 6

7 1 8 9 6 0

 Table-6.2

 Closeness rating matrix

0 3 6 1 9 6

3 0 3 9 6 9

6 3 0 6 9 1

1 9 6 0 3 6

9 6 9 3 0 3

6 9 1 6 3 0

 Table-6.3

1. To find out optimal sequence of eight departments with a 10cm aisle in between the

departments.

1 5

2 6

3 7

4 8

 50 10 50

 25

The distance matrix and the flow matrix given as input to the program are given below

 DISTANCE MATRIX

0 10 20 30 60 70 80 90

10 0 10 20 70 60 70 80

20 10 0 10 80 70 60 70

30 20 10 0 90 80 70 60

60 70 80 90 0 10 20 30

70 60 70 80 10 0 10 20

80 70 60 70 20 10 0 10

90 80 70 60 30 20 10 0

 Table-6.4

 FLOW MATRIX

0 10 5 8 3 7 4 5

10 0 2 5 9 1 3 2

5 2 0 4 6 8 1 2

8 5 4 0 11 9 5 9

3 9 6 11 0 6 6 7

7 1 8 9 6 0 7 6

4 3 1 5 6 7 0 8

5 2 2 9 7 6 8 0

 Table-6.5

 CLOSENESS RATING MATRIX

0 3 6 1 9 6 2 1

3 0 3 9 6 9 3 3

6 3 0 6 9 1 5 4

1 9 6 0 3 6 7 5

9 6 9 3 0 3 8 9

6 9 1 6 3 0 1 2

2 3 4 5 6 8 0 3

4 5 7 8 2 9 4 0

 Table-6.6

The program has main function which calls the generation function, fitness function,

crossover function, and mutation function. Generation function generates random sequences.

We have checked the effectiveness of the program by generating five random sequences at

first and then by generating ten random sequences. Fitness function calculates the total

cost/total closeness rating for all the random sequences and two sequences are selected to

serve as parent according to the roulette wheel selection policy. Crossover function is then

call in the main function to generate two offspring. These two off springs are given as input

to the mutation function and thus two mutated strings are returned to the main function. Then

these functions are put in a loop of 50 generations and the results were obtained, also we

increased the number of generation to 150. The result for six departments and ten population

sizes with maximizing total closeness rating as the objective is given below:

28

 THE INITIAL POPULATION

 1 3 2 4 5 6

 3 6 4 2 1 5

 2 1 6 3 4 5

 2 5 3 4 6 1

 4 2 1 5 3 6

 3 4 6 1 2 5

 3 5 4 2 6 1

 2 6 4 1 3 5

 4 2 1 3 6 5

 2 5 1 6 3 4

THE GENERATION NUMBER 1

THE NEW SEQUENCE

 4 3 5 2 6 1 36

 3 5 4 2 6 1 36

 2 5 3 4 6 1 33

 4 2 1 5 3 6 31

 2 6 4 1 3 5 31

 3 5 4 6 2 1 30

 3 6 4 2 1 5 28

 2 5 1 6 3 4 28

 3 4 6 1 2 5 27

 1 3 2 4 5 6 24

 29

THE GENERATION NUMBER 3

 THE NEW SEQUENCE

 3 5 4 2 6 1 36

 4 3 5 2 6 1 36

 3 5 4 2 6 1 36

 4 3 2 6 1 5 33

 6 1 2 4 3 5 33

 2 5 3 4 6 1 33

 2 6 4 1 3 5 31

 4 2 1 5 3 6 31

 2 6 4 1 3 5 31

 3 5 4 6 2 1 30

THE GENERATION NUMBER 10

THE NEW SEQUENCE

 3 4 2 6 1 5 39

 4 3 5 2 6 1 36

 4 3 5 2 6 1 36

 3 5 4 2 6 1 36

 4 3 5 2 6 1 36

 4 3 5 2 6 1 36

 3 5 4 2 6 1 36

 4 3 5 2 6 1 36

 3 5 4 2 6 1 36

 3 5 4 2 6 1 36

 30

THE GENERATION NUMBER 12

THE NEW SEQUENCE

 3 4 2 6 1 5 39

 4 3 5 2 6 1 36

 3 5 4 2 6 1 36

 3 5 4 2 6 1 36

 4 3 5 2 6 1 36

 4 3 5 2 6 1 36

 3 5 4 2 6 1 36

 4 3 5 2 6 1 36

 4 3 5 2 6 1 36

 3 5 4 2 6 1 36

THE GENERATION NUMBER 41

THE NEW SEQUENCE

 4 2 6 1 5 3 42

 3 4 2 6 1 5 39

 5 3 4 2 6 1 39

 3 4 2 6 1 5 39

 5 3 4 2 6 1 39

 3 4 2 6 1 5 39

 5 3 4 2 6 1 39

 3 4 2 6 1 5 39

 3 4 2 6 1 5 39

 3 4 2 6 1 5 39

 31

THE GENERATION NUMBER 85

THE NEW SEQUENCE

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 2 4 6 1 5 3 39

 THE GENERATION NUMBER 90

THE NEW SEQUENCE

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 4 2 6 1 5 3 42

 33

Thus optimal sequence, i.e. 4 2 6 1 5 3, is obtained after 90 generations and the maximum

closeness rating is 42. A graph is plotted taking generation number in X axis and Fitness

value (Total closeness rating) in Y axis and is compared with the graph obtained for five

population size. The number of iteration comes out to be 50 for the latter case.

Maximising Closeness Rating Scores
Fitness Value Vs. Generation Number

32

34

36

38

40

42

44

3 10 41 85 90

Generation Number

F
it

n
e

s
s

 V
a

lu
e

 Fig.-6.1

 Number of departments = 6 Number of generations = 100

 Population size = 10 Maximum closeness rating = 42

 34

Maximizing Closeness Rating Scores
Fitness Value Vs. Generation Number

37

38

39

40

41

42

43

1 21 34 50

Generation Number

F
it

n
e

s
s

 V
a

lu
e

 Fig.-6.2

 Number of departments = 6 Number of generations = 50

 Population size = 5 Maximum closeness rating = 42

The result for six departments and ten population size with minimizing total cost as the

objective is given below:

THE INITIAL POPULATION

 1 3 2 4 5 6

 3 6 4 2 1 5

 2 1 6 3 4 5

 2 5 3 4 6 1

 4 2 1 5 3 6

 3 4 6 1 2 5

 3 5 4 2 6 1

 2 6 4 1 3 5

 4 2 1 3 6 5

 2 5 1 6 3 4

THE GENERATION NUMBER 1

THE NEW SEQUENCE

 2 6 4 1 3 5 9760

 3 5 4 2 6 1 8640

 4 2 1 5 3 6 8360

 2 1 6 3 4 5 8280

 2 5 3 4 6 1 8240

 2 5 1 6 3 4 8200

 1 3 2 4 5 6 8200

 3 6 4 2 1 5 8160

 3 4 6 1 2 5 8080

 4 2 1 3 6 5 8080

THE GENERATION NUMBER 2

THE NEW SEQUENCE

 3 5 4 2 6 1 8640

 2 6 1 3 5 4 8640

 4 2 1 5 3 6 8360

 2 1 6 3 4 5 8280

 2 5 3 4 6 1 8240

 2 5 1 6 3 4 8200

 1 3 2 4 5 6 8200

 3 6 4 2 1 5 8160

 3 4 6 1 2 5 8080

 4 2 1 3 6 5 8080

THE GENERATION NUMBER 3

THE NEW SEQUENCE

 4 2 1 5 3 6 8360

 2 1 6 3 4 5 8280

 2 5 3 4 6 1 8240

 36

 1 3 2 4 5 6 8200

 2 5 1 6 3 4 8200

 1 3 2 4 5 6 8200

 3 6 4 2 1 5 8160

 3 4 6 1 2 5 8080

 4 2 1 3 6 5 8080

 3 2 1 4 5 6 8000

THE GENERATION NUMBER 13

THE NEW SEQUENCE

 1 6 3 4 2 5 8200

 3 6 4 2 1 5 8160

 3 6 4 1 5 2 8160

 5 2 1 6 3 4 8120

 2 3 1 4 6 5 8080

 4 2 1 3 6 5 8080

 3 4 6 1 2 5 8080

 2 5 1 6 4 3 8080

 3 2 1 4 5 6 8000

 2 4 1 3 6 5 7960

THE GENERATION NUMBER 14

THE NEW SEQUENCE

 1 5 2 4 6 3 8160

 3 6 4 1 5 2 8160

 3 6 4 2 1 5 8160

 5 2 1 6 3 4 8120

 2 3 1 4 6 5 8080

 4 2 1 3 6 5 8080

 3 4 6 1 2 5 8080

 2 5 1 6 4 3 8080

 3 2 1 4 5 6 8000

 2 4 1 3 6 5 7960

 37

THE GENERATION NUMBER 53

THE NEW SEQUENCE

 3 2 1 4 5 6 8000

 3 2 1 4 5 6 8000

 2 4 1 6 3 5 8000

 3 2 1 4 5 6 8000

 3 1 2 4 5 6 8000

 3 1 2 4 5 6 8000

 3 2 1 4 5 6 8000

 2 4 1 3 6 5 7960

 2 4 5 3 1 6 7960

 6 3 1 2 4 5 7760

THE GENERATION NUMBER 67

THE NEW SEQUENCE

 3 2 1 4 5 6 8000

 3 2 1 4 5 6 8000

 3 1 2 4 5 6 8000

 2 4 5 3 1 6 7960

 2 4 1 3 6 5 7960

 3 5 2 1 4 6 7960

 6 1 3 2 4 5 7920

 4 2 5 3 1 6 7840

 6 3 1 2 4 5 7760

 6 3 1 2 5 4 7680

THE GENERATION NUMBER 79

THE NEW SEQUENCE

 3 2 1 4 5 6 8000

 2 4 5 3 1 6 7960

 2 4 1 3 6 5 7960

 3 5 2 1 4 6 7960

 6 1 3 2 4 5 7920

 6 1 3 2 4 5 7920

 4 2 5 3 1 6 7840

 38

 6 3 1 2 4 5 7760

 6 3 1 2 5 4 7680

 3 6 1 2 4 5 7640

THE GENERATION NUMBER 124

THE NEW SEQUENCE

 6 3 1 2 5 4 7680

 6 3 1 2 5 4 7680

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

THE GENERATION NUMBER 125

THE NEW SEQUENCE

 6 3 1 2 5 4 7680

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

THE GENERATION NUMBER 126

THE NEW SEQUENCE

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 39

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

 3 6 1 2 4 5 7640

The optimal sequence, i.e.3 6 1 2 4 5, is obtained after 126 generations or iterations and the

total cost comes out to be 7640. Then a graph is plotted taking generation number in X axis

and Fitness value (Total cost) in Y axis and is compared with the graph obtained for five

population size. The number of iterations comes out to be 50.

Minimizing Total Cost

Fitness Value Vs. Generation Number

7200

7400

7600

7800

8000

8200

1 2 3 4 5 13 20 35 50

Generation Number

F
it

n
e

s
s

 V
a

lu
e

 Fig.-6.3

 Number of departments=6 Population size = 5

 Number of generation = 50 Minimum cost = Rs7640

 40

Minimizing Total Cost

 Fitness Value Vs. Generation Number

7400

7500

7600

7700

7800

7900

8000

8100

8200

1 3 53 67 79 124 125 126

Generation Number

F
it

n
e

s
s

 v
a

lu
e

 Fig.-6.4

 Number of departments = 6 Population size =10

 Number of generation =130 Minimum cost = Rs 7640

 41

The same problem for eight departments was also solved for both the objectives and the

graphs plotted are given below.

Minimizing Total Cost

Fitness Value Vs. Generation Number

13400

13500

13600

13700

13800

13900

14000

14100

14200

14300

1 9 28 47 83 117 118 250

Generation Number

F
it

n
e

s
s

 V
a

lu
e

 Fig.-6.5

 Number of departments = 8 Population size =10

 Number of Generations = 250 Minimum cost = Rs 13660

 42

Maximizing Closeness Rating Scores

Fitness Value Vs. Generation Number

40

42

44

46

48

50

52

54

56

1 15 31 75 81 170 300

Generation Number

F
it
n

e
s
s
 V

a
lu

e

 Fig.-6.6

 Number of departments = 8 Population size = 10

 Number of generations = 300 Maximum Closeness rating = 55

 43

CHAPTER-7

PROGRAMS

Program for maximizing closeness rating

Program for minimizing material handling cost

PROGRAM FOR MAXIMIZING CLOSENESS RATING:

/*Program for layout planning using genetic algorithm for maximizing closeness rating*/

#include<stdio.h>

#include<math.h>

#include<conio.h>

#include<stdlib.h>

#define pop_size 6

#define data_set 6

#define no_of_generation 100

void ini_generation();

void cross_over();

void mutation();

int parent1[data_set+1],parent2[data_set+1],offspring1[data_set+1],offspring2[data_set+1];

int mutated1[data_set+1],mutated2[data_set+1];

FILE *fin1;

FILE *fout1,*fout2;

 main()

 {

 int i,j,k,seq[data_set+3][data_set+3],temp[data_set+1],temp1[data_set+1];

 int totclose,ran1,ran2,generation;

 float fitness(int temp[]);

 clrscr();

 /*INITIALIZATION*/

 ini_generation();

 fin1=fopen("result2.out","r");

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set;j++){

 fscanf(fin1,"%d",&seq[i][j]);}

 fscanf(fin1,"\n");}

 fout2=fopen("inipop1.out","w");

 fprintf(fout2,"THE INITIAL POPULATION\n");

 45

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set;j++){

 fprintf(fout2,"%3d",seq[i][j]);}

 fprintf(fout2,"\n");}

 i=1;

 do{

 for(j=1;j<=data_set;j++)

 {

 temp[j]=seq[i][j];

 //printf("*%3d",temp[j]);

 }

 //printf("\n");

 totclose=fitness(temp);

 seq[i][data_set+1]=totclose;

 //printf("totclose=%5d\n",totclose);

 i++;

 } while(i<=pop_size);

 /*fprintf(fout2,"\nTHE INITIAL SEQUENCE WITH FITNESS\n");

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}*/

 /*sorting of initial population in descending order*/

 for(i=1;i<=pop_size;i++)

 {

 for(j=1;j<=pop_size-1;j++)

 {

 if(seq[j][data_set+1]<=seq[j+1][data_set+1])

 46

 {

 for(k=1;k<=data_set+1;k++){

 temp1[k]=seq[j][k];}

 for(k=1;k<=data_set+1;k++){

 seq[j][k]=seq[j+1][k];}

 for(k=1;k<=data_set+1;k++){

 seq[j+1][k]=temp1[k];}

 }

 else1

 continue;

 }

 }

 /* fprintf(fout2,"\nTHE SORTED MATRIX\n");

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}*/

 generation=1;

 do{

 fprintf(fout2,"\nTHE GENERATION NUMBER %3d\n",generation);

 ran1=(int)(1.0+pop_size*(float)rand()/RAND_MAX);

 ran2=(int)(1.0+pop_size*(float)rand()/RAND_MAX);

 //fprintf(fout2,"\n%3d%3d\n",ran1,ran2);

 for(j=1;j<=data_set;j++)

 {

 parent1[j]=seq[ran1][j];

 parent2[j]=seq[ran2][j];

 }

 cross_over();

 47

 /* fprintf(fout2,"\nTHE CROSSOVER\n");

 for(j=1;j<=data_set;j++)

 fprintf(fout2,"%5d",offspring1[j]);

 fprintf(fout2,"\n");

 for(j=1;j<=data_set;j++)

 fprintf(fout2,"%5d",offspring2[j]);

 fprintf(fout2,"\n");*/

 mutation();

 /*fprintf(fout2,"\nTHE MUTATION\n");

 for(j=1;j<=data_set;j++)

 fprintf(fout2,"%5d",mutated1[j]);

 fprintf(fout2,"\n");

 for(j=1;j<=data_set;j++)

 fprintf(fout2,"%5d",mutated2[j]);

 fprintf(fout2,"\n");*/

 for(j=1;j<=data_set;j++)

 seq[pop_size+1][j]=mutated1[j];

 for(j=1;j<=data_set;j++)

 seq[pop_size+2][j]=mutated2[j];

 for(i=pop_size+1;i<=pop_size+2;i++)

 {

 for(j=1;j<=data_set;j++)

 {

 temp[j]=seq[i][j];

 }

 totclose=fitness(temp);

 seq[i][data_set+1]=totclose;

 }

 /*fprintf(fout2,"\nTHE REVISED SEQUENCE WITH FITNESS\n");

 48

 for(i=1;i<=pop_size+2;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}*/

 /*sorting of revised matrix*/

 for(i=1;i<=pop_size+2;i++)

 {

 for(j=1;j<=pop_size+2-1;j++)

 {

 if(seq[j][data_set+1]<=seq[j+1][data_set+1])

 {

 for(k=1;k<=data_set+1;k++){

 temp1[k]=seq[j][k];}

 for(k=1;k<=data_set+1;k++){

 seq[j][k]=seq[j+1][k];}

 for(k=1;k<=data_set+1;k++){

 seq[j+1][k]=temp1[k];}

 }

 else

 continue;

 }

 }

 /*fprintf(fout2,"\nTHE SORTED MATRIX OF REVISED SEQUENCE\n");

 for(i=1;i<=pop_size+2;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}*/

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set+1;j++){

 seq[i][j]=seq[i][j];}}

 49

 fprintf(fout2,"\nTHE NEW SEQUENCE\n");

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}

 generation++;

 } while(generation<=no_of_generation);

 fclose(fin1);

 fclose(fout2);

 return 0;

 }

 void ini_generation()

 {

 int i,j,rand_num,count,k;

 int sequence[data_set+1][data_set+1];

 fout1=fopen("result2.out","w");

 for(i=0;i<data_set;i++){

 for(j=0;j<data_set;j++)

 sequence[i][j]=0;}

 k=1;

 do{

 sequence[k][1]=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 j=1;

 do{

 rand_num=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 count=0;

 for(i=1;i<=j;i++){

 if(sequence[k][i]-rand_num==0)

 50

 count=count+1;}

 if(count<1)

 {

 j++;

 sequence[k][j]=rand_num;

 }

 } while(j<=data_set);

 k++;

 } while(k<=pop_size);

 for(k=1;k<=pop_size;k++){

 for(j=1;j<=data_set;j++){

 fprintf(fout1,"%3d",sequence[k][j]);}

 fprintf(fout1,"\n");}

 fclose(fout1);

 }

 float fitness(int temp[])

 {

 int i,j,k,sequence[data_set+1];;

 int closerat[data_set+1][data_set+1];

 int sum;

 FILE *fp1;

 fp1=fopen("loutfit.txt","r");

 for(i=1;i<=data_set;i++)

 sequence[i]=temp[i];

 /*for(j=1;j<=data_set;j++)

 {

 printf("**%3d",sequence[j]);

 }

 51

 printf("\n");*/

 for(i=1;i<=data_set;i++){

 for(j=1;j<=data_set;j++){

 fscanf(fp1,"%d",&closerat[i][j]);}

 fscanf(fp1,"\n");}

 sum=0.0;

 k=1;

 do{

 sum=sum+closerat[sequence[k]][sequence[k+1]];

 k++;

 } while(k<data_set);

 fclose(fp1);

 return sum;

 }

/*float fitness(int temp[])

{

static int i,j,x[data_set+1],d[data_set+1][data_set+1],c[data_set+1][data_set+1],TC;

FILE *fin1,*fin2;

fin1=fopen("input1.in","r");

for(i=1;i<=data_set;i++)

 x[i]=temp[i];

for(i=1;i<=data_set;i++)

{

 for(j=1;j<=data_set;j++)

 {

 fscanf(fin1,"%d",&d[x[i]][x[j]]);

 }

 fscanf(fin1,"\n");

 52

}

fin2=fopen("input2.in","r");

for(i=1;i<=data_set;i++)

{

 for(j=1;j<=data_set;j++)

 {

 fscanf(fin2,"%d",&c[i][j]);

 }

 fscanf(fin2,"\n");

}

TC=0;

for(i=1;i<=data_set;i++)

{

 for(j=1;j<=data_set;j++)

 {

 TC=TC+(d[i][j]*c[i][j]);

 }

}

fclose(fin1);

fclose(fin2);

return TC;

}*/

 void cross_over()

 {

 int fixposno,temp1[data_set+1],temp2[data_set+1],i,fixpos[20],jj,count1,rand_nub;

 int k,par2_inherit1[data_set+1],par1_inherit2[data_set+1];

 /*for(i=1;i<=data_set;i++)

 printf("%5d",parent1[i]);

 printf("\n");

 53

 for(i=1;i<=data_set;i++)

 printf("%5d",parent2[i]);*/

 /*for offspring1*/

 fixposno=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 for(i=1;i<=data_set;i++){

 offspring1[i]=0;

 temp1[i]=0;}

 for(i=1;i<=data_set;i++){

 temp1[i]=parent2[i];}

 jj=1;

 fixpos[jj]=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 do{

 rand_nub=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 count1=0;

 for(i=1;i<=jj;i++){

 if(fixpos[i]-rand_nub==0)

 count1=count1+1;}

 if(count1<1)

 {

 jj++;

 fixpos[jj]=rand_nub;

 }

 } while(jj<=fixposno);

 for(i=1;i<=fixposno;i++){

 offspring1[fixpos[i]]=parent1[fixpos[i]];}

 54

 k=1;

 do{

 if(offspring1[k]>0)

 {

 for(i=1;i<=data_set;i++){

 if(temp1[i]-offspring1[k]==0)

 temp1[i]=0;}

 }

 k++;

 } while(k<=data_set);

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(temp1[i]>0){

 par2_inherit1[k]=temp1[i];

 k++; }

 }

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(offspring1[i]<1){

 offspring1[i]=par2_inherit1[k];

 k++;}

 }

 /*for offspring2*/

 fixposno=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 for(i=1;i<=data_set;i++){

 offspring2[i]=0;

 temp2[i]=0;}

 55

 for(i=1;i<=data_set;i++){

 temp2[i]=parent1[i];}

 jj=1;

 fixpos[jj]=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 do{

 rand_nub=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 count1=0;

 for(i=1;i<=jj;i++){

 if(fixpos[i]-rand_nub==0)

 count1=count1+1;}

 if(count1<1)

 {

 jj++;

 fixpos[jj]=rand_nub;

 }

 } while(jj<=fixposno);

 for(i=1;i<=fixposno;i++){

 offspring2[fixpos[i]]=parent2[fixpos[i]];}

 k=1;

 do{

 if(offspring2[k]>0)

 {

 for(i=1;i<=data_set;i++){

 if(temp2[i]-offspring2[k]==0)

 temp2[i]=0;}

 }

 k++;

 56

 } while(k<=data_set);

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(temp2[i]>0){

 par1_inherit2[k]=temp2[i];

 k++; }

 }

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(offspring2[i]<1){

 offspring2[i]=par1_inherit2[k];

 k++;}

 }

 }

 void mutation()

 {

 int temp[data_set+1],temp1[data_set+1];

 int tamp[data_set+1],temp2[data_set+1];

 int mutpos1,mutpos2;

 int i,k;

 //srand(5);

 /*for mutation1*/

 mutpos1=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 mutpos2=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 for(i=1;i<=data_set;i++){

 temp[i]=0;}

 temp[mutpos2]=offspring1[mutpos1];

 57

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(i!=mutpos1){

 temp1[k]=offspring1[i];

 k++; }

 }

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(temp[i]<1){

 temp[i]=temp1[k];

 k++;}

 }

 for(i=1;i<=data_set;i++){

 mutated1[i]=temp[i];}

 /*for mutation2*/

 mutpos1=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 mutpos2=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 for(i=1;i<=data_set;i++){

 tamp[i]=0;}

 tamp[mutpos2]=offspring2[mutpos1];

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(i!=mutpos1){

 temp2[k]=offspring2[i];

 k++; }

 }

 k=1;

 58

 for(i=1;i<=data_set;i++)

 {

 if(tamp[i]<1){

 tamp[i]=temp2[k];

 k++;}

 }

 for(i=1;i<=data_set;i++){

 mutated2[i]=tamp[i];}

 /*for(i=1;i<=data_set;i++)

 printf("%3d",mutated1[i]);

 printf("\n");

 for(i=1;i<=data_set;i++)

 printf("%3d",mutated2[i]);*/

 }

 59

PROGRAM FOR MINIMIZING MATERIAL HANDLING COST:

/*Program for layout planning using genetic algorithm for minimizing total cost*/

#include<stdio.h>

#include<math.h>

#include<conio.h>

#include<stdlib.h>

#define pop_size 6

#define data_set 6

#define no_of_generation 100

void ini_generation();

void cross_over();

void mutation();

int parent1[data_set+1],parent2[data_set+1],offspring1[data_set+1],offspring2[data_set+1];

int mutated1[data_set+1],mutated2[data_set+1];

FILE *fin1;

FILE *fout1,*fout2;

 main()

 {

 int i,j,k,seq[data_set+3][data_set+3],temp[data_set+1],temp1[data_set+1];

 int totclose;

 float fitness(int temp[]),ran1,ran2,generation;

 clrscr();

 /*INITIALIZATION*/

 ini_generation();

 fin1=fopen("result2.out","r");

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set;j++){

 fscanf(fin1,"%d",&seq[i][j]);}

 fscanf(fin1,"\n");}

 fout2=fopen("inipop.out","w");

 fprintf(fout2,"THE INITIAL POPULATION\n");

 60

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set;j++){

 fprintf(fout2,"%3d",seq[i][j]);}

 fprintf(fout2,"\n");}

 i=1;

 do{

 for(j=1;j<=data_set;j++)

 {

 temp[j]=seq[i][j];

 //printf("*%3d",temp[j]);

 }

 //printf("\n");

 totclose=(int)fitness(temp);

 seq[i][data_set+1]=totclose;

 //printf("totclose=%5d\n",totclose);

 i++;

 } while(i<=pop_size);

 /*fprintf(fout2,"\nTHE INITIAL SEQUENCE WITH FITNESS\n");

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}*/

 /*sorting of initial population in descending order*/

 for(i=1;i<=pop_size;i++)

 {

 for(j=1;j<=pop_size-1;j++)

 {

 if(seq[j][data_set+1]<=seq[j+1][data_set+1])

 61

 {

 for(k=1;k<=data_set+1;k++){

 temp1[k]=seq[j][k];}

 for(k=1;k<=data_set+1;k++){

 seq[j][k]=seq[j+1][k];}

 for(k=1;k<=data_set+1;k++){

 seq[j+1][k]=temp1[k];}

 }

 else

 continue;

 }

 }

 /* fprintf(fout2,"\nTHE SORTED MATRIX\n");

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}*/

 generation=1;

 do{

 fprintf(fout2,"\nTHE GENERATION NUMBER %3d\n", generation);

 ran1=(int)(1.0+pop_size*(float)rand()/RAND_MAX);

 ran2=(int)(1.0+pop_size*(float)rand()/RAND_MAX);

 for(j=1;j<=data_set;j++)

 {

 parent1[j]=seq[pop_size-1][j];

 parent2[j]=seq[pop_size][j];

 }

 cross_over();

 fprintf(fout2,"\nTHE CROSSOVER\n");

 for(j=1;j<=data_set;j++)

 62

 fprintf(fout2,"%5d",offspring1[j]);

 fprintf(fout2,"\n");

 for(j=1;j<=data_set;j++)

 fprintf(fout2,"%5d",offspring2[j]);

 fprintf(fout2,"\n");

 mutation();

 fprintf(fout2,"\nTHE MUTATION\n");

 for(j=1;j<=data_set;j++)

 fprintf(fout2,"%5d",mutated1[j]);

 fprintf(fout2,"\n");

 for(j=1;j<=data_set;j++)

 fprintf(fout2,"%5d",mutated2[j]);

 fprintf(fout2,"\n");

 for(j=1;j<=data_set;j++)

 seq[pop_size+1][j]=mutated1[j];

 for(j=1;j<=data_set;j++)

 seq[pop_size+2][j]=mutated2[j];

 for(i=pop_size+1;i<=pop_size+2;i++)

 {

 for(j=1;j<=data_set;j++)

 {

 temp[j]=seq[i][j];

 }

 totclose=(int)fitness(temp);

 seq[i][data_set+1]=totclose;

 }

 fprintf(fout2,"\nTHE REVISED SEQUENCE WITH FITNESS\n");

 for(i=1;i<=pop_size+2;i++){

 for(j=1;j<=data_set+1;j++){

 63

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}

 /*sorting of revised matrix*/

 for(i=1;i<=pop_size+2;i++)

 {

 for(j=1;j<=pop_size+2-1;j++)

 {

 if(seq[j][data_set+1]<=seq[j+1][data_set+1])

 {

 for(k=1;k<=data_set+1;k++){

 temp1[k]=seq[j][k];}

 for(k=1;k<=data_set+1;k++){

 seq[j][k]=seq[j+1][k];}

 for(k=1;k<=data_set+1;k++){

 seq[j+1][k]=temp1[k];}

 }

 else

 continue;

 }

 }

 fprintf(fout2,"\nTHE SORTED MATRIX OF REVISED SEQUENCE\n");

 for(i=1;i<=pop_size+2;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");}

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set+1;j++){

 seq[i][j]=seq[i+2][j];}}

 64

 fprintf(fout2,"\nTHE NEW SEQUENCE\n");

 for(i=1;i<=pop_size;i++){

 for(j=1;j<=data_set+1;j++){

 fprintf(fout2,"%5d",seq[i][j]);}

 fprintf(fout2,"\n");

 }

 generation++ ;

 }while(generation<=no_of_generation);

 fclose(fin1);

 fclose(fout2);

 return 0;

 }

 void ini_generation()

 {

 int i,j,rand_num,count,k;

 int sequence[data_set+1][data_set+1];

 fout1=fopen("result2.out","w");

 for(i=0;i<data_set;i++){

 for(j=0;j<data_set;j++)

 sequence[i][j]=0;}

 k=1;

 do{

 sequence[k][1]=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 j=1;

 do{

 rand_num=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 count=0;

 for(i=1;i<=j;i++){

 if(sequence[k][i]-rand_num==0)

 count=count+1;}

 65

 if(count<1)

 {

 j++;

 sequence[k][j]=rand_num;

 }

 } while(j<=data_set);

 k++;

 } while(k<=pop_size);

 for(k=1;k<=pop_size;k++){

 for(j=1;j<=data_set;j++){

 fprintf(fout1,"%3d",sequence[k][j]);}

 fprintf(fout1,"\n");}

 fclose(fout1);

 }

float fitness(int temp[])

{

static int i,j,x[data_set+1],d[data_set+1][data_set+1],c[data_set+1][data_set+1],TC;

FILE *fin1,*fin2;

fin1=fopen("input1.txt","r");

for(i=1;i<=data_set;i++)

 x[i]=temp[i];

for(i=1;i<=data_set;i++)

{

 for(j=1;j<=data_set;j++)

 {

 fscanf(fin1,"%d",&d[x[i]][x[j]]);

 }

 fscanf(fin1,"\n");

}

 66

fin2=fopen("input2.txt","r");

for(i=1;i<=data_set;i++)

{

 for(j=1;j<=data_set;j++)

 {

 fscanf(fin2,"%d",&c[i][j]);

 }

 fscanf(fin2,"\n");

}

TC=0;

for(i=1;i<=data_set;i++)

{

 for(j=1;j<=data_set;j++)

 {

 TC=TC+(d[i][j]*c[i][j]);

 }

}

fclose(fin1);

fclose(fin2);

return TC;

}

 void cross_over()

 {

 int fixposno,temp1[data_set+1],temp2[data_set+1],i,fixpos[20],jj,count1,rand_nub;

 int k,par2_inherit1[data_set+1],par1_inherit2[data_set+1];

 /*for(i=1;i<=data_set;i++)

 printf("%5d",parent1[i]);

 printf("\n");

 for(i=1;i<=data_set;i++)

 printf("%5d",parent2[i]);*/

 67

 /*for offspring1*/

 fixposno=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 for(i=1;i<=data_set;i++){

 offspring1[i]=0;

 temp1[i]=0;}

 for(i=1;i<=data_set;i++){

 temp1[i]=parent2[i];}

 jj=1;

 fixpos[jj]=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 do{

 rand_nub=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 count1=0;

 for(i=1;i<=jj;i++){

 if(fixpos[i]-rand_nub==0)

 count1=count1+1;}

 if(count1<1)

 {

 jj++;

 fixpos[jj]=rand_nub;

 }

 } while(jj<=fixposno);

 for(i=1;i<=fixposno;i++){

 offspring1[fixpos[i]]=parent1[fixpos[i]];}

 k=1;

 do{

 if(offspring1[k]>0)

 68

 {

 for(i=1;i<=data_set;i++){

 if(temp1[i]-offspring1[k]==0)

 temp1[i]=0;}

 }

 k++;

 } while(k<=data_set);

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(temp1[i]>0){

 par2_inherit1[k]=temp1[i];

 k++; }

 }

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(offspring1[i]<1){

 offspring1[i]=par2_inherit1[k];

 k++;}

 }

 /*for offspring2*/

 fixposno=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 for(i=1;i<=data_set;i++){

 offspring2[i]=0;

 temp2[i]=0;}

 for(i=1;i<=data_set;i++){

 temp2[i]=parent1[i];}

 69

 jj=1;

 fixpos[jj]=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 do{

 rand_nub=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 count1=0;

 for(i=1;i<=jj;i++){

 if(fixpos[i]-rand_nub==0)

 count1=count1+1;}

 if(count1<1)

 {

 jj++;

 fixpos[jj]=rand_nub;

 }

 } while(jj<=fixposno);

 for(i=1;i<=fixposno;i++){

 offspring2[fixpos[i]]=parent2[fixpos[i]];}

 k=1;

 do{

 if(offspring2[k]>0)

 {

 for(i=1;i<=data_set;i++){

 if(temp2[i]-offspring2[k]==0)

 temp2[i]=0;}

 }

 k++;

 } while(k<=data_set);

 k=1;

 70

 for(i=1;i<=data_set;i++)

 {

 if(temp2[i]>0){

 par1_inherit2[k]=temp2[i];

 k++; }

 }

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(offspring2[i]<1){

 offspring2[i]=par1_inherit2[k];

 k++;}

 }

 }

 void mutation()

 {

 int temp[data_set+1],temp1[data_set+1];

 int tamp[data_set+1],temp2[data_set+1];

 int mutpos1,mutpos2;

 int i,k;

 //srand(5);

 /*for mutation1*/

 mutpos1=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 mutpos2=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 for(i=1;i<=data_set;i++){

 temp[i]=0;}

 temp[mutpos2]=offspring1[mutpos1];

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(i!=mutpos1){

 71

 temp1[k]=offspring1[i];

 k++; }

 }

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(temp[i]<1){

 temp[i]=temp1[k];

 k++;}

 }

 for(i=1;i<=data_set;i++){

 mutated1[i]=temp[i];}

 /*for mutation2*/

 mutpos1=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 mutpos2=(int)(1.0+data_set*(float)rand()/RAND_MAX);

 for(i=1;i<=data_set;i++){

 tamp[i]=0;}

 tamp[mutpos2]=offspring2[mutpos1];

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(i!=mutpos1){

 temp2[k]=offspring2[i];

 k++; }

 }

 k=1;

 for(i=1;i<=data_set;i++)

 {

 if(tamp[i]<1){

 tamp[i]=temp2[k];

 k++;}

 }

 72

 for(i=1;i<=data_set;i++){

 mutated2[i]=tamp[i];}

 for(i=1;i<=data_set;i++)

 printf("%3d",mutated1[i]);

 printf("\n");

 for(i=1;i<=data_set;i++)

 printf("%3d",mutated2[i]);

 }

 73

Chapter -8

FUTURE SCOPE OF THE PROJECT

8.1 Future Scope of the Project

 The project can be further improved by adding on features to optimize plant layouts

with unequal areas of departments, irregular space between them and cases where some

departments are clustered together whereas others are spaced apart. It can also be improved

by giving it a graphical user interface (GUI) or by merging it with a database like iSQL

server.

 74

REFERENCES:

1. TATE, D.M and SMITH, A.E., 1993.A genetic approach to the quadratic assignment

problem, Computational and Operational Research; in Press.

2. KUSIAK, A. and Heragu, S.S; 1987. The facility layout problem,

Eur.J.Operational.Research; 29: 229-251.

3. MELLER, R.D and BOZER, Y.A., 1991. Solving the facility layout with simulated

annealing, Technical report 91-20, Department of Industrial and Operations Engineering, the

University of Michigan.

4. HARHALAKIS, G.Porth, J.M., and XIE, X.L, 1990.Manufacturing cell design using

simulated annealing: An industrial application, J. Intelligent Manf .1:185-191.

5. JAJODIA, S., MINIS, I., HARHALAKIS, G. and PROYH, J-M., 1992.CLASS:

Computerized layout solution using simulated annealing. Int. J. Prod. Res., 30:95-108.

6. ROSENBLATT, M.T., 1979. The facility layout problem: A multi goal approach. Int . J.

Prod. Res., 17:323-331

7. Dutta, K.N, and SAHU, S., 1982. A multi goal heuristic for facilities design problem:

MUGHAL, Int. J. Prod. Res., 20:147-154

8. FORTENBERRY, J.C. and COX, J.F., 1985. Multiple criteria approach to the facilities

layout problem. Int. J. Prod. Res. 23:773-782

9. WAGHODEKAR, P.H. and SAHU, S., 1986.Facilities layout with multiple objectives.

Eng. Costs Prod. Ecnom.,10:104-112

10. URBAN, T.L., 1987. A multiple criteria model for facilities layout problem. Int. J. Prod.

Res., 25:1805-1812

11. MALAKOOTI, B.,1989. Multiple objective facility layout: A heuristic to gerate efficient

alternatives. Int. J. Prod. Res: 27:1225-1238

12. HOUSHIYAR, A., 1991. Computer aided facility layout problem : An multigoal

approach. Comp. and Ind. Engg. 20:177-186

 75

