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Abstract 

 High permittivity barium titanate zirconate (BTZ) is often used for dielectrics in 

commercial multilayer ceramic capacitors, actuators applications, and is a highly 

promising material for dynamic random access memory (DRAM) and 

microelectromechanical system (MEMS) applications due to its very stable, high insulating 

characteristic against voltage. Especially, the material is promising for environmental 

friendly application in compared to Lead (Pb) based compositions.  

 Different solid solutions in the system have been synthesized via solid state 

reaction route. Detailed phase formation behaviors of the solid solutions were investigated 

through; (i) phase identification, (ii) phase quantity determination, (iii) change in lattice 

parameters and crystallite sises, (iv) evolution of phase formation kinetics and reaction 

mechanism, and (v) structure and microstructure evolution by Rietveld refinement method.  

The study on reaction mechanism concludes that; titanates form more easily in the system 

than zirconates. Then titanate inter-diffuses into zirconate, where latter phase acts as 

diminishing core 

Coming to the Rietveld structural refinement on the four-component system, the 

solid solution system Ba1-xSrx(Ti0.5Zr0.5)O3 remains cubic up to x<0.6 and becomes 

tetragonal in the range x >0.6 to x=1.0. Composition with x=0.6 contains both the cubic 

and tetragonal phases. The solid solution system (Ba0.5Sr0.5)(Ti1-xZrx)O3 remains cubic up 

to x≤0.6, and the solid solution breaks around x=0.8 with the formation of second phase of 

tetragonal type. Compositions with x=0.8 contain both the cubic and tetragonal phases 

and suggest to have a super-lattice structure due to the presence of two dissimilar 

structures. The Ba0.5Sr0.5ZrO3 has orthorhombic structure. 

Solubility of Ca and Mg in BaTi0.6Zr0.4O3 was also studied by Rietveld method. The 

Study concludes that Mg forms single phase solid solution with BaTi0.6Zr0.4O3 in the 

studied composition range and the structure remains cubic at room temperature. But 

solubility of Ca with BaTi0.6Zr0.4O3 breaks at around 20 atom % of Ca. The composition 

Ba0.9C0.1Ti0.6Zr0.4O3 remains cubic. With increase in Ca content, a different phase, 

orthorhombic CaTiO3, grows along with tetragonal Ba0.8C0.2Ti0.6Zr0.4O3.  

Detailed composition dependency microstructure and dielectric behavior of the 

different solid solution in the system has been studied. Temperature dependency 

dielectric behaviors of some of the selected compositions have been studied.  

 



 iv 

The substitution of Sr in Ba (Ti0.5Zr0.5) O3 and Zr in (Ba0.5Sr0.5) Ti O3 decreases the 

grain size, dielectric constant and dielectric loss due to the decrease in charge defects by 

the substitution. The effect of Ca and Mg on the composition BaTi0.6Zr0.4O3 has been 

studied in details. Similar dielectric behavior and microstructure are observed with the 

addition of Ca and Mg at room temperature.  

The temperature dependency dielectric study on the composition BaTi0.6Zr0.4O3, 

Ba0.9Ca0.1Ti0.6Zr0.4O3, Ba0.93Mg0.07Ti0.6Zr0.4O3 and Ba0.86Mg0.14Ti0.6Zr0.4O3 was carried out in 

the temperature range 130 K to 333 K. The compositions show a diffuse phase transition 

having its Curie range of temperature much below the room temperature. The Ca-

containing composition shows that there is a shift of transition temperature towards room 

temperature but the Mg containing compositions shows shift of transition temperature 

further below. A clear deviation from Curie-Weiss law is observed for all the compositions, 

and degrees of deviations were also calculated. To study the diffuseness, the data were 

fitted with a modified Curie-Weiss law, and it was found that the degree diffuseness 

decreases with Ca substitution, but increases with Mg substitution. In order to analyze the 

relaxation feature, the experimental curves were fitted with Vogel-Fulcher formula and the 

experimental data were found to be in good agreement with the theoretical fitting.  

To get into the realm of physics, relaxor ferroelectric is treated as a close analogy 

with Ising model of Spin glass system. Further extension of Ising model to spherical 

random bond–random field model is discussed. Both the models are extensively reviewed 

and presented towards end of the thesis. Finally, future aspects of theoretical models on 

present experimental result are proposed. To get more information on the studied 

materials for practical application, further extension of experimental work are also 

proposed.   
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Chapter 1 

 

INTRODUCTION AND BACKGROUND 

 

1.1. Introduction  

The discovery of ferroelectricity in barium titanate (BaTiO3) has given birth to a 

large number of ABO3 type materials. The diversity of structures exhibited by BaTiO3 

based perovskites continues to fascinate in a range of areas including solid state 

chemistry, physics and the earth science. Ferroelectric oxides with perovskite structure 

have been currently of great technological interest due to their excellent properties for 

various related applications in recent years. However it is well known that the 

ferroelectric materials at present are lead based perovskite that are toxic. Naturally, lead 

free materials will be of interest because of their obvious health and environmental 

advantages in future applications. 

Barium strontium titanate (BST) is a high-K (dielectric constant) material is 

commonly used to replace silicon dioxide (SiO2) as the dielectric in advance memory 

devices. The high dielectric constant combined with a low dissipation factor makes 

BST one of the promising candidates for dynamic random access memory (DRAM) 

applications. 

Recently, Ba (Ti1-x Zrx) O3 (BTZ) has been chosen as an alternative to BST in 

the fabrication of ceramic capacitors. The solid solution of Barium titanate (BaTiO3) 

and barium zirconate (BaZrO3) ie Ba (Ti1-x Zrx) O3 shows great similarity to the BST 

solid solution. Substitution of Ti4+ (atomic weight of 47.9, ionic radius of 74.5 pm) with 

Zr4+ (atomic weight of 91.2, atomic radius of 86 pm) exhibits several interesting 

features in the dielectric behavior of BaTiO3 ceramics. When the Zr content is less than 

10 at %, the BZT ceramics show normal ferroelectric behavior and the dielectric 

anomalies corresponding to the cubic to tetragonal (Tc), tetragonal to orthorhombic 

(T2), and orthorhombic to rhombohedral (T3) phases have been clearly observed. While 

Zr content is in between 27 to 42 atom %, BZT ceramics exhibit typical relaxor nature. 

Again with increase of Zr (≥ 0:42 at %) content the BZT materials exhibits like normal 

ferroelectrics. Ferroelectrics are materials in which spontaneous electric polarisation Ps, 

can be reversed by application of an electric field for short time. Valasek [1] discovered 

the polarisation reversal in Rochelle salt. The non linear relationship between the 

polarisation and the field is one of the main and dominating characteristics of 
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ferroelectrics [2]. It is the intent of this chapter to provide a brief description of 

dielectric with an emphasis on ferroelectric and their relaxation behavior. 

 

1.2. Basis for the Ferroelectricity in Crystals  

Of the 32 possible crystal classes (i.e. point groups), 11 are Centro symmetric 

and thus cannot exhibit polar properties. The remaining 21 lack a center of symmetry 

and thus can posses one or more polar axes. Of these, 20 classes are piezoelectric (the 

one exception being cubic class) (Fig. 1.1). Piezoelectric crystals have the property that 

the application of mechanical stress induces polarization, and conversely, the 

application of an electric field produces mechanical deformation. Of the 20 

piezoelectric classes, 10 have a unique polar axis and thus are spontaneously polarized, 

i.e. polarized in the absence of an electric field. Crystals belonging to these 10 classes 

are called pyroelectric. The intrinsic polarization of pyroelectric crystals is often 

difficult to detect experimentally because of the neutralization of the charges on the 

crystal surfaces by free charges from the atmosphere and by conduction within the 

crystal. However, because the polarization is a function of temperature, it is often 

possible to observe the spontaneous moment in these crystals by changing the 

temperature, hence the name pyroelectrics. Ferroelectric crystals belong to the 

pyroelectric family, but they also exhibit the additional property that the direction of the 

spontaneous polarization can be reversed by the application of an electric field. Thus, 

we have the following simple definition for a ferroelectric crystal: A ferroelectric 

crystals is a crystal that possesses reversible spontaneous polarization as exhibited by 

a dielectric hysteresis loop. A more detailed discussion on ferroelectric is given in the 

subsequent sections. 
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1. 3. Dielectric Property 

 Dielectrics are insulating materials. In dielectrics, all the electrons are bound to 

their parent molecules and there are no free charges. Even with normal voltage or 

thermal energy electrons are not released. Dielectrics are nonmetallic materials of high 

specific resistances and have negative temperature coefficient of resistance. 

When a dielectric slab is placed in a static electric field, it acquires a surface 

charge. The polarization so induced arises from the alignment of electric dipoles (if 

present) and the displacement of positive and negative charges in the dielectric. For an 

isotropic, linear dielectric, the polarization vector P is proportional and parallel to the 

applied field vector E. The electric flux density, or electric displacement, D is defined 

by (in cgs units) 

   D = E +4πP = εE                        (1.1) 

where ε is the static dielectric constant of the medium. From eq. (1.1) it follows that  

   ε = 1+4πχ                          (1.2) 

where χ(= P/E) is the susceptibility. For isotropic dielectrics ε and χ are scalar 

quantities, which are dependent on the molecular properties of the dielectric. The 

dielectric constant is determined by the polarizability of the lattice. The polarizability, 

α, of an atom (or molecule) is defined by  

       µ = αF,                           (1.3) 

where µ is the electric dipole moment and F is the local, or effective field acting on the 

given atom. The polarization P is defined as the net dipole moment per unit volume and 

is given by   ii

i

i

i

ii FNNP αµ ∑∑ ==                                      (1.4) 

where Ni is the number of dipoles per unit volume. 

The local field F at a given lattice site i is generally written as  

   j

i

iji PEEEF ∑+=+= φπ4int              (1.5) 

where E is the applied field, and Eint is the internal field acting on the ion i due to the 

other ions j. It is usually expressed as a power series in odd powers of the polarization. 

For small field measurements, however, only the first power term in the polarization 

need be considered as indicated in Eq. (1.5). φij is the internal field coefficient, which is 

a dimensionless quantity that depends on the position of the ion in the lattice. For 

diagonally cubic lattices, i.e., lattices in which all ions have cubic environment, the 

Lorentz internal field is applicable and φij = 1/3. For other lattices the field at each site 

needs to be computed. 
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For anisotropic dielectrics,ε, χ and α are tensors, and Eq. (1.1) must be written as  

    D = ε.E                                                    (1.6) 

with components  )3,2,1(,D
3

1

==∑
=

iE j

j

ijj ε                                         (1.7) 

All other quantities follow similarly. When the dielectric is subjected to an alternating 

field, both D and P will vary periodically with time. In general, however, D and P 

cannot follow the field instantaneously. There will always be inertial and energy 

dissipation effects (losses) and these cause a lag in phase between E and the response 

of the material. Thus, if     E = E0Cos ωt                                        (1.8) 

  then     D = D0 Cos(ωt - δ)                                         (1.9) 

where δ is the loss angle. It is independent of E0 but generally depends on frequency. 

In the presence of dielectric losses and relaxation effects, ε and χ are complex 

quantities composed of charging (real) and loss (imaginary) components. Thus  

   ''' εεε i−=∗                                          (1.10) 

  and ''' χχχ i−=∗                                        (1.11) 

The loss angle is given by ''' /tan εεδ =                                       (1.12) 

It is simply related to the Q-factor of the dielectric by Q = 1/tanδ, and is obtained rather 

directly from experiment. ε’ and ε’’ are related, at any given frequency, by the Kramers-

Kronig dispersion relations.  

 

1.4. Frequency Dependence of Polarisation  

Polarization occurs due to several atomic mechanisms. For example, let us 

consider an atom placed inside an electric field. The centre of positive charge is 

displaced along the applied field direction, while the centre of negative charge is 

displaced in the opposite direction. Thus a dipole is produced. When a dielectric 

material is placed inside an electric field such dipoles are created in all the atoms 

inside. This process of producing electric dipoles which are oriented along the field 

direction is called polarization in dielectrics.  

There are several types of polarisation mechanisms. The basic polarisations 

mechanisms are; space charge (αs), orientational or dipolar (αo), ionic (αi) and 

electronic (αe) (Fig.1.2). The total polarizability of dielectric placed in an alternating 

field can be written as;  
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eiosTot ααααα +++=                         (1.13) 

Space charge polarization is the slowest process, as it involves the diffusion of 

ions over several interatomic distances. The relaxation time for this process is related to 

the frequency of successful jumps of ions under the influence of the applied field, a 

typical value being 102 Hz. Correspondingly, space charge polarisation occurs at lower 

frequencies (50 – 60 Hz). Consider a dielectric medium placed between two electrodes. 

When no field is applied to the electrode, the positive and negative charges are not 

separated and there are fixed number of charges. On the other hand, when an electric 

field is applied, the charges are separated. The positive charges are accumulated near 

the negative electrode. Therefore, a dipole moment is induced due to displacement of 

ions. Then, the induced dipole moment per unit volume gives the induced polarisation. 

This polarisation is also known as interfacial polarisation. 

The orientational or dipolar polarisibility arises when the substance is built up 

of molecules possessing a permanent electronic dipole moment which may be more or 

less free to change orientation in an applied electronic field. More clearly, according to 

Debye, this type of polarisation is due to the rotation (orientation) of the molecules of 

polar dielectrics having a constant dipole moment in the direction of the applied electric 

field. Orientation polarization is even slower than ionic polarization. The relaxation 

time for orientation polarization in a liquid is less than that in a solid. For example the 

relaxation time for orientation polarization is 10-10 s in liquid propyl alcohol while it is 

3 × 10-6s in solid ice. Orientation polarization occurs when the frequency of the applied 

voltage is in the audio range. 

 

Figure 1.2 Frequency dependence of the polarisation processes 
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The ionic contribution comes from the displacement and deformation of a 

charged ion with respect to other ions, i.e. Ionic polarization is due to displacement of 

ions over a small distance due to the applied field. Since ions are heavier than electron 

cloud, the time taken for displacement is larger. The frequency with which ions are 

displaced is of the same order as the lattice vibration frequency (∼1013 Hz). This means 

that for optical frequency the ions do not respond, as the time required for lattice 

vibrations is nearly 100 times larger than the period of applied voltage at optical 

frequency. Hence, at optical frequencies, there is no ionic polarization. If the frequency 

of the applied voltage is less than 1013 Hz, the ions respond. Hence at 1013 Hz, we have 

both electronic polarization and ionic polarization responding. 

The electronic contribution arrives from the displacement of electrons in an 

atom relative to the deformation of the electron shell about a nucleus by the application 

of external electric field. Electronic polarization is extremely rapid. Even when the 

frequency of the applied voltage is very high in the optical range (∼ 1015 Hz), electronic 

polarization occurs during every cycle of the applied voltage.  

In the calculation of total polarization, the space charge polarization is not taken 

into account, since it occurs as interface and it is very small and hence negligible. In 

addition to this, the fields are not well defined at interfaces. Therefore, the total 

polarization vector is given by, 

P= Pe+ Pi +Po            (1.14) 

where Pe; electronic polarisation, Pi; ionic oplarisation and P0; orientational 

polarisation  
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1.5.  Ferroelectricity and Polarization  

Ferroelectricity is a phenomenon which was discovered by Valasek in 1921 [3].
  

Since then, many essential features of the ferroelectric phenomenon were studied and 

described. Chronological information is provided for the early ferroelectric crystals in 

Table 1.1. Now, many excellent books introducing ferroelectric crystals and explaining 

ferroelectricity (with a number of phenomenological theories) have been published [4-

14].
 

Rochelle salt (NaKC4H4O64H2O) was the first material found to show ferroelectric 

properties, such as a reorientable spontaneous polarization (Ps), on cooling below a 

transition temperature (TC; Curie point). Many ferroelectrics are low temperature 

modifications of a high temperature, higher symmetry structure (prototype) which has 

no spontaneous polarization. This prototypic structure is also called paraelectric. In the 

ferroelectric phase, modifications to cation and anion positions occur to give relative 

displacements of ions inside the unit cell, resulting in reversible spontaneous dipole 

moments. The moment which develops polarization (P) is equal to qd/V, where q is the 

electric charge on the displaced ion, d is the relative displacement, and V is the volume 

of the unit cell. This moment is related to the electric displacement vector as;  

 

D=ε0 εE= εE+P      (1.15)  

where ε0  and ε  are the free space and relative permittivity respectively [5,15].
 

 

1.6. Piezoelectricity  

All ferroelectric materials are potentially piezoelectric (see Fig. 1.1 for a crystal 

classification). Piezoelectricity is the ability of certain crystalline materials to develop 

an electrical charge proportional to an applied mechanical stress [9]. This is also called 

the direct piezoelectric effect. Piezoelectric materials also show a converse effect, 

where a geometric strain (deformation) is produced on the application of a voltage. The 

direct and converse piezoelectric effects can be expressed in tensor notation as,   

jkijki dP σ=  (Direct piezoelectric effect)                              (1.16)  

kkjiij Ed=χ  (Converse piezoelectric effect)             (1.17)  

where iP  is the polarization generated along the i-axis in response to the applied stress 

jkσ , and ijkd
 
(= kjid ) is the piezoelectric coefficient. For the converse effect, ijχ is the 

strain generated in a particular orientation of the crystal on the application of electric 

field kE
 
along the k-axis [5].
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Table 1.1. A partial list of early ferroelectric crystals [12-14].
  

Name and Chemical Formula  
Curie 
Temperature, TC 

(oC) 

Spontaneous 
Polarization, PS 
(µC/cm2) 

Year in which 
reported 

Rochelle Salt NaKC4H4O6·4H2O  23 0.25 1921 

Potassium Dihydrogen Phosphate 
KH2PO4 (KDP)  

-150 4 1935 

Potassium Dihydrogen Arsenate 
KH2AsO4  

-177 5 1938 

Potassium Dideuterium Phosphate 
KD2PO4 

-60 5.5 1942 

Barium Titanate (BaTiO3) 120 26 1945 

Lead Titanate (PbTiO3 ) 
490 >50 1950 

Potassium Niobate (KNbO3  
415 30 1951 

Lead Zirconate Titanate* 
Pb(ZrxTi1-x)O3  

~350 >40 1952 

*polycrystalline ceramic   

 

1.7. Perovskite Crystal Structure  

Most of the useful ferroelectrics, such as barium titanate (BT), lead titanate 

(PbTiO3), lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), and 

potassium niobate (KNbO3), have the perovskite structure. Perovskite is the mineral 

name of calcium titanate (CaTiO3). Its simplest structure is cubic, which is the high 

temperature form for many mixed oxides of the ABO3 type. The simple cubic structure 

(space symmetry Pm-3m) consists of corner sharing oxygen octahedra (BO6) arranged 

in three dimensions with smaller, highly charged cations (B: Ti
4+

, Zr
4+

,Sn
4+

,Nb
5+

,Ta
5+

, 

W
6+

, etc.) located in the middle of the octahedra, and lower charged, larger cations (A: 

Na
+

, K
+

, Ca
2+

, Ba
2+

, Pb
2+

, etc.) in between the octahedra. The structure is shown in Fig. 

1.3. Most perovskite-type ferroelectrics are compounds with either A2+B4+O3
2- or 

A1+B5+O3
2- type formula [16]. 

The perovskite structure can be also regarded as a cubic close-packed 

arrangement of large A and O ions with smaller B ions filling the octahedral interstitial 

positions. The structure is also very tolerant to cation substitution to both A and B sites 

of lattice, and hence may lead to more complex compounds, such as (K1/2Bi1/2)TiO3, 

Pb(Fe1/2Ta1/2)O3, Pb(Co1/4Mn1/4W1/2)O3, Pb(Mg1/3Nb2/3)O3, and Pb(Zn1/3Nb2/3)O3 

[16,17].
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The most important member of the tetragonal phosphates is potassium 

dihydrogen phosphate (KH2PO4), commonly abbreviated as KDP [13].
 

Common 

characteristics of these early ferroelectrics are that they are colorless, water-soluble 

substances, and can be grown in large crystals from solution. As will be discussed later, 

ferroelectricity is mostly observed in certain temperature regions delimited by transition 

(or Curie) points (TC), above which the crystals are no longer ferroelectric. In Rochelle 

salt and KDP, ferroelectricity is present at low temperatures due to their TC points, +23 

and -150 0C, respectively [13,14]. For study of the ferroelectric effect, these crystals 

served their purpose. However, from the device application point of view, water 

solubility, low TC points, and low polarization values are limiting factors.  

            

A
2+ 

   

 

 

           B
4+

 

           

 

 

           O3
2-

 

     

      

  A2++B4++O3
2- 

 

Figure 1.3  A cubic ABO3 perovskite-type unit cell.  

 

In 1945, barium titanate (BaTiO3), the first ceramic material in which 

ferroelectric behavior was observed, was reported [18]. With its much simpler structure 

(perovskite), better ferroelectric properties, chemical and mechanical stability, barium 

titanate (BT) became one of the most extensively studied ferroelectric materials [12]. 

BaTiO3 was considered not only as a model system for ferroelectricity, but also for 

practical applications. Added to the chemical and mechanical stability, it exhibits 

ferroelectric properties at and above room temperature and can be easily prepared and 

used in the form of polycrystalline samples [14].
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The discovery of ferroelectricity in barium titanate, BaTiO3 [18] has given birth 

to a large number of ABO3 type perovskite ferroelectrics, where A= monovalent, 

divalent or trivalent and B= trivalent, tetravalent or pentavalent. The ideal structure is 

cubic perovskite, where A and B cations are arranged on a simple cubic lattice and the 

O ions lie on the face centers nearest the transition metal B cations. Thus the B cations 

are at the centre of O octahedra, while the A cations lie at larger twelve fold- 

coordinated sites. This ideal structure displays a wide variety of structural instabilities 

in the various materials. These may involve rotations and distortions of the O 

octahedral as well as displacements of the cations from their ideal sites. The interplay 

of these instabilities accounts for the rich variety of ferroelectric (FE) and 

antiferroelectric (AFE) behaviors.   

By the 1950’s the solid solution system Pb(Ti,Zr)O3 (PZT), which also has the 

perovskite structure, was found to be ferroelectric. PZT compositions are now the most 

widely exploited of all piezoelectric ceramics both in research and industry. An up to 

date brief description of BT and PZT systems can be found in ref [19]. As an example 

of complex perovskites, a relaxor type ferroelectric system will be discussed separately 

in a later section.  

 

1.8. Ferroelectric Phases and Domains  

Ferroelectrics may exhibit one or more ferroelectric (polar) phases (Fig. 1.4) 

that show a domain structure in which the individual domain states can be reoriented by 

an applied field. In a ferroelectric crystal usually there are many domains (regions with 

uniform polarization). Within each individual domain, all the electric dipoles are 

aligned in the same direction. These domains in a crystal are separated by interfaces 

called domain walls [16]. Since these walls differ from the perfect crystal, there is a 

certain amount of energy (Wdw; domain wall energy) associated with them, in addition 

to the elastic energy, We. From energy considerations, in real materials, domain patterns 

depend on many factors, including the existing defect structure and concentration, 

stress and electric history, boundary conditions, temperature relative to TC, and even 

the history of crystal preparation [12, 20]. The ferroelectric domains were first 

demonstrated in a study of spontaneous birefringence [21, 22]. The explanation for the 

origin of a ferroelectric domain, from a phenomenological point of view, is that the 

polydomain system is in a state of minimum free energy. From a microscopic 

viewpoint, domains were attributed to the change in the electrostatic forces acting on 

the crystal’s faces owing to the spontaneous polarization that occurs as the crystal goes 
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through the paraelectric-ferroelectric phase transition.  

 
 
 

 

Figure 1.4 Unit cells of the four phases of BaTiO3: a) Cubic, stable above 120 
OC (Tc), 

b) Tetragonal, stable between 120 OC and 5 OC, c) Orthorhombic, stable between 5 OC 

and -90 OC, (monoclinic as drawn) d) Rhombohedral, stable below -90 OC. (The dotted 

lines in (b), (c), and (d) delineate the original cubic cell. Arrows indicate the direction 

of the spontaneous polarization, Ps, in each phase [14]. 
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Fig. 1.5 depicts 180O domain formation which minimizes the electrostatic 

energy of the system. Defects and internal stresses must be also considered for a crystal 

that exhibits piezoelectricity in the paraelectric state [16]. The presence of mechanical 

stress in a crystal results in the development of non-180O domain walls configured to 

minimize the strain. An example is presented in Fig. 1.6 [19].
 

The structure of a 

ferroelectric domain depends on the structure of the crystal. In a ferroelectric crystal, 

the variety of domain patterns and the number of types of domain walls depend on the 

number of orientations of the dipole moment when the spontaneous polarization occurs 

from the prototype phase.   

 

Figure 1.5.  (a)Surface charge and depolarizing field (Ed) associated with spontaneous 

polarisation (Ps); (b) formation of 180O domains to minimize electrostatic 

energy [19] 

 

Figure 1.6 Schematic illustrations of 180O and 90O domain walls [19]. 
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Ferroelectric domain structures can be observed by various methods:   

a) Optical birefringence: In optically anisotropic crystals (where the refractive index 

for light polarized along the polar axis is different from at least one other axis in a 

crystal), domains can be observed due to the presence of birefringence by using a 

polarized light microscope. 

b) Second-harmonic generation: This technique can be used for any crystal which can 

be phase matched for second harmonic generation with light depends on the optical 

interaction length with a single domain of either Sign [12]. This technique can be 

also used to measure the width of extremely small domains with periodic 

geometry. [23] 

c) Etching and Scanning Electron Microscopy: For the ferroelectric crystals with sub-

micrometer size domain structures, electron microscopy is utilized. Since the 

information is limited to the surface, very thin crystals are needed. Chemical 

etching is also commonly used to reveal the domain structures by selective etching 

of positive and negative ends of domains. Etched samples can be observed by 

scanning electron microscopes. HCl was commonly used for the early studies in 

BaTiO3 [6,12]. 

d) Powder pattern method: This technique involves use of a colloidal suspension of 

charged particles that can preferentially deposit on either positive or negative ends 

of domains [24]. 

e) Liquid crystal method: This technique can be used to reveal 180O domain walls 

[25]. This simple technique is fast and the liquid crystal can respond rapidly to 

changes of the domain configuration. 

f) X-ray topography: This technique utilizes anomalous dispersion of X-rays causing 

a difference between the positive and negative ends of domains [26]. 

g) Transmission Electron Microscopy: A technique using diffraction contrast methods 

and can be applied to both 180O and non-180O domains. 

 

Certainly domain observation techniques are not limited to these techniques 

mentioned here. The usefulness of each technique varies from one material to another, 

with the shape, size, transparency of the crystal, and the expected outcome of the 

observations [12]. Sometimes depending on these criteria, these techniques can be 

combined for the maximum efficiency. Domain structures are strongly dependent on 

the symmetry of the ferroelectric phase. As the changes occur in symmetry resulting in 
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different domain configurations, the other material properties will also be influenced. A 

brief description on the thermodynamics of ferroelectricity is given in the following 

section.  

 

1.9. Ferroelectric Phase Transitions and Curie-Weiss Behavior  

A typical ferroelectric possesses a spontaneous polarisation Ps that increases 

with decrease in temperature and appears discontinuously or some time continuously at 

certain temperature, called Curie temperature or transition temperature TC. The 

symmetry of the crystal changes at a phase transition point. All the phase transitions in 

crystals are due to changes in the force of interaction between the atoms. This change 

may produce various new properties in crystals. Phase transitions that produce or alter 

the spontaneous polarisation are called ferroelectric phase transition. By changing 

temperature or pressure, the atomic arrangements in the crystals may be changed with 

out any change in chemical compositions. The difference in crystal structures on either 

side of TC may be large or small. At this Curie temperature the material undergoes a 

transition from paraelectric (PE) to a ferroelectric (FE) phase. The ferroelectric 

structure has a lower symmetry than the corresponding paraelectric structure. At a 

temperature T>TC the crystal does not exhibit ferroelectricity, while for T<TC it is 

ferroelectric [12-14]. If there are more than one ferroelectric phases as shown in Figure 

1.4, the temperature at which the crystal transforms from one ferroelectric phase to 

another is called the transition temperature. Early research studies on ferroelectric 

transitions have been summarized by Nettleton [27, 28]. Fig. 1.7 shows the variation of 

the relative permittivity (εr) (or dielectric constant) with temperature as a BaTiO3 

ferroelectric crystal is cooled from its non-ferroelectric (or paraelectric) cubic phase to 

the ferroelectric tetragonal, orthorhombic, and rhombohedral phases. Near the Curie 

point or phase transition temperatures, thermodynamic properties including dielectric, 

elastic, optical, and thermal constants show an anomalous behavior. This is due to a 

distortion in the crystal as the phase changes. The temperature dependence of the 

dielectric constant above the Curie point (T>TC) in most ferroelectric crystals is 

governed by the Curie-Weiss law [29]:  

)(0 0
'

TT
C
−+=εε                 (1.18) 

where ε’ is the permittivity of the material, ε0 is the permittivity of the vacuum, C is the 

Curie constant and T0 is the Curie-Weiss temperature.  
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In case of single crystal ferroelectrics, or other polar materials, the value of ε’, 

Ps and other properties are very sensitive to dopants and defects in the crystal [12]. But 

in ceramic polar dielectrics these effects are more pronounced and there is an added 

influence of some parameters such as porosity, grain size, sintering time and sintering 

temperature etc. [2].  

The Curie-Weiss temperature T0 is, in general, different from the Curie point 

TC. For first order transitions T0
 
< TC while for second order phase transitions T0= TC 

[9, 29]. Transition into a ferroelectric phase occurs differently in different type of 

ferroelectric materials. These transitions may be of first order or second order in 

classical proper ferroelectrics [12]. The order of the phase transition is defined by the 

discontinuity in the partial derivatives of the Gibbs free energy (G) of the ferroelectric 

at the phase transition temperature [30]. For an nth-order phase transition, the nth-order 

derivative of G is a discontinuous function at the transition temperature. Thus, 

spontaneous polarization and strain change continuously at the phase transition for a 

ferroelectric with the second order phase transition, and are discontinuous at the phase 

transition temperature for first-order ferroelectrics. Other ferroelectrics show diffuse 

phase transition behavior. An additional subset in the diffuse ferroelectrics, called 

“relaxors”, will be discussed separately in later section. General property changes with 

ferroelectric phase transitions are summarized in Fig. 1.8, schematically [30].
 

By 

definition, an applied electric field can reorient the direction of polarization in any 

ferroelectric crystal, regardless of what type of ferroelectric behavior is exhibited. 
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Figure 1.7. Relative permittivities measured along the a and c directions of a poled 

tetragonal BaTiO3 crystal versus temperature in a ferroelectric [31]. Note that the 

samples were not repoled at lower temperatures. It is a residual poling that yields the 

apparent anisotropy in the rhombohedral phase. 

 

 

Figure 1.8 Schematic temperature dependence of the dielectric permittivity (ε) and 

spontaneous polarization (Ps) for a) a first- and b) a second-order 

ferroelectric and c) for a relaxor ferroelectric [30]. 
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1.10. Classification of Ferroelectric Crystals 

Depending on the temperature variation of dielectric constant or Curie constant 

C, ferroelectrics can be divided into two groups. In one group, the compounds 

undergoing order-disorder type transition, have a Curie constant of the order 103 while 

for others which undergoes displacive type transition, it is of the order of 105. Initially 

ferroelectric materials were broadly classified into two categories: (a) soft (KH2PO4 -

type) and (b) hard (BaTiO3 -type).The phase transition in soft (H-bonded) ferroelectrics 

is of order disorder type where as in hard ones it is displacive type. The phase transition 

in soft ferroelectrics involves not only the ordering of the disordered hydrogen atom, 

but also the deformation of the atomic groups like SO4
-2, Se-24 and PO4

-3. In case of 

displacive type of transition a small atomic displacement of some of the atoms is mainly 

responsible for phase transition, which has been found in some of the perovskites. 

However, the difference between displacive and order-disorder type of transition 

becomes uncertain when the separation of relevant disorder becomes comparable with 

the mean thermal amplitude of those atoms. The character of ferroelectrics is 

represented in terms of the dynamics of phase transition 

 

1.11. Diffuse Phase Transition 

 Many phase transitions in macroscopic homogeneous materials are 

characterized by the fact that the transition temperature is not sharply defined. In these, 

so-called diffuse phase transition temperature (DPT), the transition is smeared out over 

a certain temperature interval, resulting in a gradual change of physical properties in 

this temperature region. Though this phenomenon is observed in several types of 

materials [32], however, the most remarkable examples of DPT are found in 

ferroelectric materials [33]. Ferroelectrics diffuse phase transitions (FDPT) are first 

mentioned in the literature in the early 1950’s [34]. Some characteristics of the DPT 

are: (a) broadened maxima in the permittivity- temperature curve, (b) gradual decrease 

of spontaneous and remanent polarisations with rising temperature, (c) transition 

temperatures obtained by different techniques which do not coincide, (d) relaxation 

character of the dielectric properties in transition region and (e) no Curie-Weiss 

behavior in certain temperature intervals above the transition temperature. The 

diffuseness of the phase transition is assumed to be due to the occurrence of fluctuations 

in a relatively large temperature interval around the transition. Usually two kinds of 

fluctuations are considered: (a) compositional fluctuation and (b) polarisation 

(structural) fluctuation. From the thermodynamic point of view, it is clear that the 
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compositional fluctuation is present in ferroelectric solids-solutions and polarisation 

fluctuation is due to the small energy difference between high and low temperature 

phases around the transition. This small entropy difference between ferroelectric and 

paraelectric phase will cause a large probability of fluctuation. Kanzing [35] has 

observed from X-ray diffraction that in a narrow temperature range around the 

transition BaTiO3 single crystal splits up into FE and PE micro regions. According to 

Fritsberg [36] substances of less stability are expected to have a more diffuse transition. 

For relaxor as well as other FDPT the width of the transition region is mainly important 

for practical applications. Smolensky [37] and Rolov [38] have introduced a model 

calculation, based on the concept of Gaussian distribution for both the compositional 

and polarisation fluctuation, from which the diffuseness parameter can be calculated. 

Complex perovskite type ferroelectrics with distorted cation arrangements show DPT 

which is characterised by a broad maximum for the temperature dependence of 

dielectric constant (ε’) and dielectric dispersion in the transition region [37, 39]. For 

DPT ε’ follows modified temperature dependence 

( ) '
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 where Tm is the temperature at which ε’ reaches maximum, εm is the value of ε’ 

at Tm, C’ is the modified Curie Weiss like constant and γ is the critical exponent, 

explains the diffusivity of the materials, which lies in the range 1< γ<2 [40]. The 

smeared out ε’ vs T response has generally been attributed [37, 41, 42] to the presence 

of microregions with local compositions varying from the average composition over 

length scale of 100 to 1000 Ǻ. Different microregions in a macroscopic sample are 

assumed [42] to transfer at different temperature, so-called Curie range, leading DPT 

which is due to compositional fluctuations. The dielectric and mechanical properties of 

FE system below their TC are functions of the state of polarisation and stress. So 

ferroelectrics have major application today because of their characteristic electro-optic, 

dielectric and hysteresis properties. 

 For many practical applications, it is desired to use the very large property 

maxima in the vicinity of the ferroelectric phase transition, to move the transition into 

the temperature range of interest and to broaden and diffuse the very large sharp peak 

values. In DPT the dielectric maxima is now much rounder and polarisation persists for 

a short range of temperature above Tm.  
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1.12. Relaxor Ferroelectrics 

Relaxor ferroelectrics or relaxors, exhibit many properties similar to those of 

spin and dipolar glasses. Normally relaxor behavior in FE materials results from 

compositionally induced disorder or frustration. This behavior has been observed and 

studied most extensively in disordered ABO3 perovskite ferroelectrics and is also seen 

in mixed crystals of hydrogen-bonded FEs and AFEs, the so-called protonic glasses. In 

this section we restrict our comments largely to the ABO3 oxides.   

Relaxor ferroelectrics are characterized by a broad maximum in the temperature 

dependence of the real part of the dielectric permittivity (ε’), a frequency-dependent 

temperature of the dielectric maximum (Tm) and a strong relaxation dispersion of the 

permittivity at temperatures around and below Tm. They possess local polarisation at 

temperature above Tm.  

 

Figure 1.9. The cubic perovskite lattice of BaTiO3 showing the location of various 

substituents and vacancies. 

 

In the ABO3 oxides (Fig. 1.9), substituting ions of different sizes, valences, and 

polarizabilities at both the A and B lattice sites produces dipolar defects and can 

introduce a sufficiently high degree of disorder so as to break translational symmetry 

and prevent the formation of a long-range ordered state. Instead, the dipolar motion in 

such systems freezes into a glass-like state on cooling below a dynamic transition 

temperature, Tm  
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In these highly polarizable host lattices, the presence of a dipolar impurity on a 

given site can induce dipoles in a number of adjacent unit cells within a correlation 

length of that site. We expect the dipolar motion within this correlation length to be 

correlated, leading to the formation of polar nanodomains. Indeed, such nanodomains 

have been observed in many ABO3 relaxors at temperatures far above the peak in ε’
(T), 

and their occurrence is now considered to be crucial to the understanding of the 

properties of relaxors. We picture a distribution of sizes of such nanodomains in which 

the orientational degrees of freedom are correlated within each domain, but 

uncorrelated across the various domains. At sufficiently low temperatures, the dipolar 

motion within each domain freezes, resulting in the formation of an orientational glass 

(relaxor) state. Such a state is characterized by a distribution of relaxation times related 

to the sizes of the nanodomains. Two important characteristics of this relaxor state that 

distinguish it from simple dipolar glasses or spin glasses are the predominant existence 

of the dipolar nanodomains (vs. largely individual dipoles or spins) and the presence of 

some degree of cooperative freezing of the orientational degrees of freedom. Evidence 

of this cooperative effect comes from the observation of some remanent polarization in 

electric field hysteresis loops. It should be noted, however, that such evidence is also 

seen in systems of random dipoles in low polarizability hosts for doped alkali halides 

with sufficiently high concentration of dipoles.  

 In order to appreciate and understand the properties of relaxors, it is useful to 

contrast some of their properties with those of normal ferroelectrics. We do so with the 

help of Fig. 1.10. The contrast is as follows: 

• The P-E hysteresis loop (Fig.10 a) is the signature of a ferroelectric in the low-

temperature FE phase. The large remanent polarization, PR, is a manifestation of the 

cooperative nature of the FE phenomenon. A relaxor, on the other hand, exhibits a 

so-called slim-loop as shown on the righthand side. For sufficiently high electric 

fields the nanodomains of the relaxor can be oriented with the field leading to large 

polarization; however, on removing the field most of these domains reacquire their 

random orientations resulting in a small PR. The small PR is evidence for the 

presence of some degree of cooperative freezing of dipolar (or nanodomain) 

orientations. 
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Figure 1.10 Contrast between the properties of normal ferroelectrics and relaxor 

ferroelectrics, or relaxors.  

• The saturation and remanent polarizations of a ferroelectric decrease with increasing 

temperature and vanish at the FE transition temperature (TC). The vanishing of P at 

TC is continuous for a second-order phase transition (Fig.1.10b) and discontinuous 

for a first-order transition. No polar domains exist above TC. By contrast, the field-

induced polarization of a relaxor decreases smoothly through the dynamic transition 

temperature Tm and retains finite values to rather high temperatures due to the fact 

that nano-size domains persist to well above Tm. 

• The static dielectric susceptibility, or dielectric constant (ε’
), of a ferroelectric 

exhibits a sharp, narrow peak at TC (Fig. 1.10c). For a single crystal the peak is very 

sharp and the width at half max is ∼10-20 K. For a mixed oxide FE, e.g., a PZT, the 

peak is somewhat rounded due to compositional fluctuations, and the width at half 
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max is typically ∼20-40 K. The FE response is frequency independent in the audio 

frequency range. By contrast, a relaxor exhibits a very broad ε’
(T) peak and strong 

frequency dispersion in the peak temperature (Tm) and in the magnitude of ε’ below 

Tm. The conventional wisdom has been that the broad ε’
(T) peak, also referred to as 

a “diffuse phase transition,” is associated with compositional fluctuations leading to 

many micro FE regions with different compositions and TC’ s. The breadth of the 

peak is simply a manifestation of the dipolar glass-like response of these materials.  

• The temperature dependence of ε’ of a ferroelectric obeys a Curie-Weiss law, ε’
 = 

C/(T-T0), above TC could be shown by the linear 1/ε’ vs. T response. By contrast 

ε’
(T) of a relaxor exhibits strong deviation from this law for temperatures of many 

10s to a few 100s degrees above Tm.  

• The FE transition can be thermodynamically first or second order and involves a 

macroscopic symmetry change at TC. Transparent FEs exhibit strong optical 

anisotropy across Tm.             

The above discussion makes it very clear that the properties and physics of 

relaxors are very different from those of normal ferroelectrics.  

 

1.13. Physics of Relaxor Ferroelectrics  

In this section we shall discuss the properties and physics of relaxor FEs or 

relaxors, by concentrating on a few prototypical materials. As already noted, in 

ferroelectrics, relaxor behavior results from either frustration or compositionally 

induced disorder. This disorder and related random fields are believed to be responsible 

for the relaxor properties of the mixed ABO3 perovskite oxides (Fig. 1.9) and of the 

mixed FE and AFE hydrogen-bonded crystals such as rubidium ammonium dihydrogen 

phosphate, Rb1-x (NH4)xH2PO4, or RADP. In addition to a broad, frequency-dependent 

peak in ε’ (T) relaxors are characterized by the absence of macroscopic phase 

(symmetry) change at the transition. However, there is symmetry breaking at the nano-

meter scale, leading to the formation of polar nanodomains that exist well above the 

peak in the susceptibility and strongly affect the properties. Relaxors possess very large 

dielectric constants, attractive for capacitors; exceptionally large electrostrictive 

coefficients, important for actuators and micro-positioners; and large electro-optic 

constants, useful for information storage, shutters, and optical modulators. Because of 

these remarkable properties and their applications, relaxors are one of the most active 

current research areas of ferroelectricity. 
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1.14. ABO3 Relaxors  

The parent compounds of ABO3 perovskite relaxors (e.e., PbTiO3, PbZrO3, 

KTaO3) are prototypical soft-mode systems whose dielectric properties and phase 

transitions are well understood in terms of soft phonon mode theory [12]. A variety of 

types of disorder in this lattice can produce dipolar defects and induce relaxor behavior. 

Thus, e.g., (i) in PbMg1/3Nb2/3O3 (or PMN) and related relaxors the disorder is brought 

by differences in valence (5+ vs. 2+), ionic radii (0.64 Å vs. 0.72 Å), and 

electronegatives (1.6 vs. 1.2 on the Pauling scale) between Nb5+ and Mg2+ ions on the B 

site which introduce charge fluctuations and local ordering ; (ii) in La-substituted PbZr1-

xTixO3 (or PLZT) relaxors, the substitution of La
3+ for Pb2+ at the A sites produces 

randomly distributed Pb2+ vacancies (one vacancy for every two La2+ ions) that, for 

high enough concentration, lead to a relaxor state; and (iii) the substitution of Nb3+ for 

Ta3+ and Li+ for K+ in KTaO3 results in off-site dipolar defects that lead to a relaxor 

state at low concentrations. Clearly, numerous other substitutents in a variety of other 

FE perovskites can lead to relaxor behavior.  

In reflecting on the occurrence of relaxor behavior in perovskites, there appear 

to be three essential ingredients: (1) the existence of lattice disorder, (2) evidence for 

the existence of polar nanodomains at temperatures much higher than Tm (3) these 

domains existing as islands in a highly polarizable (soft-mode) host lattice. The first 

ingredient can be taken for granted because relaxor behavior in these materials does not 

occur in the absence of disorder. The third ingredient is also an experimental fact in that 

relaxor behavior occurs in ABO3 oxides with very large dielectric constants, i.e., very 

high polarizabilities. The second ingredient is manifested in many experimental 

observations common to all perovskite relaxors.  
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Chapter 2 

 

STATEMENT OF THE PROBLEM AND THESIS 

OBJECTIVES 

 

2.1  Motivation and Objective. 

Chapter 1 introduced major characteristics of dielectrics with a special emphasis 

on relaxor ferroelectrics, which have a wide range of applications. Among the device 

that utilizes the dielectric properties with a great extent is multilayer ceramic capacitor 

(MLCC). The concept of utilizing the reversible spontaneous polarisation as a memory 

state goes back to the early days of ferroelectric research. In this section (Chapter 2) we 

have discussed our motivation and interest behind the material selection and different 

characterisations with a brief review on previous work.  

S.Gopalan and A.V. Virkar [1] examined the interdiffusion in doped BaTiO3-

BaZrO3 sintered couples and a Kirkendall porosity formation was found indicating that 

transport occurs on all sub-lattices in the system. Solid solution formation mechanism 

of the system from precursor powder is not available in details.  

SrTiO3-SrZrO3 (ST-SZ) solid solution is one of them, which holds promise for 

application as a proton conductor as well as voltage dependent tunable ceramics [2]. 

ST-SZ solid solution shows a super lattice structure due to its cell enlargement as a 

result of tilting of BO6 (B=Ti, Zr) octahedra [3]. This type of disorder perovskite solid 

solution offers exciting new possibilities both in the investigation of fundamental 

physical phenomena and in the exploitation of novel properties for various applications. 

There is very little literature [2-4] available for this solid solution system. 

In addition to the DRAM applications, Ba0.5Sr0.5TiO3 have a variety of other 

applications which are currently being studied such as hydrogen gas sensors, 

pyroelectric sensors, as a dielectric layer in electroluminescent display devices and the 

new class of frequency tunable microwave devices, which include phase shifters, 

tunable filters, steerable antennas, varacters, frequency triplers, capacitors, oscillators, 

delay lines and parametric amplifiers etc [5-8]. Due to the above applications phase 

formation and reaction mechanism of BST is of our interest. 

Recently, Kennedy et al. [9] conducted a detailed analysis of structural 

transitions in SrZrO3 due to incorporation of BaZrO3 perovskite due to the tilting of 
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ZrO6 octahedra. However, no detailed studies on phase formation and reaction 

mechanism of Ba0.5Sr0.5ZrO3 are reported in the systems. 

Jonker and Kwestroo [10] studied the solid solution formation in the system 

BaO-TiO2-ZrO2. They observed that the BaTiO3-BaZrO3 forms a complete series of 

solid solution. It is also known that the BaTiO3 forms complete solid solution with 

SrTiO3 and MgTiO3. However, BaTiO3 and CaTiO3 don’t form a continuous series. So 

it inspires us to study the phase formation and reaction mechanism of all the end 

compositions and to investigate the solubility of Ca and Mg in the BaTi0.6Zr0.4O3 

ceramic. The phase formation and reaction mechanism of compositions BaTi0.5Zr0.5O3, 

SrTi0.5Zr0.5O3, Ba0.5Sr0.5TiO3, Ba0.5Sr0.5ZrO3, structural effect of Sr substitution on 

BaTi0.5Zr0.5O3, structural effect of Zr on  Ba0.5Sr0.5TiO3 ceramic along with solubility of 

Ca and Mg in the BaTi0.6Zr0.4O3 composition is discussed in Chapter 4 and Chapter 5. 

Stoichiometric study was reported in the Chapter 6 using EDXRF.  

High permittivity Ba(TiZr)O3 material is often used for dielectrics in 

commercial capacitor applications [11] and is a highly promising material for dynamic 

random access memory (DRAM) [12] and microelectromechanical system (MEMS) 

[13]  applications due to its very stable, high insulating characteristic against voltage. It 

has been reported [11] that at ~15 atom % Zr substitution the three transition 

temperatures of BaTiO3, rhombohedra to orthorhombic, orthorhombic to tetragonal and 

tetragonal to cubic, merge near room temperature and the doped material exhibits 

enhanced dielectric constant. With further increase in Zr contents beyond 15 atoms %, a 

diffuse dielectric anomaly in ceramic has been observed with the decrease in the 

transition temperature [14] and the material showed typical relaxor–like behavior in the 

range 25-42 atom % Zr substitution [15]. Most of the literature in the system Ba (Ti1-

xZrx)O3 is restricted up to the value of x ~0.4 [12,13,16]. That is the reason, 50 atom% 

Zr substituted composition Ba (Ti0.5Zr0.5) O3 (BTZ) has been taken as a base material 

for the investigation of the effect of Sr substitution for Ba on its structural and dielectric 

properties.  

In the other hand, barium strontium titanate (BST) ceramics are also popular for 

DRAM applications [17]. The recent work [18] suggests that Ba1-xSrxTiO3 thin films 

with x=0.5-0.6 are preferred for use at room temperature tunable circuit components.  

For example, H.M. Cristen et al [2] found a strong bias voltage tunability and very low 

hysteresis in the composition Ba0.5Sr0.5TiO3. Considering all these, the compositions 

Ba0.5Sr0.5TiO3 has been selected as a base material in the present study to investigate the 

effect of Zr4+ substitution for Ti4+ in the material. This substitution was planned as, it is 
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reported that the substitution of Ti4+ with Zr4+ ions in barium titanate can reduce the 

dielectric loss or leakage current in the material [12]. Moreover, the Zr4+ ion is 

chemically more stable than the Ti4+ and has a larger ionic size to expand the perovskite 

lattice. Therefore the conduction by electron hopping between Ti4+ and Ti3+, if any, 

would be depressed by the substitution of Ti with Zr. The BST thin films often have 

high current emission at low electric field [19]. Therefore, new types of dielectrics with 

high dielectric constant and low stable leakage current need to be developed. It is 

expected that Zr-doped Ba0.5Sr0.5TiO3 ceramics should have further improved dielectric 

losses. A high dielectric constant and low leakage current of (Ba0.65Sr0..35) (Ti0.65Zr0..35) 

O3 thin film has been reported [20] and proposed as a promising material for DRAM 

applications. A similar type of compositionally graded multilayer (Ba0.8Sr0.2) (Ti1-

xZrx)O3 films have shown an improved dielectric properties and tunability [21]. The 

tunability of (Ba0.85Sr0.15) (Ti0.82Zr0.18) O3 thin films has been reported 57% at an 

applied voltage of 415 kV/cm [22]. However, no literature is available on phase 

formation, crystal structure and dielectric properties of typical bulk (Ba0.5Sr0.5) (Ti1-

xZrx) O3 ceramics. In this work, the phase formation behavior, crystal structure, 

dielectric properties and conduction characteristic of bulk (Ba0.5Sr0.5)(Ti1-xZrx)O3 

ceramics have been studied. The ultimate aim of this section to reduce the dielectric loss 

in the ceramic by the substitution of Sr in BTZ and Zr in BST ceramics. The detailed 

room temperature dielectric study is discussed in the section “composition dependency 

dielectric study" of Chapter 7. 

For composition Ba (Ti1-xZrx) O3, with x in the range 0.26<x<0.42, the solid 

solution system showed some interesting relaxor like behaviors in the bulk materials 

[11, 14, 15]. Decrease in transition temperature and increase in diffusivity with increase 

in Zr content on the system is observed. This lead free relaxor material presents a great 

interest both for applications in the field of environmental protection and for 

fundamental studies. Unfortunately these compositions show the relaxation behavior at 

their ferroelectric transition temperature much below the room temperature. World wide 

research is on progress to bring the transition temperature close to room temperature. In 

theses contest we have substituted Ca and Mg in the Ba site of the BaTi0.6Zr0.4O3 

ceramic to shift the transition temperature close to the room temperature. The detailed 

composition and temperature dependency dielectric study on the ceramic is discussed in 

the section “temperature dependency dielectric study" of Chapter 7.  

The observations on structural and electrical characterization presented in 

Chapter 4, Chapter 5 and Chapter 7. Some theoretical models like spin glass Ising 



 28

model and Spherical random bond random field model on relaxors are extensively 

reviewer and condencly presented in the chapter 8 which makes the work complete and 

opens new paths to explore the physics and chemistry of these lead free compounds.  
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Chapter 3 

 

EXPERIMENTAL AND CORE MATHEMATICS 

 

The compositions with general formula Ba1-xSrxTi1-yZryO3 (with x and/or y=0.0, 

0.2, 0.4, 0.5, 0.6, 0.8, 1.0), Ba1-xCax (Ti0.6Zr0.4) O3 (with x =0.0, 0.1, 0.2, 0.4, 0.5) and 

Ba1-x Mgx (Ti0.6Zr0.4)O3 (with x =0.03, 0.07 and 0.14) were synthesized through 

conventional solid state reaction route. The conditions and sequences used in the sample 

preparation, characterization and testing were as follows:  

 

3.1. Precursors 

Grade reagents, BaCO3 (S.D. Fine Chem., Mumbai), SrCO3 (S.D. Fine Chem., 

Mumbai), CaCO3 (E. Merck India Ltd.), MgCO3 (E. Merck India Ltd.), TiO2 (E. Merck 

India Ltd.) and ZrO2 (Loba Chem., Mumbai) were taken as the initial raw materials for 

the purpose. All the powders were having more than 99% purity.  

 

3.2. Particle Size Analysis 

Particle size of all raw powders was analyzed using Malvern Particle size 

analyzer. There are many theories and models that the modern particle analyst can use. 

One of the simplest theories used is Fraunhofer model [1]. This model can predict the 

scattering pattern that is created when a solid, opaque disc of a known size is passed 

through a laser beam. This model does not describe the scattering exactly as very few 

particles are disc shaped and a lot of particles are transparent. The Mie theory [2] was 

developed to predict the way light is scattered by spherical particles and deals with the 

way light passes through, or is adsorbed by, the particles. The instrument works 

backwards from the above theories, and captures the actual scattering pattern from a 

field of particles. Then using the theories mentioned above, it can predict the size of the 

particles that created that pattern. In Mie theory, as the particles may not have exactly 

spherical shape, an equivalent spherical model is used. More clearly, the instrument is 

based on the fundamental principle of optics as “refractive index of the particle is 

directly dependent on diameter of the particle”. Appropriate amount of powder sample 

was dispersed in distilled water, pumped to the measurement area where it passed 

through a measurement unit. The measurement unit contains a Laser source and allows 

the light to pass through the sample and dispersant. To keep the sample samples 
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dispersed an ultrasonic probe is used along with the pump and stirrer. The sizes of the 

particle along with no of particle were measured and statistical averages were calculated 

using the supplied software.  

 

3.3. Mixing and Milling 

    The powders were thoroughly mixed in an agate mortar with appropriate amount 

of Iso Propyl Alcohol (IPA) for 2 to 3 hr. The mixture was then dried under infrared 

lamps and de-agglomerated by an agate mortar. 

 

3.4. Differential Scanning Calorimetry (DSC) and Thermo 

Gravimetry (TG) Analysis. 

 Unlike structural or microscopic methods of materials characterization, DSC can 

provide information on how a substance “got from here to there” during thermal 

processing. Thermo Gravimetric Analysis (TGA) is the study of weight changes of the 

specimen as a function of temperature. The technique is useful strictly for 

transformations involving the absorption or evolution of gases from a specimen 

consisting of a condensed phase. Decomposition behavior of some selected raw 

mixtures and original powders were investigated using a NETZSCH Thermal Analyzer.  

The NETZSCH thermal Analyzer is based on the DTA principle, where single 

heating chamber is used. These devices have a disk (e.g. constantan alloy) on which the 

sample and reference pans rest on symmetrically placed platforms. Thermocouple were 

(e.g. chromel alloy) is welded to the underside of each platform. The chromel-

constantan junctions make up the differential thermocouple junctions with the 

constantan disk acting as one leg of the thermocouple pair. A calibration constant 

within the computer software (determined using standard materials) converts the 

amplified differential thermocouple voltage to energy per unit time, which is plotted on 

the y axis of the DSC output. 

In a typical TG experiment, specimen powder is placed on a refractory pan 

(often porcelain or platinum). The pan, in the hot zone of the furnace, is suspended from 

a high precision balance. A thermocouple is in close proximity to the specimen but not 

in contact, so as not to interfere with the free float of the balance. The balances are 

electronically compensated so that the specimen pan does not move when the specimen 

gains or loses weight.  
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 In all the DSC/TG experiments nearly 10 mg of powder samples were taken for 

TG analysis and a constant heating rate, 10OC per minute was maintained for DSC 

analysis simultaneously. The effect of particle packing affects both DSC and TG 

analysis. Therefore, this is also taken into account while doing the experiment. 

  

3.5. Calcinations 

After proper mixing, mixed powders were calcined at different temperatures 

(detailed heat treatments are cited in the text) by an indigenous programmable furnace 

with intermediate grinding to avoid glamorization of the particles. To study the phase 

formation behavior and reaction mechanism, the compositions (Ba0.5Sr0.5)TiO3, 

Ba0.5Sr0.5ZrO3, Ba(Ti0.5Zr0.5)O3 and Sr(Ti0.5Zr0.5)O3), were calcined at different 

temperatures from 700 C to 1600 C for 1 hour in an alumina crucible at heating rate 

3OC per minute and then cooled in the furnace. The calcined powders were grinded by 

an agate mortar to avoid aglomarization of the particles and were used for the study of 

their phase formation as well as their reaction mechanism. The other compositions were 

calcined at 13000C for 4h, 14000C for 4h and finally 16000C for 1h with intermediate 

mixing and grinding between each firing.  

 

3.6. X-Ray Diffraction Study 

X-ray diffraction (XRD) technique is a powerful tool for material 

characterization as well as for detailed structural elucidation. As the physical properties 

of solids (e. g., electrical, optical, magnetic, ferroelectric, etc.) depend on atomic 

arrangements of materials, determination of the crystal structure is an indispensable part 

of the characterization of materials, mainly the identification of the chemical species. If 

a crystalline specimen is visualized as being made up of tiny fragments of completely 

random arrangement, it is called a fine crystalline powder. XRD patterns are used to 

establish the atomic arrangement or structure of the materials because the d spacing of 

diffraction planes is of the order of x-ray wavelength λ, the various orders n of 

reflection occur only at the precise values of angle θ, which satisfies the Bragg equation 

given by nλ = 2dsinθθθθ. The powder profile of a substance, even without further 

interpretation, can be used for identification of materials. The simplicity and advantages 

of x-ray powder diffraction method can be given as follows: (a) The powder diffraction 

pattern is the characteristics of a substance, (b) Each substance in a mixture produces its 

pattern independent to others, (c) It describes the state of chemical combination of 
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elements in the material, and (d) The method is capable to develop quantitative and 

qualitative analysis of a substance. The accurate determination of lattice parameters 

provides an important basis in understanding various properties of the materials. The 

calculation of lattice constants from the line positions or d spacing can be done from a 

general formula: 
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where a, b, c, α, β and γ are lattice parameters and h, k, l are the Miller indices. Using 

the above formula lattice parameters for all the compositions were found out. The 

kinematics theory of x-ray diffraction describes that for a perfect cause the spread in the 

intensity distribution curves, the nature and extent of the intensity spread is an obvious 

measure of crystal imperfection present in the sample under study. Since the different 

types of defects may be co-existent in crystalline materials, the problems that arise are 

of separation of different types of defects and identification and quantitative estimation 

of the extent and distribution of each type of defects. The different factors affecting the 

diffraction intensities can be grouped into a single expression for use in calculating the 

relative intensities of reflections. For powder method, the intensity is 
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where J is multiplicity factor, and F is structure factor, which can be written as 
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where µ is the linear absorption coefficient of the specimen, x is the distance traversed 

by the beam and V is the volume of the crystal exposed in x-rays. A very important 

aspect of the intensity distribution among the reflections is to relate the extinction, 

which is a deciding factor for the symmetry elements involved in the material. The 

translations involved in these symmetry elements and centered lattices add a new 

periodicity in the patterns, which shows itself by extinguishing certain classes of x-ray 

spectra. Each type of extinction is characteristic of a particular space group. Therefore, 

the absence of such characteristic spectra from the diffraction data is a major criterion 

for the determination of the lattice type and the space group. The following information 
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can be obtained from their x-ray powder diffractogram: (i) Quality and confirmation of 

the prepared samples, (ii) The interplaner spacing d of the reflections, (iii) The 

intensities of the reflections, and (iv) The unit cell dimensions and lattice type. 

 In the present case, calcined powders were characterized with respect to phase 

identification, phase quantity measurement, crystallite size determination and lattice 

parameter measurement, etc., all by using Cu-Kα XRD (Xpert MPD, Philips, UK). For 

quantitative estimation of phases, calcined powders were uniformly mixed and the 

resulting mixture was analyzed using a step size of 0.02o, 2θ with 10 second/step. The 

relative weight fractions were quantified from the ratio of peak areas. The phases giving 

maximum peak area at a particular temperature were considered as 100% formation of 

those phases at that temperature. Considering that area as 100%, the relative 

percentages of the respective phases were calculated. On the basis of XRD line 

broadening at half maxima of the 100% RI peak, crystallite sizes of the phases were 

estimated using the Scherer equation, as P=kλλλλ/β1/2 Cos θp,  where P; linear particle size, 

k; 0.89, θp; peak position and β1/2; half peak width. 

 

3.7. Structural and Microstructural Analysis by Rietveld Method 

Structural and microstructural parameters were analyzed by using Philips 

(Netherlands) X-ray diffractometer model PW-1830 with   copper Kα1 radiation. For 

Rietveld analysis, the diffraction data were taken at room temperature on step scan 

mode with step size 0.02 and 5 sec per step. During all the experiments, the X-ray 

source was supplied a voltage of 35kV and 30 mA current. The peak shape was 

assumed to be a pseude-Voigt (pV) function with asymmetry. The background of each 

pattern was fitted by a polynomial function of degree four. For a better understanding, 

the detailed methods of analysis and core mathematics are given in the Chapter 5. 

 

3.8. X-Ray Florescence Study 

X-ray fluorescence (XRF) spectrometry provides a non-destructive analytical 

method capable of analyzing solids from a few parts per million to near 100% for wide 

range of elements. This versatile technique is ideally suited for analysis of rocks, soils, 

dust, contaminated land samples, mineral concentration and products, archaeological 

artifacts, synthetic materials and metals. The nondestructive nature of the technique 

allows long term storage of samples, which can then be re analyzed any number of 

times for additional elements as necessary. This approach, therefore, avoids problems of 
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re-sampling and digestion of separate aliquots. In the present case, the samples were 

prepared for XRF stufd by pressed powder pellets method. 500 mg of the dried powder 

sample was crushed and mixed with 500 mg of high purity cellulose powder in 1:1 ratio 

by weight. The mixture was then crushed thoroughly so as to get a homogenized 

powder mixture. The corresponding mixtures were then pressed in a KBr press to make 

pellets of size 25 mm diameters and were taken for XRF study. 

 

3.9. Pellet Preparation 

After calcinations, the powders were granulated with an organic binder 

polyvinyl alcohol (PVA). To get uniform and fined grain, the granules were passed 

through a 150 µm sieve. The residues after sieving were again crushed in an agate 

mortar and passed through the sieve. The process was repeated till all the granules 

became less than 150 µm. To have a pellet of diameter 14mm and thickness 2mm, a 

cylindrical steal die of 14mm was taken. Initially the die was kept in a highly viscous 

mobile oil to prevent it from rousting. Taking out from the oil, the die was cleaned with 

IPA and acetone. Just before putting the granules in the die for pressing, some 

hydrophobic stearicacid solution was used in the inner surface of the die to avoid 

sticking of the powder on the inner surface of the die. The granules were put in the die 

and the piston was slowly inserted into the cylinder. While inserting the piston care was 

taken so that no powder should come upward in between the gap between piston and 

inner surface of the cylinder due to the outcome of the air present in the die. Then the 

die containing the granules were uniaxially pressed with a pressure of 4.5 kiloton per 

cm in a hydraulic press controlled by an electric motor. Before releasing the presser 

from the die, minimum 1 minute time was given to minimize the stress on the pellet. 

After the pellet was formed the green density was measured from its external 

dimension. Then the pellets were sintered to study the dielectric response of the 

materials.  

 

3.10. Sintering 

 Density of the electronic ceramic is a very sensitive parameter and that directly 

affects their properties. Therefore, proper sintering of the pallets is essential for 

electrical measurement. The pellets having general compositions Ba1-xSrx (Ti0.5Zr0.5)O3, 

(Ba0.5Sr0.5)Ti1-xZrxO3  and (Ba1-xSrx)Ti0.6Zr0.4O3  were taken on an alumina plate and 

sintered at 1400OC for 2 hours in a programmable furnace at a heating rate of 30C per 

minute with an intermediate shocking of 4 hours at 500OC for organic removal. The 
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pellets were furnace cooled and taken out of the furnace for initial density measurement 

(the detailed procedure adopted for calculation of density is described in the next 

section). The initial density measurement shows that all the pellets are having greater 

than 30 % porosity. Again the pellets were sintered at 1450OC for 10 hours and finally 

at 1500OC for 4 hours at a heating rate of 30C per minute with an intermediate cooling. 

After final sintering at 1500OC for 4 hours, the porosity was found to be within 

permissible range. The exact values of the porosity of different compositions are cites in 

the text of this Chapter. As CaO and MgO have lower melting point than BaO and SrO 

the sintering temperature for the compositions Ba1-x(Sr/Mg)xTi0.6Zr0.4O3 is reduced from 

the above sintering temperature. The Ca and Mg containing compositions were sintered 

in the same programmable furnace at 1400OC for 2 hours and 1450OC for 6 hours with 

an intermediate cooling. Like the previous process, these compositions were also 

allowed for shocking at 500OC for 4 hours for organic binder removal in the initial heat 

treatment. 

 

3.11. Density Determination 

After the above heat treatment on the samples, the dry weights of the pellets 

were measured by a digital electronic balance. Then the samples were given different 

identification to avoid any confusion and kept together in a glass beaker. The samples- 

containing beaker was kept in a vacuum oven and heated at 100OC. At this temperature 

water starts boiling and simultaneously vacuum was also created by the use of a suction 

pump. Heating the samples in the vacuum for 30 minutes, the pores present in the 

pellets were completely filled with water. The heater of the oven was switched off and 

the vacuum was slowly released.  Now the beaker was taken out of the oven. The 

weight of the pellets were taken, in a digital electronic balance and interpreted as 

shocked weight. After the shocked weights were taken the samples were suspended in 

water with the help of a speciall designed hanger to hang the pellets inside water and 

the measured weight is interpreted as suspended weight.    

 The experimental bulk density and apparent porosity were measured by using 

Archimedes principle;   B.D=D/ (W-I)           (3.5) 

     A.P= (W-D)/ (W-I)          (3.6) 

where: D; Dry weight, W; Shocked weight and I; suspended weight. 
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X-ray densities were calculated as suggested by B.D. Cullity [3]   
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A∑=ρ             
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           (3.7) 

where: ρ ; X-ray density (g/cc), ∑ A : Sum of the atomic weights of all the atoms in 

the unit cell, N; Avogadro’s number, V; Volume of a unit cell. If the composition is of 

atomic weight A, then  

∑ A  =n1M          (3.8) 

where n1; number of molecules per unit cell and M; molecular weight  

The macroscopic density or the experimental bulk density of a particular 

specimen, determined from Archimedes principle is usually less and that can’t be 

exceeded the X- ray density, because the macroscopic specimen usually contains some 

cracks and pores.  

 

3.12. Microstructure Study  

In modern material science research, microstructural study is widely used as a 

powerful tool for prediction of many inheriting properties of the materials. It produces 

micrographs by scanning the surface of a specimen with a small electron probe (a beam 

of electron) synchronous with an electron beam from a source. The discs were polished 

in an automatic polish machine and thermal etching was done at 1300OC for 2 hours. 

The microstructure was studied by an optical microscope connected with a PC. The soft 

ware used here was Video Master. Using this software, while measuring the grain size, 

some lines of known length were drawn on the micrograph. The number of grains cut 

by the lines was counted. Then the average grain sizes were calculated by dividing the 

length of the line by the no of grain coming under that line. Minimum 10 lines, each 

having the length not less than 200 micrometers were drawn on the different places of a 

single micrograph and average grain sizes were calculated to minimize the error. To 

minimize the error and for a detailed insight study of the micrograph, SEM is always 

preferred, which is beyond the scope of the present laboratory.  

 

3.13. Electroding 

The selection of suitable electrode for the test materials is important. In our case 

the contacting, conducting thin film electrode method is adopted because (i) It causes 
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minimum error caused by air gap between the electrode and surface of the test material, 

which is more in case of contacting rigid metal electrode method, and (ii) Procedure to 

measure and equation to obtain dielectric constant are simple, which are relatively 

complex in non contacting electrode method. In our case, thin silver electrodes were 

printed on to opposite faces of the ceramic disk by screen printing technique. For 

organic removal printed disks were kept on an alumina plate and fired at 7000C for 15 

minutes. This procedure is repeated twice for better electroding 

 

3.14. Electrical Measurements 

There are several types of polarizations, each of which can be explained by its 

intrinsic physical mechanism. The three basic types of polarizations are electronic, ionic 

and orientational. When an insulator is placed in an external electric field, electrons of 

the atoms are displaced slightly with respect to the nuclei, so induced dipole moments 

result and cause the electronic polarization. When the atoms of a molecule do not share 

their electrons symmetrically, the electron-clouds will be displaced eccentrically 

towards the stronger binding one. Thus the ions acquire charges of opposite polarity. 

These net charges will tend to change the equilibrium positions of the ions themselves 

under the action of an external electric field. This displacement of charged ions or 

groups of ions with respect to each other creates a second type of induced dipole 

moment. It represents the ionic polarisation of the unlike partners of molecule giving 

rise, in addition, to permanent dipole moments, which exist even in the absence of an 

external electric field. Such dipoles experience a torque in an electric field that tends to 

orient them in the direction of the field. Consequently an orientation (or dipole) 

polarisation can arise. These three mechanisms of polarisation are due to charges locally 

bound in atoms, molecules or in the structure of solids. In addition to all these, there 

usually exist charge carriers that can migrate for some distance through the dielectric. 

Generally carriers are impeded in motion because of being trapped in the materials 

interfaces. Hence they cannot freely discharge at the electrodes and space charges 

result. Such distortion appears as an increase in the capacitance of the sample and may 

be distinguishable from a rise of the dielectric constant. Thus a fourth polarisation, 

called the space charge (or interfacial) comes into play. For electronic and ionic 

polarisations, the frequency effect is negligible upto about 1010 Hz. As the optical range 

of frequencies is reached, electronic contribution becomes sole contributor. The effect 

of temperature on both electronic and ionic polarisations is small. At higher 

temperatures, polarisation increases due to ionic and crystal imperfection mobility. The 
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combined effect produces a sharp rise in the dielectric constant at low frequency with 

increasing temperature corresponding to both dipole orientation effects and space 

charge effects. The total polarisation is a sum of these four polarisations (assuming that 

they act independently) [4].  

When the dielectric is placed in alternating fields, these polarisations are set up 

and give rise to the dielectric constant. A temporal phase shift is found to occur between 

the driving field and the resulting polarisation and a loss current component appears 

giving rise to the dielectric loss of the sample. Here this polarisation, P, as well as the 

electric displacement, D varies periodically with time. In general, however, P and D 

may lag behind in phase relative to electric field E, so that 

   D = D0cos (ωt - δ) = D1cosωt + D2sinωt                      (3.9) 

where δ is the phase angle and slightly less than 90°, 

   D1 = D0cosδ 

and 

   D2 = D0sinδ 

The ratio of displacement vector to electric field (D0 / E0) is in general frequency 

dependent for most of the dielectrics. Hence, we can introduce two frequency 

dependent dielectric constants: 

   ε’(ω) = (D0 / E0) cosδ                      (3.10)     

   ε’’(ω) = (D0 / E0) sinδ           (3.11)     

These two constants can be expressed in terms of a single complex dielectric constant, 

ε* = ε’ - jε’’. As the applied voltage (V) varies periodically with time as: 

    V = V0e
iωt

 

The total current, 
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Where, C and C0 are the capacitance in a dielectric medium and vacuum respectively. 
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0 εωωεεεω                    (3.13)     

 

The tangent loss is given by, 

'

"

tan
ε
ε

δ ==
c

l

I

I
          (3.14)     
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The total current I through the capacitor can be resolved into two components, a 

charging current (Ic) in quadrature with voltage and conduction current I1 in phase with 

the voltage. The vector resolution of current is shown in Fig. 3.1. 

 

Figure 3.1: The vector resolution of ac current in a capacitor 

 

For a parallel plate capacitor with sinusoidal applied voltage, loss current density is 

given by 

   VVJ σεωε == ''
01           (3.15)     

where  δεωεσ tan0
'=                 (3.16)     

is the dielectric conductivity. The effective conductivity defined in this manner depends 

upon frequency and is always greater than dc conductivity. The loss factor is the 

primary criterion for the usefulness of a dielectric as an insulator. So for application 

purposes where high capacitance in the smallest physical space in required, materials 

with high dielectric constant and low tangent loss (tanδ) must be used. The dielectric 

properties of ferroelectrics depend on the field strength at which they are measured. 

This is a consequence of non-linear relation between polarisation and electric field. 

Room temperature dielectric measurements were carried out by the contacting 

thin electrode method. After electroding the cylindrical samples, pallets are in Metal 

(silver)-Insulator (sample)-Metal (silver) form. The samples in MIM form were kept in 

a calibrated Agilent 16451B dielectric test fixture and connected to HP-4192A LF 

Impedance Analyzer. Room temperature dielectric measurements were carried out over 

the range 10Hz to 13MHz using pure sinusoidal wave. The Impedance Analyzer is 

connected with a PC for data acquisition. The sinusoidal a.c frequencies were applied 

along the axis of the cylinder keeping the d.c. bias voltage disabled. The capacitance 

and loss tangent of the materials were measured as a function of ac frequency. The 
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dielectric constant or permittivities of the materials at different frequencies were 

calculated using the relation
0ε

ε
A

tC p

r = , where t is the thickness, A is the area of the 

electrode, t is the thickness of the material, Cp is the capacitance measured in parallel 

mode and ε0 is the permittivity of the free space which is 8.854x10-12 [F/m]. The a.c 

conductivity of the samples was calculated using capacitance and tan δ.  

The temperature dependency of dielectric constant was carried out with a self 

designed programmable temperature controller oven. The temperature was reduced 

using liquid nitrogen. The sample was kept in side an indigenous tube furnace having 

tube diameter 18 mm with a self-designed fixture. The tube furnace temperature sensor 

along with the sample was kept in vacuum to avoid the effect of moisture on the 

dielectric properties. When the temperature of the sample chamber became stable 

(130OK), the furnace was turned on and temperature was increased upto 333OK with a 

heating rate of 0.5°C min-1. (In the present case liquid nitrogen temperature was not 

achieved due to radiation losses). While heating, the dielectric data were taken with in 4 

or 5 degree interval and found to be reproducible. 
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Chapter 4 
 

PHASE FORMATION AND REACTION MECHANISM. 

 

4.1. Introduction 

Understanding solid state transformations and associated changes in crystal 

chemistry is a crucial endeavor in materials science and mineralogy. Out of the various 

means to study transformation kinetics, e.g. thermal analysis, various spectroscopic, and 

magnetic measurement techniques, only diffraction studies provide the details of the 

lattice parameters and atomic positions necessary to fully characterize the crystalline 

phase. 

Perovskites such as BaTiO3, SrTiO3, BaZrO3, SrZrO3, CaTiO3, CaZrO3 are 

important technological materials with applications as dielectrics, piezoelectrics, 

electro-optical materials, catalysts and proton conductors [1-4]. Many recent studies of 

such oxide systems have focused on the phase equilibria and dielectric properties of 

perovskite-related solid solutions having CaTiO3, SrTiO3 or BaTiO3 -all of which 

exhibit large permittivities as one of the end-compounds [5-6]. In contrast, AZrO3-

based perovskites (A; divalent metallic cation), which exhibit much lower permittivities 

than their titanate analogs, have received less attention. Solid solution compositions in 

BaTiO3 (BT)-BaZrO3 (BZ) or BTZ-system have been established as one of the most 

important compositions for dielectrics in multilayer ceramic capacitors [7].  

The room-temperature crystal structures of all the end-compounds have been 

reported in the literature: BaZrO3 crystallizes with an ideal cubic perovskite structure 

[8], while SrZrO3 [9] exhibits orthorhombic symmetry. BaTiO3 exhibits cubic as well as 

tetragonal symmetry where as SrTiO3 exhibits cubic symmetry. CaTiO3 and CaZrO3, 

both exhibits orthorhombic symmetry.  

Diffusion of ions in perovskites is a fundamental rate controlling process for 

numerous phenomena. The simultaneous diffusion of the various species within the 

crystal is a complex process. Interdiffusion is a solid-state phenomenon, which governs 

diffusional phase transformation kinetics. There have been numerous studies on 

interdiffusion in metallic systems [10], although such studies are relatively rare in ionic 

system. Lindstrom [11] theoretically examined the interdiffusion in AY-BY where A 

and B are cations and Y is an anion. The lattice velocity “v” was shown to be zero, i.e., 
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an absence of a Kirkendall effect, when either Y is immobile or the self diffusivities of 

A and B are equal.  

Despite numerous practical applications of these individual compounds and their 

solid solutions, phase formation of these compounds and reaction mechanism during 

phase formation were not studied in details. Thus the study on interdiffusion in these 

materials is of interest. The fabrications of these materials usually involve a high 

temperature processing step. It has been reported by Pask and Templeton [12] that 

during the growth of BaTiO3 in the TiO2-BaO reaction, an intermediate phase Ba2TiO4 

was observed but Ubaldini et al [13] did not observed such phase in the BaO-ZrO2 

system during processing of BaZrO3. During high temperature processing, two fast 

transport processes can be considered: surface diffusion and gas phase diffusion. 

Surface diffusion coefficients in oxides are typically 4-8 orders of magnitude larger 

than lattice diffusion coefficients [14]. Moreover, it is well known that the presence of 

water vapor has a noticeable effect on sintering, structural rearrangement, and crystal 

coarsening of MgO and other oxides [15]. All the above observations suggest that 

surface diffusion is the mass transport mechanism operating in most cases of powder 

reactions. It was also reported by Ubaldini et al, [13] in surface diffusion reaction that 

reaction rate constant is very much dependent on size of the particle, irrelevant of their 

shape. i.e smaller the particle size, lower will be the required temperature for phase 

formation reaction and vice versa. The perovskite phases grows as a more or less 

uniform concentric layer with gradual consumption of central particle and reaction can 

be considered as diminishing core mechanism. The resulting temperature dependency of 

kinetics constant follows Arrhenious law. A detailed literature survey on activation 

energy reveals that, Lewis et al [16] predict activation energy of 15.1 eV for diffusion 

of Ti vacancies in BaTiO3 and 11.59 eV in SrTiO3. By contrast, Rhodes and Kingery 

[17] found that the activation energies for diffusion of both Sr and Ti were about 4.92 

eV. Similarly, Werniek [18] deduced from conductivity relaxation studies activation 

energies of 2.05 and 2.76 eV for diffusion of oxygen and Ba vacancies respectively. 

Gopalan and Virkar [9] reported that the Ti diffusivity in BaTiO 3 and SrTiO3 is greater 

than either Ba or Sr. On the other hand, during formation of zirconate, Ubaldini et al, 

[13] reported that the formation of BaZrO3 requires activation energy of 3.047 eV and 

2.290 eV in dry and humid air respectively. Again Gopalan and Virkar [19] also 

reported the activation energy of 3.66 eV for interdiffusion of BaTiO3-BaZrO3. 

Butler et al [20] investigated interdiffusion in SrTiO3-CaTiO3 and concluded 

that interdiffusion of these alkaline- earth cation in their titanates occurs via a vacancy 
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mechanism. In their work, Ti and O were a priori assumed to be immobile because their 

concentrations are spatially invariant. Samples in their work were made by embedding 

powder compacts of SrTiO3 inside powder compact of CaTiO3 and simultaneously 

densifying and annealing at elevated temperatures.  

Recently, Kennedy et al. [21] conducted a detailed analysis of structural 

transitions in SrZrO3 due to incorporation of BaZrO3 perovskite due to the tilting of 

ZrO6 octahedra. However, no detailed studies on its reaction mechanism are reported in 

the systems. In last few years, perovskite solid solutions having super lattice structure 

had received great attention as a better proton conductor material [22]. SrTiO3-SrZrO3 

(ST-SZ) solid solution is one of them, which holds promise for application as a proton 

conductor as well as voltage-dependent tunable ceramic [23]. ST-SZ solid solution 

shows a super lattice structure due to its cell enlargement as a result of tilting of BO6 

(B=Ti, Zr) octahedra [24]. This type of disorder perovskite solid solution offers exciting 

new possibilities both in the investigation of fundamental physical phenomena and in 

the exploitation of novel properties for various applications.  

In most cases of oxide compounds, the formation of solid solution consists of 

the replacement of certain ions by analogous ion (same valence and size). If this is the 

case with neighbor compounds, the stability relations between these compounds may be 

changed by different energies involved in the formation of the solid solution. As a result 

some compounds disappear from a phase diagram or appear with higher stability. 

Jonker and Kwestroo [25] studied the solid solution formation in the system BaO-TiO2-

ZrO2. They observed that the BaTiO3-BaZrO3 forms a complete series of solid solution, 

Ba2Ti5O12 can incorporate about 13 mole% ZrO2, BaTi3O7 only 2 mole%, BaTi4O9 10 

mole % and Ba2Ti9O20 about 5 mole %. All unit cell dimensions are increased by Zr 

substitution. They have also reported that in the Ba2 (Ti, Zr )5 O12 X-ray diffraction 

pattern there was a splitting of some of the lines, showing that there is a deformation of 

the original unit cell.  Continuous series of mixed crystals between BaTiO3 and SrTiO3 

and between SrTiO3 and CaTiO3 exist. However, BaTiO3 and CaTiO3 don’t form a 

continuous series. The Ca ions are not only substituted for Ba ions but also find other 

site in the crystal lattice (perhaps Ti sites). Ca ion can occupy Ti site [26], but this will 

be accompanied by a simultaneous formation of O2- vacancies. DeVries and Roy [27] 

investigated the phase equilibria in the system BaTiO3-CaTiO3. They found a solubility 

gap between these two compounds up to the melting point (1600oC). At 1400oC, the 

maximum solubility is 18 weight % on both sides. The system BaTiO3-SrTiO3 was 

investigated by Basmajian and DeVries [27]. Here a complete series of solid solutions 
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of the two compounds exists. McQuarrie [29] investigated the crystallographic 

transitions in the ternary perovskite system (Ba, Sr, Ca) TiO3. They have reported that 

the solubility gap between BaTiO3-CaTiO3 decreases with increase in SrTiO3, but the 

crystal modifications are not considered in the work. Keeping this in view, solubility of 

SrTiO 3 and CaTiO3 in BaTiO3 in the presence of ZrO2 was studied and their crystal 

structure ware also investigated in the present study. 

The objective of this Chapter is to gain insight into the kinetics and mechanism 

of phase formation, reaction mechanism and room-temperature crystal structure of these 

compositions using metal oxide precursors. In the present study interdiffusion and 

phase formation of the studied compositions were investigated using loose powders. 

 

4.2. Experimental Procedure 

The compositions with general formula Ba1-xSrxTi1-yZryO3 (with x and/or y=0.0, 

0.2, 0.4, 0.5, 0.6, 0.8, 1.0), Ba1-xCax (Ti0.6Zr0.4) O3 (with x =0.0, 0.1, 0.2, 0.4, 0.5) and 

Ba1-x Mgx (Ti0.6Zr0.4) O3 (with x =0.03, 0.07 and 0.14) were synthesized through 

conventional solid state reaction route. The detailed procedures for sample preparations 

were explained in the Chapter 3. The particle size of starting raw materials was 

measured using Malvern Mastersizer. After proper mixing, the decomposition behavior 

of the raw mixture and pure Precursors were investigated using a NETZSCH Thermal 

Analyzer. To study the phase formation behavior, the compositions (Ba0.5Sr0.5)TiO3, 

Ba0.5Sr0.5ZrO3, Ba(Ti0.5Zr0.5)O3 and Sr(Ti0.5Zr0.5)O3), were calcined at different 

temperature from 700 oC to 1600 oC for 1 hour in an alumina crucible at heating rate 

3OC per minute and then cooled in the furnace. The other compositions were calcined at 

13000C for 4h, 14000C for 4h and finally 16000C for 1h with intermediate mixing and 

grinding between each firing. The calcined powders were characterized with respect to 

phase identification, phase quantity measurement, crystallite size determination and 

lattice parameter measurement etc., all by using Cu-Kα XRD (PW-1830, Philips, 

Netherlands). For quantitative estimation of phases, calcined powders were uniformly 

mixed and the resulting mixture was analyzed by XRD using a step size of 0.02o, 2θ 

with 10 second/step. The relative weight fractions were quantified from the ratio of 

peak areas, according to the process described by S.Kumar and G.L.Messing [30]. On 

the basis of XRD line broadening at half maxima, crystallite sizes of the phases were 

estimated using the Scherrer equation [31], as t=kλλλλ/β1/2 Cos θp, where t; linear particle 

size, k; 0.89, θp; peak position and β1/2; half peak width. 
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4.3. Result and Discussion 

 This section describes the results obtained from the study on different 

compositions and their phase formation behavior. 

 

4.3.1. Particle Size and Thermal Analysis of Raw Powders 

The particle size analysis shows that the raw powders contains particles of 

different size and are: BaCO3 [D(v,0.1)=0.25 µm, D(v,0.5)=2.09 µm, D(v,0.9)=13.20 

µm], SrCO3 [D(v,0.1)=0.48 µm, D(v,0.5)=13.13 µm, D(v,0.9)=14.63 µm], CaCO3 

[D(v,0.1)=0.29 µm, D(v,0.5)=3.86 µm, D(v,0.9)=8.70 µm], TiO2 [D(v,0.1)=0.27 µm,  

D(v,0.5)=0.35 µm, D(v,0.9)=0.48 µm] and ZrO2 [D(v,0.1)=0.42 µm,  D(v,0.5)=10.27 

µm, D(v,0.9)=15.48 µm], where D is the mean diameter of particles and v is the volume 

percent of the particle present in the materials.  
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Figure 4.1 TGA and DSC curves in air for the BaCO3 raw powder. 

 

Fig. 4.1 and Fig. 4.2 show the TG/DSC of the raw powder BaCO3 and SrCO3 

respectively. Fig. 4.1 shows five endothermic peaks.  The small endothermic peaks at 

570 OC and 710O C correspond to ~0.95% and ~1.10% wt loss of the powder. As 

previously mentioned, BaCO3 raw material has finer particle fractions D(v,0.1)=0.25 

µm. These fractions decompose at lower temperature. These weight losses may be 

attributed to the decomposition of very fine BaCO3 particles present in the powder.  

The two sharp endothermic peaks at 814.7OC and 986 OC are due to the 

polymorphic transformations of BaCO3 as there is no weight loss found at that 

temperature. The sharp peak at 814.7OC is due to the polymorphic transformations of 
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the rhombohedral BaCO3 to hexagonal BaCO3 (gamma --- Beta) structure (this peaks 

theoretically occurs at 806 C) [32]. The sharp peak at 986 OC is due to the structural 

transformation from hexagonal to cubic BaCO3 (beta ---alpha) [33]. The huge 

endothermic peak at 11870C corresponding to 18% wt loss and it is due to the major 

decomposition of BaCO3. Fig. 4.2 shows two endothermic peaks at 934OC and 1110OC. 

The sharp endothermic peaks at 934 OC corresponds to polymorphic transformation 

from orthorhombic SrCO3 (space group Pmcn) to the rhombohedral SrCO3 (space group 

R-3m) [34], as there is no wt loss found at that temperature. The huge endothermic peak 

at 1110 OC corresponding to ~28.72% wt loss is due to the major decomposition of the 

SrCO3 powder. 
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Figure 4.2 TGA and DSC curves in air for the SrCO3 raw powder. 

 

4.3.2 Thermal Analysis of Precursors 

Fig.4.3 shows DSC-TG tracing of Ba0.5Sr0.5TiO3 precursor.  TG graph shows a 

continuous wt loss of 17.69% from about 700 OC to 1275 OC. The graph shows four 

endothermic peaks at 718 OC, 806.7 OC, 928oC and 1156 OC. The small peak at 718 OC 

corresponds to ~0.8 % wt loss of the precursor as earlier. This weight loss may be 

attributed to the decomposition of very fine BaCO3 particles present in the precursor. 

As there was no weight loss found under the peak at 806.7OC, it corresponds to 

polymorphic transformations of rhombohedral to hexagonal (gamma -- Beta) structure 

of BaCO3 (this peak theoretically occurs at 806 
OC) [32]. The hexagonal to cubic 

BaCO3 (beta --alpha) transformation peak which occurs at 986 OC [32, 33], is not 

observed in the precursor. Both the peaks were prominent in case of pure BaCO3. The 
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endothermic peak at 928oC is due to the polymorphic transformation of SrCO3 from the 

orthorhombic space group (Pmcn) to the rhombohedral space group (R-3m) [34]. The 

huge 1156 OC endothermic peak corresponds to the major decomposition of both 

BaCO3 and SrCO3 in the precursor. However, in pure BaCO3 that peak occurs at about 

11300C and in pure SrCO3 that peak occurs at about 1187
OC. This is one overlapping 

decomposition peak which occurs in between the decomposition temperature of BaCO3 

and SrCO3, which is the decomposition peak of both the carbonate present in the 

precursor.  
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Figure 4.3. TGA and DSC curves in air for the BaCO3, SrCO3 and TiO2 powder 

mixture. 

Fig. 4.4 shows DSC-TG tracing of Ba0.5Sr0.5ZrO3 precursor. TG graph shows a 

continuous wt loss ~ 15.79% from about 875OC to 1200 OC. The graph shows four 

endothermic peaks at 600 OC, 850.7 OC, 950 OC and 1150 OC. The small peak at 600 OC 

corresponds to ~0.8 % wt loss of the precursor. As stated earlier BaCO3 raw material 

has finer particle fraction D (v, 0.1)=0.25 µm, so this weight loss may be attributed to 

the decomposition of very fine BaCO3 particles present in the precursor.  As there was 

no weight loss found under the peak at 850.7, it corresponds to polymorphic 

transformations of BaCO3 from rhombohedral to hexagonal (gamma -- Beta) structure 

[32]. The hexagonal to cubic (beta --alpha) transformation peak, which occurs at 986 
OC [32, 33], is not observed in the precursor. Both the peaks were prominent in case of 

pure BaCO3 (Fig. 4.1). The endothermic peak at 928OC due to the polymorphic 

transformation of SrCO3 from the orthorhombic space group (Pmcn) to the 

rhombohedra space group (R-3m) [34] is not observed due to the earlier decomposition 

reaction of the precursor. The huge 1140 OC endothermic peak corresponds to the major 

decomposition of both BaCO3 and SrCO3 in the precursor. However, in pure BaCO3 
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that peak occurs at about 1187OC and in pure SrCO3 it peak occurs at about 1130
oC. 

Similar overlapping was also observed (Fig.4.3) in case of BST precursor.  
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Figure 4.4 TGA and DSC curves in air for the BaCO3, SrCO3 and ZrO2 powder 

mixture. 

Fig. 4.5 shows DSC-TG tracing of BaTi0.5Zr0.5O3 precursor. TG graph shows a 

continuous wt loss from about 500oC. There are two small DSC peaks at 556OC and 

728OC, corresponding ~1.4% and ~0.8% wt loss of the precursor respectively. These 

weight losses may be attributed to the decomposition of very fine BaCO3 particles 

present in the precursor. As stated previously, these fractions decompose at lower 

temperature in presence of TiO2. A sharp endothermic peak at 810oC corresponds to the 

polymorphic transformation of witherite to α-BaCO3 [32]. The 979OC huge 

endothermic peak corresponds to the major decomposition of BaCO3 in the precursor.  

However, in pure BaCO3 that peak occurs at about 1187
OC. This indicates that BaCO3, 

which is present in the precursor, decomposes at much lower temperature due to the 

presence of acidic TiO2 in the mixture [35].  
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Figure 4.5 TGA and DSC curves in air for the BaCO3, TiO2 and ZrO2 powder mixture. 
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 Fig. 4.6 shows a differential scanning calorimetric and thermo gravimetric 

(DSC-TG) tracing of the SrTi0.5Zr0.5O3 precursor. The TG graph shows a continuous wt 

loss from about 875oC to 1,100oC. The DSC graph shows two endothermic peaks at 

928oC and 1,066oC, respectively. The peak at 928oC is due to the polymorphic 

transformation of SrCO3, as stated earlier. The 1066
oC endothermic peak corresponds to 

the major decomposition reaction of SrCO3 in the precursor. However, in pure SrCO3 

decomposition, that peak occurs at about 1,130oC. This indicates that SrCO3 in the 

precursor reacts at relatively lower temperature as per; SrCO3+TiO2=SrTiO3+CO2, 

which is due to the presence of acidic TiO2 in the mixture [35]. 
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Figure 4.6 TGA and DSC curves in air for the SrCO3, TiO2 and ZrO2 powder mixture. 

 

4.3.3. Phase Formation Mechanism and Kinetics.  

4.3.3.1. On the Phase Formation of Ba0.5Sr0.5TiO3 

 Fig. 4.7 shows XRD pattern of Ba0.5Sr0.5TiO3 raw precursor powder and powder 

calcined at different temperatures for 1 hour.  It shows that BT and ST form in the 

system separately and then coherently with BST formation. Slow step scanning XRD 

analysis reveals that BT starts forming   from 700 OC and ST starts forming from 800 
OC. Formation of BaO or other phases like Ba2TiO4 or BaTi3O7, has not been observed 

within the detection limit of XRD. Here BT is directly formed through the reaction 

BaCO3 +TiO2=BaTiO3+CO2 (g). 
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Figure 4.7  XRD patterns of raw mixture and calcined precursor powder for 1 h (a) Raw 

mixture at 700,800,900 and 1000 OC; (b) at 1100, 1200,1300,1400 and 1500 OC; with 

notations BC=BaCO3, SC= SrCO3,BT=BaTiO3, ST=SrTiO3, BST(ss)=Ba0.5Sr0.5TiO3. 

 

The intermediate phases like Sr2TiO4 and SrTi3O7 were observed in the samples 

calcined at 1000 OC for 1h and at 1,100 OC for 1h, with the presence of both Ti and Zr 

[38]. But in the present case, these phases were not observed, may be due to the 

presence of more acidic TiO2 than ZrO2 in the system, and ST is directly formed 

through the reaction SrCO3 +TiO2=SrTiO3+CO2(g). 

The XRD patterns also suggest that the rate of formation of SrTiO3 is lower than 

the formation of BaTio3, which may be due to the (i) presence of more stable Sr than Ba 

in the system, and/or (ii) high average particle size of Sr than Ba. BST (ss) starts 

forming from 900OC coherently with both BT and ST. Variation of their phase content 

with calcinations temperature is shown in the Fig. 4.8. As 1000OC/1hour and 

1,100OC/1hour samples show maximum integrated intensity of BT and ST phases, 
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respectively, these quantities at that temperature were considered 100%. The quantity of 

BT is always higher than that of ST at temperatures up to 1,000 OC; but after 1000 OC, 

the quantity of BT decreases more quickly than ST and the quantity of BST (ss) 

increases rapidly. These observations indicate that BaTiO3 forms easily in the system 

through solid-state reaction between BaCO3 and TiO2 and the rate of ST formation is 

relatively slower.  
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Figure 4.8 Non-isothermal transformation kinetics of precursor in static air. 

 

However, quantity of BT increases slowly near the temperature 900oC, which 

may be due to the decrease in the finer fraction of BaCO3 and TiO2 reactants, as they 

are used to form BT in the lower temperature range. Above 1300oC, BST (ss) increases 

rapidly due to inter-diffusion between BT and ST. 

To check the phase formation kinetics, concentrations of the phases were used to 

measure the activation energy for their formation using the following relationship [39]:  

                   [1- [(1-XB)
1/3]2 = 2Kt/R2                                     (4.1)                        

where 2K/R2 is essentially a reaction rate constant, XB is the volume fraction 

reacted at time ‘t’.  

The same expression is used through out the study on the phase formation and reaction 

mechanism of different compositions. Here Log (K/R2) vs. 1/T plot represents 

Arrhenius expression and activation energy for the phase formation can be derived from 

the slope of the plot.  

 

Fig. 4.9 shows temperature dependency of their phase formation reaction. They 

show Arrhenius type of linear temperature dependency. Activation energy measured 

from slope shows that BT formation requires less activation energy (40.41 kcal/mol)  
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than that of ST formation (58.867 kcal/mol). Activation energy required for formation 

of BT and ST in the present system is higher than that reported else where [38, 40]. 

Here higher activation energy required may be due to simultaneous formation of BT, 

ST in the temperature range 800OC to 1000OC and BT, ST with BST(ss) at the 

temperature 1000OC. Phases were formed in this system through solid state 

interdiffusion between different particles. Interdiffusion takes place with different ions 

limiting the speed of diffusion. Activation energy results shows that phase formation 

reaction may be limited by the diffusion of Ba for BT and Sr for ST formation 

respectively. In this case Ti and O are assumed to be immobile because their 

concentrations are spatially invariant. Since SrCO3 particles are relatively higher than 

BaCO3, SrTiO3 diffusion requires more activation energy to form perovskite phase.  

 
BST solid solution formation requires less activation energy (43.41 kcal/mol) in 

the temperature range 1,000OC to 1,200OC but requires relatively high activation energy 

(76.999 kcal/mol) in the temperature range 1,300OC to 1,5000O. The activation energy 

in the temperature range 1,200OC to 1,300OC is not calculated due to temporary slow 

down in the formation kinetics. The activation energy for formation of BST (ss) in the 

lower temperature range is close to the activation energy of BT formation. The study 

also indicates that solid solution formation takes place by the diffusion of BT into ST 

lattice, as BT decays more rapidly than ST at higher temperature. Also, XRD analysis 

indicates that solid -solution formation takes place by the diffusion of BT into ST 

lattice. As the peaks of ST are shifting towards lower angle with increase in calcinations 

temperature from 800OC to 1,000OC, indicating increase in unit cell volume (Table 4.1) 

due to the incorporation of bigger Ba 2+ ions, whereas, lattice parameter of BT remains 

constant in the said temperature range (Table 4.1), indicating no diffusion of Sr2+ in to 

BT lattice. At the temperatures above 1,100OC, the peaks of BT shift towards higher 

angle and lattice parameter of BT decreases (Table 4.1), indicating the incorporation of 

Sr 2+ into BaTiO3. 
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Figure 4.9 Arrhenius dependence of reaction rate on calcination temperature for the 

transformation of precursor to BaTiO3 (◊) and SrTiO3 (o) and then to Ba0.5Sr0.5TiO3 

solid solution (∆). 

 

The room temperature lattice parameters of three different phases at different 

temperatures along with their X-ray crystallite size are shown in Table 4.1. Lattice 

parameters of phases were calculated considering the cubic structure for BT (as per 

JCPDs card No 79-2263), structure for ST (as per JCPDs card No.84-0444) and also the 

cubic structure for BST (as per JCPDs card No.39-1395.). Lattice parameter of BST 

(ss), found in the present study (a0= 3.952Å) is similar to that reported (a0= 3.947 Å) in 

JCPDs card No.39-1395).  

Previously we have indicated that initially the solid-solution formation takes 

place by the diffusion of BT into ST lattice and at higher temperature both the 

diffusions (i.e ST into BT and BT in to ST) take place. The XRD peaks of BST (ss),  

which forms in between [110] peak of BT and [110] peak of ST, (Figure 4.7(b)) was 

indexed as [110] reflections of cubic BST (ss) phase. A similar coherent interfaces 

between BaZrO3 and Ba(Ti0.5Zr0.5)O3 lattices and SrZrO3 with Sr(Ti0.5Zr0.5)O3 were also 

reported by the present author [37,38].This mechanism also suggests that the 

morphology of BST (ss) should be controlled by the morphology of ST and BT phase 

formed in the intermediate stage. Table 4.1 also shows the XRD crystallite sizes of BT, 

ST and BST (ss) at different temperatures. Crystallite size of BT is relatively higher 

than ST, which again indicates the easy formation of BT in the system. 
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Table 4.1: Lattice parameter ‘a0’ in Å and XRD-crystallite size in nm of BT, ST and 

BST (ss) in the samples calcined at different temperatures. 

__________________________________________________________________ 
Calcination             BaTiO3 ______             SrTiO3 __        __BST (ss)_______ 
Temp.(oC)     a0 (Å)  Crystallite           a0 (Å) Crystallite       a0 (Å) Crystallite                           
   Size(nm)   Size(nm)  Size (nm) 
__________________________________________________________________ 
700           4.0065(8)    44.171 
800           4.0065(8)    43.762          3.9150(4)     23.776                        
900           4.0066(3)    43.132     3.9196(9)     35.608   
1000           4.0065(2)    42.146     3.9238(9)     40.824  3.9850(7)    24.7205                       
1100           3.9978(7)    48.659     3.9169(7)     50.464  3.9802(4)    25.2730              
1200           3.9962(4)    50.045     3.9202(7)     47.123  3.9756(4)    26.7247                   
1300           3.9949(6)    30.245     3.9301(4)     50.259  3.9433(4)    33.1065                   
1400            --------         -------     --------         --------  3.9532(4)    40.3569              
1500            --------         -------     --------         --------  3.9529(4)  49.0520                      
__________________________________________________________________ 
Note. The numbers in the parentheses are the estimated standard deviations. 

 

4.3.3.2. On the Phase Formation of Ba0.5Sr0.5ZrO3 

Fig. 4.10 shows XRD patterns of Ba0.5Sr0.5ZrO3 raw precursor powder and 

powder calcined at different temperature for 1 hour.  It shows that BZ and SZ form in 

the system initially and BSZ forms in the system coherently with SZ. Slow-step 

scanning XRD analysis reveals that BZ and SZ starts forming   from 700 OC. Formation 

of BaO or other phases like Ba2ZrO4 or Sr2ZrO4, has not been observed within the 

detection limit of XRD. Here BZ is directly formed through the reaction BaCO3 

+ZrO2=BaZrO3+CO2 (g). The intermediate Sr-rich phases like Sr2ZrO4 and SrZr3O7 

were observed in the samples calcined at 1,000OC for 1h and at 1,100 OC for 1h, with 

the presence of both Ti and Zr [38]. But in the present case these phases were not 

observed may be due to formation of SZ directly through the reaction 

SrCO3+ZrO2=SrZrO3+ CO2(g). The XRD patterns also suggest that the rate of 

formation of SrZrO3 is lower than that of the formation of BaZrO3, which may be due to 

the (i) presence of more stable Sr than Ba in the system, and/or (ii) high average particle 

size of SrCO3 than BaCO3. BSZ (ss) starts forming from 900OC.  
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Figure 4.10 XRD patterns of raw mixture and calcined precursor powder for 1 h (a) 

Raw mixture, 700,800,900 and 1000 OC; (b) at 1100, 1200,1300,1400 and 1500 OC; 

with notations BC=BaCO3, SC= SrCO3, BZ=BaZrO3, Z=ZrO2, SZ=SrZrO3, 

BSZ=Ba0.5Sr0.5ZrO3. 

 

Variation of their phase content with calcination temperature is shown in the 

Fig. 4.11. As 900 OC/1hour sample shows maximum integrated intensity of BZ and SZ 

phases respectively, these quantities at that temperature were considered 100%. The 

quantity of BZ is always higher than that of SZ at any temperature up to 1,000 OC; but 

after 1,000 OC, the quantity of BZ decreases more quickly than SZ and the quantity of 

BSZ (ss) increases rapidly. These observations indicate that BZ forms easily in the 
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system through solid-state reaction between BaCO3 and ZrO2 and the rate of SZ 

formation is relatively slower. Above 1,000oC, BSZ (ss) increases rapidly due to inter-

diffusion between BZ and SZ. 

To check the phase formation kinetics, concentrations of the phases were used to 

measure the activation energy for their formation using the same relation (equ. 4.1) as 

used earlier for BST (ss) formation as per [39].  
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Figure 4.11 Non-isothermal transformation kinetics of precursor in static air. 

 

Fig. 4.12 shows temperature dependency of their phase formation reactions. 

They show Arrhenius type linear temperature dependency. Activation energy measured 

from the slope shows that BZ formation requires activation energy (~58.069 kcal/mol) 

which is about same as that for SZ activation energy (~60.78 kcal/mol).The activation 

energies of BZ and SZ are near about the same value, indicating the simultaneous 

formation of both the phases. These activation energies are in the same range as that 

reported by Alberto Ubaldini [40]. Phases were formed in this system through solid 

state interdiffusion between different particles. Interdiffusion takes place with different 

ions limiting the speed of diffusion. Activation energy results indicate that the phase 

formations may be limited by diffusion of Ba and Sr for the formation of BSZ(ss). In 

the present case, Zr and O are assumed to be immobile because their concentrations are 

spatially invariant, when compared for the two perovskite structure. BSZ (ss) formation 

requires a little higher activation energy (97.43 kcal/mol) as compared to the other two 

phases. 
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Figure 4.12 Arrhenius dependence of reaction rate on calcination temperature for the 

transformation of precursor to BaZrO3 (◊) and SrZrO3 (o) and then to Ba0.5Sr0.5ZrO3 

solid solution (∆). 

 

Table 4.2 and Table 4.3 show the lattice parameters of three different phases at 

different temperatures along with their X-ray crystallite size. Lattice parameters of 

phases were calculated considering the cubic structure for BZ, orthorhombic structure 

for both SZ and BSZ (ss) as per [41, 42]. Lattice parameters of the phases were very 

much similar to those reported by Kennedy et al [32]. Previously, it was indicated that 

the solid solution formation takes place by the diffusion of BZ into SZ lattice, as BZ 

decays more rapidly than SZ. It can be seen that the crystallite size of BZ and SZ are 

more or less comparable, which indicates that BT and ST form simultaneously in the 

temperature range 700 to 900OC. At 1,000OC the crystallite size of both BZ and SZ 

decreases, but in the meanwhile, BSZ (ss) starts forming in the interface. At 1000OC, 

the BSZ (ss) shows higher cell volume may be due to the disordered mixed phase 

structure. It can be noticed in the XRD pattern the same composition shows higher 

FWHM. This peak broadening arises in a number of ways including compositional 

inhomogeneity and hysteresis near the phase transition. The associated broadening at 

that temperature might be related to phase transition hysteresis. As indicated in Fig. 

3.10, the BZ and SZ phases decrease rapidly above 1,100OC, so their lattice parameters 

and crystallite sizes could not be found at the temperatures 1,100OC and 1200OC within 

the detection limit of XRD. With increase in temperature the cell volume become 

almost stable and lattice parameters are in good agreement with Kennedy et al [41]. The 

XRD peak of BSZ (ss), which grows between [110] peak of BZ and [200] peak of SZ 

(Fig.2 a) was indexed as [020], [112] reflection of orthorhombic phase. Such clear 
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splitting is not observed by XRD, which could be best observed using high resolution 

synchrotron diffraction measurements [41]. If the solid solution grows on BZ lattice, 

one would expect that peak is composed of [110], [101] reflections of orthorhombic 

structure. But the present investigation shows that the peak was for [020], [112] 

reflection of orthorhombic phase. That indicates that the solid solution formed 

coherently with [200] plain of orthorhombic structure. Similar coherent interface 

between BaZrO3 and Ba(Ti0.6Zr0.4)O3 lattices and between SrZrO3 and SrTi0.5Zr0.5O3 

were also reported by the present author [37,38]. 

 

Table 4.2: Lattice parameters in Å and XRD-crystallite size in nm of BZ and SZ in the 

samples calcined at different temperatures. 

__________________________________________________________________ 
Calcination             BaZrO3 ______    ______________        SrZrO3________  
Temp.(oC)     a0 (Å)      Crystallite        a0 (Å)     b0 (Å)  c0 (Å)      Crystallite      
                                     Size (nm)              Size(nm)         
__________________________________________________________________ 
700           4.2790(7)    13.838   5.5691(4)     8.0166(1)     5.1046(4)    13.7141  
800           4.2673(6)    15.080   5.7034(8)     8.0124(7)     5.1011(4)    15.5211 
900           4.1853(2)    21.727   5.8178(7)     8.2038(7)     5.7938(7)    20.8716 
1000           4.1803(2)    14.750   5.6817(9)     7.9895(4)     5.1015(3)    19.2116                      
1100           ……….        ………   ……….          ………           ……….      ……… 
__________________________________________________________________ 
Note. The numbers in the parentheses are the estimated standard deviations. 

 

Table 4.3: Lattice parameters in Å, cell volume in Å3 and XRD-crystallite size in nm of 

BSZ (ss) phase in the samples calcined at different temperatures. 

__________________________________________________________________ 
Calcination          Ba0.5Sr0.5ZrO3________________________________     
Temp.(oC)       a0 (Å)         b0 (Å)        c0 (Å)          Cell           Crystallite      
                                        Volume (Å3) Size (nm) 
__________________________________________________________________ 
1000          5.8934(9)    8.3760(8)    5.8690(7)      289.71       15.0054 
1100          5.8911(6)    8.3545(8)    5.8717(3)       288.99  17.0540 
1200             5.8739(7)    8.3731(5)    5.8860(4)      288.49            23.6604 
1300          5.8776(8)    8.2825(7)    5.8873(1) 286.60  31.0875 
1400          5.8724(6)    8.3058(9)    5.8781(4) 286.70  60.8115 
1500             5.8715(4)    8.2842(4)    5.8809(8)      286.05            74.8650 
__________________________________________________________________ 
Note. The numbers in the parentheses are the estimated standard deviations. 
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4.3.3.3. On the Phase Formation of BaTi0.5Zr0.5O3 

Fig. 4.13 shows XRD pattern of Ba (Ti0.5Zr0.5) O3 precursor powder calcined at 

different temperatures for 1 hour. It shows that BT and BZ form separately in the 

system and then BTZ(ss) forms by inter-diffusion between BT-BZ. Slow-step scanning 

XRD analysis reveals that BaTiO3 starts forming from 700oC and BaZrO3 from 800oC.  
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Figure 4.13 XRD patterns of calcined precursor powder for 1 hour (a) at 700o, 800o, 

900o, 1000o and 1100oC; (b) at 1200o, 1300o, 1400o, 1500o and 1600oC; with notations: 

BT=BaTiO3, BZ= BaZrO3, BC=BaCO3,  BTZ(ss)= Ba(Ti0.5Zr0.5)O3 and T=TiO2 

 

Formation of intermediate BaO or other phases, like Ba2ZrO4, Ba2TiO4 or BaTi3O7, has 

not been observed within the detection limit of XRD. Consequently, BT and BZ are 

formed directly due to the reaction:  
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BaCO3(s)+ZrO2(s)+TiO2(s)= BaTiO3(s)+BaZrO3(s)+CO2 (g)   

  

The XRD patterns also suggest that the rate of BaZrO3 formation is lower than that of 

BaTiO3, which may be due to the (i) high average particle size of ZrO2 (10.27 µm) than 

TiO2 (0.35 µm), and/or (ii) higher ionic radius of Zr+4 (0.72 Å) than that of Ti+4 (0.61 

Å). BTZ(ss) starts forming from 1,300oC. Variation of their phase content with 

calcinations temperature is shown in Fig. 4.14. The quantity of BT is always higher than 

the quantity of BZ at any temperature up-to 1200oC. But after 1,300oC, quantity of BT 

decreases quicker than BZ and the quantity of BTZ(ss) increases rapidly. These 

observations indicate that BaTiO3 forms easily in the system through solid-state 

reaction between BaCO3 and TiO2, and the rate of BZ formation is relatively slower. 

However, quantity of BT increases slowly in the temperature range 900oC to 1100oC, 

which may be due to the decrease in the finer fraction of BaCO3 and TiO2 reactants, as 

they are used to form BT in the lower temperature range. These phase formations may 

be considered to follow a diminishing-core model. Diminishing cores are TiO2 and 

ZrO2.  Above 1300
oC, BTZ(ss) increases rapidly due to inter-diffusion between BT and 

BZ. To check the phase formation kinetics, concentrations of the phases were used to 

measure the activation energy for their formation using the same relation as used earlier 

for BST (ss) and BSZ (ss) formation as per [39].  
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Figure  4. 14 Non-isothermal transformation kinetics BaTi0.5Zr0.5O3 of precursor in 

static air. 

 

Fig. 4.14 shows temperature dependency of their phase formation reactions. 

They show Arrhenius type of linear temperature dependency. Activation energy 

measured from the slope shows that BT formation requires less activation energy (32.65 

kcal/mol and 34.3 kcal/mol in the temperature range 700o to 900oC and 1,100oC to 
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1,300oC, respectively) than that of BZ formation (48.4 kcal/mol). BT-formation 

activation energy in the temperature range 900oC to 1,100oC, is not evaluated due to its 

temporary slow down in formation kinetics. Phases were formed in this system through 

solid-state interdiffusion between different particles. Interdiffusions take place with 

different ions limiting the speed of diffusion. Activation energy results show that phase 

formation reactions may be limited by the diffusion of Ti for BT and Zr for BZ 

formation, respectively. In this case, Ba and O are assumed to be immobile because 

their concentrations are spatially invariant. Since Zr+4 has higher ionic radius than Ti+4, 

its diffusion requires higher energy than Ti+4 to form perovskite phase. 

 BTZ solid solution formation requires much high activation energy (133 

kcal/mole), which is slightly higher than that (3.66 eV) reported by S.Gopalan and 

A.V.Virkar [42] for doped BT-BZ couples. In the present case, slight increase in 

activation energy may be due to the use of loose powders for reaction kinetics 

experiment as compared to sintered pellets and/or use of un-doped material.  For BTZ 

(ss) formation reaction, the rate may be limited by the diffusion of Ba and/or O 

movement, which were proposed to be moveable during inter-diffusion experimental 

study in doped BT-BZ perovskites [42].  
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Figure 4.15 Arrhenius dependency of reaction rate on calcinations temperature for the 

transformation of precursor to BaTiO3 (♦) and BaZrO3 (□) and then to BaTi0.5Zr0.5O3 

solid solution (∆). 

The studies also indicate that solid-solution formation takes place by the 

diffusion of BT into BZ lattices, as BT decay more rapidly than BZ. Also from XRD 

data, it is found that [110] peak of BZ shifted to higher angle with calcinations 

temperature from 900oC to 1,300oC, indicating the decrease in unit cell volume (Table-

4.4) due to the incorporation of smaller Ti+4 ions, whereas, lattice parameter of BT 

remains almost same in the said temperature range (Table-4.4), indicating there is no 
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diffusion of Zr+4 ion into BT lattices. Table 4.4 also shows that BTZ (ss) has higher 

lattice parameter at 1300oC than that at 1,600oC, indicating that initial solid solution is 

higher in Zr+4 ion content than the final equilibrium one. So it may be considered that 

solid solution grows on BZ lattices having a coherent interface with BZ crystal. Here 

the diminishing core is BZ.  This mechanism also suggests that the morphology of BTZ 

(ss) should be controlled by the morphology of BZ phase formed in the intermediate 

stage. Table 4.4 also shows the XRD crystallite sizes of BZ, BT and BTZ (ss) at 

different calcinations temperatures. Crystallite size of BT is always much higher than 

that of BZ, which again shows the easy formation of BT in the system. 

 

Table 4.4. Variation of lattice parameter a0 and XRD crystallite size (within first 

bracket) of BT, BZ and BTZ-solid solution with calcinations temperature. 

_________________________________________________ 
  Lattice parameter in Å (Crystallite size in nm) 

  ------------------------------------------------------------- 
  9000C        13000C  16000C 
________________________________________________ 
BaTiO3 4.0094 (65.3)     4.0057  (232.4)      ----- 
BaZrO3 4.1914 (39.1)     4.1696  (64.5)        ----- 
BTZ (ss) -------     4.1216  (19.5)       4.0750 (180.2) 
_________________________________________________ 

 

 
4.3.3.4. On the Phase Formation of SrTi0.5Zr0.5O3 

Fig. 4.16 shows the XRD pattern of the Sr(Ti0.5Zr0.5)O3 precursor powder 

calcined at different temperatures for one hour. It shows that ST and SZ form separately 

in the system and then STZ (ss) appears due to the inter-diffusion between ST and SZ.  

The 800oC/1hour sample shows the presence of SrTiO3 in the calcined product. The 

SrTiO3 is formed due to the decomposition reaction of the precursor. The 

decomposition reaction releases highly reactive SrO in the system and that immediately 

reacts with TiO2 to form ST. That may be the reason, SrO was not detected by XRD. 

The SZ phase was identified only from 1000oC/1hour sample. Thus, the rate of 

formation of SZ was slower than ST in the system. That sample also shows the presence 

of two intermediate phases, Sr2TiO4 and Sr3Ti2O7 along with SrTiO3. The reason for the 

formation of Sr-rich intermediate phase may be due to the release of a huge amount of 

SrO in the system at that temperature range. At 1200oC, Sr2TiO4 and Sr3Ti2O7 phases 

were not found due to their conversion into ST upon reacting with TiO2 through 

Sr2TiO4 -to- Sr3Ti2O7 -to- SrTiO3 and then only ST and SZ phases were found.  
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Figure 4.16 XRD pattern of calcined precursor powder for 1 hour at (A) 

700o,800o,900o,1000oC and (B) at 1100o, 1200o, 1500o and 1600oOC; with notation: 

ST=SrTiO3, SZ=SrZrO3, S2T=Sr2TiO4, S3T2=Sr3Ti2O7, SC=SrCO3, Z=ZrO2, T=TiO2 

and STZ (ss)= Sr(Ti0.5Zr0.5)O3.  

They started diffusing to form STZ (ss) in the temperature range 1,300oC to 1,350oC 

and STZ (ss) formation was complete in the range 1,550oC to 1,600oC. Intermediate 

phases like Sr2ZrO4 were not observed within the detection limit of XRD. ST and SZ 

were found to match best with PDF No. 05-0634 for ST and 70-0283 for SZ, 

respectively. However, no standard pattern is available for Sr(Ti0.5Zr0.5)O3 compound in 

PDF version-1998. 

It is already indicated that the rate of SrZrO3 formation is lower than that of 

SrTiO3 formation. This may be due to the (i) less acidic nature of ZrO2 than that of 

TiO2, and/or (ii) high average particle size of ZrO2 (10.27 µm) than TiO2 (0.35 µm), 
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and/or (iii) higher ionic radius of Zr+4 (0.72 Å) than that of Ti+4 (0.61 Å). Variation of 

their phase content with calcinations temperature is shown in Fig. 4.16. As 

1,300oC/1hour sample shows maximum integrated intensities of ST and SZ phases, the 

quantities at that temperature were considered 100%. The quantity of ST apparently 

decreases at 1,000oC due to the conversion of some fraction of that to Sr2TiO4 and 

Sr3Ti2O7. The quantity of ST is higher than that of SZ up to 1,100
oC. After 1,300oC, 

quantities of two phases are decreased due to their conversion into STZ (ss). But STZ 

(ss) was detectable only at 1,500oC through slow step scanning. After 1,400oC, quantity 

of ST decreases quicker than that of SZ, indicating that ST easily diffuses into SZ to 

form STZ (ss). After 1,500oC, STZ (ss) increases rapidly.  
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 Figure 4.17  Non-isothermal transformation kinetics of precursor in static air. 

 

To check the phase formation kinetics, concentrations of the phases were used to 

measure the activation energy for their formation using the same relation (Eq. 4.1) as 

used earlier for BST (ss), BSZ (ss) and BTZ (ss) formation as per [39].  

Fig. 4.18 shows temperature dependency of their phase formation reactions. 

They show Arrhenius type of linear temperature dependency. The activation energy for 

the phase formation is measured from the slope, and it shows that ST formation requires 

less activation energy (47.27kcal/mol) than that of SZ formation (65.78kcal/mol) in the 

temperature range 1,000oC to 1,300oC. The activation energy found for SZ formation is 

in the same range of that found for BZ formation by Alberto Ubaldini et al. [40]. Phases 

were formed in this system through solid-state interdiffusion between different 

particles. Interdiffusions take place with different ions limiting the speed of diffusion. 

Activation energy results indicate that the phase formation reactions may be limited by 

the diffusion of Ti for ST and Zr for SZ formation, respectively. In the present case, Sr 

and O are assumed to be immobile because their concentrations are spatially invariant, 
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when compared for the two perovskite structures. Since Zr+4 has a larger ionic radius 

than Ti+4, its diffusion requires a higher energy than Ti
+4

 to form perovskite phase. 
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Figure 4.18 Arrhenius dependency of reaction rate on calcinations temperature for the 

formation of SrTiO3 (□) and SrZrO3 (∆) and SrTi0.5Zr0.5O3 solid solution (◊). 

 

STZ solid solution formation requires much high activation energy (297.52 kcal/mole). 

In the present case, a high activation energy found may be due to the use of loose 

powders for reaction kinetics experiment as compared to sintered pellets and/or use of 

un-doped material.  For STZ (ss) formation, the rate of reaction may be limited by the 

diffusion of Ti through the SZ structure because the activation energy for the process is 

very similar to that calculated by Lewis et al. for the Ti- vacancy migration in BaTiO3 

[43].  

The room temperature lattice parameters of the three phases present in the 

samples calcined at different temperatures are shown in Table 4.5 along with their x-ray 

crystallite size. These parameters of phases were calculated considering cubic structure 

for ST, orthorhombic for SZ and tetragonal for STZ (ss) as per T.K.Y.Yong et al.[44]. 

For comparison only ‘a0’ values are given in the Table 4.5. Lattice parameter of STZ 

(ss), found in the present study (a0= 5.6688(6) Å, c0= 8.0212(0) Å) is similar to that 

reported (a0= 5.6650 Å, c0= 8.011 Å) by [44]. Previously, we indicated that solid-

solution formation takes place by the diffusion of ST into SZ lattices, as ST decomposes 

more rapidly than SZ.  
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Table 4.5 Lattice parameter ‘a0’ in Å and XRD-crystallite size in nm of ST, SZ and STZ 
(ss) in the samples calcined at different temperatures. 
______________________________________________________________________ 
Calcination              SrTiO3 ______             SrZrO3 __              STZ (ss)______ 
Temp.(oC)     a0 (Å)      Crystallite     a0 (Å)                  Crystallite     a0 (Å)       Crystallite  
                                          Size (nm)            Size (nm)   Size (nm) 
_____________________________________________________________________ 
800           3.9107(8)                      
900           3.9054(8)    
1000           3.8957(9)     42.47   5.8004(9)     17.48           
1100           3.9039(7)    54.83   5.8037(9)     30.75   
1200           3.9076(5)    164.01   5.8048(9)     39.57       
1300           3.9037(6)    171.72   5.7967(8)     45.18       
1400           3.9083(3)    217.31   5.7899(6)     53.37    
1500           3.9126(2)    411.57   5.7753(5)     67.39         5.6882(9)    14.49 
1550  --------   -------           5.6755(9)     45.55 
1600  --------   -------           5.6715(8)     59.0 
1650  --------   -------           5.6688(6)     65.0 
______________________________________________________________________ 
Note. The numbers in the parentheses are the estimated standard deviations. 

 

Also it is found that lattice parameter of SZ decreases with increase in temperature from 

1,100oC to 1,400oC (Table 4.5) due to the incorporation of smaller Ti+4 ions in SZ, 

whereas, lattice parameter of ST remains almost the same up to 1400oC, indicating there 

is negligible diffusion of Zr+4 ion into ST structure. Some Zr+4 ion diffusion into ST 

structure may be expected at higher temperatures as 1,500oC samples show slight 

increase in ‘a0’ value of ST.  Table 4.5 also shows that STZ (ss) has higher lattice 

parameter at 1,500oC than that at 1,600oC, indicating that initial solid solution is higher 

in Zr+4 ion content than the final equilibrium one. Thus, it may be considered that solid 

solution forms on SZ lattices having a coherent interface with SZ crystal, but not on the 

ST lattice The XRD peaks of STZ (ss) which forms in between [110] peak of ST and 

[200] peak of SZ (Fig. 4.15(b)) was indexed as overlapping [020], [112] reflections of 

tetragonal STZ (ss) phase. If solid solution forms on ST lattice, one would expect that 

peak to be composed of [110], [101] reflections of tetragonal structure. But the present 

investigation shows that the peak was for [020] reflection of tetragonal structure. That 

indicates that the solid solution is formed coherently with [200] plane of SZ. A similar 

coherent interface between BaZrO3 and Ba(Ti0.6Zr0.4)O3 lattices was also found by the 

present author [37].This mechanism also suggests that the morphology of STZ (ss) 

should be controlled by the morphology of SZ phase formed in the intermediate stage. 

Table 4.5 also shows the XRD crystallite sizes of SZ, ST and STZ (ss) at different 



 67

temperatures. Crystallite size of ST is always much higher than that of SZ, which again 

indicates the easy formation of ST in the system. 

 

4.4. Phase Formation of the Ba-Sr-Ti-Zr- Oxide System 

4.4.1. Phase Formation of Ba1-xSrxTi0.5Zr0.5O3 Ceramics 

Fig. 4.19 shows the room temperature XRD pattern of the Ba1-xSrxTi0.5Zr0.5O3 ceramics 

with different Sr (x) concentration. The XRD patterns were indexed and cell parameters 

were refined by using standard CCP-14 program “CHEKCELL” [45].  It is evident 

from the figure that all the peaks correspond to perovskite phase. The composition with 

x=0.0, i.e, Ba(Ti0.5Zr0.5)O3,  was indexed in cubic system (space group Pm-3m) and the 

pattern was very similar to the standard PDF-2 card No. 36-0019 (for Cubic 

BaTi0.75Zr0.25O3). It has been suggested that the solid solution Ba (Ti1-xZrx)O3  does not 

exist for x>0.42 [46]. However, in the present investigation the solid solution 

Ba(Ti0.5Zr0.5)O3 was found to exist as a single phase perovskite. The ceramic 

compositions were synthesized in the present study through successive calcinations and 

long time sintering etc. These processing may be responsible for the formation of a 

single phase solid solution of the same. With increase in Sr, the BSTZ system remains 

cubic upto 50 atom% substitution; only peaks were shifted towards higher angle 

yielding the decrease in lattice parameter due to the substitution of bigger Ba+2 (R=1.35 

Å) by smaller Sr+2 (R = 1.13 Å) in the structure.  
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Figure 4.19 XRD pattern of (Ba1-XSrX)Ti0.5Zr0.5O3 ceramics with different Sr (x) 

content. Indexing (cubic) in x=0.0 is valid upto x=0.5 and those (Tetragonal) for x=1.0 

upto x=0.06  
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The lattice parameters of different compositions are shown in Table 4.6. The pattern of 

composition x=0.6 appears to contain both the cubic and tetragonal phases.  Because, 

(a) both cubic and tetragonal indexing were possible on the pattern (the lattice 

parameters for both the indexing are shown in Table 4.6) and (b) it shows relatively 

higher FWHM (Table 4.6) of its diffraction peaks. However, the patterns of x=0.8 and 

1.0, were indexed in tetragonal system. The composition, x=1.0, i.e, Sr(Ti0.5Zr0.5)O3, is 

reported to be tetragonal [44,38] with space group I4/mcm. So upon Sr substitution in 

BTZ, the structure changes from Pm-3m cubic (Z=1) to I4/mcm tetragonal (Z=4) above 

x>0.6.  The 100% relative intensity peak widths of all the compositions were compared 

(Table-4.6).   Composition with   x=0.6 show highest FWHM among all, mainly due to 

the presence of both cubic and tetragonal phases in it. The composition x=0.5 shows 

slightly higher FWHM, may be due to the presence of 50:50 ratio of  Ba(Ti0.5Zr0.5)O3  

and Sr(Ti0.5Zr0.5)O3 in the solid solution.  

 

Table 4.6: Variation of crystal symmetry, lattice parameter, FWHM (100% relative 

intensity peak) and X-ray density of the (Ba1-xSrx)Ti0.5Zr0.5O3 compositions with 

different Sr (x) content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The calculated X-ray density was found to decrease with Sr substitution. As expected, 

the bulk density also decreases with the increase in Sr substitution. The apparent 

porosity was found to increase with the Sr substitution. This indicates that BTZ 

composition (x=0.0) is easy to sinter than SrTi0.5Zr0.5O3 (STZ) ceramics, i.e. the 

Sr 
(x) 

Symmetry Lattice 
parameter(Å) 

FWHM of  
I100 peak 

X-ray 
Density 
(gm/cc) 

0 Cubic a0 =4.101(02) 0.131 6.14 

0.2 Cubic a0 =4.078(07) 0.116 5.99 

0.4 Cubic a0 =4.065(02) 0.149 5.81 

0.5 Cubic a0 =4.057(07) 0.167 5.72 

0.6 
 

Cubic 
   + 
Tetragonal 

a0=4.042(06) 
      and 
a0 =5.717(15)  
 c0 =8.104(21) 

 
0.263 

5.66 
 
5.64 

0.8 Tetragonal a0 =5.694(06)  
 c0 =8.064(04) 

0.140 5.46 

1.0 Tetragonal a0=5.671(03) 
c0 =8.023(06) 

0.138 5.38 
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composition with x=1.0. The better sintering behavior of BTZ may also be revealed 

from its bigger grain size (Fig.6.1) in the sintered ceramics.   

 

4.4.2. Phase Formation of (Ba0.5Sr0.5)(Ti1-xZrx)O3 Ceramics 

Fig. 4.20 shows the XRD pattern of (Ba0.5Sr0.5)(Ti1-xZrx)O3 ceramics with different x 

value. The composition with x=0 was indexed in cubic system and was similar to PDF-

2 card no. 39-1395 for the material Ba0.5Sr0.5TiO3.  The intermediate compositions from 

x=0.2 to 0.6, were also indexed in cubic system with space group symmetry Pm3m. The 

diffraction pattern of x=0.8 composition was analyzed to contain cubic and tetragonal 

(I4/mcm) phase mixture. The cubic   phase of x=0.8 composition was very similar to the 

cubic phase of x=0.6 composition. This indicates that solid solution breaks around the 

composition x=0.8. The 80 atom% Zr substituted composition also suggests having 

superlattice structure due to the presence of two dissimilar structures [45].  

 

Figure. 4.20. XRD patterns of (Ba0.5Sr0.5)(Ti1-xZrx)O3 ceramics with their representative 

value of x (Zr) in the composition. 

 

It is reported by B.J.Kennedy, et al [41] that the end composition with x=1.0, i.e. 

Ba0.5Sr0.5ZrO3, contains orthorhombic Imma symmetry. No standard XRD pattern is 

available in PDF-2 data file for barium strontium zirconate (x=1.0) material. These 

identifications revealed that the system (Ba0.5Sr0.5TiO3) transforms from cubic to 

orthorhombic (Ba0.5Sr0.5ZrO3) upon Zr substitution for Ti, through an intermediate 

tetragonal phase formation. In our case, the composition Ba0.5Sr0.5Zr0.8Ti0.2O3 contains 

both tetragonal and orthorhombic phase. The details of structural information of the 

Ba0.5Sr0.5ZrO3 composition are given in the Chapter 7 after Rietveld refinement. The 
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Fig.4.19 also shows that the substitution of Zr4+ for Ti4+ increases the d-spacing yielding 

the shift of diffraction peaks towards lower 2θ angle. This is the clear indication that 

Zr4+ is systematically dissolved in Ba0.5Sr0.5TiO3 lattice upto 60 atom% substitutions. 

Lattice parameter increases due to the incorporation of bigger Zr4+ (0.087 nm) for 

smaller Ti4+ (0.068 nm). The lattice parameters of respective cubic, tetragonal and 

orthorhombic phases present in the samples are shown in the Table-4.7, along with the 

full width at half maxima (FWHM) of the 100% relative intensity (I100) peak of the 

phases and their X-ray density.  Compositions with x=0.2, 0.4 and 0.5 show 

comparatively higher FWHM (Table-4.7) than other samples.  The peak broadening can 

arise in a number of ways including compositional inhomogeneity, hysteresis near the 

phase transition, presence of defects in the crystal lattice, presence of very fine 

particles, etc.  

 

Table 4.7: The crystal symmetry, lattice parameter and FWHM of 100% relative 

intensity peak of the phases present in the (Ba0.5Sr0.5)(Ti1-xZrx)O3 with different Zr (x) 

concentration. 

Zr(x) Symmetry Lattice parameter FWHM of  
I100 peak 

X-ray Density 
(gm/cc) 

0 Cubic(Pm3m) a0=3.9535(12) 0.114 5.596 

0.2 Cubic a0=4.0046(41) 0.302 5.6107 

0.4 Cubic a0=4.0485(40) 0.415 5.6471 

0.5 Cubic a0 =4.057(07) 0.167 5.7194 

0.6 Cubic a0=4.0822(11) 0.156 5.7199 

 
0.8 

Cubic    
Tetragonal 
(I4/mcm)  

a0=4.10976(17) 
a0=5.8707(80) 
c0= 8.1683(44) 

0.185 
 

0.219 

5.8128 
 
5.7332 

 
1.0 

Orthorhombic 
(Imma) 

a0=5.86900(50) 
b0=8.30590(71) 
c0= 5.90058(36) 

 
0.121 

 
5.8122 

 

The presence of very fine particles may be ruled out here because of the several heat 

treatments during processing. For example the composition x=0.2 shows a high 

FWHM, although it was allmost melted during high temperature calcinations.  Here the 

associated broadening may be related to the formation of disordered cubic structure as 

reported for barium titanate zirconate (BZT) by A. Dixit et al.[47]. This disorderness 

(i.e., peak broadening) is maximum at x=0.4 composition.    
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4.5. Effect of Ca and Mg on BaTi0.6Zr0.4O3 Ceramics 

4.5.1. Effect of Ca on the Phase Formation of BaTi0.6Zr0.4O3 Ceramics 

Fig. 4.21 shows the XRD pattern of the Ba1-xCaxTi0.6Zr0.4O3 samples with 

different Ca (x) concentration. The compositions, x=0.0, and x=0.1, i.e., Ba 

(Ti0.6Zr0.4)O3 and Ba0.9Ca0.1Ti0.6Zr0.4O3 were indexed in cubic symmetry with space 

group pm3m. The Ca-rich compositions (i.e., with x≥0.2) are indexed according to a 

mixture of orthorhombic CaTiO3 and tetragonal Ba0.9Ca0.2Ti0.6Zr0.4O3 phases. Recently, 

I. Levin el al [49] reported that solubility of CaO in BaZrO3 increases from a few 

percent at 1,400oC to about 30 % at 1,650oC. But in the present study at 1,500OC/ 4hr, 

the solubility of Ca, in Ba (TiZr) O3 fails at around 20 atom %. The Zr4+ ion is 

chemically more stable than Ti4+ ion, which may be the one cause for breaking of solid 

solution [50]. The quantities of these phase present in the Ca rich compositions are 

discussed in the Chapter-5 by quantitative estimation of the phases using Rietveld 

refinement technique.  
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Figure. 4.21. XRD pattern of (Ba1-XCaX) Ti0.6Zr0.4O3 ceramics with different Ca (x) 

content. 

 

The lattice parameters of single phase compounds in the system are shown in the Table-

4.8 along with the cell volume, x ray density and full width at half maxima (FWHM) of 

the 100% relative intensity (I100) peak of the phases. The lattice parameters of other 

compositions (mixed phase) are given in the Chapter 5 after Rietveld refinement.   
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Table 4.8: Variation of crystal symmetry, lattice parameter, Cell volume and FWHM 

(100% relative intensity peak) with different Ca (x) concentration in the (Ba1-XCaX) 

Ti0.6Zr0.4O3. 

Ca 
(x) 

Symmetry Lattice 
parameter(Å) 

Cell 
Volume 
(Å3)  

X-ray 
density 
(gm/cc) 

FWHM of 
100% RI 
peak 

0 cubic a0 =4.0934 68.6566  6.0695 0.209 

0.1 Tetragonal a0 = 4.061 66.973 5.8002 0.201 

0.2 Mixed Phase     

0.4 Mixed Phase     

0.5 Mixed Phase     

 

4.5.2. Effect of Mg on the Phase Formation of BaTi0.6Zr0.4O3 Ceramics 

Fig. 4.22 shows the XRD pattern of the Ba1-xMgxTi0.6Zr0.4O3 samples with 

different Mg (x) concentration. The plot shows that the compositions are of single phase 

and were indexed in cubic system with space group pm3m. There is a slight shift of the 

peaks towards higher angle indicating the decrease in lattice parameter due to the 

substitution of Ba by smaller Mg. This observation indicates that Mg is systematically 

dissolved in BTZ ceramic within the studied composition range (x=0.14).  
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Figure. 4.22. XRD patterns of (Ba1-XMgX) Ti0.6 Zr0.4O3 ceramics with different Mg(x) 

content. 

 

 

 

 



 73

Table 4.9: Variation of crystal symmetry, lattice parameter, cell volume and FWHM 

(100% relative intensity peak) with different Mg (x) concentration in the (Ba1-XMgX) 

Ti0.6Zr0.4O3. 

 

Mg(x) Symmetry Lattice 
parameter(Å) 

Cell 
Volume 
(Å3)  

X-ray 
density 
(gm/cc) 

FWHM 
of 
100% RI 
peak 

0.0 cubic a0 =4.0934 68.6566 6.0695 0.209 

0.03 cubic a0 =4.091 68.618 5.9721 0.160 

0.07 cubic a0 =4.089 68.368 5.8717 0.163 

0.14 cubic a0 =4.081 67.97 5.6687 0.144 

 

Table 4.9 shows; there is decrease in cell volume with increase in Mg content due to the 

substitution of smaller Mg in place of Ba. The FWHM of 100% relative intensity peak 

of the compositions decreases with increase in Mg content. The reason may be due to 

the formation of more crystalline phase with increase in Mg, which has relatively lower 

melting temperature than Ba.  

 

4.6. Summary and Conclusions 

 The formation kinetics of BaTiO3-SrTiO3 solid solution from mixture of BaCO3, 

SrCO3 and TiO2 powders and the formation kinetics of BaZrO3-SrZrO3 solid solution 

from mixture of BaCO3, SrCO3 and ZrO2 powders have been studied in air at 700-

1500OC using TGA/DSC and XRD. The formation kinetics of BaTiO3-BaZrO3 solid 

solution from mixture of BaCO3, TiO2 and ZrO2 powders and the formation kinetics of 

SrTiO3-SrZrO3 solid solution from mixture of SrCO3, TiO2 and ZrO2 powders have 

been studied in air at 700o-1600oC using TGA/DSC and XRD. Based on non-isothermal 

kinetic analysis and on crystal structure, the reaction mechanism can be described as 

follows; 

1. During Ba0.5Sr0.5TiO3 formation, initially BaTiO3 and SrTiO3 phases are formed 

through direct solid state reaction between BaCO3, SrCO3 and TiO2 at lower 

temperature. The phases like Ba2TiO4, BaTi3O7, Sr2TiO4 or SrTi2O7 etc., have 

not been detected. BaTiO3 formation requires less activation energy than 

SrTiO3, which may be due to the difference in their ionic radius. The BST(ss) 

forms coherently with BT at lower temperature. During the second stage, at 

relatively higher temperature, BST solid solution is formed due to the diffusion 

of BaTiO3 and SrTiO3. Activation energy for this step is relatively higher. 
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2. During Ba0.5Sr0.5ZrO3 formation, BaZrO3 and SrZrO3 phases are formed through 

direct solid state reaction between BaCO3, SrCO3 and ZrO2 at lower 

temperature. The phases like Ba2ZrO4, BaZr3O7, Sr2ZrO4 or SrZr2O7 etc., have 

not been detected. BaZrO3 formation requires less activation energy than 

SrZrO3. During the second stage, at relatively higher temperature, BSZ solid 

solution is formed coherently at the [200] plane of SZ due to the diffusion of 

BaZrO3 in to SrZrO3. Solid solution was formed coherently with the crystal of 

SrZrO3. 

3. During phase formation of Ba (Ti0.5Zr0.5)O3, the BaTiO3 and BaZrO3 phases are 

formed through direct solid-state reaction between BaCO3 and TiO2, ZrO2, with 

latter two acting as diminishing cores. Formation of intermediate phases as 

Ba2ZrO4, Ba2TiO4 or BaTi3O7, etc has not been detected. BaTiO3 formation 

activation energy, 34.3 kcal/mol, is lower than BaZrO3 formation energy, 48.4 

kcal/mol, which may be due to the difference in their ionic radius. During the 

second step, BaTiO3-BaZrO3 solid solution is formed mainly by the diffusion of 

BaTiO3 into the BaZrO3 lattice, where latter phase acts as diminishing core. 

Activation energy for this step is 133 kcal/mole, which may be due to the 

diffusion of Ba and/or O ions through solid solution interface. 

4. Sr(Ti0.5Zr0.5)O3 solid solution was formed through solid state reaction from a 

mixture of SrCO3, TiO2 and ZrO2, via the formation of SrTiO3 and SrZrO3 

phases separately in the system and then inter-diffusion of SrTiO3 into SrZrO3 to 

form the solid solution.   The rate of SrTiO3 formation was higher than that of 

SrZrO3 formation, apparently due to the higher ionic radius of Zr+4 ions. The 

activation energies of phase formations were 47.27, 65.78 and 297.52 Kcal/mol 

for SrTiO3, SrZrO3 and Sr(Ti0.5Zr0.5)O3 respectively and  the formation 

reactions were limited by the diffusion of  Sr ion for SrTiO3, Zr ion for SrZrO3 

and Ti ions for Sr(Ti0.5Zr0.5)O3, etc. Solid solution was formed coherently with 

the crystal of SrZrO3. 

5. The solid solution system Ba1-xSrx (Ti0.5Zr0.5)O3 remains cubic up to x<0.6 and 

tetragonal in the range x = 0.6 to 1.0. Composition at x=0.6 contains mixed 

phase structure with broadened diffraction pattern. 

6. The solid solution system (Ba0.5Sr0.5)(Ti1-xZrx)O3 remains cubic up to x≤0.6, the 

solid solution breaks around x=0.8 and Ba0.5Sr0.5ZrO3 has tetragonal structure. 

Compositions with x=0.2, 0.4 and 0.5 have deformed cubic structure with 

broadened diffraction pattern, suggesting to show relaxor properties 
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7. The compositions, x=0.0, and x=0.1, i.e, Ba(Ti0.6Zr0.4)O3 and 

Ba0.9Ca0.1Ti0.6Zr0.4O3 were indexed in cubic system with space group pm3m The 

compositions with x=0.2, 0.4 and 0.5 were indexed as mixture of both tetragonal 

(like Ba0.9Ca0.1Ti0.6Zr0.4O3) symmetry with space group 14/mcm and 

orthorhombic CaTiO3 symmetry with space group Pbnm, respectively.  

8. The solid solution system Ba1-xMgx (Ti0.6Zr0.4)O3 remains cubic in the studied 

compositions. The peaks are only shifting towards higher angle, indicating 

decrease in lattice parameter due to the incorporation of smaller Mg in place of 

higher-radius Ba. This is a clear indication that the Mg is systematically 

dissolved in BTZ lattice in the studied composition range. 
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Chapter 5 

 

RIETVELD REFINEMENT 

 

5.1. Introduction  

 The work of structure determination goes on continuously since there is no 

dearth of unsolved structures. New substances are constantly being synthesized and the 

structures of many old ones are still unknown. In themselves crystal structures vary 

widely in complexity: the simplest can be solved in a few hours, while the more 

complex ones may require months or even years for their complete solution. Protein 

forms a notable example of latter kind; some protein structures are now known, but 

others still defy solution. Complex structure requires complex methods of solution, and 

structure determination. All we can do here is to consider some of the principles 

involved and how they can be applied to the solution of fairly simple structures. 

Moreover, we will confine our attention to the methods of determining structures from 

powder patterns alone, because such patterns are the kind most often encountered by the 

material physicist.  

The wellknown basic principle of the crystal structure determination is that the 

crystal structure of a substance determines the diffraction pattern of the substance or, 

more specifically, that the shape and size of the unit cell determine the angular position 

of the diffraction lines, and the arrangement of the atom within the unit cell determines 

the relative intensities of the lines. Since structure determines the diffraction pattern, it 

should be possible to go in the other direction and deduce the structure from the pattern. 

It is possible, but not in any direct manner. Given a structure, we can calculate its 

diffraction pattern in a very straightforward way. But the reverse problem, that of 

directly calculating the structure from the observed pattern, has not yet been solved for 

the general case. The procedure adopted is essentially one of trial and error. If they 

agree in all detail, the assumed structure is correct; if not, the process is repeated as 

often as is necessary to find the correct solution. The problem is not unlike that of 

deciphering a code, and requires of the crystallographer the same quality possessed by a 

good cryptanalyst, namely, knowledge, perseverance, and not a little intuition. 

Only when these three steps have been accomplished the structure determination 

is complete. The third step is generally the most difficult, and there are many structures 

which are known only incompletely, in the sense that the final step has not yet been 
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made. Nevertheless, knowledge of the shape and size of the unit cell, without any 

knowledge of atom positions, is in itself of very great value in many applications. 

Rietveld method is a wellestablished technique for crystal structural refinement. 

Since the last few decades, there have seen great advances in our ability to extract 

detailed crystal structural information from powder diffraction data, e.g. to do 

systematic structure refinement using the Rietveld method. It was Rietveld who first 

worked out computer based analytical procedures [1,2] to make use of full information 

content of powder pattern and very importantly, widely, freely, put them in the public 

domain through his computer program. This chapter provides a general introductory 

account of what the method is and how it works. 

 In this technique, the things actually being refined are parameters in models for 

the structure and the instrumental effects on the diffraction pattern. In the Rietveld 

method the least squares refinements are carried out until the best fit is obtained 

between the entire observed powder diffraction pattern taken as a whole and the entire 

calculated patterns based on the simultaneously refined models for the crystal 

structure(s), diffraction optics effect, instrumental factors, and other specimen 

characteristics (e.g. lattice parameters) as may be desired and can be modeled [3]. A key 

feature is the feedback, during refinement, between improving knowledge of the 

structure and improving allocation of observed intensity to partially overlapping 

individual Bragg reflections. 

 This key feature is not present in other popular methods of structure refinement 

from powder data in which: (i) the assignment of all observed intensity to individual 

Bragg reflections, and (ii) subsequent structure refinement with so derived Bragg 

intensities is carried out as separate, non interacting procedures. The first procedure is 

appropriately called “pattern decomposition” and may be defined as a systematic 

procedure for decomposing a powder pattern into its component Bragg reflections 

without reference to a crystal structural model. The decomposition procedures in 

general use may be classified into two categories according to whether the lattice 

parameters are known and are used to fix the positions of the possible Bragg reflections. 

Such use of the lattice parameters goes a long way toward reducing the intensity 

assignment ambiguity to acceptable level.  

 

5.2. Structure Evolution by X-ray Powder Diffraction 

On the basis of an educated guess, a structure is assumed, its diffraction pattern 

calculated, and the calculated pattern compared with the observed one. If the two agree 
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in all details, the assumed structure is correct; if not, the process is repeated as often as 

is necessary to find the correct solution.  

The determination of an unknown structure proceeds in three major steps: 

1. The shape and size of the unit cell are deduced from the angular positions of the 

diffraction lines. An assumption is first made as to which of the seven crystal 

systems the unknown structure belongs to, and then, on the basis of this 

assumption, the correct Miller indices are assigned to each reflection. This step is 

called indexing the pattern and is possible only when the correct choice of crystal 

system has been made. Once this is done, the shape of the unit cell is known (from 

the crystal system), and its size is calculable from the positions and Miller indices 

of the diffraction lines. 

2. The number of atoms per unit cell is then computed from the shape and size of the 

unit cell, the chemical composition of the specimen, and its measured density. 

3. Finally, the positions of the atoms within the unit cell are deduced from the 

relative intensities of the diffraction lines. 

Only when these three steps have been accomplished is the structure 

determination complete. The third step is generally the most difficult, and there are 

many structures which are known only incompletely, in the sense that this final step has 

not yet been made. Nevertheless, knowledge of the shape and size of the unit cell, 

without any knowledge of atom positions, is in itself of very great value in many 

applications. 

The average metallurgist is rarely, if ever, called upon to determine an unknown 

crystal structure. If the structure is at all complex, its determination is a job for a 

specialist in x-ray crystallography, who can bring special techniques, both experimental 

and mathematical, to bear on the problem. The metallurgist should, however, know 

enough about structure determination to unravel any simple structures he may encounter 

and, what is more important, he must be able to index the powder patterns of substances 

of known structure, as this is a routine problem in almost all diffraction work. The 

procedures given above for indexing patterns are applicable whether the structure is 

known or not, but they are of course very much easier to apply if the structure is known 

beforehand.  

There are several procedures for measurement of lattice parameters. The least 

square method provides more accurate information in comparison to others. “If a 

number of measurements are made of the same physical quantity and if these 

measurements are subject only to random errors, then the theory of least squares states 
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that the most probable value of the measured quantity is that which makes the sum of 

the squares of the errors a minimum”. 

In all cases, the best-fit sought is the best least squares fit to all thousands of yi’s 

simultaneously. The quantity minimized in the least squares refinement is the residual, 

Sy:  

   ( )∑ −=
i

ciiiy yywS
2
                     (5.1) 

where wi =1/yi, 

   yi = observed  (gross) intensity at the i th step, 

   yci = Calculated intensity at the i th step 

and the sum is over all dada points. 

 A powder diffraction pattern of a crystalline material may be thought of as a 

collection of individual reflection profiles, each of which has a peak height, peak 

position, a breadth, tails which decay gradually with distance from the peak position, 

and an integrated area which is proportional to the Bragg intensity, IK, where K stands 

for Miller indices, h,k,l, IK is proportional to the square of the absolute value of the 

structure factor, KF
2
. In all powder diffraction patterns but those so simple that the 

Rietveld method is not needed in the first place, these profiles are not all resolved but 

partially overlap one another to a substantial degree. 

 It is a crucial feature of the Rietveld method that no effort is made in advance to 

allocate observed intensity to particular Bragg reflections or to resolve overlapped 

reflections. Consequently, a reasonably good starting model is needed. The method is a 

structure refinement method. It is not a structure solution method. 

 Typically, many Bragg reflections contribute to the intensity, yi, observed at any 

arbitrarily chosen point, i, in the pattern. The calculated intensities yci are determined 

from KF
2 values calculated from the structural model by summing of the calculated 

contributions from neighboring (i.e. within a specified range) Bragg reflections plus the 

background: 

∑ +−=
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θθφ                        (5.2) 

where; S is the scale factor, 

K represents the Miller indices, h k l, for a Bragg reflection, 

LK contains the Lorentz, polarization, and multipilicity factor, 

Φ is the reflection profile function, 

PK is the preferred orientation function, 
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A is the absorption factor, 

FK is the structure factor for the K the Bragg reflection, and 

ybi is the background intensity at the i th step, 

The effective absorption factor, A, differs with instrument geometry, It is 

usually taken to be a constant for the instrument geometry most used for X-ray 

diffractometers, that of a flat specimen with its surface maintained normal to the 

diffraction vector by a θ-2θ relationship between specimen rotation and detector 

rotation about the diffractometer axis. It does depend on angle for other geometries. 

In a number of available computer programs for Rietveld method, the ratio of 

the intensities for the two X-ray Kα wavelengths (if used) is absorbed in the calculation 

of KF 2, so that only a single scale factor is required. 

The least squires minimization procedures lead to a set of normal equations 

involving derivatives of all of the calculated intensities, yci, with respect to each 

adjustable parameter and soluble by inversion of the normal matrix with element Mjk 

formally given by 
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where the parameters xj,xk are the adjustable parameters. In the use of this algorithm, it 

is a common practice to approximate these matrix elements by deletion of the first term, 

that is (yi-yci). 

 Thus, one is dealing with the creation and inversion of an m by m matrix, where 

m is the number of parameters being refined. Because the residual function is non 

linear, the solution must be found with an iterative procedure in which the shifts, ∆xk, 

are    

    ∑ −=∆
k

j

jkx
dx

ds
Mx

1                          (5.4) 

 The calculated shifts are applied to the initial parameters to produce a, 

supposedly, imposed model and the whole procedure is then repeated. Because the 

relationships between the adjustable parameters and the intensities are nonlinear, the 

starting model must be close to the correct model or the nonlinear least squares 

procedure will not lead to the global minimum. Rather, the procedure will either diverge 

or lead to a false minimum if the starting point is in its domain. This is true for all 

nonlinear least squares refinements, not just for Rietveld refinements. Selection of 

different least squares algorithms at different stages of refinement may alleviate the 
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false minimum problem in some cases. Another approach is to use multiple data sets of 

different kinds, e.g., X-ray and neutron, simultaneously or to use constraints. Other 

approaches can also help one to avoid false minima or, at least, to be properly 

suspicious that a minimum may not necessarily be the global minimum just because it is 

stable. 

 The model parameters that may be refined include not only atom positional, 

thermal, and sit-occupancy parameters but also parameters for the background, lattice, 

instrumental geometrical-optical features, specimen aberrations (e.g. specimen 

displacement and transparency), an amorphous component, and specimen reflection 

profile-broadening agents such as crystallite size and microstrain. In some cases, it is 

important to model extinction, as well. Although it is, in general, a much less severe 

problem with powders than with single crystals, extinction can be quite important in 

some powder specimen. Multiple phase may be refined simultaneously and comparative 

analysis of the separate overall scale factors for the phases offers what is probably the 

most reliable current method for doing quantitative phase analysis. Individual 

anisotropic thermal parameters have rarely been refined satisfactorily from ordinary 

laboratory X-ray powder diffraction data, but they have been with fixed wavelength 

neutron data and are refined almost routinely with TOF neutron powder diffraction data. 

 

5.2.2. Microstructure Evolution by X-ray Powder Diffraction 

 Microstructure characterization of (Ba0.5Sr0.5) TiO3, (Ba0.5Sr0.5)ZrO3, 

Ba0.5(Ti0.5Zr0.5)O3, Sr0.5 (Ti0.5Zr0.5)O3 and Ba1-xAx (Ti0.6Zr0.4) O3 samples (where A is 

Ca or Mg) has been made by employing the Rietveld’s whole profile fitting method 

based on structure and microstructure refinement. The experimental profiles were fitted 

with most suitable pseudo-Voigt analytical function because it takes individual care for 

both the particle size and strain broadening of the experimental profiles. 

 For both the Kα1 and Kα2 profiles, the line broadening function B (2θ) and the 

symmetric part of instrumental function S (2θ) may be represented by the pseudo-Voigt 

function [4]: 

[ ])()1()()(
2
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−+= ∑          (5.5) 

where the Cauchyian component, C(x) = (1 + x2)−1 and the Gaussian component, G(x) = 

exp[−(ln 2)x2] with x =(2θ − 2θ0)/HWHM (HWHM: half-width at half-maxima of the 

X-ray peaks) and HWHM = 1/2FWHM = 1/2(U tan2 θ + V tan θ + W)
1/2, where U, V 
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and W are coefficients of the quadratic polynomial, η the Gaussianity of X-ray profile, 

θ0 the Bragg angle of Kα1 peak and Int the scale factor. 

The powder diffraction patterns were simulated providing all necessary 

structural information and some starting values of microstructural parameters of the 

individual phases with the help of the Rietveld software, the MAUD l.99 [5]. Initially, 

the positions of the peaks were corrected by successive refinements of zero-shift error. 

Considering the integrated intensity of the peaks as a function of structural parameters 

only, the Marquardt least-squares procedures were adopted for minimization of the 

difference between the observed and simulated powder diffraction patterns, and the 

minimization was carried out by using the reliability index parameter, Rwp (weighted 

residual error), and RB (Bragg factor) defined as: 
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The goodness of fit (GoF) is established by comparing Rwp with the expected error, Rexp 
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where )(obsiy  and )(caliy are the experimental and calculated intensities, respectively, 

wi(1/ )(obsiy ) and N are the weight and number of experimental observations, and P is the 

number of fitting parameters. This leads to the value of goodness of fit [6]: 

exp

R

R
GoF

wp=             (5.9) 

Refinement continues till convergence is reached with the value of the quality factor, 

GoF very close to 1, which confirms the goodness of refinement. 

 

5.2.3. Phase Quantity Analysis by X-ray Powder Diffraction 

The Rietveld’s method was successfully applied for determination of the 

quantitative phase abundances of the composite materials. There is a simple relationship 

between the individual scale factor determined, considering all refined structural 

parameters of individual phases of a multiphase sample, and the phase concentration 
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(volume/weight fraction) in the mixture. The weight fraction (Wi) for each phase was 

obtained from the refinement relation 

∑
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              (5.10) 

where i is the value of j for a particular phase among the N phases present, Sj the refined 

scale factor, Z the number of formula units per cell, M the atomic weight of the formula 

unit and V the volume of the unit cell [7,5]. The structure refinement along with size–

strain broadening analysis was carried out simultaneously by adopting the standard 

procedure [5, 7]. 

 

5.2.4. Size-Strain Analysis by X-ray Powder Diffraction 

 The basic consideration of this method is the modeling of the diffraction profiles 

by an analytical function, which is a combination of Cauchyian, Gaussian, and 

asymmetry functions as well. It has been well established that the observed peak 

broadenings of the sample profiles are mainly due to the presence of small particle size 

and rms strain inside the particles. The particle size and strain broadening can be 

approximated better with Cauchian and Gaussian type functions, respectively [8,9]. 

Being a linear combination of a Cauchyian and Gaussian functions, the pV function is 

the most reliable peak-shape function and is being widely used in the Rietveld structure 

refinement software. The process of successive profile refinements is modulated with 

different structural and microstructural parameters of the simulated pattern to fit the 

experimental diffraction pattern. Profile refinement continues until convergence is 

reached in each case, with the value of the quality factor (GoF) approaching very close 

to 1. 

 

5.3. Method of Analysis  

In the present case, we have adopted the Rietveld’s powder structure refinement 

analysis of X-ray powder diffraction data to obtain the refined structural parameters, 

such as atomic coordinates, occupancies, lattice parameters, thermal parameters, etc. 

and microstructural parameters, such as particle size and rms lattice strain, etc. The 

Rietveld software MAUD 1.99 [7] is used here for structural and microstructural 

parameter refinement. The program was developed to analyze diffraction spectra and 

obtain crystal structures, quantity and microstructure of phases along with the texture 

and residual stresses. It applied the RITA/RISTA method as developed by Wenk, 
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Matthies and Lutterotti [10] and Ferrari and Lutterotti [11]. The diffraction spectrum 

fitting is based on the so-called Rietveld method. Rietveld software MAUD is specially 

designed to refine simultaneously both the structural and microstructural parameters 

along with the texture and residual stresses through a least square method. The peak 

shape was assumed to be a pseudo-Voigt (pV) function with asymmetry. The 

background of each pattern was fitted by a polynomial function of degree four.  

 To simulate the theoretical X-ray powder diffraction pattern, the phases in the 

following considerations were made: 

(i) SrTiO3, and BaZrO3 (Cubic), the space group was taken as pm3m with all atom 

in the general Wyckoff position. 

(ii)  CaZrO3 (Orthorhombic), the space group is Pcmn (#62) with all atom in the 

general Wyckoff position. 

(iii)  BaTi0.5Zr0.5O3 (Cubic), the space group was taken as pm3m with all atoms in 

the general Wyckoff position similar to cubic BaZrO3.  

(iv) SrTi0.5Zr0.5O3 (Tetragonal), the space group was taken as I4/mcm with all atoms 

in the general Wyckoff position as suggested by B.J.Kennedy [12] 

(v) Ba0.5Sr0.5TiO3 (Cubic), the space group was taken as pm3m with all atoms in the 

general Wyckoff position similar to cubic SrTiO3.  

(vi) Ba0.5Sr0.5ZrO3 (Orthorhombic), the space group was taken as Imma with all 

atoms in the general Wyckoff position as suggested by B.J. Kennedy [13] 

(vii) Ba1-xCaxTi0.6Zr0.4O3 (x≥0.2) is the mixture of two phases. For Ba1-

xCaxTi0.6Zr0.4O3 (x<0.1) the space group was taken as Pm3m with all atoms in 

the general Wyckoff position obtained BaTi0.6Zr0.4O3 as the complete solid 

solution exists. For higher Ca content compositions the initial parameters were 

taken as suggested by I.Levin et al. for Ba0.8Ca0.2 ZrO3 [14]. For CaTiO3, the 

space group and Wyckoff positions were taken as available in the MAUD 

standard structure database 

(viii) Ba1-xMgxTi0.6Zr0.4O3 (x≤0.14) (Cubic), the space group was taken as pm3m with 

all atoms in the general Wyckoff position similar to cubic BaTi0.6Zr0.4O3 as 

observed in the present study.  

The initial lattice structural parameter was calculated from the reflections and by 

correcting with CCP14 program “Checkcell”. The Wyckoff positions were taken from 

the Wyckoff’s series. Initially, the positions of the peaks were corrected by successive 

refinements of systematic errors taking into account the zero-shift error and sample 
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displacement error. The U, V, W parameters of instrumental broadening, instrumental 

asymmetry and Gaussianity of reflections were estimated for the present setting of the 

instrument using a specially prepared Si standard [15] and found to vary with scattering 

angle in different manners. However, during the refinement all these instrumental 

parameters were kept fixed for estimation of values of all these parameters solely for a 

sample under investigation. Because the peak broadening, asymmetry and change in 

Gaussianity is directly related to the content of lattice imperfections (small particle size, 

lattice strain, dislocations, stacking faults, etc.) inside the sample. By refining 

instrumental parameters (which is a usual practice for structure refinement by 

Rietveld’s method) all this information regarding microstructure parameters of the 

sample would be lost. Structure and microstructure refinements were carried out 

simultaneously by refining scale factors, lattice parameters, occupancy factors, variable 

fractional atomic coordinates, particle size, rms lattice strain, preferred orientation 

factors, etc., of individual phases. Considering the integrated intensity of the peaks as a 

function of structure/microstructure parameters only, the Marquardt least squares 

procedures were adopted for minimization of the difference between the observed and 

simulated powder diffraction patterns. The minimization was carried out by using the 

reliability index parameter Rwp (weighted residual error), and RB (Bragg factor) [16-18]. 

The goodness of fit (GoF) was established by comparing Rwp with the expected error, 

Rexp [16-18]. 

The Rietveld’s method was successfully applied for determination of the 

quantitative phase abundances of the composite materials [19-20]. There is a simple 

relationship between the individual scale factor determined, considering all refined 

structural parameters of individual phases of a multiphase sample, and the phase 

concentration (volume/weight fraction) in the mixture. The structure refinement along 

with size–strain broadening analysis was carried out simultaneously by adopting the 

standard procedure [5]. The process of successive profile refinements modulates 

different structural and microstructural parameters of the simulated pattern to fit the 

experimental diffraction pattern. Refinement continues till convergence is reached with 

the value of the quality factor, GoF very close to 1, which confirms the goodness of 

refinement. Refined parameters included scale factor, background coefficient, profile 

coefficients, positional parameter and isotropic thermal displacement parameters. 

During the refinement fitting of both background and diffraction intensities were taken 

care by interactive method. Symmetry constraints on the thermal parameters in the 
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different space group were taken into account, but parameters could not be measured 

satisfactory within the detection limit of the present XRD data. This can be better 

monitored using high resolution synchrotron radiation or neutron diffraction data. 

5.4. Experimental Setup and Conditions 

Obviously, the powder data must be in digitized form in order to be used in 

today’s computers. Hence the diffraction pattern is recorded in digitized form, i.e., as a 

numerical intensity value, yi, at each of several thousand equal increments (steps), i, in 

the pattern. Depending on the method, the increments may be either in scattering angle, 

2θ, or some energy parameter such as velocity (for time-of- flight neutron data) or 

wavelength (for X-ray data collected with an energy dispersive detector and an incident 

beam of white X radiation). For constant-wave data, the increments are usually steps in 

scattering angle and intensity yi at each step i. The pattern is measured either directly 

with a quantum detector on diffractometer or indirectly with step scanning 

microdensitometry of film data. Rietveld refinement with X-ray diffraction data has 

been notably successful both with fixed wave length data and with TOF data. In 

Rietveld method, it does not matter what powder diffraction data are used for 

refinement. Typical step sizes range from 0.01 to 0.05O 2θ for fixed wavelength X-ray 

data and a bit larger for fixed wave length neutron data.  

In the present case for structural refinement, all of the powders mixtures (except 

Ca and Mg substituted samples) were calcined at 1,3000C for 4h, 1,4000C for 4h and 

finally 1,6000C for 1h with intermediate mixing and grinding between each firing. The 

samples with Ca and Mg substitution samples were calcined at 1,2000C for 4h, 1,3500C 

for 4h and finally 1,4500C for 1h. The resulting powders were ground by an agate 

mortar to avoid aglomorization, and considered for further study. After the above 

thermal treatment, all the phases in their respective compositions were stabilized. 

Structural and microstructural parameters were analyzed from the X-ray powder 

diffraction profile. Patterns were recorded using Cu - Kα1 radiation from a highly 

stabilized and automated Philips (Netherlands) X-ray generator (PW 1830) operated at 

35 kV and 30 mA. The generator is coupled with a Philips X-ray powder diffractometer 

consisting of a PW 3710 mpd controller, PW 1050/51 goniometer, and a proportional 

counter. For this experiment, 1O divergence slit, 0.2 mm receiving slit, 1O scatter slit 

and 5O soller slit system were used. The step scan data of step size 0.02O 2 theta and 5 

sec, counting time per step were recorded and stored in a PC, coupled with the 

diffractomter.   
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5.5. Results and Discussion 

5.5.1. Refinement of BaTi0.5Zr0.5O3.  

Structural refinements were carried out for the composition BaTi0.5Zr0.5O3 using 

Rietveld structural refinement program MAUD 1.999 and the final output is drawn in 

the Fig. 5.1. Structural refinements were carried out taking the end member reference 

for the cubic (space group Pm3m) compound BaZrO3. The initial parameters for the end 

member were taken from the reference [14]. The structural refinement showed that the 

composition BaTi0.5Zr0.5O3 is cubic with space group Pm3m. The lattice parameter, 

crystallite size and rms strain were found to be 4.11731 (Å), 57.40 nm and 0.0008, 

respectively. The occupancy factors for the mixed Ti and Zr sites were fixed at the 

nominal composition. The Ti and Zr displacement parameters were constrained to be 

equal. The refinements produced satisfactory agreement factors Rwp (weighted residual 

error), Rp (Brag factor) and Rexp (expected error) for 5500 observations and 42 variables 

(Fig.5.1), which are given in the caption of the Fig. 5.1. Atomic thermal (displacement) 

parameters are x 100Å2. 

 

 

Figure 5.1 Observed (▪), calculated (―) and residual (lower) X -ray powder diffraction 

patterns of BaTi0.5Zr0.5O3 composition revealed from Rietveld’s powder structure 

refinement analysis. Peak positions of the phases are shown at the base line as small 

markers (l). Rwp (%) = 12.096081, Rp (%) = 9.412923, Rexp (%) = 8.68739 and Sigma= 

1.3922173 
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Table 5.1: Final outcome of the structural feature of the BaTi0.5Zr0.5O3 composition 

where ζ : Site occupancy, β : Isotropic thermal parameter, 

and N : Atom Number per unit cell calculated from site occupancy 

 

5.5.2. Refinement of SrTi0.5Zr0.5O3.  

Fig. 5.2 represents the final output after structural refinements for the 

composition SrTi0.5Zr0.5O3. Structural refinements were carried out taking the positional 

parameter for end members SrZrO3 as orthorhombic with space group Pbnm, and 

SrTiO3 as cubic with space group Pm3m. Recently B.J. Kenedy et al [13] reported that 

orthorhombic symmetry with space group Pbnm transforms to a higher symmetry cubic 

symmetry with space group Pm3m with intermediate tetragonal structure with space 

group I4/mcm. As reported by B.J. Kennedy [13], in tetragonal stracture of 

SrTi0.5Zr0.5O3 with space group I4/mcm, the Sr occupies the 4b site at (0, 0.5, 0.25) and 

the Ti and/or Zr on 4 c site at (0, 0, 0). There are also two types of oxygen atoms, O (1) 

on 4 a site (0,0,1/4) and O (2) on 8h site at (0.2840, x+0.5, 0). In our case successful 

refinement confirms that the structure of SrTi0.5Zr0.5O3 is tetragonal with space group 

I4/mcm. The lattice parameter, crystallite size and rms strain were found to be 

a0=5.67375 Å and c0= 8.01273 Å, 49.66 nm and 0.0013 respectively. The refinements 

produced satisfactory agreement factors for 5500 observations and 42 variables 

(Fig.5.2), which are given in the caption of the Fig. 5.2.  

 

 

Atom x y z ζ N β 

Ba 0.0 0.0 0.0 1 1 1.1618 

Ti 0.4997 0.4995 0.4998 0.5 0.5 1.1832 

Zr 0.4999 0.4995 0.4997 0.5 0.5 1.1832 

O(1) 0.0 0.4996 0.4999 1 3 0.7176 
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Figure 5.2 Observed (▪), calculated (―) and residual (lower) X -ray powder diffraction 

patterns of SrTi0.5Zr0.5O3 composition revealed from Rietveld’s powder structure 

refinement analysis. Peak positions of the phases are shown at the base line as small 

markers (l). Rwp (%) = 8.653015, Rp (%) = 6.1653423, Rexp (%) = 7.5683146, and 

Sigma = 1.1433213 

 

The occupancy factors for the mixed Ti and Zr sites were fixed at the nominal 

composition. The Ti and Zr displacement parameters were constrained to be equal. 

Some of the positional features revealed from Rietveld’s powder structure refinement 

analysis for the composition SrTi0.5Zr0.5O3 are given in Table 5.2. Atomic thermal 

(displacement) parameters are x 100Å2. ζ : Site occupancy and β : Atom Number per 

unit cell calculated from site occupancy.  

 

Table 5.2.: Final outcome of the structural feature of the SrTi0.5Zr0.5O3 composition 

 

5.5.3. Refinement of Ba0.5Sr0.5TiO3 

Fig. 5.3 represents the final output after structural refinements for the 

composition Ba0.5Sr0.5TiO3. Structural refinements were carried out, initially taking the 

end member reference for the cubic (space group Pm3m) compound SrTiO3. The 

Atom x y z ζ N β 

Sr 0.0 0.4995 0.2504 1.0 4 0.9973 

Ti 0.0 0.0 0.0 0.5 2 0.5011 

Zr 0.0 0.0  0.0 0.5 2 0.5011 

O(1) 0.0 0.4996 0.2497 1 3 -0.2521 

O(2) 0.2165 X+0.5 0 1 8 2.9499 
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occupancy factors for the mixed Ba and Sr sites were fixed at the nominal composition. 

Initial atomic positional parameters for the composition Ba0.5Sr0.5TiO3 were taken as: 

Ba/Sr 1a (0,0,0), Ti 1b (1/2,1/2,1/2) and O 3c (0,1/2,1/2). After refinement, the 

positional and isotopic thermal (displacement) parameters are (x 100Å2) tabulated in the 

Table 6.3. The Ba and Sr displacement parameters were constrained to be equal. The 

refinements produced satisfactory agreement factors Rwp (weighted residual error), Rp 

(Brag factor) and Rexp (expected error) for 5,500 observations and 42 variables (Fig.5.3) 

which are given in the caption of the Fig. 6.3. The structural refinement showed that the 

composition Ba0.5Sr0.5TiO3 is cubic with space group Pm3m. The lattice parameter, 

crystallite size and rms strain of the composition were found to be a0=3.93526 Å, 58.54 

nm and 0.0007, respectively.  

 

Figure 5.3 Observed (▪), calculated (―) and residual (lower) X -ray powder diffraction 

patterns of Ba0.5Sr0.5TiO3 composition revealed from Rietveld’s powder structure 

refinement analysis. Peak positions of the phases are shown at the base line as small 

markers (l). Rwp (%) = 11.831947, Rp (%) = 8.892393,Rexp (%) = 8.670418, and Sigma= 

1.364634 

 

Table 5.3.: Final outcome of the structural feature of the Ba0.5Sr0.5TiO3 composition 

Atom x y z ζ N β 

Ba 0.0 0.0 0.0 0.5 0.5 0.4151 

Sr 0.0 0.0 0.0 0.5 0.5 0.4151 

Ti 0.5000 0.4999 0.5000 1 1 0.0126 

O(1) 0.0 0.5000 0.4996 1 3 1.0615 
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5.5.4. Refinement of Ba0.5Sr0.5ZrO3 

From Fig. 6.19 (Chapter 4) there is a systematic shift of the peaks to the lower 

angle. One may expect that this is due to the difference in ionic radius of the tetravalent 

cations. It is also mentioned in Chapter 4, that the transformation occurs from cubic (g.s 

Pm-3m) to orthorhombic (s.g Imma) with an intermediate space group I4/mcm. This 

phase transformation occurs in the composition around 80 % of the Zr. These 

observations are also in good agreement with the observation of B.J.Kennedy [12, 13]. 

To study the detailed structural and microstructural parameters, the composition 

BaSrZrO3 was studied using the Rietveld structural refinement program. The Wyckoff 

positions of orthorhombic symmetry with space group Imma were taken from the 

Wyckoff’s series. The structural refinement confirms that the composition 

Ba0.5Sr0.5ZrO3 presents orthorhombic symmetry with space group Imma. The occupancy 

factors for the mixed Ba and Sr sites were fixed at the nominal composition. The Ba and 

Sr displacement parameters were constrained to be equal. 

 

Figure 5.4. Observed (▪), calculated (―) and residual (lower) X -ray powder diffraction 

patterns of Ba0.5Sr0.5ZrO3 composition revealed from Rietveld’s powder structure 

refinement analysis. Peak positions of the phases are shown at the base line as small 

markers (l). Rwp (%) = 8.84, Rp (%) = 6.96, Rexp (%) = 6.06, and Sigma= 1.46 

 

The refinements produced satisfactory agreement factors Rwp (weighted residual 

error), Rp (Brag factor) and Rexp (expected error) for 5500 observations and 42 variables 

(fig.5.3), which are given in the caption of the Fig. 5.3. The structural refinement 

showed that the composition Ba0.5Sr0.5ZrO3 is Orthorhombic with space group Imma. 

The lattice parameters were a0= 5.8857 Å, b0=8.2941 Å and c0=5.8896 Å. The 
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crystallite size and rms strain of the composition were found to be 66.73 nm and 

0.0015, respectively. The refined positional parameters of the composition are given in 

the Table 5.4. Atomic thermal (displacement) parameters (β) are x 100Å2. ζ; site 

occupancy and N; Atomic number per unit cell calculated from site occupancy. 

 

Table 5.4.: Final outcome of the structural feature of the Ba0.5Sr0.5ZrO3 composition 

 

From the structural and microstructural information of the end members of the 

previously mentioned BSTZ series, it can be concluded from the refinement that the 

cubic BTZ transforms to a lower symmetry tetragonal structure with the substitution of 

Sr in place of Ba. The appearance of the (121) and related reflections confirms the 

tetragonal structure of SrTiZrO3. This structural transformation occurs may be due to 

the large difference in the size of the two divalent cations, suggesting the possibility of 

A-site cation ordering. The transition composition in this compositionally induced 

transition from Pm-3m to I4/mcm can be examined with the high resolution neutron or 

synchrotron diffraction data with large number compositions with slight variation in Ba 

and Sr content. In tetragonal phase, the angle of rotation of the oxygen octahedron 

{φ=tan-1 4u} can be taken as the order parameter. Tilt angle decreases with 

transformation to higher symmetry and increases with transformation to lower 

symmetry. In the present transformation from tetragonal to cubic, this tilt angle φ =6.5 

for tetragonal SrTiZrO3 whereas φ =0 for cubic BaTiZrO3.  

It is also evidentfrom the refinement that the composition BaSrTiO3 is 

transformed from cubic to orthorhombic symmetry with space group Imma with Zr 

substitution in place of Ti. This structural transformation occurs may be due to the large 

difference in the size of the two tetravalent cations, suggesting the possibility of B-site 

cation ordering. This compositionally induced transition from Pm-3m to Imma can be 

examined with the high resolution neutron or synchrotron diffraction data with large 

number of compositions with slight variation in Ti and Zr content. 

 

 

Atom x y z ζ N β 

Ba 0.0 0.25 0.0118 0.5 2 0.125 

Sr 0.0 0.25 0.0118 0.5 2 0.125 

Zr 0.0 0.0  0.5 1 4 1.59 

O(1) 0.0 0.25 0.5041 1 4 0.250 

O(2) 0.25 -0.0774 0.25 1 8 3.002 



 94

5.5.5. Refinement of Ba1-xCaxTi0.6Zr0.4O3 

Fig. 5.5 represents the final output after structural refinements for the 

composition BaTi0.6Zr0.4O3. Structural refinements were carried out taking the 

positional parameter for the earlier refined (Fig 5.1) BaTi0.5Zr0.5O3 composition with 

space group Pm-3m. Successful refinement confirms that all these compositions have 

cubic symmetry with space group Pm-3m. The refinements produced satisfactory 

agreement for 5500 observations and 42 variables. The observed R-factors and good 

ness of fit (GoF) (Sigma) of all these compositions are given the Table 5.5. Atomic 

thermal (displacement) parameters are x 100Å2. The GoF for all the compositions 

shows in the range of 1.2 to 1.35. This indicates the good quality of the fitting of the 

experimental data with the theoretical one. The occupancy factors for the mixed Ti and 

Zr sites were fixed at the nominal composition. The Ti and Zr displacement parameters 

were constrained to be equal. After refinement, the final outputs of the positional 

parameter of the compositions are given in the captions of each figure. 

 

Figure 5.5 Observed (▪), calculated (―) and residual (lower) X -ray powder diffraction 

patterns of BaTi0.6Zr0.4O3 composition revealed from Rietveld’s powder structure 

refinement analysis. Peak positions of the phases are shown at the base line as small 

markers (l). Positional parameters for the compositions are: Ba at 1a (0,0,0), Ti at 1b 

(0.4998, 0.4999, 0.4998), Zr at 1b (0.5002, 0.4997, 0.4997) and O is at 3c (0, 0.5004, 

0.4998).  

 

Fig. 5.6 represents the final output after structural refinements for the 

composition Ba0.9Ca0.1Ti0.6Zr0.4O3. Structural refinements were carried out initially 

taking the positional parameters of tetragonal Ba0.8Ca0.2ZrO3 with space group I4/mcm 

[14] and cubic BaTi0.6Zr0.4O3 with space group Pm-3m, as reported evidence from the 
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Fig. 5.5. Successful refinement confirms that the structure of Ba0.9Ca0.1Ti0.6Zr0.4O3 is 

cubic at room temperature with space group Pm-3m. The refinements produced 

satisfactory agreement factors for 5500 observations and 42 variables, which are given 

in the caption of Fig. 5.6. The occupancy factors for the mixed Ti and Zr sites were 

fixed at the nominal composition. The Ti and Zr displacement parameters were 

constrained to be equal. Some of the structural and microstructural features revealed 

from Rietveld’s powder structure refinement analysis for the composition 

Ba0.9Ca0.1Ti0.6Zr0.4O3 are given in Table 5.5. The structure was confirmed as cubic 

having space group Pm-3m with atoms located at following positions: Ba and Ca 

occupies the 1a site at (0, 0, 0); Ti and/or Zr on 1b site at (0.5, 0.5, 0.5) and O (1) on 4 a 

site (0, 0.5, 0.5). Atomic thermal (displacement) parameters are x 100Å2. 

 

Figure 5.6 Observed (▪), calculated (―) and residual (lower) X -ray powder diffraction 

patterns of Ba0.9Ca0.1Ti0.6Zr0.4O3 composition revealed from Rietveld’s powder structure 

refinement analysis. Peak positions of the phases are shown at the base line as small 

markers (I). Rwp(%) = 11.601819, Rp(%)=8.97334,Rexp(%)=9.958377, and Sigma= 

1.1650311. 

 

 Fig. 5.7 represents the final output after structural refinements for the 

composition Ba0.8Ca0.2Ti0.6Zr0.4O3. The pattern shows a mixture of tetragonal 

Ba0.8Ca0.2Ti0.6Zr0.4O3 and orthorhombic structure of CaTiO3. Structural refinements 

were carried out initially taking the positional parameters of tetragonal Ba0.2Ca0.2ZrO3 

with space group I4/mcm [14] and orthorhombic structure of CaTiO3, as available in the 

structural data base of the software used (MAUD). Successful refinement confirms that 

the composition of Ba0.8Ca0.2Ti0.6Zr0.4O3 is a mixture of tetragonal Ba0.8Ca0.2Ti0.6Zr0.4O3 

with space group I4/mcm and orthorhombic CaTiO3 with space group Pbnm:cab, and 
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the result are tabulated in the Table 5.5. The refined positional parameters of the 

CaTiO3 in the composition Ba0.8Ca0.2Ti0.6Zr0.4O3 are: Ca (1.002, 0.0279, 0.25), Ti 

(0.0.25.0), O1 (0.1478, 0.5483, 0.25) and O2 (0.7573, 0.285, 0.0419). The refinements 

produced satisfactory agreement factors Rwp (%) = 11.947288, Rp (%)=9.4384365,Rexp 

(%)=9.360648, and Sigma= 1.2763312 for 5000 observations and 42 variables 

(Fig.5.7). The occupancy factors for the mixed Ti and Zr sites were fixed at the nominal 

composition. De Varies and Roy [20] investigated the phase equilibria in the system 

BaTiO3-CaTiO3. They found a solubility gap between these two compounds up to the 

melting point (1600oC). At 1400oC, the maximum solubility is 18 weight % on both 

sides. I. Levin, et al [14] reported that the solubility of Ca in BaZrO3 breaks around 30 

atom % of Ca even heated at 1,650OC. Here the results show that the solid solution 

breaks around 20 atom % of Ca in the compositions, heated at 1,500OC. The reason may 

be due to the presence of more acidic TiO2 in the mixture. 

 Fig. 5.8 represents the final output after structural refinements for the 

composition Ba0.5Ca0.5Ti0.6Zr0.4O3. Again, the pattern shows a mixture of tetragonal 

Ba0.9Ca0.1Ti0.6Zr0.4O3 and orthorhombic structure of CaTiO3. Structural refinements 

were carried out initially taking the positional parameters as taken for the composition 

Ba0.8Ca0.2Ti0.6Zr0.4O3. Successful refinement confirms that the composition of 

Ba0.5Ca0.5Ti0.6Zr0.4O3 is a mixture of tetragonal Ba0.8Ca0.2Ti0.6Zr0.4O3 with space group 

I4/mcm and orthorhombic CaTiO3 with space group Pbnm:cab, and the result are 

tabulated in the Table 5.5. The refined positional parameters of the CaTiO3 in the 

composition Ba0.5Ca0.5Ti0.6Zr0.4O3 are: Ca (0.9821, 0.0328, 0.25), Ti (0.0.25.0), O1 

(0.0162, 0.475, 0.25) and O2 (0.7969, 0.2398, -0.0445). The refinements produced 

satisfactory agreement factors for 5000 observations and 44 variables which are given 

in the caption of Fig.5.8.  

The quantitative estimation of the different phases using Rietveld program 

MAUD, that shows there is increase in CaTiO3-like phase with increase in Ca content in 

the mixture. The weight percents of the different phases are given in the Table 5.5. The 

result tabulated in the Table 5.5 shows that there is increase in crystallite size of 

tetragonal phase with increase in Ca content and increase in wt % and volume percent 

of orthorhombic CaTiO3 phase.  
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Figure 5.7 Observed (▪), calculated (―) and residual (lower) X -ray powder diffraction 

patterns of Ba0.8Ca0.2Ti0.6Zr0.4O3 composition revealed from Rietveld’s powder structure 

refinement analysis. Peak positions of the phases are shown at the base line as small 

markers (l). Rwp (%) = 11.947288, Rp (%)=9.4384365,Rexp (%)=9.360648, and Sigma= 

1.2763312. 

 

Figure 5.8. Observed (▪), calculated (―) and residual (lower) X -ray powder diffraction 

patterns of Ba0.5Ca0.5Ti0.6Zr0.4O3 composition revealed from Rietveld’s powder structure 

refinement analysis. Peak positions of the phases are shown at the base line as small 

markers (l). Rwp (%) = 10.051784, Rp (%)=7.546414,Rexp (%)=7.2008095, and Sigma= 

1.3959241. 
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Table 5.5: Refined room temperature selected structural parameter of Ba1-xCaxTi0.6 Zr0.4 

O3 using x-ray diffraction 

Quantity  Ba1-xCaxTi0.6Zr0.4O3 CaTiO3 

 X=0.0 X=0.1 X=0.2 X=0.5 X=0.2 X=0.5 

a0 (Å) 4.0921 4.061 5.7840 5.8587 5.4309 5.3986 

b0 (Å) ----- ---- 8.1857 8.2843 5.4920 5.4523 

c0 (Å) ----- ----- ----- ----- 7.7149 7.667 

S. grp Pm-3m Pm-3m I4/mcm I4/mcm Pbnm:cba Pbnm:cba 

Cryst.size(nm) 72.51 159.1 163.33 142.06 93.15 165.23 

Rms strain 0.001 0.0015 0.0011 0.00001 0.0012 0.0011 

Density(gm/cc) 6.0712 5.8002 5.8318 5.6249 3.9858 4.001 

wt % 100% 100% 85.98 61.50 14.02 38.49 

Vol % 100% 100% 80.723 53.20 19.27 46.79 

Ba (βiso) 0.5117 1.489 1.532 3.166 ----- ----- 

Ca (βiso) ----- 0.84 1.532 3.166 1.5429 2.1024 

Ti (βiso) 0.512 0.869 3.665 0.4557 1.5532 1.6088 

Zr (βiso) 0.512 0.869 3.665 0.4557 ---- ---- 

O(1) (βiso) 0.512 0.735 0.4621 2.586 0.5429 4.3721 

O(2) (βiso) ----- ----- 0.59 2.4560 1.5429 -0.004 

O(2) (x) ----- ----- 0.2399 0.2515 0.7573 0.7969 

 

5.5.6. Refinement of Ba1-xMgxTi0.6Zr0.4O3 

Final outputs after structural refinements for the composition 

Ba0.97Mg0.03Ti0.6Zr0.4O3, Ba0.93Mg0.04Ti0.6Zr0.4O3, Ba0.86Mg0.14Ti0.6Zr0.4O3 are 

represented in the Fig 5.9, 5.10, and 5.11 respectively. Structural refinements were 

carried out taking the positional parameter for the earlier refined (Fig 5.5) 

BaTi0.6Zr0.4O3 composition with space group Pm-3m. Successful refinement confirms 

that all these compositions remain cubic symmetry with space group Pm-3m. There is 

only a decrease in lattice parameter which is observed due to the substitution of lower 

radii Mg in place of Ba. The refinements produced satisfactory agreement for 5500 

observations and 43 variables. The observed R-factors and good-ness of fit (GoF) 

(Sigma) of all these compositions are given in the Table 5.6. The GoF for all the 

compositions lie in the range of 1.2 to 1.5. This indicates the good quality of the fitting 
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of the experimental data with the theoretical one. The occupancy factors for the mixed 

Ti and Zr sites were fixed at the nominal composition. The Ti and Zr displacement 

parameters were constrained to be equal. Refined parameters included scale factor, 

background coefficient, profile coefficients, and anisotropic thermal (displacement) 

parameters. Some of the structural and microstructural features revealed from 

Rietveld’s powder structure refinement analysis for these compositions are given in 

table 5.6. Atomic thermal (displacement) parameters are x 100Å2.Initially the atom 

positional parameters for the compositions were taken as: Ba/Mg at 1a (0,0,0), Ti/Zr at 

1b (1/2,1/2,1/2) and O is at 3c (0,1/2,1/2). After refinement a small change occurs to 

these parameters. The refined positional parameters of different atoms in the different 

composition were given in the captions of respective figures As previously mentioned, 

the symmetry constraints on the thermal parameters in the Pm3m space group are as 

follows: for Ba, Sr, Ti and Zr U11=U22=U33, U12=U13=U23=0, for O U22=U33, 

U12=U13=U23=0. In the refinement, these conditions are also taken care, but values of 

these parameters were not reliable. The exact values of these anisotropic thermal 

parameters could be best monitored using high resolution synchrotron radiation or 

neutron diffraction. 

 

Figure 5.9 Observed (▪), calculated (―) and difference X -ray powder diffraction 

patterns of Ba0.97Mg0.03Ti0.6Zr0.4O3 composition revealed from Rietveld’s powder 

structure refinement analysis. Positional parameters for the compositions are: Ba/Mg at 

1a (0,0,0), Ti at 1b (0.4999, 0.4998, 0.4996), Zr at 1b (0.5002, 0.4991, 0.4996) and O is 

at 3c (0, 0.50012, 0.4999).  
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Figure 5.10. Observed (▪), calculated (―) and difference in X-ray powder diffraction 

patterns of Ba0.93Mg0.o7Ti0.6Zr0.4O3 composition revealed from Rietveld’s powder 

structure refinement analysis. Positional parameters for the compositions are: Ba/Mg at 

1a (0,0,0), Ti at 1b (0.4995, 0.5, 0.49994), Zr at 1b (0.5002, 0.4998, 0.4999) and O is at 

3c (0, 0.5001, 0.5003).  

 

Figure 5.11. Observed (▪), calculated (―) and difference in X- ray powder diffraction 

patterns of Ba0.86Mg0.14Ti0.6Zr0.4O3 composition revealed from Rietveld’s powder 

structure refinement analysis. Peak positions of the phases are shown at the base line as 

small markers (l). Positional parameters for the compositions are: Ba/Mg at 1a (0,0,0), 

Ti at 1b (0.5, 0.4998, 0.4999), Zr at 1b (0.5005, 0.4996, 0.4999) and O is at 3c (0, 

0.5001, 0.5006).  
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Table 5.6: Refined room temperature selected structural parameter of Ba1-xMgxTi0.6 Zr0.4 

O3 (space group pm-3m) using x-ray diffraction 

Quantity X=0.0 X=0.03 X=0.07 X=0.14 

a0 (Ǻ) 4.0921 4.0959 4.0939 4.0967 

Cryst. size (nm) 44.915 66.018 64.069 79.569 

rms strain 0.0015 0.00074 0.0011 0.0008 

Density (gm/cc) 6.0712 5.972 5.8717 5.6687 

Ba (βiso) 0.5117 0.4734 0.61 1.247 

Mg (βiso) ----- 0.473 0.618 1.247 

Ti (βiso) 0.512 0.86 0.700 1.486 

Zr (βiso) 0.512 0.76 0.88414 1.486 

O (βiso) 0.512 0.61 0.78 2.48 

Rwp (%) 10.1632 12.603 11.76 10.7408 

Rp (%) 7.6520 9.742 9.076 8.1486 

Rexp (%) 6.9455 9.208 8.977 7.9108 

GoF 1.4633 1.36 1.31 1.3577 

 

5.6. Conclusions 

From the above study, it can be concluded that BaTi0.5Zr0.5O3 has cubic 

symmetry with space group Pm-3m, which transforms to a lower symmetry tetragonal 

structure having space group I4/mcm with the substitution of Sr in place of Ba. Cubic 

structure of Ba0.5Sr0.5TiO3 having space group Pm-3m transforms to lower symmetry 

orthorhombic and tetragonal phases. The composition BaTi0.6Zr0.4O3 was cubic structure 

having space group Pm-3m. When Sr was substituted in place of Ba upto 50 atom % in 

the above compositions, the structure remained cubic with space group unchanged. 

When 10 atom % of Ca is substituted in place of Ba in the composition, the structure 

remains cubic. When the Ca concentration becomes 20 atom %, the solubility of Ca in 

BaTi0.6Zr0.4O3 breaks and orthorhombic phase of CaTiO3 develops along with tetragonal 

structure of Ba0.8Ca0.2Ti0.6Zr0.4O3. With further increase in Ca, the concentration of 

CaTiO3 increases, but the Ba0.8Ca0.2Ti0.6Zr0.4O3 remains tetragonal having space group 

I4/mcm. The study predicts that there is a likely chance of increase of Tc with 

substitution of Ca in BaTi0.6Zr0.4O3 system.  When Mg is substituted in place of Ba, in 
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the said composition the structure remains cubic. Only the lattice parameter decreases 

due to the substitution of lower radii Mg in place of Ba.  
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Chapter 6 

 

STOICHIOMETRIC STUDY BY ENERGY DISPERSIVE 

X-RAY FLUORESCENCE (EDXRF) SPECTROMETRY 

 

6.1. Introduction  

X-ray fluorescence (XRF) spectrometry provides a non-destructive analytical 

method capable of analyzing solids from a few parts per million to near 100% for a 

wide range of elements. This versatile technique is ideally suited for the analysis of 

rocks, soils, dust, contaminated land samples, mineral concentration and products, 

archaeological artifacts, synthetic materials and metals. The nondestructive nature of 

the technique allows long term storage of samples, which can then be re-analyzed any 

number of times for additional elements as necessary. This approach, therefore, avoids 

problems of re-sampling and digestion of separate aliquots. 

 Since 1960s, XRF spectrometers has been fully automated and today’s state of 

art machines are compact, self-contained analytical units, capable of running unattended 

for several days, with flexibility of rapid transition from one analytical program to 

another. One of the more recent designs has been the use of end window X-ray tubes, 

which reduces the coupling distance between the sample and the tube, and this, together 

with upgraded detection system, enhances the sensitivity of the spectrometers. 

 

6.2. Sample Preparation 

Sample preparation is an important procedure in XRF analysis, and this starts with the 

initial sample selection and subsequent preparation (i.e. crushing and milling of 

consolidated materials), with the final product being a fine grained (ideally <63 micro-

meter) powder. The ideal sample to be presented to the X-ray beam is flat, 

homogeneous and infinitely thick with respect to the X-ray. It should be capable of with 

standing a vacuum, though this constraint can easily be overcome by the use of helium 

atmosphere in the spectrometer. There are many methods for preparing bulk materials; 

two basic types are most suitable for the types of samples under discussion here.  
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I. Fused beads, where the sample is mixed with a suitable flux, which is then 

fused into glass and either cast or pressed into a disc. 

II. Pressed powder pellets, where the sample powder, with or without a binder is 

compressed to produce a solid tablet of powder. 

Provided the correct flux is used, the fusion method provides the simplest 

method for obtaining an ideal sample. The pressed powder method can also provide a 

suitable sample, but there can be concerns about homogeneity. In general terms, this 

can mean problems concerning particle size effect and chemical/mineralogical 

homogeneity. For most XRF applications, the fusion bead method provides a superior 

solution, with heterogeneity problems minimized, and with the right matrix corrections, 

consistent and reliable results are easily achieved. However, in certain situations 

(e.g.mineral exploration) a number of issues arise whereby the pressed powder pellet 

method is to be preferred. Some of these issues include: 

a) Preparation of fusion beads is relatively slow compared to pellet making and 

the equipment required is more expensive. Fusion is normally undertaken Pt-Au 

crucibles, although cheaper alternatives can be used. 

b) Depending on the analytical problem (i.e., sample composition), it may be 

necessary to vary the flux mixes. Consequently, where large numbers of samples are to 

be analysed, this may not produce an economic solution.  

c) Production of fusion beads inevitably involves the dilution of the original 

sample, with a corresponding decrease in detection limits or, in some case, to achieve 

the desirable limits, counting times may have to be significantly increased. 

In commercial setting, all these factors can significantly increase the costs and 

increased analytical times. Given these factors, it may be desirable on a job-by job basis 

to select pressed powder pellets as the analytical medium, since this may affect the cost 

for a commercial contract and/or yield lower limits of detection for the selected trace 

elements.  

 There are numerous methodologies and recipes for preparing pressed powder 

pellets. Many materials, such as coal, many soils and shales, waxes and some synthetic 

materials will form stable pellets without the addition of a binder. For routine 

preparation, however, a binder is necessary to produce a coherent and semi resistant 

pellet, which can be handled during loading and XRF analysis. Commonly employed 

binders include ethyl and methyl cellulose, starch, Moviol (Hoechst, Inc) and polyvinyl 

binders. In some applications, large volumes of binders have been used, which act as 

dilutents. Again this dilution procedure has the effect of raising the lower limit of 
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detection, and it does not remove grain size effects. In the case of low-level trace 

element work, this approach is not advised. In our case, pressed powder pellets method 

is used for purity study of the compositions by XRF spectrometry.   

500 mg of the dried powder sample was crushed and mixed with 500 mg of high 

purity cellulose powder in 1:1 ratio by weight. The mixture was then crushed 

thoroughly so as to get a homogenized powder mixture. The corresponding mixture was 

then pressed in a KBr press to make pellets of size 25 mm diameters.  

 

6.3. Quantitative Analysis 

 To a first approximation, the intensity of any given line is proportional to 

concentration, but modified by a combination of absorption and enhancement effects, 

which are, in turn, a function of the composition of the sample and the primary 

spectrum from the X-ray tube. Quantitative analysis involves choosing a calibration 

strategy that can accommodate or attempt to eliminate these effects, and most methods 

attempt to achieve a simple linear relationship between the measured spectral line 

intensity and concentration. There is a very wide range of methods available [1], two of 

which are particularly suitable for the analysis of most natural and synthetic materials. 

 The (major) elements that make up the bulk of a rock are normally determined 

using fused beads; this produces homogeneous samples for analysis, and a significant 

dilution of the original rock powder which, in turn, minimizes the absorption and 

enhancement effect. This is most effective when fusion is achived together with a heavy 

absorber (usually La2O3) as part of the fusion mixture [2]. Calibration is achieved either 

by simple straight-line methods, or by multi element measurement approaches. The 

software that comes with modern instruments contains algorithms for the latter, though 

there are many variations, some of which are not suitable for wide range in 

composition. The most “all embracing” model published in 1984 by Rousseau [3] is not 

always supported.  

 The (minor) trace elements are generally determined using pressed powder 

pellets to minimize the dilution of the sample. With only a few exceptions, the spectral 

lines used for trace element analysis lie at shorter wave lengths (higher energy) than 

those of the associated major elements. And the dominant problem to be overcome is 

that of absorption. The simplest, and probably the most effective, approach to correcting 

for absorption makes use of the fact that the intensity of the background, and of the 

coherent and incoherent scattered lines of the anode element, vary systematically with 

the mass absorption of the sample matrix. Measurement of this scattered radiation, 
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usually that of the Compton Kα for most anodes, thus provides an absorption correction 

factor. There are several ways in which scattered correction can be applied; most 

involve ratioing the scatter measurement on a standard at a wavelength shorter than the 

lines of the elements to be measured [4]. This model works well, though problem can 

arise with higher trace element concentrations (1,000s ppm) when the ratio relationship 

may break down with increasing wavelength. While these methods work well with most 

rocks and related materials, for heavily mineralized samples a different approach might 

be needed. For these samples internal standard and double dilution techniques [1] are 

recommended. In our case, the latter is preferred and the results are shown in Table 1 

and Table2. 

 

6.4. Experimental Setup 

The elemental analysis of the samples was carried out by EDXRF. The 

EDXRF system at the Institute of Physics, Bhubaneswar, incorporates a low 

power (50 watt) tungsten anode, air cooled X-ray tube as an excitation 

source with tri-axial geometry. The X-ray tube was operated at 30 kV and 

0.6 mA. The X-rays from the X-ray tube irradiated on a Mo secondary 

exciter were used to excite the characteristics K X-rays of secondary 

exciter which, in turn, used to excite the characteristics X-rays of elements 

present in samples. The X-rays from the sample were detected by a Si (Li) 

X-ray detector (without X-ray absorber) and the signals were processed by 

an amplifier. The system was calibrated by using an Am241 X-ray source. 

 

6.5. Data Acquisition and Analysis 

The data acquisition and analysis of X-ray spectra was done by using a PC 

based multi channel analyser. The photo-peak areas in each spectrum were 

evaluated using the computer program AXIL supplied by International 

Atomic Energy Agency (IAEA), Australia. K-characteristic X-rays of 

molybdenum were used to excite the elements present in all the samples. 

Matrix effects were taken into account by recording spectra from the 

sample and the standard.  
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6.6. Results and Discussion 

Fig. 6.1 shows the EDXRF spectrum of BTZ ceramics. From the spectrum, it 

was found that Ba, Ti and Zr, were present in the BTZ synthesized sample in pure form. 

None other elements are present except these elements. The elemental concentrations of 

the elements are depicted in Table.1. Since, Mo was used as a secondary exciter in the 

analysis of the sample, so Ba-Kα was not detected whose Kα and Kβ energy falls after 

Molybdenum Kα. 
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Figure 6.1. EDXRF spectrum of BaTi0.5Zr0.5O3 ceramics 

 

The peak at 4.43 keV corresponding to the Ba-Lα line which theoretically occurs at 4.47 

keV, and the peak at 4.835 keV corresponding to Ba-Lβ line which also theoretically 

occurs at 4.83 keV, were prominent in this spectrum. The peaks at 4.55 keV and at 4.95 

keV are due to the transition of Ti- Kα and Ti- Kβ line, respectively. Similarly, the peak 

at 17.70 keV corresponds to the transition of Zr- Kα.  Since Mo is used as the secondary 

exciter in the EDXRF system, so, Mo peak is present in the spectra. As Zr- Kβ energy is 

close to Mo- Kα energy; hence, these two peaks are overlapping.  
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Figure 6.2. EDXRF spectrum of SrTi0.5Zr0.5O3 ceramics 

 

Fig. 6.2 shows the EDXRF spectrum of STZ ceramics. The figure shows the presence 

of the emission peaks of Sr, Ti and Zr without evidence of any other trace element peak. 

It was found that Kα and Kβ lines of Ti, Sr and Zr, were present in the STZ synthesized 

sample in pure form. None other contaminants are present except these elements. The 

elemental concentrations of the elements are depicted in Table.6.1. The peak at ~15.9 

keV is the overlapping emission peak of Sr- Kβ  and Zr- Kα lines. These lines were not 

separated as theoretically their emission energy is very close to each other (15.83 keV 

for Sr - Kβ and 15.77 for Zr-Kα). The emission line of Zr- Kβ is overlapped with the Mo- 

Kα line due to close spacing of their energy level.  
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Figure 6.3. EDXRF spectrum of Ba0.5Sr0.5TiO3 ceramics 
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Fig. 6.3 shows the EDXRF spectrum of BST ceramics. From the spectrum, it was found 

that Ba, Sr and Ti were present in the synthesized BST sample in pure form. None other 

elements are present except these elements. The elemental concentrations of the 

elements are depicted in Table 6.2. Since, Mo was used as a secondary exciter in the 

analysis of the sample, so Ba-Kα was not detected, whose Kα and Kβ energy falls after 

Molybdenum Kα. Rather, the Ba-Lα and Ba-Lβ lines are prominent in this spectrum. The 

Sr- Kβ  and Sr- Kα lines were prominent in the composition at 14.2 and 15.85 keV, 

respectively. The peaks at 4.55 keV and at 4.95 keV are due to the transition of Ti- Kα 

and Ti- Kβ line, respectively. The peak for Ti is observed along with Ba Lα and Ba Lβ 

line, making the peaks overlapping and undistinguishable as their emission energies 

were very close to each other. 

4 8 12 16 20
0

500

1000

1500

2000

Z r-K
β

M o x -ra y peaksB a -L
βBa-L

α

S r-K
β
 +  Z r-K

α

S r-K
α

C
o
u
n
ts

E ne rgy  (k eV )

 

Figure 6.4. EDXRF spectrum of Ba0.5Sr0.5ZrO3ceramics 

 

Fig. 6.4 shows the EDXRF spectrum of BSZ ceramics. From the spectrum, it was found 

that Ba, Sr and Zr were present in the synthesized BSZ sample in pure form. None other 

elements are present except these elements. The concentrations of these elements are 

depicted in Table 6.2. Since, Mo was used as a secondary exciter in the analysis of the 

sample, Ba-Kα and Ba- Kβ were not detected as the Kα and Kβ energy falls after 

Molybdenum Kα. Rather, the Ba-Lα and Ba-Lβ lines are prominent in this spectrum. The 

Sr- Kα lines were prominent in the composition at 14.2 keV and the peak at 15.85 keV 

is due to the overlapping peak of Sr- Kβ  and Zr- Kα. The Zr- Kβ peak is overlapped with 

the Mo peak in the spectrum as their energies were very close to each other. The 

elemental concentrations of the samples are given in Table 6.1 and Table 

6.2. The estimated standard deviation is with in 1-3 %.   



 110

 

Table.6.1: Concentration (in ppm by weight) of various elements present in the samples 

Compound Ti Sr Zr Ba 

BaTi0.5Z0.5O3 5021 ---- 4984 9942 

Ba0.8Sr0.2Ti0.5Zr0.5O3 10104 1941 10059 7937 

Ba0.6Sr0.4Ti0.5Zr0.5O3 10082 4101 9927 5892 

Ba0.5Sr0.5Ti0.5Zr0.5O3 9896 5058 10027 5025 

Ba0.4Sr0.6Ti0.5Zr0.5O3 9971 5962 9945 4060 

Ba0.2Sr0.8Ti0.5Zr0.5O3 9926 7994 10121 2016 

SrTi0.5Zr0.5O3 5053 9927 4959 ---- 

 

Table.6.2: Concentration (in ppm by weight) of various elements present in the samples 

Compound Ti Sr Zr Ba 

Ba0.5Sr0.5TiO3 9907 4941 ---- 5056 

Ba0.5Sr0.5Ti0.8Zr0.2O3 7876 5038 2090 5089 

Ba0.5Sr0.5Ti0.6Zr0.4O3 6256 5177 4181 5332 

Ba0.5Sr0.5Ti0.5Zr0.5O3 4948 5058 5013 5025 

Ba0.5Sr0.5Ti0.4Zr0.6O3 3899 4905 5915 4921 

Ba0.5Sr0.5Ti0.2Zr0.8O3 2064 4812 7931 4756 

Ba0.5Sr0.5ZrO3 ---- 4987 9880 5011 

 

6.7. Conclusions 

XRF is now a well-established analytical tool for the analysis of specimens 

of geological interest and synthetic materials for elemental and 

concentration analysis. EDXRF is rapid, efficient, multi-elemental, non-

destructive in nature and sensitive to all elements from Na to U. This can 

provide precise analysis for a wide spectrum of elements at much reduced 

lower limits of detection; typically most elements can now be analysed at 

sub-ppm level. Another recent advance, resulting from spectrometer 

redesigns, is the ability now to analyse light elements such as B, C, N and 

Be, which are important in the assessment of synthetic materials. All of 

these advances suggest that the XRF spectrometry will retain its 

importance as an analytical tool and allow development into new areas as 

defined by the user. In our study with EDXRF, we conclude that the 
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synthesized materials are in pure form without evidence of spectral line of 

any trace element. Quantitative analysis shows that the concentrations of 

the elements in the compositions are in similar proportion, as taken during 

synthesis and the results are within the permissible range of deviation.  
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Chapter 7 

 

MICROSTRUCTURE AND DIELECTRIC STUDY 

 

7.1. Introduction 

 BaTiO3 was first found to be the lead-free perovskite ferroelectric material [1], 

and it has a large electromechanical coupling factor. BaTiO3 (BT) is known to form a 

complete solid solution with BaZrO3 (BZ) (i.e. BZT solid solution). Solid solution 

compositions in BaTiO3 (BT)-BaZrO3 (BZ) or BTZ-system have been established as 

one of the most important compositions for dielectrics in multilayer ceramic capacitors 

[2] due to their high permittivity, and are highly promising materials for dynamic 

random access memory (DRAM) [2]. Moreover, BZT ceramics have seen renewed 

research interest due to their high strain level, minimal hysteresis, very stable, high 

insulating characteristic against voltage and good piezoelectric properties, for single 

crystals as well as for multi-crystalline ceramics [3-5] due to which the materials are 

ideal for MEMS devices. It has been reported [6] that at ~15 atom % Zr substitution, the 

three transition temperatures of BaTiO3, rhombohedra to orthorhombic, orthorhombic to 

tetragonal and tetragonal to cubic, merge near room temperature and the doped material 

exhibits enhanced dielectric constant. With further increase in Zr contents beyond 15 

atoms %, a diffuse dielectric anomaly in the ceramic has been observed with the 

decrease in the transition temperature [7] and the material showed typical relaxor–like 

behavior in the range 25-42 atom % Zr substitution [8].  

Most of the literature for the system Ba (Ti1-xZrx) O3  is restricted upto the value 

of x ~0.4 [9-11]. That is the reason, 50 atom% Zr (x=0.5) substituted composition Ba 

(Ti0.5Zr0.5)O3  has been investigated in the present work. SrTiO3 also forms complete 

solid solution with BaTiO3 and that (BST) material is also a popular composition for 

DRAM application [12]. The solid solutions of BZT and BST, i.e., Ba/Sr titanate-

zirconate are reported to have improved tunability and low temperature coefficient of 

dielectric constant [13-15]. In these circumstances, room temperature dielectric 

behavior, microstructure and a.c. conduction characteristics effect of Sr substitution in 

Ba (Ti0.5Zr0.5)O3 have been studied. 

At the other end, the Barium Strontium Titanate (BST) has been considered to 

be an important material for tunable microwave devices such as microwave tunable 

phase shifters, tunable filters, and high-Q resonators for radar and communication 
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applications, as well as dynamic random access memory (DRAM) applications because 

of its high dielectric constant, large electric field tunability, relatively low dielectric loss 

and variable Curie temperature from 30 to 400K, depending on the composition of 

Barium [16-20].  For optimal performance of the tunable devices, it is important to 

grow materials with high dielectric tunability, low dielectric losses, low voltage 

hysteresis, and low temperature dependence of the dielectric permittivity in the 

operation frequency and temperature range of the device. To improve the material 

performance for the use of tunable devices, many efforts have been made, such as 

doping, fabrication of composite and even multilayered structure, etc. The recent work 

[21] suggests that Ba1-xSrxTiO3 thin films with x=0.5-0.6 are preferred for use at room 

temperature tunable circuit components.  For example, H.M. Cristen et al [22] found a 

strong bias voltage tunability and very low hysteresis in the composition Ba0.5Sr0.5TiO3. 

Considering all these, the composition Ba0.5Sr0.5TiO3 has been selected as a base 

material in the present study to investigate the effect of Zr4+ substitution for Ti4+ in the 

material. Among the several isovalent substitutions in BaTiO3, other than Sr which are 

also able to shift the Tc below room temperature, Zr is of interest because a different 

character of dielectric response with respect to the paraelectric to ferroelectric phase 

transition can be achieved by the Zr substitution due to the disparate distortions of 

oxygen octahedral in the perovskite lattice [23]. Moreover, Zr4+ ion is chemically more 

stable than Ti4+ and has larger ionic size to expand the perovskite lattice. Therefore, the 

conduction by electron hopping between Ti4+ and Ti3+, if any, would be depressed by 

the substitution of Ti with Zr [5]. Another motivation behind Zr substitution is that the 

substitution of Ti4+ with Zr4+ ions in barium titanate can reduce the dielectric loss or 

leakage current in the material [5]. The BST thin films often have high current emission 

at low electric field [24]. Therefore, new types of dielectrics with high dielectric 

constant and low stable leakage current need to be developed.  It is expected that Zr-

doped Ba0.5Sr0.5TiO3 ceramics should have further improved dielectric losses. A high 

dielectric constant and low leakage current of (Ba0.65Sr0.35)(Ti0.65Zr0.35)O3 thin film has 

been reported [25] and proposed as a promising material for DRAM applications. A 

similar type of compositionally-graded multilayer (Ba0.8Sr0.2) (Ti1-xZrx) O3 films has 

shown an improved dielectric property and tunability [20]. However, no literature are 

available on bulk ceramic of (Ba0.5Sr0.5)(Ti1-xZrx)O3 composition. In this Chapter, a 

study concerning the microstructure, room temperature dielectric properties and 

conduction characteristics of bulk (Ba0.5Sr0.5)(Ti1-xZrx)O3 ceramics is reported. 
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Dixit et al [26] have reported a relaxor behavior with diffused phase transition at 

Tc= -113 
O
C, which has maximum dielectric constant (~650) at 1 kHz, in Ba 

(Ti0.6Zr0.4)O3 thin film, which are very attractive for sensor and actuator applications. 

Byun et al [25] reported that the composition (Ba0.65Sr0.35) (Ti0.65Zr0.35) O3 shows a 

dielectric constant about 2,700 at room temperature and transition temperature nearly -

30 OC.  Apart from these studies, many recent literatures like [27, 28] reported Ba (Ti1-

xZrx)O3 (0.27≤ x ≥0.42) as relaxor dielectric. But almost all the studies report their 

relaxor nature at relatively low temperature. Research works are now in progress to 

obtain such lead-free ceramics, which could be relaxors at temperatures close to room 

temperature. Therefore, it attracts our attention to study the composition Ba (Ti0.6Zr0.4) 

O3 and to shift the TC towards room temperature. 

As previously mentioned, Ba (Ti0.6Zr0.4) O3 ceramic has a cubic paraelectric 

structure, which shows a high dielectric constant, comparable to BST ceramic with 

Curie temperature below the room temperature, and the transition from ferroelectric to 

paraelectric is of second order relaxor type. When lower radii Ca/Mg replaces Ba in the 

Ba (Ti0.6Zr0.4) O3 perovskite structure, there is decrease in lattice parameter leading to 

lowering of dipole moment and causing a decrease in permittivity. But, the Ca/Mg ions 

are too small to occupy the centre of 12 coordinated sites. On the other hand, they may 

take 12 co-ordination sites with eight near neighbors and four more distant ones [29]. 

That modification supposes a possible displacement of Ca/Mg ion out of the oxygen 

dodecahedron centre able to induce a dipolar moment whose occurrence should lead to 

increase of TC. This is the motivation behind the Ca and Mg substitution in Ba 

(Ti0.6Zr0.4) O3 composition. 

 

7.2. Experimental Procedure 

 Microstructures of the sintered pellets were studied using optical microscope 

connected with a PC. For electrical measurement, thin silver electrodes were printed on 

to opposite faces of the ceramic disk by screen printing technique. For organic removal, 

printed disks were kept on an alumina plate and fried at 7000C, 15 minutes. This 

procedure was repeated twice for better electroding. Room temperature dielectric 

measurements were carried out over the range 10 Hz to 13 MHz using HP-4192A LF 

Impedance Analyzer through a calibrated Agilent 16451B dielectric test fixture. The 

temperature dependency of dielectric measurement was carried out with a self-designed 

programmable temperature controlled oven with a heating rate of 0.5°C min-1. While 

heating, the dielectric data were taken within 4 or 5 degree interval and found to be 
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reproducible. Dielectric measurements were carried out using pure sinusoidal wave. 

The Impedance Analyzer was connected with a PC for data acquisition. Conductivity of 

the samples was calculated using capacitance and tan δ values measured at different 

frequencies. The detailed experimental procedures are explained in the Chapter 3. 

 

7.3. Results and Discussions 

7.3.1. Composition Dependency Dielectric Study 

7.3.1.1. Effect of Sr on Ba1-xSrx (Ti0.5Zr0.5) O3 Ceramics. 

Fig. 7.1 shows the effect of Sr (x) on Microstructure of Ba1-xSrx (Ti0.5Zr0.5)O3 

ceramics. There is a decrease in average grain size with the increase in Sr (x) content. 

The average grain size of Ba1-xSrx (Ti0.5Zr0.5) O3 ceramics are given in the Table 7.1.  

The decreasing grain size with increasing Sr content may be attributed to lower grain 

growth rates from the slower diffusion of Sr 2+ ion, which is more stable than the Ba2+ 

ion. Crystallization may be initiated earlier with lower Sr contents, resulting in a larger 

grain size for the same heat treatment. BaO-TiO2 phase diagram [30] has lowest 

liguidus temperature at 1,3170C, whereas SrO-TiO2 phase diagram [31] shows 1,4400C, 

which is nearly 100OC higher than the previous one. So Ba-rich compositions are easy 

to sinter, whereas the Sr-rich compositions still require higher temperature for 

comparable grain growth. One could expect, as Sr has lower ionic radius, that it can 

easily substitute Ba and hence will result in higher grain size. But it is not the case.  As 

the Sr has higher melting point (1,041 OC) than that of Ba (1,002OC), it may be another 

reason for lower grain growth in the above-mentioned thermal treatment with increase 

in Sr concentration. 

 

     

 

(a) (b) 



 116

 

    

 

     

 

  

 

Figure 7.1 Microstructure of Ba1-xSrx(Ti0.5Zr0.5)O3 ceramics, (a) x=0.0, (b) x=0.2, (c) 

x=0.4, (d) x=0.5, (e) x=0.6, (f) x=0.8 and (g) x=1.0. 

 

 

 

(d) 

(g) 

(f) 
(e) 
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Table 7.1 Variation of crystal symmetry, grain size, X-ray density, bulk density and 

percentage porosity with different Sr (x) concentration in the (Ba1-XSrX) Ti0.5Zr0.5O3. 

 

Sr 

(x) 

Symmetry Grain 

size 

(µm) 

X-ray 

Density 

(gm/cc) 

Bulk 

Density 

(gm/cc) 

Apparent 

Porosity 

(%) 

0 cubic 17.5 6.14 5.75 2.0 

0.2 cubic 11.7 5.99 5.65 2.5 

0.4 cubic 10.2 5.81 5.35 3.1 

0.5 cubic 7.3 5.72 5.20 3.4 

0.6 Mixed Phase 5.4 5.66 

5.64 

 

4.92 

 

4.2 

0.8 Tetragonal  2.5 5.46 4.78 4.7 

1.0 Tetragonal 2.2 5.38 4.44 7.2 

 

Fig. 7. 2 shows the variation of bulk density and percentage true porosity with different 

Sr (x) concentration in Ba1-xSrx(Ti0.5Zr0.5)O3. There is a systematic decrease in bulk 

density with increase in Sr content. This may be due to the substitution of lower density 

Sr (2.6 g/cc) than Ba (3.5 g/cc) in the system.  
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Figure 7.2 Effects of Sr (x) content on bulk density and true porosity of Ba1-xSrx 

(Ti0.5Zr0.5) O3 ceramics. 

 

As the samples were having different porosity, to compare their room 

temperature electrical properties experimental data were corrected as per the following 

relation.  
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Fig.7.3 shows the frequency dependency of dielectric constant of Ba1-xSrxTi0.5Zr0.5O3 

compositions. The BSTZ composition with x=0.0, shows the highest dielectric constant. 

The dielectric constant decreases with Sr substitution, yielding the lowest dielectric 

constant in x=1.0 composition. The dielectric constants of all the compositions were 

very stable in the frequency range 1 kHz to about 7 MHz. In general, dielectric constant 

decreases with the increase in Sr substitution due to; (i) the decrease in concentration of 

high permittivity material BTZ, and (ii) due to the decrease in polarizability of the 

atoms in the structure. When a lower radius Sr replaces higher radius Ba in the 

structure, there is a decrease in lattice parameter, yielding the lowering of dipole 

moment in cubic perovskite. The permittivity of Sr-rich compositions could be 

increased from the present study by increasing their density and grain size in the 

sintered dielectrics, but it will not be more than that of its counterpart Ba-rich 

compositions. 
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Figure 7. 3 Frequency dependency of dielectric constant of different Ba1-xSrx (Ti0.5Zr0.5) 

O3 compositions. 

Fig. 7. 4 shows the frequency dependency of the dielectric loss of the samples.  

In general, tan δ decreases with Sr-substitution. At very low frequency, high dielectric 

loss is observed due to presence of all type of polarization including space charge 

polarization. That also quickly decreases upto about 10 kHz due to the space charge 

polarization losses.  The loss was found to decrease nominally with the increase in Sr 

substitution. This may be primarily attributed to the decrease in dielectric constant with 
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Sr substitution. In general high permittivity materials possess higher losses. Other 

reason may be the effect of increased Sr-content. It is known that Q-factor of BST 

ceramics increases with the increase in Sr-content [32]. The loss is stable as well as 

fairly low (<0.6%) for all the compositions in the frequency range 100 KHz to about 5 

MHz. Below 100 kHz, the loss was progressively higher with the decrease in frequency, 

mainly due to the space charge polarization phenomena. The dispersion of loss at higher 

frequency (≥5 MHz) is   due to some extrinsic loss phenomena [33].  At high frequency,  

a dielectric loss peak is observed. Several possible causes exist for such dispersion 

including the hypothesis of the influence of the contact resistance between the probe 

and electrode, presence of barrier layer between the insulating materials and the 

electrode surface, resonance due to high dielectric constant or leaky grain boundary. 

Similar frequency dispersion behavior was also reported for other ferroelectric materials 

prepared by other techniques also [34, 35,]. This is to note that the frequency 

dependency of permittivity shows almost stable behavior and dielectric losses are very 

low for all compositions in bulk ceramics in the frequency range 100 kHz to 5 MHz.   

The materials are suitable for low loss application in the said frequency range.  
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Figure 7. 4 Frequency dependency of dielectric loss of different Ba1-xSrx (Ti0.5Zr0.5) O3 

compositions. 

  

For thorough analysis of the electrical properties, conductivity (σ) of the 

samples were calculated   using the formula  

σ = 2πfd C tan δ/A.          (7.2) 

where; f is the operating frequency, d is the thickness of the dielectrics, tan δ is the 

dielectric loss, C is the capacitance and A is the area of the electrode.  

The variation of ac conductivity with Sr content in the composition system is 

plotted in the Fig. 7.5. The conductivity was found to decrease with increase in Sr 
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concentration as well as increase in frequency. The decrease in conductivity may be 

primarily due to the decrease in tan δ loss with Sr substitution as stated earlier. Also, 

that decrease may be partly due to the decrease in grain size and hence increase in grain 

boundary areas/resistance with Sr substitution.  Grain boundary areas are highly 

resistive in oxide ceramics. Smaller grain sized ceramics have larger grain boundary 

areas, i.e., in case of smaller grain, no of grain boundary per unit thickness is more than 

that of bigger grain size and hence smaller grained ceramics have higher resistivity than 

bigger grain sized ceramics (Fig 7.1). As suggested by R K Astala [36], impurities and 

defects are considered to have largest effect in ST ceramics. i.e., higher the defect 

higher will be the conductivity. Here, as Sr addition reduces the defect in the ceramic, 

that may be another reason for decrease in conductivity with substitution.   
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Figure 7. 5 Variation of AC conductivity with Sr (x) content in Ba1-xSrx (Ti0.5Zr0.5)O3 

ceramics. 

 

7.3.1.2. Effect of Zr on (Ba0.5Sr0.5) Ti1-xZrxO3 Ceramics 

Fig.7.6 shows the effect of Zr (x) on microstructure of (Ba0.5Sr0.5)Ti1-xZrxO3-

ceramics. There is a decrease in average grain size with the increase in Zr (x) content. 

The decreasing grain size with increasing Zr content may be attributed to lower grain 

growth rates from the more slow diffusion of Zr 4+ ion, which has a bigger ionic radius 

than Ti4+. Crystallization may be initiated earlier with lower Zr contents, resulting in a 

larger grain size for the same heat treatment. The decrease in grain size in Zr may also 

imply that the existence of Zr in BTZ ceramic makes the initiation of crystallization 

harder to occur.  
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From the Table 7.2, the x-ray density of the compositions is found to increase 

with Zr content, which may be due to the higher density of Zr (5.85g/cc) than that of Ti 

(4.5g/cc). But the experimental bulk density is found to decrease with Zr content. The 

reason may be due to increase of more stable and bigger Zr4+ ion than Ti4+, which 

reduces the initiation of grain growth (Fig. 7.6) at the experimental sintering 

temperature as well as density. As there is a large difference between their melting 

temperatures, a large difference in grain size is observed. Again, due to this high 

melting temperature difference, a large difference in density and porosity between the 

two end compositions of the series is also observed. 

 

  

 

  

 

(a) 
(b) 

(c) (d) 
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Figure 7.6. Microstructure of (Ba0.5Sr0.5)Ti1-xZrxO3 ceramics, (a) x=0.0, (b) x=0.2, (c) 

x=0.4, (d) x=0.5, (e) x=0.6, (f) x=0.8 and (g) x=1.0. 

 

Table 7.2: Variation of crystal symmetry, Grain size, x ray density, bulk density, 

apparent porosity and true porosity with different Zr (x) concentration in the 

(Ba0.5Sr0.5)Ti1-xZrxO3. 

Zr 
(x) 

Symmetry Grain 
size 
(µm) 

X-ray 
Density 
(gm/cc) 

Bulk 
Density 
(gm/cc) 

Apparent 
Porosity 
(%) 

0 cubic 21.1 5.596 5.35 2.0 

0.2 cubic 19.8 5.6107 5.41 1.0 

0.4 cubic 11.6 5.6471 5.21 3.8 

0.5 cubic 7.3 5.7194 4.81 9.8 

0.6 cubic 5.1 5.7199 4.76 9.9 

0.8 Cubic (pm3m) 
+ 
Tetragonal 
(I4/mcm) 

 
4.8 

5.8128 
 
 
5.7332 

4.6 14.0 

1.0 Orthorhombic 
(Imma) 

2.5 5.8122 4.75 11.1 

(f) (e) 

(g) 
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Fig. 7.7 shows the variation of bulk density and true porosity with Zr (x) content in 

(Ba0.5Sr0.5)(Ti1-xZrx)O3.  There is an average decrease in bulk density with increase in 

Zr content. But the composition with x=0.2 shows the highest density and lowest 

porosity in the system. This may be due to the presence of lowest eutectic composition 

of the system around that composition. There is a decrease in density from x≥0.5 

composition due to the presence of progressively higher amount of Zr in the system.  
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Figure 7.7 Bulk density and true porosity of the (Ba0.5Sr0.5)Ti1-xZrxO3 samples with 

different concentration of Zr(x). 

 

The change in permittivity with frequency of (Ba0.5Sr0.5)(Ti1-xZrx)O3 is plotted in 

the Fig. 7.8 after considering the above correction (as per Equation 7.1) for different 

compositions. The permittivity (ε) decreases with the increase in Zr substitution due to 

the (i) decrease in concentration of high permittivity BST material and (ii) due to the 

decrease in polarizability of the atoms in the structure. For all the compositions, 

dielectric constant decreases nominally upto about 10-50 kHz. This is mainly due to the 

decrease in the space charge polarization contribution. Permittivities are stable in the 

frequency range 100 kHz to about 3 MHz for compositions upto x=0.4 and stable 

beyond 10 MHz for compositions with ‘x’ from 0.5 to 1.0.  So it may be concluded   

that the materials with high Zr content are suitable for high frequency application 

compared to BST.  At low frequency a high value of dielectric constant is observed and 

that decreases with increase in frequency. As a guide to the forthcoming discussion, let 

us remember the simple Debye formula giving the complex permittivity related to free 

dipoles oscillating in an alternating field given as  

ωτ
εε

εεεε
j

j s

+

−
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'''*         (7.3) 
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The dielectric constant (real part of ε*) is given by  

2)(1

)(
'

ωτ
εε

εε
+

−
+= ∞

∞
s             (7.4) 

where τ  is the characteristic relaxation time of the process. At very low 

frequencies (ω<<1/τ ), dipoles follow the field and we have ε’≈ εs (value of dielectric 

constant at quasistatic field). As the frequency increases (ω<1/τ ), dipoles begin to 

“lag” behind the field and ε’ slightly decreases. When frequency reaches characteristic 

frequencies (ω=1/τ ), dielectric constant drops (relaxation process). At very high 

frequencies (ω>>1/τ ), dipoles can no longer follow the field and ε’≈ ε∞. 

Fig. 7.9 shows the frequency dependency of the dielectric loss in the material. 

The high losses at lower frequency range are due to space charge polarization losses. 

This can also be explained in consequence of excitation of localized, hardly reorientable 

polarizations and conduction mechanism [37]. It is observed that the compositions with 

x=0.0 to 0.4 show low loss in the range ~100 kHz to 6-7 MHz, which may be primarily 

due to their higher density. However, the compositions with x=0.5 to 1.0 have low 

losses in the higher frequency range ~3 MHz to 13 MHz. 

 

10

100

1000

10000

1 10 100 1000 10000 100000

Frequency (kHz)

P
e
rm
it
ti
v
it
y
 (
ε'
)

x=0.0 x=0.2 x=0.4 y=0.5

y=0.6 y=0.8 y=1.0

 

Figure 7.8 Frequency dependency of permittivity for (Ba0.5Sr0.5)(Ti1-xZrx)O3 with 

different x-values. 

That is high-frequency loss decreases with Zr substitution. It is interesting to note that a 

dispersion of loss occurs around 7 to 10 MHz range and that dispersion seems to 

decrease with the increase in Zr content.  Several possible causes exist for such 

dispersion at high frequencies including the hypothesis of the influence of the contact 

resistance between the probe and electrode, presence of barrier layer between the 

insulating materials and the electrode surface, resonance due to high dielectric constant 

or leaky grain boundary. Similar frequency dispersion behavior was also reported for 
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other ferroelectric materials prepared by other techniques also [34, 35,]. One source 

may be the extrinsic resonance behavior [35]. Decrease in dispersion with Zr 

substitution may be considered to be due to the decrease in defects (vacancy, mobile 

ions or leaky grain boundary [33], etc.).  The dispersion in the compositions with x=0.0, 

0.2 and 0.4 is higher than for the others. These three samples also show (Fig. 7.8) 

decrease in permittivity after 3-5 MHz frequency. That may be due to the inability of 

some of the polarization processes to respond to the faster polarity reversals of the field, 

such that the net contribution of polarization to the dielectric constant is reduced and the 

loss is increased. These effects are more prominent in the formulations having large 

ionic polarization. The a.c conductivity of the compositions at different frequencies was 

calculated by using Equation 7.2. The variation of conductivity of (Ba0.5Sr0.5) (Ti1-

xZrx)O3 compositions with Zr content is plotted in the Fig. 7.10. 
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Figure 7.9 Frequency dependency of dielectric loss (tan δ) for different (Ba0.5Sr0.5) (Ti1-

xZrx)O3 compositions.  

 

It shows that the conductivity of BST decreases rapidly with Zr substitution for 

Ti.  It has been established [38] that introduction of Zr+4 ions in BaTiO3 lattice occurs in 

three steps; firstly filling Ba+2 vacancies, secondly solid solution formation in between 

BT and BZ, and thirdly occupying interstitial site in BT lattice. So minimum 

conductivity of composition with x=0.2, may be due to the filling of Ba+2 vacancies by 

the Zr+4 ions and associated reduction in Ba+2 induced conductivity. The end 

composition BSZ has lower conductivity than other end member BST, which may be 

due to the presence of  more stable Zr+4 ions in BSZ than Ti+4 ions in BST. The 

conductivity of BST is highest due to both the A-site vacancy as well as the 

conductivity by electron hopping between Ti+4 and Ti+3  [23]. 
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 Figure 7.10 The dielectric conductivity of different (Ba0.5Sr0.5)(Ti1-xZrx)O3 

compositions.  

 

7.3.1.3. Effect of Ca on (Ba1-xCax)Ti0.6Zr0.4O3 Ceramics 

Fig. 7.11 shows the microstructure of Ba1-xCaxTi0.6Zr0.4O3 ceramics. There is a 

decrease in average grain size with the increase in Ca (x) content.  

 

   

 

   

(a) 
(b) 

(c) (d) 
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Figure 7.11 Microstructure of Ba1-xCaxTi0.6Zr0.4O3 ceramics, (a) x=0.0, (b) x=0.1, (c) 

x=0.2, (d) x=0.4, (e) x=0.5,  

 

Table 7.3: Variation of crystal symmetry, grain size, x ray density, bulk density, 

apparent porosity and true porosity with different Ca (x) concentration in the Ba1-

xCaxTi0.6Zr0.4O3. 

Ca 

(x) 

 

Symmetry 

Grain 

size 

(µm) 

X-ray 

Density 

(gm/cc) 

Bulk 

Density 

(gm/cc) 

Apparent 

Porosity 

(%) 

0 cubic 22.2 6.0695 5.0036 5.86 

0.1 Tetragonal 15.2   5.8322 4.92 3.0 

0.2 Mixed Phase 9.2 ---- 5.14 2.7 

0.4 Mixed Phase 8.7 ---- 4.55 8.8 

0.5 Mixed Phase 4.5 ---- 4.47 10.6 

 

Fig. 7.12 shows the variation of bulk density and percentage true porosity with Ca 

content in Ba1-xCaxTi0.6Zr0.4O3. There is an average increase in bulk density and 

decrease in porosity with increase in Ca content.  

(e) 
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Figure 7.12 The variation of bulk density and percentage true porosity with Ca(x) 

concentration in Ba1-xCaxTi0.6Zr0.4O3.  

 

Fig. 7.13 shows the frequency dependency of the permittivity of Ba1-xCaxTi0.6Zr0.4O3 

compositions. As the samples were having different porosities their experimental 

permittivity were normalized with respect to porosity by multiplying with {1/(1-True 

porosity)} and are presented in the Fig. 7.13. 
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Figure 7.13 Frequency dependency of permittivity of Ba1-xCaxTi0.6Zr0.4O3 compositions 

 

Permittivity (ε) decreases with the increase in Ca substitution due to (i) when Ba is 

substituted by Ca, the dipole moment decreases, as the atomic radius of Ca is too small 

in comparison to Ba, (ii) decrease in concentration of high permittivity material BTZ 

and (iii) due to the decrease in grain size leading to the decrease in polarizability of the 

atoms in the structure. When lower radii Ca replaces Ba in the structure, there is 
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decrease in lattice parameter leading to lowering in dipole moment causing a decrease 

in permittivity.  

Fig. 7.14 shows the frequency dependency of the dielectric loss of the samples. 

At middle frequency range, all the samples show a dielectric loss within two percent, 

which indicates the good quality of the samples. In general, tan δ decreases with Ca-

substitution. At very low frequency, high dielectric loss is observed due to presence of 

all types of polarization including space charge polarization. That also quickly 

decreases up to about 10 kHz due to the space charge polarization losses. This high loss 

can be explained on the basis of Maxwell –Wagner polarisation mechanism as was done 

by D. O’Neill et al. [37]. At high frequency, a dielectric loss peak is observed. As 

mentioned earlier, several possible causes exist for such dispersion including the 

hypothesis of the influence of the contact resistance between the probe and electrode, 

and resonance due to high dielectric constant. Similar frequency dispersion behavior 

was also reported for other ferroelectric materials [34, 35]. This behavior is verified by 

changing the electrod area. 

 

Figure 7.14 Frequency dependency of dielectric loss of (Ba1-xCax) Ti0.6Zr0.4O3 

compositions. The low frequency region is shown as an inset in log frequency scale.  

 

The a.c conductivity of the different compositions at three different frequencies is 

calculated using the relation 7.2. The variation of conductivity with Ca content in the 

ceramic is plotted in the Fig. 7.15. The decrease in conductivity may be primarily due to 

the decrease in tan δ loss with Ca substitution, as stated earlier.  
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Figure 7.15. Conductivity of the Ba1-xCaxTi0.6Zr0.4O3 samples with different 

concentration of Ca(x). 

 

Also that decrease may be partly due to the decrease in grain size and hence increase in 

grain boundary areas/resistance with Ca substitution.  Grain boundary areas are highly 

resistive in oxide ceramics. Smaller grain sized ceramics have larger grain boundary 

areas, i.e., in case of smaller grain, no. of grain boundary per unit thickness is more than 

that of bigger grain size and hence smaller-grained ceramics have higher resistivity than 

bigger grain sized ceramics. As suggested by R K Astala [36], impurities and defects 

are considered to have largest effect in ST ceramics, i.e., higher the defect higher will 

be the conductivity. Here, as Ca addition reduces the defect in the ceramic, that may be 

another reason of decrease in conductivity with substitution.   

 

7.3.1.4. Effect of Mg on (Ba1-xMgx)Ti0.6Zr0.4O3 Ceramics 

Fig. 7.16 shows the microstructure of Ba1-xMgxTi0.6Zr0.4O3 ceramics. There is a 

decrease in average grain size with the increase in Mg (x) content. The Table 7.4 shows 

that there is a decrease in apparent porosity. This may be due to the decrease in melting 

temperature of the oxides with increase in Mg content. The binary phase diagram [39] 

containing MgO and BaO or SrO or BaO shows that there is systematic decrease in 

melting temperature with increase in Mg content up to 40 mol%. Again, the same type 

of behavior in the phase diagram [40.41] containing MgO with TiO2 or ZrO2 is also 

observed. Here, in the similar way, the decrease in porosity may be interpreted. 
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Figure 7.16 Microstructure of Ba1-xMgxTi0.6Zr0.4O3 ceramics, (a) x=0.0,(b) x=0.03,(c) 

x=0.07,(d) x=0.14. 

 

Table 7.4: Variation of crystal symmetry, Grain size, x ray density, bulk density, 

apparent porosity and true porosity with different Mg (x) concentration in the Ba1-

xMgxTi0.6Zr0.4O3. 

Mg 

(x) 

 

Symmetry 

Grain 

size 

(µm) 

X-ray 

Density 

(g/cc) 

Bulk 

Density 

(g/cc) 

Apparent 

Porosity 

(%) 

0 cubic 22.2 6.0695 5.0036 5.86 

0.03 cubic 3.9 5.9721 5.673 1.8 

0.07 cubic 3.6 5.8717 5.573 1.5 

0.14 cubic 3.1 5.6687 5.716 1.1 

 

Fig. 7.17 shows the frequency dependency of the permittivity of Ba1-xMgxTi0.6Zr0.4O3 

compositions. The composition with x=0.0, shows the highest dielectric constant. The 

dielectric constant decreases with Mg substitution. The dielectric constant of all the 

compositions was very stable in the frequency range 1 kHz to about 6 MHz. In general 

(a) (b) 

(c) (d) 
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dielectric constant decreases with the increase in Mg substitution due to; (i) the decrease 

in concentration of high permittivity material BTZ, and (ii) due to the decrease in 

polarizability of the atoms in the structure. When a lower-radii Mg replaces higher-radii 

Ba in the structure, there is a decrease in lattice parameter, yielding the lowering of 

dipole moment in cubic perovskite.  
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Figure 7.17. Frequency dependency of permittivity of Ba1-xMgxTi0.6Zr0.4O3 

compositions 

Fig. 7.18 shows the frequency dependency of the dielectric loss of the samples.  

In general tan δ decreases with Mg-substitution. At very low frequency, high dielectric 

loss is observed due to presence of all type of polarization including space charge 

polarization. That also quickly decreases up to about 10 kHz due to the space charge 

polarization losses.  The loss was found to decrease nominally with the increase in Mg 

substitution. 
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Figure 7.18. Frequency dependency of dielectric loss of (Ba1-xMgx)Ti0.6Zr0.4O3 

compositions 
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At high frequency, a dielectric loss peak is observed. Several possible causes exist for 

such dispersion including the hypothesis of the influence of the contact resistance 

between the probe and electrode, presence of barrier layer between the insulating 

materials and the electrode surface, and resonance due to high dielectric constant or 

leaky grain boundary. Similar frequency dispersion behavior was also reported for other 

ferroelectric materials prepared by other techniques also [34, 35,]. This is to note that 

the frequency dependency of permittivity shows almost stable behavior and dielectric 

losses are very low for all compositions in bulk ceramics in the frequency range 100 

kHz to 6 MHz.   The materials are suitable for low loss application in the said frequency 

range.  

 

7.3.2. Temperature Dependency Dielectric Study 

7.3.2.1. The Composition BaTi0.6Zr0.4O3 

Fig. 7.19 and Fig. 7.20 show the temperature dependency of the dielectric 

constant and dielectric loss of bulk ceramics at different frequency respectively. The 

Fig. 7.19 shows, that the value of ε increases gradually to a maximum value (εm) with 

increase in temperature up to the transition temperature and then decreases smoothly, 

indicating a phase transition. The maximum of dielectric permittivity, εm and the 

corresponding temperature maximum Tm, depend upon the measurement frequency. 
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Figure 7.19. Temperature dependency of ε’ for BaTi0.6Zr0.4O3 at various frequencies 
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Figure 7.20. Temperature dependency of ε’’ for BaTi0.6Zr0.4O3 at various frequencies 

 

The magnitude of dielectric constant decreases with increase in frequency and the 

maximum is shifting to higher temperature. As shown in Fig. 7.20, the dielectric loss 

values of the ferroelectric phase were reduced substantially at room temperature in the 

paraelectric phase (above Tm). The imaginary part of the spectrum (Fig. 7.20) shows 

that there is an increase in dielectric loss peak temperature with increase in frequency. 

This indicates that the dielectric polarization is of relaxation type in nature such as 

dipolar glasses. In analogy with spin glasses, such a behavior of the dynamic 

susceptibility in disordered ferroelectric is supposed to be concerned with the existence 

of the broad spectrum of relaxation times. It is generally considered that the Debye 

model is based on the assumption of a single relaxation time. The model fails because 

of the existence of a distribution of relaxation times. Such a distribution of relaxation 

time implies that the local environment seen by individual dipoles differs from site to 

site. This is a reasonable assumption in amorphous materials. As a rule [42], this 

relaxation occurs in disorder ionic structures, particular, in solid solutions. Within the 

Curie range of temperature, dielectric permittivity achieves very high value and 

displays very large dispersion, which is reminiscent of that found for orientational 

glasses [43]. Qualitatively, the strongly-broadened dielectric peak indicates that the 

phase transition is of a diffuse type near the transition temperature (Tm), which is caused 

by the inhomogeneous distribution of the Zr ion on Ti site and mechanical stress in the 

grain [44]. The observed lower temperature (below Tm) frequency dispersion may also 

have some contribution from the space charge effect. An increase in the value of ε” at 

lower frequency region may be due to the increase in ionic conductivity resulting from 

the disordering of mobile cations in the oxygen octahedral skeleton [45].  
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7.3.2.1. a. Diffuse Phase Transition Behaviors 

A diffuse phase transition (DFT) is generally characterized by broadening in 

dielectric constant versus temperature curve. i.e the transition temperature is nor sharply 

defined. This  DFT is not only observed in relaxors but may be realized in normal 

dielectrics under certain special circumstances. 

A relatively large separation (in temperature) between the maximum of the real 

(dielectric constant) and imaginary (dielectric loss) part of the dielectric spectrum, a 

deviation from Curie-Weiss law in the vicinity of Tm, and frequency dispersion of both 

ε’ and tan δ (dielectric loss) in transition region implies a frequency dependency of Tm. 

It is known that the dielectric permittivity of a normal ferroelectric above the Curie 

temperature follows the Curie-Weiss law described by  

( )0

'
TT

C
−=ε , (T>TC)                 (7.3) 

where T0 is the Curie-Weiss temperature and C is the Curie-Weiss constant. Fig. 7.21 

shows the plot of inverse dielectric constant versus temperature at different frequency. 

A deviation from Curie Weiss law can be seen in all representative frequency. The 

parameters obtained from the fitting are listed in the Table 7.5. The parameter ∆Tm, 

which describes the degree of the deviation from the Curie Weiss law, is defined as  

∆Tm=Tcw-Tm,                 (7.4) 

Where Tcw denotes the temperature from which the permittivity starts to deviate from 

the Curie Weiss law and Tm represents the temperature of the dielectric maximum. The 

Curie temperature was determined from the graph by extrapolation of the reciprocal of 

dielectric constant of the paraelectric region. The parameters obtained after fitting are 

also given in the Table 7.5. 

 A modified Curie-Weiss law has been proposed to describe the diffuseness of a 

phase transition,  

( ) '

'
/

11
CTT m

m

γ

εε
−=−                (7.5) 

where γ and C’ are assumed to be constant. The parameter γ gives information on the 

character of the phase transition; for γ=1, a normal Curie Weiss law is obtained, for 

γ=2, it reduces to the quadratic dependency which describes a complete diffuse phase 

transition. The plot of Log (1/ε’-1/εm) vs Log (T-Tm) at 100 kHz is shown in the Fig. 

7.22. A linear relationship is observed. The slope of the fitting curve is used to 

determine the value of parameter γ. In the present composition, the value of γ is found 

to be 1.66 at 100 kHz. The value of the γ shows that the material is highly disordered.  
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Figure 7.21. Temperature dependency of 1/ε’ for BaTi0.6Zr0.4O3 at various frequencies 

 

The broadened dielectric maximum (in ε’ vs temperature curve) and its deviation from 

Curie–Weiss law are the main characteristics of a diffuse phase transition of the 

material. The diffuse phase transition and deviation from Curie-Weiss type law may be 

assumed to be due to disordering. The broadness in ε’ vs. temperature curve is one of 

the most important characteristics of the disordered perovskite structure with diffuse 

phase transition. The broadness or diffusiveness occurs mainly due to compositional 

fluctuation and structural disordering in the arrangement of cation in one or more 

crystallographic sites of the structure. This suggests a microscopic heterogeneity in the 

compound with different local Curie points. The nature of the variation of dielectric 

constant and non-polar space group suggests that the material may have ferroelectric 

phase transition. 
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Figure 7.22. Log (1/ε’-1/εm) vs Log (T-Tm) for BaTi0.6Zr0.4O3 at 100 kHz 
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Table 7.5: Parameters obtained from temperature dependency dielectric study (fig. 7.22) 

on the composition BaTi0.6Zr0.4O3 at corresponding measured frequencies. 

 

Frequency Tm (K) T0 (K) C (10
5
K) ∆Tm εm Tcw 

1kHz 163.5 189.41 1.666 88.81 1598.7 252.3 

10kHz 170.91 195.57 1.665 80.14 1473.5 252.7 

100kHz 179.97 198.1 1.665 78.66 1415.3 257.8 

1 MHz 192.713 211.60 1.665 74.89 1370.4 267.6 

 

7.3.2.1. b. Vogel-Fulcher Relationship 

The plot of Log (ν ) vs. Tm is shown in Fig.7.23. The non-linear nature indicates 

that the data cannot be fitted with a simple Debye equation. In order to analyze the 

relaxation features of the ceramic, the experimental curves were fitted using the Vogel-

Fulcher formula [46, 47], 
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νν                (7.6) 

where 0ν  is the attempt frequency, Ea is the measure of average activation energy, and 

kB is the Boltzmann constant, and Tf is the freezing temperature. Tf is regarded as the 

temperature where the dynamic reorientation of the dipolar cluster polarization can no 

longer be thermally activated. The fitting curve is shown in Fig. 7.23. The fitting 

parameters are Ea =0.1020 eV, Tf =106K, and 0ν =8.5X1011Hz. The close agreement of 

the data with the V~F relationship suggests that the relaxor behavior in the system is 

analogous to that of a dipolar glass with polarisation fluctuations above a static freezing 

temperature. The activation energy and pre-exponential factor are both consistent with 

thermally activated polarisation fluctuations. The empirical relaxation strength 

describing the frequency dispersion of Tm is defined as  

    ∆Tres= Tm (1M Hz)- Tm(10 kHz),         (7.7) 

where ∆Tres was derived from the dielectric measurement of the ceramics. The values of 

∆Tres is found to be 20.14 for the composition.  
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Figure 7.23. 1/Tm as function of the measured frequency of BaTi0.6Zr0.4O3. The solid 

circles are the experimental points and the line is to the Vogel-Fulcher relationship. 

 

  The relaxor behavior, as observed in this ceramic, can be induced by many 

factors such as microscopic compositions fluctuation, the merging of micropolar 

regions in to macropolar regions, or a coupling of order parameter and local disorder 

mode through the local strain [48-50]. Vugmeister and Glinichuk reported that the 

randomly distributed electrical field or strain field in a mixed oxide system was the 

main reason leading to the relaxor behavior [51]. In the solid solution of BaTi0.6Zr0.4O3, 

Ba ions occupy the A sites of the ABO3 perovskite structure. Zr and Ti ions occupy the 

B site, and the ionic radius of Zr4+(0.98Ǻ) is larger than that of Ti4+(0.72Ǻ), therefore 

an inhomogeneous distribution results at the B site of the structure and induces a 

mechanical stress in the grain. Stress was introduced into the lattice during cooling after 

sintering process, which is due to the transition from a cubic to rhombohedral phase 

below the Curie temperature [52]. On the other hand, it is known that BaZrO3 shows 

non ferroelectric (cubic paraelectric phase) behavior at all temperatures because, the Zr 

ion locates at the central equilibrium position of the BaZrO3 lattice. In this case, the 

macrodomain in BaTiO3 could be divided into the microdomains, which probably cause 

the relaxor behavior.  

 

7.3.2.2. The Composition Ba0.9Ca0.1Ti0.6Zr0.4O3 

Fig. 7.24 and 7.25 show the temperature dependency of the dielectric constant 

and dielectric loss of bulk Ba0.9Ca0.1Ti0.6Zr0.4O3 ceramics respectively at different 

frequency. The nature of the plot shows a typical relaxor behavior. The nature of the 
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material can be interpreted as described in section 7.3.2.1 and the parameters obtained 

from the plot are tabulated in the Table 7.7. 
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Figure 7.24. Temperature dependency of ε’ for Ba0.9Ca0.1Ti0.6Zr0.4O3 at various 

frequencies 

0

10

20

30

40

50

60

70

100 150 200 250 300 350

Temperature (
O
K)

P
e
rm
it
iv
it
y
 (
ε'
')

10kHz

100kHz

1MHz

 

Figure 7.25. Temperature dependency of ε’’ for Ba0.9Ca0.1Ti0.6Zr0.4O3 at various 

frequencies. 
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Figure 7.26. Temperature dependency of 1/ε’ for Ba0.9Ca0.1Ti0.6Zr0.4O3 at various 

frequencies. 



 140

The Fig. 7.26 shows temperature dependency of 1/ε’ for Ba0.9Ca0.1Ti0.6Zr0.4O3 at various 

frequencies, which shows a deviation from the Curie Weiss law. The parameters 

obtained (Tm, TC and Twc) from the plot are given in the Table 7.6.    
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Figure 7.27. Log (1/ε’-1/εm) vs Log (T-Tm) for Ba0.9Ca0.1Ti0.6Zr0.4O3 at 100 kHz 

 

The plot of Log (1/ε’-1/εm) as a function of Log (T-Tm) is shown in the Fig. 7.27. The 

slope of the fitted curve is used to determine the value of γ, which gives the information 

on the diffusivity of the material. In the present composition, the value of γ is found to 

be 1.50 at 100 kHz which again confirms the nature of the diffuse phase transition. 

 

Table 7.6: Parameters obtained from temperature dependency dielectric study on the 

composition Ba0.9Ca0.1Ti0.6Zr0.4O3 at corresponding measured frequencies. 

Frequency Tm (K) T0 (K) C (10
5
K) ∆Tm εm Tcw 

1kHz 167.47 186.6 1.45 79.64 657.44 247.11 

10kHz 173.35 198 1.42 75.85 604.35 249.20 

100kHz 184.602 205.6 1.42 69.548 584.65 254.15 

1 MHz 198.79 214 1.42 68.73 572.21 267.52 

 

The plot of transition temperature as function of Log (frequency) is shown in the 

fig. 7.28.  The data could not be fitted with simple Debye relation and is fitted with V~F 

relation (Eq. 7.6). The solid circles are the experimental data points and the line is the 

fitted curve. The parameters obtained from the fitting are: Ea =0.0461 eV, Tf= 130 K, 

and 0ν =2.51X109 Hz. The empirical relaxation strength (∆Tres) describing the frequency 

dispersion of Tm is found to be 25.44 using the relation 7.7.  
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Figure 7.28. 1/Tm as function of the measured frequency of Ba0.9Ca0.1Ti0.6Zr0.4O3. The 

solid circles are the experimental points and the line is to the Vogel-Fulcher 

relationship. 

From the Table 7.6, it can be noticed that there is an increase in transition 

temperature with Ca substitution in BaTi0.6Zr0.4O3 ceramic (Table 7.5). When Ca is 

substituted in 12 coordination site, it traps with eight nearest neighbors Oxygen and 

four more distant ones. That modification supposes a possible displacement of Ca2+ out 

of the oxygen dodecahedron centre able to induce a dipolar moment whose occurrence 

should lead to increase in transition temperature [53]. The observed transition 

temperature is less than that observed by Ph. Sciau et.al. [54] in Ca substituted Ba 

(Ti/Zr) O3 is due to the presence of higher amount of Zr in the system. The parameter 

which describes the degree of deviation, i.e., ∆Tm, decreases slightly, indicating 

decrease in relaxor nature. 

 

7.3.2.3. The composition Ba0.93Mg0.07Ti0.6Zr0.4O3 
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Figure 7.29. Temperature dependency of ε’ for Ba0.9Mg0.07Ti0.6Zr0.4O3 at various 

frequencies. 
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Figure 7.30. Temperature dependency of ε’’ for Ba0.9Mg0.07Ti0.6Zr0.4O3 at various 

frequencies. 
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Figure 7.31. Temperature dependency of 1/ε’ for Ba0.9Mg0.07Ti0.6Zr0.4O3 at various 

frequencies. 

Fig. 7.29 and Fig. 7.30 show the temperature dependency of the dielectric 

constant and dielectric loss of bulk Ba0.9Mg0.07Ti0.6Zr0.4O3 ceramics respectively at 

different frequencies. The nature of the plot shows a typical relaxor behavior. The 

dielectric constant and loss tangent exhibit strong frequency dependency below Curie 

region. The nature of the material can be interpreted as described in Section 7.3.2.1 and 

the parameters obtained from the plot are tabulated in the table 7.7. 

The thermal variation of 1/ε’ is plotted in the Fig. 7.31. The plot clearly 

indicates the deviation from Curie-Weiss law. The parameters Tm, TO and Twc obtained 

from the plot are shown in the Table 7.7.  

The plot of Log (1/ε’-1/εm) as a function of Log (T-Tm) is shown in the Fig. 7.32. 

The diffuseness parameter γ is found to be 1.46 at 100 kHz which again confirms the 

nature of the diffuse phase transition. 
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Figure 7.32. Log (1/ε’-1/εm) vs Log (T-Tm) for Ba0.9Mg0.07Ti0.6Zr0.4O3at 100 kHz 

 

The plot of dependency of transition temperature as function of Log (frequency) 

is shown in the Fig. 7.33.  The darkened circles are the experimental points and the 

solid line is the fitted curve using the V~F relation given in the Equation 7.6. The 

parameters obtained from the fitting are: Ea =0.014 eV, Tf= 132 K, and 0ν =5.4X107 Hz. 

The empirical relaxation strength (∆Tres) describing the frequency dispersion of Tm is 

found to be 22 using the relation 7.7.  

6 8 1 0 1 2 14
5 .6

5 .8

6 .0

6 .2

6 .4

6 .6

6 .8

ν

 

 

1
0
3
/T

m

ln  

 

Figure 7.33. 1/Tm as function of the measured frequency of Ba0.9Mg0.07Ti0.6Zr0.4O3. The 

solid circles are the experimental points and the line is to the Vogel-Fulcher 

relationship. 
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Table 7.7 Parameters obtained from temperature dependency dielectric study on the 

composition Ba0.9Mg0.07Ti0.6Zr0.4O3 at corresponding measured frequencies. 

 

Frequency Tm (K) T0 (K) C(10
5
K) ∆Tm εm Tcw 

1kHz 143 175.513 2.5 104.8 957.42 250.8 

10kHz 151 169.73 2.5 96.73 914.50 261.73 

100kHz 158 174.55 2.5 97.53 889.08 255.53 

1 MHz 173 188.3 2.5 83.8 871.95 256.80 

 

7.3.2.4. The Composition Ba0.86Mg0.14Ti0.6Zr0.4O3 
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Figure 7. 34. Temperature dependency of ε’ for Ba0.86Mg0.14Ti0.6Zr0.4O3 at various 

frequencies. 
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Figure 7.35. Temperature dependency of ε’’ for Ba0.86Mg0.14Ti0.6Zr0.4O3 at various 

frequencies. 

 

Fig. 7.34 and Fig. 7.35 show the temperature dependency of the dielectric 

constant and dielectric loss of bulk Ba0.86Mg0.14Ti0.6Zr0.4O3 ceramics respectively at 
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different frequencies. The nature of the plot shows a typical relaxor behavior. The 

parameters obtained from the plot are tabulated in the Table 7.8. 

The thermal variation of 1/ε’ is plotted in the Fig. 7.36. The figure clearly 

deviates from Curie Weiss law with 0.14 atom % of Mg substitution in BaTi0.6Zr0.4O3 

ceramic. The parameters Tm, TO and Twc obtained from the plot is depicted in the Table 

7.8.  
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Figure 7.36. Temperature dependency of 1/ε’ for Ba0.86Mg0.14Ti0.6Zr0.4O3 at various 

frequencies. 

 

The plot of Log (1/ε’-1/εm) as a function of Log (T-Tm) is shown in the Fig. 7.37. 

The diffuseness parameter γ is found to be 1.96 at 100 kHz which again confirms the 

nature of the diffuse phase transition. 
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Figure 7.37. Log (1/ε’-1/εm) Vs Log (T-Tm) for of Ba0.86Mg0.14Ti0.6Zr0.4O3 at 100 kHz 

 

The plot of dependency of transition temperature as a function of Log 

(frequency) is shown in the Fig. 7.38. The darkened circles are the experimental points 
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and the solid line is the fitted curve using the V~F relation given in the Eq. 7.6. The 

parameters obtained from the fitting are: Ea =0.02 eV, Tf= 108 K, and 0ν =5.35X107 Hz. 

The empirical relaxation strength (∆Tres) describing the frequency dispersion of Tm is 

found to be 28.83 using the relation 7.7.  
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Figure 7.38. 1/Tm as function of the measured frequency of Ba0.86Mg0.14Ti0.6Zr0.4O3. The 

solid circles are the experimental points and the line is to the Vogel-Fulcher 

relationship. 

 

Table 7.8 Parameters obtained from temperature dependency dielectric study on the 

composition Ba0.86Mg0.14Ti0.6Zr0.4O3 at corresponding measured frequencies. 

 

Frequency Tm (K) T0 (K) C (10
5
K) ∆Tm εm Tcw 

1kHz 131 151.226 2.0 117.07 670.62 248.07 

10kHz 137.08 146.53 2.0 116.62 631.18 253.7 

100kHz 147.87 170.87 2.0 107.84 618.45 255.71 

1 MHz 165.91 187.8 2.0 93.65 604.18 259.56 

 

From the Tables 7.5, 7.7 and 7.8 it can be noticed that there is decrease in transition 

temperature with Mg substitution in BaTi0.6Zr0.4O3 ceramic. Mg is small enough to 

occupy the 12 coordination sites of the ABO3 perovskite. But when it takes the 12 

coordination sites (i.e., the A site), A-site ion and the oxygen ion of ABO3 perovskite 

structure become stronger because the radius of the Ba2+ ion is larger than that of the 

Mg2+ ion: the bonding force Ti-O(Mg), therefore, becomes weaker than Ti-O(Ba) bond. 

The weakening of the Ti-O bond leads to a weaker distortion of the octahedron and 

brings about a decrease in Curie temperature [55]. It is reported [56] that as the grain 
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size decreases, the maximum dielectric constant and transition temperature decrease. 

This may be the region of decrease of transition temperature and dielectric constant 

with increase in Mg content. The effect of grain size originates from the higher surface 

tension in smaller grains [57], which acts in the same manner as hydrostatic pressure, 

thus decreasing the Curie point [58]. In addition, the force experienced by the atoms 

and ions in the vicinity of, or far from, the surface of grain, are not similar. These 

considerations suggest that a quadraticity gradient may exist between the surface and 

the bulk of grains [59]. For smaller grain sizes however, the superficial layers of the 

grains represent a significant fraction and may dominate the structural and the dielectric 

measurement. 

 

7.4. Conclusions 

It may be concluded that; 

1. The compositions (Ba1-xSrxTi0.5Zr0.5O3) show decreased densification and grain 

growth with the increase in Sr substitution. 

2. Composition with x=0.0 (BaTi0.5Zr0.5O3) shows highest permittivity in the 

system. The permittivity and dielectric loss decrease with the increase in Sr 

substitution. 

3. The permittivity and loss are found to be stable and loss is less than 0.6 % in the 

frequency range 100 kHz to about 5 MHz for all the compositions. 

4. AC conductivity in the ceramics decreases with Sr-substitution due to the 

decrease in loss as well as grain size and increase with increase in frequency. 

5. The compositions show a good densification around x=0.2 in the system (Ba1-

xSrxTi0.5Zr0.5O3), suggesting a low melting eutectic near that composition in the 

four component system. 

6. The compositions (Ba0.5Sr0.5TiO3) show decreased densification and grain 

growth with the increase in Zr substitution. 

7. Permittivity, dielectric loss and AC conductivity decrease with Zr-substitution in 

Ba0.5Sr0.5TiO3 ceramic due to the decrease in charge defects by the substitution. 

8. There is a decrease in density due to the substitution of more stable Zr in place 

of Ti. 

9. Decrease in dielectric permittivity may be due to the decrease in grain size. 

10. Dielectric loss peak at about 9.5 MHz is due to extrinsic resonances loss. 
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11. The effect of Ca and Mg on the composition BaTi0.6Zr0.4O3 has been studied in 

details.  

12. The microstructure shows that there is a decrease in grain size with the 

substitution. The rate of decrease in grain size is observed with the substitution 

of Ca and Mg. 

13. The experimental density calculated by the water immersion technique shows 

there is an increase in density with Ca and Mg substitution in the experimental 

sintering temperature.  

14. The room temperature dielectric study shows that there is a decrease in 

permittivity and dielectric loss with the substitution, which may be due to the 

decrease in grain size, as mentioned earlier. 

15. The temperature dependency dielectric study on the composition BaTi0.6Zr0.4O3,  

Ba0.9Ca0.1Ti0.6Zr0.4O3, Ba0.93Mg0.07Ti0.6Zr0.4O3 and Ba0.86Mg0.14Ti0.6Zr0.4O3 was 

carried out in the temperature range 130 OK to 333 OK.  

16. The compositions show a diffuse phase transition having its Curie range of 

temperature much below the room temperature.  

17. The Ca-containing composition shows that there is a shift of transition 

temperature towards room temperature, but the Mg containing compositions 

shows shift of transition temperature further below. 

18.  A clear deviation from Curie-Weiss law is observed for all the compositions, 

and degrees of deviations were also calculated and found to increase with both 

Ca and Mg content. 

19. To study the diffuseness the data were fitted with a modified Curie-Weiss law 

and it was found that the degree diffuseness decreases with Ca substitution, but 

increases with Mg substitution. 

20. In order to analyze the relaxation feature, the strength of relaxation were also 

calculated and found to increase with Ca and Mg substitution. 

21. The experimental curves were fitted with Vogel-Fulcher formula and the 

experimental data were found to be in good agreement with the theoretical 

fitting.  
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Chapter – 8 

 

THEORETICAL MODELS ON RELAXORS: A REVIEW 

 

8.1. Introductions 

Perovskite-like ferroelectric relaxors attract considerable interest owing to rich 

diversity of their physical properties and possible applications in various technological 

schemes. These relaxors possess very large dielectric constants, attractive for 

capacitors, exceptionally large electrostrictive coefficients, important for actuators and 

micropositioners, and large electro-optic constants, useful for information storage, 

shutters and optical modulators [1, 2]. 

The main features of relaxors are connected with their structural (compositional) 

inhomogeneity or disorder and with the presence of polar nanodomains in nonpolar 

matrix. The structural investigations and physical property studies reveal three peculiar 

temperatures: Td, Tm and Tc. At temperature above Td, so called the Burns temperature, 

the mixed compounds A (B’B’’) O3 have the cubic perovskite structure in which the B 

position is occupied by the approximately randomly distributed B’ and B’’ ions. On 

cooling below Td small polar nanodomains appear, whose interactions and growth can 

trigger a transition into a glassy or ordered phase. If the domains become large enough, 

the sample will undergo a cooperative ferroelectric phase transition at Tc. On the other 

hand, if the nanodomains grow but do not become large enough, they will ultimately 

exhibit a dynamic slowing down of their fluctuations below Tm, which is the 

temperature of the dielectric permittivity maximum, leading to an isotropic relaxor state 

with random orientation of polar domains [2]. 

Relaxor ferroelectrics or relaxors exhibit many properties similar to those of 

spin or dipolar glasses. Relaxor behavior in normally ferroelectric materials results from 

compositionally inherent, disorder or frustration [1].This behavior has been observed 

and studied most extensively in disordered ABO3 perovskite ferroelectric. Three 

essential ingredients of relaxor ferroelectric are the existence of lattice disorder, 

evidence of the existence of polar nanodomains at temperatures much higher than Tm 

and the existence of domains as islands in a highly polarisable host lattice.  

To close similarity, spin glasses are magnetic systems in which the interactions 

among the magnetic moments are both random and frustrated because of structural 
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disorder. A common feature of these systems, and the one that makes them such an 

interesting object of study, is that they exhibit a freezing of magnetic moments in 

random directions at an apparently sharp temperature Tf [3]. 

 

8.2.   Spin Glass Ising Models  

8.2.1. Introduction  

It can be said that the theory of spin glasses started in 1975 with a paper by 

Edwards and Anderson [4] attempting to explain the observed cusp in the susceptibility 

of dilute magnetic alloys. The cusp was puzzling because it strongly suggested a 

magnetic phase-transition in the alloy, but no long-range magnetic order was seen in 

these so called spin glass alloys. Edwards and Anderson explained this as follows. The 

localized magnetic moments of impurities – to be called spins henceforth – interact with 

each other through Ruderman-Kittel- Kasuya-Yosida (RKKY) interaction [5] mediated 

by the conduction electrons of the non-magnetic host metal. The RKKY interactions 

between a pair of spins oscillate in sign as the separation between the spins is varied. In 

a spin glass alloy, impurities are fixed (quenched) in various random positions in the 

host lattice. Because of the random positions of spins and the oscillatory nature of 

RKKY interaction, there are just as many ferro-magnetic pair interactions amongst 

spins as there are anti-ferromagnetic [6]. This makes it impossible for the system to 

settle into any overall ferromagnetic or antiferromagnetic state even at zero 

temperature. However, there is a preferred orientation into which each spin settles as 

temperature goes to zero. This preferred orientation varies randomly from spin to spin. 

Edward and Anderson showed that at critical temperature, the spin transition 

temperature Tsg, a finite fraction of spins spontaneously settled into their respective 

preferred directions. This gives rise to a singularity, a cusp, in the susceptibility. As 

temperature drops further, more and more spins freeze into their preferred directions. 

Because the preferred directions are completely random, there is no visible long range 

order in the spins. However, it was suggested that the quantity 
2

tSq =  may serve as 

an order parameter for the spin glass transition, where the angular brackets denote the 

thermal average of spin Si at site i, and the bar denotes configurational average over all 

impurity sites. The quantity q is called the Edwards-Anderson parameter [4].   

 

8.2.2.  Theory of Spin Glass Ising Model  
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Because there are similarities between spin glasses and relaxor ferroelectric and 

because of the wealth of available knowledge both from experimental and theoretical 

angles in the former, one can deal with the relaxor behavior in analogy with the spin 

glasses. This section attempts to model the problem of relaxor ferroelectric in analogy 

with Ising model description of spin glasses.  

Under the most commonly studied Ising model of spin glas, consisting of N 

Ising spins Si = ±1, i = 1, 2, …, N ,in the presence of an externally applied magnetic 

field H, the Hamiltonian for the model becomes,[7] 

  ∑ ∑−−=
ji i

ijiijH SHSSJH
,

.
2

1
               (8.1)                        

Here each spin Si interacts with every other spins Sj, with exchange transition Jij.  

In term of Pouli spin matrices 

                      ( ) ∑∑ −−−=
< i

iji

ji

jiH HRRJH σσσ
rrr

2

1
                   (8.2) 

                         where HHg m =β
2

1
                                                (8.3) 

Hm being magnetic field strength. 

Under the assumptions of one dimensional nearest neighbour interaction 

                      ∑ ∑−−= +
n n

nnnH HJH σσσ 1                                 (8.4) 

Because the relaxors are materials with random site lattice disorder, it is natural to 

resort to models that investigate the role of random fields. In ABO3 relaxors, the dipolar 

nanodomains formed by chemical substitutions create random electric fields in the host 

lattices. 

For an Ising spin model with infinite ranged interactions with statistically 

independent site field, one considers a collection of spin s=±1 located at lattice sites i,j 

and interacting in such a away that the total energy ,or Hamiltonian , is  

                          ∑ ∑
≠

−−=
ji i

njiH SSJH σ                             (8.5)        

Here the interaction J is a constant that incorporates all electronic properties in a 

phenomenological way, and ij  designates nearest- neighbor pairs. Although in Eq 8.5, 

the quantities Sij are called “spins” the model is by no. means restricted to magnetism. 

This model can describe any solid state system that has a transition with a doubly 

degenerate ordered state, and contains frozen impurities or point defects that break the 

symmetry and cannot move on the relevant time scale. The important feature of reloxor 
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is the presence of compositional and structural disorder, which breaks translation 

symmetry and produces random dipolar nanodomains. 

For relaxor as consisting of Ising like dipoles in a regular lattice with randomly 

disturbed exchange energy parameters, the Hamiltonian is simplified to 

 

i

ii

ji

jiijH S
E

SSJH

µ

θµµ cos∑∑
≠

+=                                      (8.6) 

 where Jij is assumed to have a Gaussian distribution with zero mean field value. µi is 

the magnitude of the dipole moment of the i-th polar nano domains, θi is the angle 

between the external field E, and i-th dipole moment and µ  is the maximum projection 

of the dipole moments on the main axis.  

Our aim is to find the free energy of this model as a function of temperature T, 

magnetic field H, and variance of random interactions σ. 

Defining partition function Z and introducing 2x2 matrices as under  

                                 ( )∑ ∑ ∑
±= ±= ±=

=
1 1 1

/......

1 2

1......
σ σ σ

σσ

N

BTnH kH
eZ                            (8.7) 

                                    ( ) ( )
jikV

ji
σσσσ 11 exp=                                       (8.8) 

                                    ( ) ( )
jiji

i

'HV σσσσ δσexp2 =    

where   k1 =J/KB T  ,  H ′= H/ KB T 

One can get the Free energy per spin 

                            1loglog λBT

BT kZ
N

k
F −=

−
=                                   (8.9) 

where              111 222
1 sincosh k'k'k

eHheHe
−++=λ                   (8.10) 

 

From the free energy one can calculate the magnetization 
mH

F
M

∂

∂
−=   which, in turn, 

helps us to calculate magnetic susceptibility
mH

M

∂

∂
=χ . It is easy to see that the 

magnetic susceptibility approaches infinity for Hm=0 as T approaches to 0 if K is 

positive, corresponding to ferromagnetic transition.  

 Sherrington and Kirkpatrick [8] developed an infinite range model for spin glass 

which related the temperature dependence of the susceptibility below Tf to the onset of 

a local (spin glass) order parameter as 
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,
)](1[

)](1[

TqT

TqC

−−

−
=

θ
χ                 (8.11) 

where q is the local order parameter, which has been considered as Edward-Anderson 

spin glass order parameter and χ is the susceptibility (in magnetic system) in analogy 

with permittivity (in dielectric system). This relationship has been previously used by 

Nagata et al. [9] to extract a spin glass order parameter from the static susceptibility, 

where C and θ were determined by Curie Weiss analysis at high temperature. Deviation 

from Curie Weiss behavior was not observed in these measurements and q extrapolated 

to zero near Tf. Subsequent work has revealed strong deviations. Calculation by Binder 

[10] using Ising model with Gaussian distribution of correlation lengths between 

neighboring moments has indicated that q does not go to zero at Tf but tails to zero at 

much higher temperatures suggestive of Curie Weiss deviation about Tf. The deviation 

from Curie-Weiss behavior in spin glasses has been interpreted to mean that, on a local 

scale, strong magnetic correlations develop far above Tf. The ideal (non-interacting) 

super paramagnet is known to exhibit Curie Weiss behavior for finite measurement 

frequencies. The local polar regions in relaxors are believed to be homogeneous and of 

nanometer size, i.e superparaelectric. However, it has been recently shown [11] that the 

characteristic dielectric response of relaxor ferroelectrics can be determined by the 

competition between a nonequilibrium dipole spin glass freezing and a critical change 

of the relaxation time spectrum. Such a glasslike freezing of cluster dynamic could be 

characterized by the nonequilibrium spin glass order parameter, q (T), describing the 

fraction of cluster effectively frozen at time t.  

 

8.3. Spherical Random Bond – Random Field (SRBRF) Model 

8.3.1.  Introduction  

Since the discovery of relaxor ferroelectrics more than 50 years ago, a number 

of concepts have been introduced to account for their unusual physical behavior: diffuse 

phase transition, superparaelectric and dipolar glass models, random-field frustrated 

ferroelectric, and reorienting polar clusters. In spite of intensive investigations, the 

nature of the diffuse phase transition [12] in relaxors has remained the subject of some 

controversy. For example, it has been suggested some time ago that relaxors could be 

described as a dipolar glass due to the orientation of large superparaelectric clusters [13-

16]. The existence of nanometer sized polar domains in lead-magnesium-niobate 

(PMN) has in fact been demonstrated by X-ray and neutron scattering experiments [17, 

18]. In particular, the Nb NMR line shape and the associated probability distribution of 
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local polarization in PMN were shown to remain Gaussian at all temperatures. This is 

incompatible with the assumption of a fixed-length order parameter field typically made 

in dipolar glasses. Rather, in a relaxor the order parameter field is described as a 

continuous vector field of variable length, which is associated with the dipole moment 

of reorientable polar clusters, and is subject to a global spherical constraint on the 

square of the total polarization. Thus a relaxor corresponds to a new type of dipolar 

glass, namely, the spherical vector glass. 

The purpose of the present Chapter is to derive the basic ideas of the SRBRF 

model in a concise way and calculate the predicted temperature and electric field 

dependencies of some crucial physical properties, such as the nonlinear dielectric 

response and probability distribution of local polarization. The SRBRF model may be 

regarded as the simplest generic model of relaxor ferroelectrics. Since the random 

interactions or bonds between polar clusters are by assumption infinitely ranged with a 

Gaussian distribution, and local random fields are similarly Gaussian and uncorrelated, 

this will lead to a mean field type theory analogous to the case of spin and dipolar 

glasses [19, 20]. 

 

8.3.2.  Theory of SRBRF Model  

We will consider PbMg1/3Nb2/3O3 (PMN) as a representative relaxor 

ferroelectric system. On the mesoscopic level, PMN is a structurally inhomogenous 

material consisting of Nb-rich regions or polar clusters embedded in a quasiregular 

array of chemically ordered 1:1 regions or chemical clusters. The polar clusters have 

typically the size of a few nanometers and are reorientable, and are thus responsible for 

the observed dielectric behavior. In contrast, the chemical clusters are essentially static 

and act as sources of random electric fields.  

We will, therefore, adopt the physical picture of interacting polar clusters and 

assume that there are ni Nb type unit cells in a cluster Ci, where i=1,2,…..N. and N is 

the total no of reorientable clusters. Each polar cluster Ci consists of a number of 

pseudocubic unit cells containing either Nb or Mg ions. Here i = 1, 2, …, N and N 

denotes the total number of polar clusters. If ( )iluk

r
is the displacement of the kth ion in 

the lth cell in Ci from its ideal perovskite cubic position and ek(il) its charge, then the 

dipole moment of the cell is 

( ) ( ) ( )iluileilm k

k

k

rr
∑=                     (8.12) 
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It has been argued that the dominant contribution to ( )ilm
r

is due to the displacements of 

the Nb5+ and PB2+ ions, so that Eq. (1) can be simplified to 

( ) ( ) ( )[ ] ...,
2

3
0 +−= iluilueilm PbNb

rrr
                    (8.13) 

where e0 is the unit charge and the dots represent the contributions of the remaining 

terms. Since Mg and Pb ions have the same charge, the contribution of an Mg-type cell 

is much smaller and only Nb-type cells are relevant. Let ni represent the number of Nb 

cells in cluster Ci. The dipole moment of Ci can then written as 

( ) ( )imnilmM
i

ii ∑ ≅= 0

rrr
,                           (8.14) 

assuming that dipole moment ( )ilm
r

is the same for each Nb cell in Ci, and can thus be 

replaced by ( ) ( ) ( ) ( )[ ]iuiueim PbNb

rrr
−= 00 2/3  

Let us now introduce a dimensionless order parameter field, which is 

proportional to iM
r
and thus scales with the number of Nb ions ni 

[ ] ( )
,

3

0

2/1

2 im

M

n
S i

av

i

r
r









=                        (8.15) 

Here [ ] ( ) ./1 22
iiav nNn Σ=  It is easily verified that the order parameter field then satisfies 

the closure relation 

There are ni Nb-type unit cells in a cluster Ci, where i = 1,2,…,N and N is the 

total number of reorientable clusters. The main contribution to the dipole moment m0(i) 

of the lth cell in Ci is due to the relative displacements of the Nb5+ and Pb2+ ions from 

their pseudocubic positions [14,18]. The cluster dipole moment is thus Mi = nim0(i).  

Introducing Si = {[m0(i)
2]av/3}

-1/2Mi/ni as a dimensionless order parameter field, where 

[m0(i)
2]av = (1/N) ∑I m0(i)

2, we find that its components satisfy the closure relation

     NS
N

i

i 3
1

2 =∑
=

                      (8.16) 

The model has two order parameters, the polarisation P and glass order parameter q.The 

Edwards-Anderson order parameter, the polarisation, is given by  

  [ ] ( )zyxSS
N

P
avi

N

i

i

EA ,,;
1

1

=== ∑
=

µµµµ               (8.17)

 and the glass order parameter is 
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 [ ] ( )zyxSS
N

q
avi

N

i

i

EA ,,;
1 2

2

1

=== ∑
=

µµµµ               (8.18) 

This, together with the existence of randomly competing ferroelectric (FE) and 

antiferroelectric (AFE) interactions, leads to the SRBRF model Hamiltonian for relaxor 

ferroelectric as under 

∑ ∑ ∑−−−=
i i

iijiijs SEgShSSJH
rrrrrr

...
2

1
              (8.19) 

where iS
r
−dipole moment of the i -th polar cluster, Jij −random inter cluster interactions 

(J0/N −mean value, (J)2/N −variance), E
r
−external electric field, ih

r
−random fields (0 

−mean value, [ ] ∆δδhh µvij

c

aviviµ = ). Equilibrium values of polarization 

∑−=
i iSNP 1 and the order parameter of glass ∑−=

i iSNq 21 are determined from 

the condition of the free energy minimum. 

For J0 < (J
2 +∆)1/2, long-range order cannot exist and the system is in a spherical 

glass phase (P = 0, q ≠ 0) at all temperatures. If ∆ = 0, a transition from a high-

temperature paraelectric to glass phase occurs at Tm = J/k. For ∆ ≠ 0 and ∆ << J
2 the 

sharp transition disappears, but the nonlinear susceptibility shows a maximum at kTm ≈ 

(J2 + ∆)1/2.  

For J0 > (J
2 + ∆)1/2, long-range order is possible and a phase transition to an 

inhomogenous ferroelectric phase (P ≠ 0, q ≠ 0) occurs below the critical temperature    

( )[ ]22
00c JJ∆/1JkT −−= .             (8.20) 

 

The average energy is calculated in a standard manner by applying the replica trick and 

imposing the spherical constraint. Introducing the familiar replica indices α = 1,2,….n 

and a Lagrange multiplier Z to enforce the speherical condition, one can write down the 

expression for the free energy F  as  
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where β is 1/kT 
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The knowledge of free energy per spin helps us to find polarization and dielectric 

susceptibility, in the same line with magnetization and magnetic susceptibility, 

respectively, as that of Ising spin model for spin glasses. 

For isotropic system, spontaneous polarisation below Tc is given by, 
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and the Edward-Anderson glass order parameter qEA is given by  

                                              qEA   =    1 -  T/j0 

J0 and J being the uncoupled interaction parameter and ∆ =| J0
2 - J2 |  

 

Normally the strong pseudospin-lattice coupling always occurs in dipolar glasses. To 

account for the pressure-induced FE-R crossover, it is necessary to include the 

pseudospin lattice coupling interaction. The nanodomains are dispersed in a deformable 

lattice, the total Hamiltonian now becomes [4] 

SLLS HHHH ++=                (8.23) 

where HL and HSL are the lattice (phonon) contribution  and pseudospin polar phonon, 

respectively. The lattice coupling modifies the uncoupled interaction parameters J0 and 

J to J0
* and J*[7]  

Lattice coupling modifies the uncoupled interaction parameters J0 and J of the SRBRF 

model as follows: 
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and  
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where ω0 is the k = 0 optic phonon frequency. 

As for the uncoupled SRBRF model, two limiting cases are of interest.  

Case (i): *
0J < [(J

*
)
2
 + ∆]

1/2
. Here long-range order cannot exist, and the system goes 

into a dipolar glass state with non-zero order parameter q (T). If ∆ = 0, a transition from 

the high PE state to a dipolar glass (relaxor) phase occurs at Tf ≡ T0 = J
*
/k. for ∆ ≠ 0 and 
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∆ << (J
*
)
2
, the transition, which corresponds to the maximum in the nonlinear 

susceptibility, occurs at 

( )[ ] 2/12* ∆+≈ JT f                   (8.26) 

Case (ii): *
0J > [(J*)2+∆]1/2. In this case, long- range order is possible. The phase 

transition to an inhomogeneous ferroelectric state occurs below transition temperature 

Tc given by  
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The average probability distribution of local polarization ii Sp = is defined as 

    ( ) ( )∑ −=
i

ipp
N

pW δ
1

              (8.28) 

 

8.3.2.1. Nonlinear Dielectric Response 

A straight forward way to discriminate between a ferroelectric state broken up 

into nanodomains under the constraint of quenched random fields or a (dipolar) glass 

state is to check the temperature dependency of the nonlinear dielectric response. 

In a system with average cubic symmetry, the phenomenological relation 

between the applied electric field Eµ (µ = 1, 2, 3) and polarization Pµ can be written, 

assuming small amplitudes, as a power series 

( ) ...3
1111

2
3

2
21122111 +−+−= ExEEExExP                    (8.31) 

The inverse relation is formally  

( ) ...3
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2
3
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where ,
1

1

1 χ
=a   ,

4
1
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122 χ

χ
=a  and .

4
1

111
3 χ

χ
=a  

According to the scaling theory one has for a ferroelectric in zero electric field  

βγ 2
3 )( −−∝ C

FE TTa . 

 For a system with cubic symmetry in d=3 spatial dimensionalities, one has 02 >− βγ , 

where the mean value is .02 =− βγ  For a random field frustrated ferroelectric, a3 thus 

decreases on approaching TC from above. For a dipolar glass, on the other hand, χ1 

remains finite at Tf, whereas 3)(3
γχ −−∝ fTT with .13 =γ Thus the nonlinear 
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coefficient 3)(3
γ−−∝ f

DG TTa  should in contrast to the ferroelectric case–increase with 

decreasing T on approaching Tf.  

For relaxors described by SRBF model with 0
~

≠∆  one finds for E →0. 
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where the linear susceptibility is given by  
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8.3.2.2. Heat Capacity and Thermal Expansion Studies of Relaxors 

Magnetic, dielectric, optical, and electric properties of these materials are 

studied extensively. Thermal properties, especially heat capacity and its behavior in a 

wide temperature range, were studied casually. Nevertheless, thermal parameters of 

relaxors may be important in the developing and refining models of the phenomena in 

questions. Calorimetric studies have some advantages since this method makes possible 

to detect and type of heat capacity anomalies, which are associated with electric as well 

as the elastic and other subsystems. 

This section aims to study the heat capacity and thermal dilatation behavior of a 

leadfree relaxor material. The SRBRF Hamiltonian, as proposed earlier, is  

∑∑ ∑ −−−=
i

ii

ij i

ijiij SEgShSSJH ,
2

1 rrrrrr
        

where iS
r
−dipole moment of the i -th polar cluster, Jij −random intercluster 

interactions (J0/N −mean value, (J)2/N −variance), E
r
−external electric field, 

ih
r
−random fields (0 −mean value, [ ] ∆δδhh µvij

c

aviviµ = ). Equilibrium values of 

polarization ∑−=
i iSNP 1 and the order parameter of glass ∑−=

i iSNq 21 are 

determined from the condition of the free energy minimum. 

For J0 < (J
2
 + ∆)

1/2 long-range order cannot exist and the system is in a spherical 

glass phase (P = 0, q ≠ 0) at all temperatures. If ∆ = 0, a transition from a high-

temperature paraelectric to glass phase occurs at Tm = J/k. For ∆ ≠ 0 and ∆ << J
2 the 

sharp transition disappears, but the nonlinear susceptibility shows a maximum at kTm ≈ 

(J
2
 + ∆)

1/2
. For J0 < (J

2
 + ∆)

1/2 long-range order is possible and a phase transition to an 
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inhomogenous ferroelectric phase (P ≠ 0, q ≠ 0) occurs below the critical temperature 

( )[ ]/kJJ∆/1JT 22
00c −−= . 

 The experimental results of M.V.Gorev et. al on anomalies of heat capacity and 

entropy change for leadfree materials are much smaller than for lead containing relaxors 

such as PMN and PET. The obtained results are in good agreement with the data of 

structural studies and with the SRBRF model. This strengthens the validity of the 

model. 

 

8.4. Conclusions 

In the nutt shell this chapter is devoted to throw some light in understanding the 

physical concept of relaxor ferroelectricity theoretically. Ther close analogy between 

relaxor ferroelectricity and magnetic spin glass system and the wealth of theoretical 

models in the later is prime cause of motivation.  

To start with a well known Ising model for spin glass system is reviewed till to 

reach the expression for frwee energy per spin. Magnetisation and magnetic 

susceptibility can be calculated from the same.  

With the understanding that the concept of spin is no more restricted to magnetic 

system rather to any solid state system containing the frozen impurities and point 

defects that break the symmetry. Ther relaxor behaviour in ferroelectric is one such 

attempt.  

In spite of several attempts, the nature of diffused phase transition in relaxor 

ferroelectric has still remained in a controversial stage. Experimental evidence in them 

showed incompatibility with the assumptions of fixed length ordered paramenter as 

proposed in dipolar glasses rather in a relaxor the order paramenter field is described as 

a continious vector field of variable length. Thus a relaxor coreresponds to a new type 

of di-polar galass namely spherical vector glass. To account for, the SRBRF model is 

proposed. Section 8.3.2 presents a condensed review of the same. 

With the introduction of two Edwards-Anderson order parameter p and q the SRBRF 

Hamiltonian is proposed. Using replica trick the average free energy per spin may be 

derived in a standard manner. The knowledge of free energy per spin helps us to find 

polarization and dielectric susceptibility, in same line with magnetization and magnetic 

susceptibility respectively as that of Ising spin model for spin glasses. 
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To account for strong pseudospin –lattice interaction and pressure induced FE-R 

crossover a modified Hamiltonian is proposed. The static SRBRF is exactly solvable by 

the replica method and predicts the existence of two phases, namely, the spherical glass 

(SG) phase without long-range order and the long range ordered polarized ferroelectric 

(FE) phase. The reviewed models are best suited for explaining nonlinear dielectric 

response and heal capacity and thermal expansion studies.  
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Chapter 9 

 

MAJOR CONCLUSIONS AND FUTURE WORK 

 

9.1 Conclusions 

High permittivity barium titanate zirconate (BTZ) is often used for dielectrics in 

commercial multilayer ceramic capacitors, actuators applications, and is a highly 

promising material for dynamic random access memory (DRAM), and 

microelectromechanical system (MEMS) applications due to its very stable, high 

insulating characteristic against voltage. Especially (BTZ) system is promising for 

environmental friendly applications.  

 Different solid solutions in the system have been synthesized via solid state 

reaction route. Detailed phase formation behaviors of the solid solutions were 

investigated through; (i) phase identification, (ii) phase quantity determination, (iii) 

change in lattice parameters and crystallite sises, (iv) evolution of phase formation 

kinetics and reaction mechanism, and (v) structure and microstructure evolution by 

Rietveld refinement method.  

 During the formation of Barium Titanate Zirconate solid solution, in the first 

step BaTiO3 (BT), BaZrO3 (BZ) forms separately in the system. Formation of BT 

requires less activation energy (34.3 kcal/mol) than the formation of BZ (48.4 

kcal/mol). In the second step, BaTiO3-BaZrO3 solid solution is formed mainly by the 

diffusion of BaTiO3 into the BaZrO3 lattice without any evidence of other intermediate 

phase formation. Activation energy for this step is 133 kcal/mole, which may be due to 

the diffusion of Ba and/or O ions through solid solution interface. In the formation of 

Sr(Ti0.5Zr0.5)O3 solid solution, SrTiO3 (ST) and SrZrO3 (SZ) phases form separately in 

the system and then SrTiO3 diffuses into SrZrO3 to form the solid solution. The rate of 

SrTiO3 formation was higher than SrZrO3 formation, apparently due to the higher ionic 

radius of Zr+4 ions. The activation energies of phase formations were 47.27, 65.78 and 

297.52 kcal/mol for SrTiO3, SrZrO3 and Sr(Ti0.5Zr0.5)O3 respectively, and  the 

formation reactions were limited by the diffusion of  Sr ion for SrTiO3, Zr ion for 

SrZrO3 and Ti ions for Sr(Ti0.5Zr0.5)O3, etc. Solid solution was formed coherently with 

the crystal of SrZrO3. Similarly during formation of Ba0.5Sr0.5TiO3 (BST) and 

Ba0.5Sr0.5ZrO3, BT and BZ form more easily than ST and SZ. The solid solution grows 
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coherently with ST lattice for formation of BST. During the formation of BSZ (ss), the 

activation energies required for BZ, SZ and BSZ (ss) are 58.069 kcal/mol, 60.78 

kcal/mol and 97.43 kcal/mol, respectively. The solid solution formed coherently with 

SZ by the diffusion of Ba ion into SZ lattice. In general, the study on reaction 

mechanism concludes that; titanates form more easily in the system than zirconates. 

Then titanate inter-diffuses into zirconate, where latter phase acts as diminishing core 

Coming to the Rietveld structural refinement on the four component system, the 

solid solution system Ba1-xSrx(Ti0.5Zr0.5)O3 remains cubic up to x<0.6 and becomes 

tetragonal in the range x >0.6 to x=1.0. Composition with x=0.6 contains both the cubic 

and tetragonal phases. The compositions show decreased densification and grain growth 

with the increase in Sr substitution. The solid solution system (Ba0.5Sr0.5)(Ti1-xZrx)O3 

remains cubic up to x≤0.6 and the solid solution breaks around x=0.8 with the 

formation of second phase of tetragonal type. The compositions show a good 

densification around x=0.2, suggesting a low melting eutectic near that composition in 

the four component system. Compositions with x=0.8 contains both the cubic and 

tetragonal phases and suggest to have a super-lattice structure due to the presence of 

two dissimilar structures. The Ba0.5Sr0.5ZrO3 has orthorhombic structure. 

Solubility of Ca and Mg with BaTi0.6Zr0.4O3 was also studied by Rietveld 

method. The Study concludes that, Mg forms complete solid solution with 

BaTi0.6Zr0.4O3 in the studied composition range and the structure remains cubic at room 

temperature. But solubility of Ca with BaTi0.6Zr0.4O3 breaks at around 20 atom % of Ca. 

The composition Ba0.9C0.1Ti0.6Zr0.4O3 remains cubic. With increase in Ca content, a 

different phase, orthorhombic CaTiO3, grows along with tetragonal 

Ba0.8C0.2Ti0.6Zr0.4O3.  

Detailed composition dependency microstructure and dielectric behavior of the 

different solid solution in the system has been studied. Temperature dependency 

dielectric behaviors of some of the selected compositions have been studied.  

The solid solution system Ba1-xSrx(Ti0.5Zr0.5)O3 shows decreased densification and 

grain growth with the increase in Sr substitution. Composition with x=0.0 (BTZ) shows 

highest permittivity in the system. The permittivity and dielectric loss decrease with the 

increase in Sr substitution. The permittivity and dielectric loss are found to be stable, 

and the loss is less than 0.6 % in the frequency range 100 kHz to about 5 MHz for all 

the compositions. AC conductivity in the ceramics decreases with Sr-substitution due to 

the decrease in loss as well as grain size. The solid solution system (Ba0.5Sr0.5)(Ti1-

xZrx)O3 show decreased densification and grain growth with the increase in Zr 
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substitution. Permittivity, dielectric loss and AC conductivity decrease with Zr-

substitution due to the decrease in charge defects by the substitution. The effect of Ca 

and Mg on the composition BaTi0.6Zr0.4O3 has been studied in details. Similar dielectric 

behavior and microstructure are observed with the addition of Ca and Mg at room 

temperature.  

The temperature dependency dielectric study on the composition BaTi0.6Zr0.4O3, 

Ba0.9Ca0.1Ti0.6Zr0.4O3, Ba0.93Mg0.07Ti0.6Zr0.4O3 and Ba0.86Mg0.14Ti0.6Zr0.4O3 was carried 

out in the temperature range 130 OK to 333 OK. The compositions show a diffuse phase 

transition having its Curie range of temperature much below the room temperature. The 

Ca-containing composition shows that there is a shift of transition temperature towards 

room temperature but the Mg containing compositions shows shift of transition 

temperature further below. A clear deviation from Curie-Weiss law is observed for all 

the compositions and degrees of deviations were also calculated. To study the 

diffuseness, the data were fitted with a modified Curie-Weiss law, and it was found that 

the degree diffuseness decreases with Ca substitution, but increases with Mg 

substitution. In order to analyze the relaxation feature, the experimental curves were 

fitted with Vogel-Fulcher formula and the experimental data were found to be in good 

agreement with the theoretical fitting. 

To get into the realm of physics, relaxor ferroelectric is treated as a close analogy 

with Ising model of Spin glass system. Further extension of Ising model to spherical 

random bond–random field model is discussed. Both the models are extensively 

reviewed and presented towards end of the thesis. 

 

9.2. Future Work 

Complex oxides with perovskite-like structure, such as (Ba/Sr)TiO3, 

Ba(Ti/Zr)O3, are attractive candidates for use in wireless communications and are 

potential candidates for cell capacitors in giga-bit DRAM, FeRAM, MLCC, Microwave 

tunable applications, etc., due to their high dielectric constant, near –zero temperature 

coefficient of the resonant frequency and low dielectric loss tangent [1-5]. 

 This thesis systematically represents some of their synthesis, phase formation 

behavior, structural transformation and dielectric properties in bulk ceramics, which is a 

very important document for science and technology. It is not possible to incorporate all 

the different types of characterization on the studied ceramics in one thesis document. 

Moreover, within the presently available laboratory facility, a more detailed study on 
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the ceramic is not possible. So, future programs of further study have been proposed in 

this section. 

   Structural changes in the system have been investigated by using normal XRD. 

The transforms of room temperature cubic structure of BST and BTZ to lower 

symmetry tetragonal structure is observed and confirmed by Rietveld refinement. The 

lower symmetry structures are also characterized by splitting of reflections. Such 

splitting and detailed information about the anisotropic thermal parameters can be best 

observed using high resolution synchrotron diffraction measurement. The temperature 

dependency of phase transformation may be well studied by temperature controlled 

XRD system. These are beyond the scope of our laboratory. 

It is also well known and recently reported [6], which in normal ferroelectrics, 

dielectric constant increases with decrease in particle size upto nanometric scale. 

X.G.Tang. et al. [7], have studied the effect of grain size on dielectric and tunabilities 

properties of sol gel derived BTZ ceramic and observed that diffusivity increases with 

decrease in grain size. They also observed relaxor behavior in fined-grained samples, 

instead of coarse grained samples. In the present situation, nanocrystaline single-phase 

materials may be synthesized by different chemical and mechanical route. Their 

structural, dielectric and optical properties may be studied. Thin films may be prepared 

by different techniques like; sol gel, PLD, and RF magnetron sputtering. 

Electromechanical properties may be investigated for MEMS and NEMS applications. 

One of the most convenient ways for checking the polydispersive nature of dielectric 

relaxation is through complex Argand plan plots. The impedance spectroscopy may be 

used to study the grain and grain boundary effect of the nano-crystalline relaxor 

ferroelectric and dispersive nature may be studied. To explain the relaxor behavior, 

several theoretical models [8-12] have been proposed by many research groups. None 

of them has gained complete acceptance, although it has been widely accepted that 

nanoscale polar, ordered regions dispersed in a disordered matrix are responsible for the 

properties of RFE. Nature of their extraordinary properties has not yet been understood 

completely, and they are still the subject of intensive research. In the Chapter 8 we have 

presented a brief review on some theoretical models of lead based (heterovalent 

substation) relaxor. In future these theories may be used to study the physics of these 

lead free relaxors presented in this thesis. 

Apart from the dielectric polarisation study, the spectroscopic study like, nuclear 

magnetic resonance (NMR), RBS and Raman scattering are some appropriate 

techniques to study the dynamics of structure by analyzing the characteristic modes 



 168

associated to nanoregions in relaxors. Because the local symmetry of nanoregions is 

different from that of the global symmetry, they govern different selection rules in 

different spectroscopic analysis. By examining the detailed composition dependence of 

the characteristic vibrational bands, it is possible to study the dynamics of the 

nanoregions. The detailed piezoelectric behavior may also be studied on all 

compositions.  

All the ideas proposed above to study the lead free ferroelectric relaxors are very 

important to have a detailed insight into the physics and chemistry of the materials. But 

none of the above proposed experimental facility is available in the present laboratory. 
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