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Abstract 

 
 
Key Words:  

          (Thermophysical properties, Periodic heating, Temperature oscillation, 

Transient technique, Peltier heating, Liquids)      

          The problem of determining the thermophysical properties of material has 

been of great interest to scientists and engineers for more than hundred years. The 

thermophysical study of material has gained much importance recently with the 

vast development of newer materials. The development, specification, and quality 

control of materials used in semiconductor devices and thermal management often 

require the measurement of thermophysical properties where these data can be 

critical to a successful design.  

          Knowledge of thermal properties is essential in the efficient and economical 

design of all processing operations involving heat transfer. Problems of heat 

removal in processes involving electronics chips, laser applications, similar high-

energy devices and the power generation industries, materials are selected 

primarily considering their thermal properties. Thermophysical properties are also of 

high interest for numerical modeling of heat transfer processes for better energy 

conversion and energy storage systems. 

          Due to the unique characteristics of liquid, measurement of thermal 

conductivity and thermal diffusivity are more challenging for liquids than for solids. 

Liquids do not maintain any fixed shape, and also can be easily changed 

compositionally, which alters their properties. The liquid cannot sustain a shear 

stress and also convection can occur in the presence of temperature gradients. 

These are the major error sources for many conventional techniques that measure 

liquid thermal conductivity and thermal diffusivity. 

          The well-known and conventional steady state method is the guarded hot 

plate technique. Now a days the transient techniques have achieved popularity 

over the conventional steady state methods because the transient technique 
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requires much less precise alignment, dimensional knowledge, short measuring 

time and stability. In addition to these, some of the transient methods bear less 

experimental errors due to its periodic nature. Some of the major advantages of the 

transient methods are that it gives a full set of thermophysical parameters in a 

single measurement, namely, specific heat, thermal diffusivity and thermal 

conductivity. Some of the well-known transient methods are hot wire method, 

transient hot strip method, transient plane source method, the laser flash method, 

thermal comparator method, temperature modulated differential scanning 

calorimeter (TMDSC), 3� method, photo-thermal technique and temperature 

oscillation method. 

          In this work, a novel transient technique known as temperature oscillation 

method is presented. The principle of this technique was first proposed by 

Angstrom’s in the year 1861 to measure thermal diffusivity and/or thermal 

conductivity of different metal strips with the application of steam water and cold 

water as a periodic heat source. The basic principle of this method is that if one end 

of the long bar shaped sample is heated periodically and other end is free to 

convect to an ambient temperature, then the temperature of the sample at a point 

also varies with the same period. The amplitude of the oscillation decreases 

exponentially along the length of the rod with a phase shift. The measure of these 

two properties of wave propagation can give the estimation of thermophysical 

properties of the sample.  

          This technique combines the advantages of a steady state measurement with 

the potential to measure a property describing a non-steady state. The method is 

purely thermal and the electrical components of the apparatus are away from the 

test sample, which does not influence the experimental data. One of the major 

advantages of the temperature oscillation technique is that a high degree of 

accuracy is attainable at different temperatures ranging from liquid helium to high 

temperatures upon which oscillation is imposed. Also the temperature oscillation 

method is related to its periodic character. During every period of such a process a 

whole cycle of the change is repeated. This makes it possible to considerably 

reduce random errors and to increase the signal to noise ratio. With the proliferation 

of modern computer based data acquisition systems, it is possible to design a 
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strategy for accurately computing thermophysical properties from the measured 

temperature data.  

          It is found from the literature that different investigators have derived different 

solutions depending on the boundary conditions, which are required for their 

experimental validation. A unified approach has been considered to derive a 

general governing equation, which accommodates a wide variety of boundary 

conditions. Under limiting cases this solution can be reduced to a particular 

boundary condition. The temperature oscillation is a pseudo-steady state process. 

Thus the experimental data are repeated after every cycle if the transients are 

absent. Thus the time elapsed to retrieve this steady state data is an important 

factor known as settling time. It can be demonstrated that the settling time for low 

thermal diffusivity and low heat transfer materials may be of the order of hours. 

Therefore, analysis of settling time has been carried to allow time lapse before the 

collection of steady state data in an experiment. 

          Uncertainty analysis is an essential component in an experimental 

procedure. The theory of uncertainty analysis has been presented. A step-by-step 

procedure to estimate the total uncertainty has been prescribed by taking the 

example of experimental data for a particular sample. 

          In the earlier method, the temperature oscillations are established by 

oscillating heat flux by sinusoidal resistance heating or by using steam water and 

cold water as a periodic heat source. A disadvantage of these types of heat 

sources is that the time average of the heat supplied during each cycle cannot be 

equal to zero. This leads to an increase in the mean temperature of the sample 

material. Thus Peltier element (or, Thermo Electric Cooler) has been adopted for 

the oscillating heat source. The excitation of Peltier element, whose one side is 

kept at a constant temperature, by a square wave leads to inaccurate prefixing of 

mean temperatures of oscillation. It has been demonstrated that a D.C. voltage 

modulated square wave excitation is preferred due to its better regulation of mean 

temperature of oscillation. The mean temperature of oscillation determines the 

temperature at which the thermophysical properties are to be estimated. 

          The amplitude attenuation is more sensitive to thermophysical property such 

as thermal diffusivity. Thus the amplitude attenuation is measured for the 

fundamental frequency of temperature oscillation by employing FFT technique. The 
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system considered for the measurement of thermophysical property is a semi-

infinite model. The semi-infinite model in an experiment is ensured by inserting a 

thermocouple at the far end of the sample to indicate a non-oscillating signal 

output. Due to the unique characteristics of liquid, measurement of thermal 

properties is more challenging for liquids than for solids. Liquids cannot sustain a 

shear stress and convection can occur in the presence of temperature gradient are 

some of the major issues. Thus to demonstrate the measurement of thermal 

diffusivity by temperature oscillation method for a semi-infinite medium, four liquid 

samples, ethylene glycol, ethanol, glycerol and water have been selected. 

          The experimental results of the thermal diffusivity of the four liquid samples 

are obtained along with their uncertainties. The total uncertainty assessment has 

been used for plotting the error bar in the measurement of thermal diffusivity. The 

reliability of such is evident from its results as compared with the reported values. 

The deviation from the reported values in literatures are, 6.38%, 9.77%, 10.82%, 

and 2.74% for the respective samples of ethylene glycol, ethanol, glycerol and 

water. Due to the periodic nature of temperature oscillation method, the signal to 

noise ratio has been increased by reducing the random error. The minimum 

random error of 0.77% is observed for ethylene glycol whereas the maximum 

random error of 4.66% is obtained for glycerol. Due to the less contribution of 

random error, the total uncertainty exhibits a low value. Thus the simplicity in 

experimental procedures based on a lucid theory of temperature oscillation 

establishes an inexpensive measurement technique, which leads to achieve 

reliable results. 
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Chapter 1 

 
Introduction 

 

1.1 General 
          The problem of determining the thermophysical properties of material has 

been of great interest to scientists and engineers for more than hundred years. The 

thermophysical study of material has gained much importance recently with the 

vast development of newer materials, rapid industrial development, and growth of 

material research and advent of new measuring technologies. Thermophysical 

properties are also of high interest for numerical modeling of heat transfer 

processes, for better energy conversion and energy storage systems. This data can 

be critical to a successful design; especially with the rapidly increasing cooling 

requirements that result from the packaging of higher performance devices.  

          Knowledge of thermal properties is essential in the efficient and economical 

design of all process operations involving heat transfer. Some of the common 

processes involving heat transfer are heating, cooling, freezing, cutting and drilling, 

annealing, cladding, etc that may set up thermal stresses in the material or alters its 

microstructure. In energy conversion system such as atomic or nuclear reactor the 

thermal analysis is indispensable. However, for most pure materials and mixtures 

there is still a lack of data for thermophysical properties in the literature.  

          In order to achieve high performance and reliabilities in energy conversion 

and utilization, thermal analysis for controlling the transport of heat is essential. 

Therefore knowledge about thermophysical properties of material and the 
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mechanism of heat transfer inside these materials are indispensable. The accuracy 

of thermal engineering calculation depends on the accuracy to which the 

thermophysical properties are known. Numerous examples could be cited of flaws 

in equipment and process design or failure to meet performance specification that 

were attributable to misinformation associated with the selection of key property 

values used in the initial system analysis. Selection of reliable property data is an 

integral part of any careful engineering analysis. 

          Thermophysical properties, such as thermal conductivity and thermal 

diffusivity, are very important properties. Accurate values of these properties are 

critical for practical engineering design as well as theoretical studies and analysis, 

especially in the fields of heat transfer and thermal processing. As both the thermal 

conductivity and thermal diffusivity are properties that characterize the heat transfer 

behavior, applications including conduction and convection heat transfer, heat 

exchanger design, and insulation problems, etc., heavily rely on the availability of 

these two parameters. 

          Due to the unique characteristics of liquid, measurement of the thermal 

conductivity and thermal diffusivity are more challenging for liquids than for solids. 

Liquids do not maintain any fixed shape, and can be easily changed 

compositionally, which alters their properties. Also, since liquids cannot sustain a 

shear stress, convection can occur in the presence of temperature gradients in the 

liquid, which is one of the major error sources for many conventional techniques 

that measure liquid thermal conductivity and thermal diffusivity. 

           
1.2 Role of Heat Transfer in Various Fields of Engineering  
          The subject of heat transfer is of fundamental importance in many branches 

of engineering. A mechanical engineer may be interested in knowing the 

mechanisms of heat transfer involved in the operation of equipment, in a thermal 

power plant in order to improve their performance. Nuclear power plants require 

precise information on heat transfer, as safe operation is an important factor in their 

design. Refrigeration and air-conditioning systems also involve heat-exchanging 

devices, which need careful design. Electrical engineers are keen to avoid material 

damage due to hot spots, developed by improper heat transfer design, in electric 

motors, generators, transformers, and in other electrical appliances. As the 



 3  

miniaturization of integrated circuits are advancing in a rapid rate, the electronics 

and computer engineers are interested in heat dissipation from semiconductor 

devices and circuit boards so that these devices can operate within its specified 

temperature limit. Chemical engineers are interested in heat transfer processes in 

various chemical reactions. In metallurgical field, engineers would be interested in 

knowing the rate of heat transfer required for a particular heat treatment process, 

for example, the rate of cooling in a casting process has a profound influence on 

the quality of the final product. Aeronautical engineers are interested in knowing the 

heat transfer rate in rocket nozzles and in heat shields used in re-entry vehicles. An 

agricultural engineer would be interested in the drying of food grains, food 

processing and preservation. A civil engineer would need to be aware of the 

thermal stresses developed in quick-setting concrete, the effect of heat and mass 

transfer on building and building materials and also the effect of heat on nuclear 

containment, etc. An environmental engineer is concerned with the effect of heat on 

the dispersion of pollutants in air, diffusion of pollutants in soils, thermal pollution in 

lakes and seas and their impact on life.  

          The study of heat transfer provides economical and efficient solutions for 

critical problems encountered in many engineering items of equipment. For 

example, one can consider the development of heat pipes that can transport heat 

at a much greater rate than copper or silver rods of the same dimensions, even at 

almost isothermal conditions. The development of present day gas turbine blades, 

in which the gas temperature exceeds the melting point of the material of the blade, 

is possible by providing efficient cooling systems and is another example of the 

success of heat transfer design methods. 

          Although there are many successful heat transfer designs, further 

developments are still necessary in order to increase the life span and efficiency of 

many devices discussed previously, which can lead to many more new inventions. 

Thus the studies of thermophysical parameters, which directly control the heat 

transfer processes, are of interest in almost all the fields of engineering. 

 
1.3 Thermal Properties and its Role in Heat Transfer 
          The needs of thermal properties to describe material that are generally 

considered in the context of heat transfer are: thermal conductivity, thermal 
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diffusivity, specific heats, and surface heat transfer coefficient etc. Heat transfer 

coefficient is not a thermal property of a material but it is influenced by thermal 

properties. 

 
Thermal conductivity:  
          The material property governing the flow of heat through a material at steady 

state is the thermal conductivity, k  (W/mK); thermal conductivity is a measure of 

the ability of a material to conduct heat. In general, the thermal conductivity is 

primarily dependent on composition, but also on the other factor that affects the 

heat flow paths such as porosity and shape, size and arrangement of void spaces, 

homogeneity, fibers and their orientation. The highest conductivities are those of 

diamond, silver, copper and aluminum. The lowest are shown by highly porous 

materials like firebrick, cork, and foams, in which conductivity is limited partly by the 

gas entrapped in the porosity. 

 
Specific heat:  
          The specific heat of a material is defined as the amount of energy required to 

raise one unit of temperature of one unit mass of material at constant pressure. 

    
Tm

QCp ∆
=                                                                                                       (1.1) 

 
Thermal diffusivity:  
          The property governing transient heat flow is the thermal diffusivity,α (m2 /s). 

Transient heat transfer problems occur when the temperature distribution changes 

with time. The fundamental quantity that enters into heat transfer situations not at 

steady state is the thermal diffusivity. Thermal diffusivity relates the ability of a 

material to conduct heat to store. It is related to the steady state thermal 

conductivity through the equation 

pCρ
kα =                                                                                                    (1.2) 

          Where α  is the thermal diffusivity, k  is the thermal conductivity, pC  is the 

specific heat, and ρ  is the density. The diffusivity is a measure of how quickly a 

body can change its temperature, it increases with the ability of a body to conduct 
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heat k  and it decreases with the amount of heat needed to change the temperature 

of a body pC ; all three quantities on the right hand side of Eq. (1.2), as well as the 

thermal diffusivity, can be functions of temperature. 

            
1.4 Heat Conduction Models and its Boundary Conditions 
          The basic thermal properties, which govern the heat transfer by 

conduction, are thermal conductivity, thermal diffusivity and specific heats. The heat 

transfer coefficient and relaxation time are not thermal properties of a material but 

they are influenced by the heat conduction process and the associated boundary 

conditions. The role of relaxation time suggests that there is a time lag between 

heat flow and temperature gradient. The heat flow does not start instantaneously 

but grows gradually with the relaxation time after the application of a temperature 

gradient. The relaxation time classifies the heat conduction to hyperbolic and 

parabolic models. The parabolic model predicts that the temperature disturbances 

propagate at an infinite speed where as in hyperbolic model the propagation speed 

is finite.  

         
1.4.1   Parabolic Model 
          Parabolic heat conduction analysis is based on two basic relations, namely, 

the first law of thermodynamics and the Fourier law. In classical heat conduction 

theory, the constitutive governing equation for heat flow is given by Fourier’s law, 

x
Tkq

∂
∂

−=                                                                                                   

(1.3) 

          This states that the heat flux q  is proportional to the temperature gradient, 

where k  is the thermal conductivity. The first law of thermodynamics for the heat 

flow can be stated as,  

x
q

t
Tcρ p ∂

∂
−=

∂
∂                                                                                           

(1.4) 

          When the constitutive relation, as expressed by Eq. (1.3) is incorporated into 

first law of thermodynamics, the resultant equation yields the parabolic partial 

differential equation for heat conduction as, 
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2

2

x
Tα

t
T

∂
∂

=
∂
∂                                                                                      (1.5) 

          It may be observed that in the constitutive Eq. (1.3), there is no involvement 

of time parameter. The heat flows instantaneously with the application of 

temperature gradient. This results an infinite heat propagation velocity, which is 

unrealistic in many situations. This invokes the hyperbolic heat conduction model. 

However, at normal conditions the parabolic model is adequate since the velocity of 

thermal wave is very large. 

1.4.2 Hyperbolic Model 
          Fourier heat flux predicts that heat conduction is a diffusion phenomenon in 

which temperature disturbances will propagate at infinite velocities. This is 

physically unreasonable. In order to eliminate this anomaly of infinite heat 

propagation velocity and to account for the presence of the observed thermal 

waves a more precise heat flux law needs to be postulated. Since it is desired to 

retain the basic notion of first law of thermodynamics as described by the equation 

(1.4). Vernotte [20] suggested a modified heat flux law in the form  

x
Tkq

t
qτ

∂
∂

−=+
∂
∂                                                                               (1.6) 

          Although the constitutive heat flux equation are different for the hyperbolic 

and parabolic models, the energy equation remains unchanged and is given by Eq. 

(1.4). The hyperbolic model is characterized by the addition of relaxation time, τ . 

When a heat flux of the form given by Eq. (1.6) is used in conjunction with first law 

of thermodynamics, Eq. (1.4), a hyperbolic heat conduction equation results in the 

form 

2

2

2

2

x
Tα

t
T

t
Tτ

∂
∂

−=
∂
∂

+
∂
∂                                                                         (1.7) 

          For 0→τ , the parabolic and hyperbolic models coinside with each other. In 

hyperbolic model τ  represents relaxation or start up time for the commencement of 

heat flow after a temperature gradient has been imposed. It means that the heat 

flow does not start instantaneously but grows gradually with a relaxation time, after 

applying a temperature gradient. This hyperbolic equation becomes the governing 

equation for heat conduction when the propagation velocity of thermal waves is 

finite. 
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          Transient heat conduction equations such as parabolic and hyperbolic are 

found in the most literature. These two equations are differentiated on the basis of 

propagation of heat wave inside the medium. The difference between the 

hyperbolic and parabolic heat conduction can be simply stated as follows: parabolic 

heat conduction involves an instantaneous increase in surface temperature and an 

infinite rate of energy diffusion, while hyperbolic heat conduction involves a gradual 

increase in surface temperature and finite rate of energy diffusion. Thus, the 

classical parabolic heat conduction equation successfully predicts the temperature 

and heat flux distribution for most practical purposes, except for extremely short 

times and for temperature near absolute zero. 

          In conventional material processing, the parabolic heat conduction equation 

is adequate to model heat transfer in the material because the temperature 

gradient involved in such a processes is moderate. Under steady state conditions, 

the hyperbolic model reduces to the Fourier model even when relaxation time is not 

zero; hence the temperature predicted by the two models (parabolic and 

hyperbolic) will differ only under non-steady state conditions. When surface 

radiation is involved the hyperbolic solution, as a result of the higher surface 

temperatures, looses more energy due to radiation than the parabolic solution. 

Thus with increased surface radiation, the time to converge the difference between 

the hyperbolic and parabolic temperature profiles decreases. In general, the non-

Fourier effect is shown to decay quickly. It has been observed that for most 

practical conduction problem the finite speed of propagation in hyperbolic equation 

is very large compared to the diffusivity. 

 
• Boundary Conditions  
          The differential equations governing heat conduction will be complete for any 

problem only if the appropriate initial and boundary conditions are specified. With 

the necessary conditions, the solution to heat conduction equation is unique and 

feasible. It should be observed that the heat conduction equation has second-order 

terms and hence requires two boundary conditions. Since time appears as a first-

order terms, only one initial value (i.e., at some instant of time all temperatures 

must be known) needs to be specified for the entire body. This instant of time may 

be taken as the origin of time coordinate and thus termed out as initial condition. It 
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may be further stated as initial condition specifies the distribution of temperature at 

the origin of the time coordinate, whereas boundary conditions specify the thermal 

condition at the boundary surfaces of the region.  

          The various common types of boundary conditions that may arise in heat 

conduction problems may be classified into three kinds. If the temperature at the 

surface (or the boundary) is given, the resulting boundary conduction is called the 

Dirichlet condition or the boundary condition of first kind. It can be expressed 

mathematically as, 

                              0TT =   on TΓ                                                                          (1.8) 

          In many physical situations, it is possible that the heat flux rather than the 

temperature is specified at the boundary. The resulting boundary condition is 

mathematically expressed as,  

C
n
Tkq =

∂
∂

−=  on qfΓ                                                               (1.9) 

          The boundary condition of the above type, given by Eq. (1.9) is called the 

Neumann condition or boundary conditions of the second kind. 

          Another type of situation may arise when the body loses (or gains) heat by 

convection while it is in contact with a fluid at a given temperature aT . The 

convective heat transfer coefficient h  is also given. The mathematical form of this 

type of boundary condition is given by 

                   )TT(h
n
Tk a−=

∂
∂

−        on qcΓ                                                            (1.10) 

          The form of the boundary condition given by Eq. (1.10) is called the Rabin 

condition or a boundary condition of the third kind or a convection boundary 

condition. 

          In Equations (1.8) to (1.10), 0T  is the prescribed temperature; Γ  the 

boundary surface; n  is the outward direction of normal to the surface and C  is the 

given constant flux. The insulated or adiabatic, condition can be obtained by 

substituting 0C = . The suffices T , qf  and qc  denote temperature, heat flux and 

heat convection respectively. 

          Another thermal boundary condition that frequently arises in nature as well as 

in engineering systems is the periodic change of the temperature of the 
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surroundings. That is: (1) the daily and seasonal changes of solar radiation on the 

soil or on buildings, (2) the periodic changes in the cylinders of internal combustion 

engines, (3) various experimental temperature controls by a thermostat, and the 

periodic heat transfer in a regenerator. For theoretical and experimental modeling 

of the transient techniques, wide variation of sample size and boundary conditions 

can be classified as:   

(i) Long sample with one end of the sample is sinusoidal. 

(ii) Short sample (finite length) with the boundary conditions at the two ends 

are:    

a. Sinusoidal - adiabatic 

b. Sinusoidal - isothermal 

c. Sinusoidal - sinusoidal 

          Many methods have been developed to analytically solve the heat 

conduction equation with known periodic oscillation boundary condition accurately. 

Those are pseudo-steady state method, variable separation method, splitting 

boundary condition method and direct Laplace transform technique. The 

temperature solution of the problems is usually composed of both steady periodic 

and transient decaying parts. The transient part decays to zero in the limit of long 

time. Pseudo-steady state solution method gives only periodic steady state solution 

and all other techniques give complete solutions, both steady periodic and 

transient. Pseudo-steady state technique is applicable only for the solution of 

homogeneous type of boundary condition. Non-homogeneous boundary value 

problem can be solved directly using Laplace transform technique or first splitting 

the boundary condition then applying either variable separation method or Laplace 

transform technique. A complete solution of transient heat conduction equation is 

obtained by the methods namely variable separation method; splitting boundary 

condition method and direct Laplace transform method. The amplitude ratio and 

phase change between outputs to input is obtained from steady periodic solution. 

Evaluation of these two properties gives measurement of thermophysical 

parameter.  

          Although a number of analytical solutions for conduction heat transfer 

problems are available (Carslaw and Jaeger [1], Ozisik [2]) in many practical 

situations, the geometry and the boundary conditions are so complex that an 
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analytical solution is not possible. Even if one could develop analytical relations for 

such complicated cases, these will invariably involve complex series solutions and 

would thus be practically difficult to implement. In such situations, conduction heat 

transfer problems do need a numerical solution. The commonly employed 

numerical methods are the Finite Difference and Finite Volume methods. 

1.5 Measurement Techniques of Thermal Properties           

          Over the years, a number of methods have been developed to measure 

thermal transport properties of many different materials. To keep up with the quick 

development of new materials and the ever-increasing importance of 

accommodating new applications, better accuracy and precision of measurement, 

variations of older methods and the introduction of completely new techniques have 

been more common recently. Now a days, it is often not enough to get approximate 

data from textbooks, but measurements of real samples are necessary. Small 

variation in composition, processing parameters and utilization conditions change 

the behavior and properties, and if new materials are to be used at their optimum 

potential, accurate measurements are essential. The use of short measuring time is 

perhaps the most distinctive feature of the any experimental method. Therefore, in 

designing an apparatus, accurate and rapidly responding instruments are essential. 

Advantages in instrumentation can thus help to increase the versatility and overall 

accuracy of the method so that a wide range of materials can be studied. 

          In general, the measurement techniques of thermophysical properties are 

mainly classified into steady state (stationary) and non-steady (transient) state 

methods. These methods can be further subclassified on the basis of basic 

principle of measurement; number of thermophysical properties measured 

simultaneously, suitability to test different materials, selection of heat source, output 

measuring device and various experimental conditions. Both categories of 

techniques provide a temperature gradient and then monitor the response of the 

material to this gradient. The various popular methods for measuring thermal 

diffusivity, specific heat, thermal conductivity, relaxation time, and surface heat 

transfer coefficient of different materials are classified as: 
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Measurement methods 

 
                 Steady state 

      Transient 

• Guarded hot-plate method • Transient hot wire method 

• Radial heat flow method • Transient hot strip method 

• Heat flow meter • Heated-needle probe method 

• Laser flash method 

• Thermal comparator method 

• Temperature modulated differential 

scanning calorimeter (TMDSC) 

• 3� method 
• Photothermal technique 

 

• Temperature oscillation method (TOM) 
 1.5.1 Steady State Method:           The essential constitutive equation for thermal conduction relates the 

heat flux in a material to the temperature gradient by the equation:  

                        TkQ ∇−=                                                                                    (1.11) 

It is not possible to measure local heat fluxes and gradients; thus all experimental 

techniques must make use of an integrated form of the equation, subject to certain 

conditions at the boundaries of the sample. All experiments are designed so that 

the mathematical problem of the ideal model is reduced to an integral of the one-

dimensional version of Eq. (1.11), which yields, in general: 

                    TkHQa ∆=                                                                                    (1.12) 

in which H  is constant for a given apparatus and depends on the geometric 

arrangement of the boundaries of the test sample. Typical arrangements of the 

apparatus, which have been employed in conjunction with Eq. (1.12), are two flat, 

parallel plates on either side of a sample, concentric cylinders with the sample in 

the annulus and concentric spheres. 

          Techniques that make use of Eq. (1.12) are known as steady state 

techniques and they have found wide application. They are operated usually by 

measuring the temperature difference T∆  that is generated by the application of a 
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measured heat input aQ  at one of the boundaries. The absolute determination of 

the thermal conductivity, ,k  of the sample contained between the boundaries then 

requires knowledge of the geometry of the cell contained in the quantity H . In 

practice, it is impossible to arrange an exactly one-dimensional heat flow in any 

finite sample so that great efforts have to be devoted to approach these 

circumstances and then there must always be corrections to Eq. (1.12) to account 

for departures from the ideal situation.  

          One of the steady state methods is parallel-plate instrument as shown in Fig. 

(1.1). The sample is contained in the gap between two plates (upper and lower) 

maintained a distance d apart by spacers. A small amount of heat, aQ , is 

generated electrically in the upper plate and is transported through the sample to 

the lower plate. Around the upper plate, and very close to it, is placed a guard 

plate. This plate is, in many instruments, maintained automatically at the same 

temperature as the upper plate so as to reduce heat losses from the upper surfaces 

of the upper plate and to most nearly secure a one-dimensional heat flow at the 

edges of the sample.  

 
1.5.2 Transient method:  
          If the application of heat to one region of the test sample is made in some 

kind of time-dependent fashion, then the temporal response of the temperature in 

any region of the sample can be used to determine the thermal conductivity of the 

fluid. In these transient techniques, the fundamental differential equation that is 

important for the conduction process is: 

)Tk.(
t
TCρ p ∇∇=

∂
∂                                                               (1.13) 

where ρ  is the density of the material and pC  its isobaric heat capacity. In most, 

but not all circumstances, it is acceptable to ignore the temperature dependence of 

the thermal conductivity in this equation and to write: 

TT
Cρ
k

t
T 22

p

∇α=∇=
∂
∂                                                      (1.14) 

in which α  known as the thermal diffusivity.  
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          Experimental techniques for the measurement of the thermal conductivity 

based on Eq. (1.14) generally take the form of the application of heat at one 

surface of the sample in a known time-dependent manner, followed by detection of 

the temperature change in the material at the same or a different location. In most 

applications, every effort is made to ensure that the heat conduction is 

unidirectional so that the integration of Eq. (1.14) is straightforward. This is never 

accomplished in practice, so some corrections to the integrated form of Eq. (1.14) 

are necessary. The techniques differ among each other by virtue of the method of 

generating the heat, of measuring the transient temperature rise, and of the 

geometric configuration. Interestingly, in one geometric configuration only, it is 

possible to determine the thermal conductivity essentially independently of 

knowledge of ρ  and pC , which has evident advantages. More usually, it is the 

thermal diffusivity α  that is the quantity measured directly, so that the evaluation of 

the thermal conductivity requires further, independent measurements. 

          Some of the transient methods and technique (TOM) used in the present 

thesis are focused here.  In transient hot wire technique, the thermal conductivity of 

a material is determined by observing the temporal evolution of the temperature of 

a very thin metallic wire (see Fig. 1.2) after a step change in voltage has been 

applied to it. The voltage applied results in the creation of a line source of nearly 

constant heat flux in the fluid. As the wire is surrounded by the sample material, this 

produces a temperature field in the material that increases with time. The wire itself 

acts as the temperature sensor and, from its resistance change; its temperature 

change is evaluated and this is related to the thermal conductivity of the 

surrounding material. The transient hot-disk instrument suitable for solid material is 

shown in Fig. (1.3).  The sensor in this case comprises a thin metal strip, often of 

nickel, wound in the form of a double spiral in a plane. It is printed on, and 

embedded within, a thin sandwich formed by two layers of a material that is a poor 

electrical conductor but a good thermal conductor. This disk heater is then, in turn, 

placed either between two halves of a disk-shaped sample of solid or affixed to the 

outside of the sample. Heated-needle probe is shown schematically in Fig. (1.4) 

where it is seen that it consists of a thin, hollow, metallic needle (diameter 3 mm) 

containing an electric heater and a separate thermistors as a probe to record the 
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temperature history of the needle following initiation of a heat pulse. The 

temperature history of the probe is generally interpreted with the aid of the equation 

appropriate to a transient hot-wire instrument but in a relative manner whereby its 

response is calibrated against known standards. Fig. (1.5) contains a schematic 

diagram of the laser-flash instrument, as it is available today in the commercial 

form. The sample is illuminated on one face with of the sample causes the 

generation of heat at that front surface, which is subsequently transmitted 

throughout the sample to the back face of the sample where the temperature rise is 

detected with an infrared remote sensor. The interpretation of measurements is 

based on a one-dimensional solution of Eq. (1.14) subject to an initial condition of 

an instantaneous heat pulse at one location. 

 

 
 
Figure 1.1 Schematic diagram of guarded parallel-plate instrument. (H = heater, R 

= resistance thermometer). 
 

 
 
 
 

Figure 1.2 Schematic diagram of a transient hot-wire instrument for fluid. 
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Figure 1.3 Schematic diagram of a transient hot-disk instrument. 

 
 

Figure 1.4 Schematic diagram of a transient heated-needle probe. 

 
Figure 1.5 Schematic diagram of a laser-flash instrument. 

 
1.5.3 Comparison Between Steady State and Transient Methods 

          The simplicity of stationary heat conduction processes, steady state method 

yields the capability of measuring thermal conductivity alone due to its inheritant 

nature of involving a single thermophysical parameter in the basic governing 
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equation. The steady state method cannot provide the measurement of thermal 

diffusivity explicitly. Thus the other properties such as density and specific heat are 

to be found independently from another measurement to calculate the value of 

thermal diffusivity. Naturally, error propagation from the two measurements may 

lead to lower accuracy in the final result. Also measurement of thermal conductivity 

at higher and lower temperatures, the elimination of radiation losses is a major 

problem. However making the measurement in a time short enough minimizes this 

heat loss. It is a consolidated practice to estimate thermal diffusivity by transient 

method and indirectly estimate the thermal conductivity with specific heat and the 

density known a priorily. This approach is often suggested because the thermal 

diffusivity measurement is usually less time consuming and more productive, if 

compared with the stationary techniques used for thermal conductivity 

measurements. These techniques for thermal conductivity evaluation require the 

heat flux measurement that is long, difficult to control and not much accurate. 

          The steady state technique poses two major problems for experiments with 

steam and water as heat sources. Firstly, the time required for the temperature 

distribution to reach a steady state value takes a long time. Secondly, moisture 

diffusion can occur from high temperature regions to low temperature regions, 

altering the composition of the sample. The moisture migration might be quite 

substantial because of the long test time. However, transient techniques eliminate 

both these problems as the test period mostly varies from a few seconds to a few 

minutes. 

          In comparison with steady state methods the advantage of the transient 

methods is that some of them give a full set of thermophysical parameters in a 

single measurement, namely, specific heat, thermal diffusivity, thermal conductivity. 

Measurement regime, data evaluation as well as specimen geometry has to be 

optimized for these transient methods to obtain stable results. 

          Moreover, the transient techniques, developed for thermal diffusivity 

measurement, require smaller sample dimensions and can operate in a wide 

temperature range. In fact, thermal diffusivity methods have been successfully 

applied from very low temperatures up to 30000C. Another advantage of measuring 

the transient thermal diffusivity instead of the stationary thermal conductivity is 

related to the possibility of satisfying the condition of constant temperature during 
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the measurement, being typical temperature variations during the measurement 

smaller than 1-20C. 

          One of the methods of transient technique is the temperature oscillation 

method. The basic principle of this method is the application of periodic heat source 

at the boundary. This results the temperature oscillation at a location in sample 

along its length with the same frequency of applied heat source. The measurement 

of amplitude and phase change of the temperature wave propagation can give the 

estimation of thermophysical properties. Now a days the transient technique based 

on temperature oscillation has achieved popularity for yielding less experimental 

error due to its periodic nature, simplicity, stability and accuracy of thermophysical 

property over a constant temperature. 

 
1.5.4 Uncertainty Analysis 
          Since no measurement is perfectly accurate, means for describing 

inaccuracies are needed. An uncertainty is not the same as an error. An error in 

measurement is the difference between the true value and the recorded value; and 

error is the fixed number and cannot be a statistical variable. An uncertainty is a 

possible value that the error might take on in a given measurement. A somewhat 

“traditional” definition of the uncertainty of measurement is the following: “an 

estimate characterizing the range of values within which the true value of a 

measurement lies”. Hence, a measurement result without an accompanying 

statement of uncertainty is incomplete.  It has little worth if no information is 

available on how correctly it describes that result. The advantages of uncertainty 

analysis of a proposed experiment can pay big dividends in the planning stage of 

an experiment, providing guidance for both the overall plan and for the execution of 

the details.  

          The total uncertainty in an observable or measurable quantity is decomposed 

into two parts: random errors and systematic errors. A random error is defined as 

the error detected by repeating the measurement procedure under the same 

conditions, while a systematic error is that which cannot be detected through this 

method and is usually associated with bias in experimental data. Random errors 

are generally caused by the imprecision of the measuring instruments and 

fluctuations in environmental conditions. They can, in general, be bound within 
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desired limits by using precision instruments and by controlling environmental 

factors. But systematic errors are inherent in the experimental process and a high 

degree of subjective judgment is necessary to estimate these errors. Calibration of 

the experimental system can eliminate some of these errors. In general the bias 

would be given by the difference between the mean (average) value of the N 

readings and the true value of the sample, whereas the random (precision) errors 

would cause the frequency of occurrence of the readings to be distributed about the 

mean value. 

          The uncertainty has different components, which may be categorized 

according to the method used to evaluate them. Each component of the 

uncertainty, however evaluated, is represented by an estimated standard deviation 

called standard uncertainty. Either the confidence level or the value of the coverage 

factor chosen has to be specified in addition to the expanded uncertainty range.  

 
1.6 Objectives of the Present Investigation 
          There are many methods for the measurement of thermophysical 

parameters. Depending on the nature of the sample the methods often differ. The 

present investigation focuses the measurement principle of thermophysical 

properties by temperature oscillation. The basic principle of this method is that a 

periodic temperature oscillation applied at one end of the sample propagates the 

other end with amplitude attenuation and phase change. The measurement of 

these two quantities gives the estimation of thermophysical properties of the 

material. Truly speaking periodic temperature oscillation is a pseudo-steady state 

oscillation where this technique combines the advantages of a steady state 

measurement with the potential to measure a property describing a non-steady 

state. Due to this nature of periodic characteristic, whole cycle of the change is 

repeated. This increases the signal to noise ratio by reducing the random error. 

          There are different derivations related to the temperature oscillation and its 

boundary conditions in the literatures. A unified approach to derive a general 

governing equation, which accommodates a wide variety of boundary conditions, is 

an important feature of this investigation. It has been demonstrated that solution for 

a particular boundary condition can be derived from the generalized solution. In the 

temperature oscillation technique, the time to achieve the pseudo-steady state is an 
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important factor known as settling time. It may be noted that the settling time for low 

thermal diffusivity and low heat transfer coefficient materials may be of the order of 

hours. Therefore, analysis of this aspect of temperature oscillation is important to 

collect steady state data from an experiment.  

          The uncertainty analysis is an essential aspect in an experimental procedure. 

In this investigation, derivation of a general governing equation, settling time and 

uncertainty analysis have been given prime importance in the context of 

temperature oscillation technique which are lacking in literature. 

          In the earlier methods, the temperature oscillations are established by 

oscillating heat flux by sinusoidal electrical heating or by using steam water and 

cold water as periodic heat sources is that the time average of the heat supplied 

during each cycle can not be equal to zero. Thus leads to increase in mean 

temperature of sample material. The use of thermo electric cooler for heat sources 

can alleviate the heat balance problem.         

          Thus in the experimental front, Peltier element (Thermo-Electric Cooler) has 

been adopted for the oscillating heat sources with certain modification. The earlier 

approach of exciting Peltier element by a pure square wave has been eliminated. In 

the pure square wave technique, the mean temperature, at which the 

thermophysical properties is to be determined, can not be prefixed but this mean 

temperature can be determined as a post factor. Also, in pure square wave 

generator the amplitudes of higher harmonics are dominant compared to the 

fundamental frequency. This inherent drawback has been eliminated by exciting 

Peltier element by an electrical signal of small amplitude square wave modulated 

over a D.C. voltage. In this technique, the mean temperature of oscillation can be 

accurately prefixed by regulating the D.C. voltage. 

          In this investigation, a semi-infinite medium is considered and the amplitude 

measurement has been done for the fundamental frequency by utilizing FFT 

technique. The amplitude attenuation gives the estimation of thermal diffusivity of a 

sample. To demonstrate the performance of temperature oscillation method by 

adopting the above cited points four liquid samples, ethylene glycol, ethanol, 

glycerol and water have been selected.   

          In brief, the present investigation based on temperature oscillation method 

aims to study the following factors. 
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• To derive a generalized governing equation, which accommodates a wide 

variety of boundary conditions found in literature. 

• To deduce the specific solution from the generalized solution. 

• To determine the settling time to collect the steady state data from the 

experiment. To carry out the uncertainty analysis for the estimation of 

experimental error. 

• To estimate the thermal diffusivity of liquid samples experimentally and 

comparison of results with the published work for the performance 

evaluation. 

 
1.7 Organization of the Thesis 

• The thesis contains six chapters including the present chapter (Chapter1) on 

introduction. In this chapter, the significance and methodology applied to 

estimate the thermophysical properties are discussed. 

• A detailed survey of relevant literature is presented in Chapter 2. This 

includes various measurement techniques and their relative merits and 

demerits. 

• In Chapter 3, a generalized solution is derived, which accommodates a wide 

variety of boundary conditions found in literature. For this case, periodic 

temperature oscillation with the constant angular frequency, but with different 

amplitude and phases are considered.  The derivation of particular solutions 

for different boundary conditions from this general solution has been 

illustrated. Expressions for different possible practical situation in finite 

sample are presented.  

• Chapter 4 is devoted to the theoretical principles for the measurement of 

thermophysical properties, which has been experimented in Chapter 5. In 

this chapter mathematical model, settling time and error analysis have been 

presented to supplement the estimation of thermal diffusivity in the Chapter 

5.  
• Chapter 5 presents the details of the experimental setup, which is custom-

designed and built for this study. The experimental data of periodic 

temperature oscillation response for four liquid samples: ethylene glycol, 
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ethanol, glycerol, and water are presented. The thermal diffusivities of the 

test liquids are calculated along with their uncertainty analysis. These 

experimental results are compared with the other reported result in literature.  
• Chapter 6 reports the general conclusions on the results and adopted 

methodology. The scope for future work has also been highlighted.  
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Chapter 2 

 
Literature Review 

 

2.1 Introduction 
          This chapter presents a review of the literature. It can be broadly classified 

under three categories. The first part of the survey deals with the theoretical 

solutions of the governing equations under different periodic boundary conditions. 

The various analytical techniques adopted in the literature are variable separation 

method, Green function solution and Laplace transform technique. The second part 

of the survey deals with some common methods employed for measurement of 

thermal conductivity and/or diffusivity of materials. These methods can roughly be 

divided into two methods, namely, steady state and transient. Various popular 

methods are guarded hot plate method, hot wire method, laser flash method, 

thermal comparator method, temperature-modulated differential scanning 

calorimeter (TMDSC), 3� method, photo-thermal technique and temperature 

oscillation method. The third part of the survey deals with the uncertainty evaluation 

technique associated in the experimental result. The investigation reported in this 

thesis uses the temperature oscillation method. The literature pertaining to this 

method for measurement of thermophysical property is treated elaborately. 

  
2.2 Analytical Solutions 
           The solution of transient heat conduction equation with associated 

boundary conditions has been the main goal of many analytical investigators. In 
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literature, hyperbolic and parabolic models have been used as governing equations 

by different investigators. A considerable literature on these subjects has grown up 

over the past hundred years. Some of the relevant literature has been presented in 

this section.  

 
2.2.1 Parabolic Model Solution 
          Parabolic heat conduction involves an instantaneous increase in surface 

temperature and an infinite rate of energy diffusion. The classical parabolic heat 

conduction equation successfully predicts the temperature and heat flux distribution 

for most practical purposes, except for extremely short time and for temperature 

near absolute zero. Also, under steady state conditions, the hyperbolic model 

reduces to the Fourier or parabolic model even when relaxation time is not zero; 

hence the temperature predicted by the two models (parabolic and hyperbolic) will 

differ only under non-steady state conditions. In general, the non-Fourier or 

hyperbolic effect is shown to decay quickly and the conventional Fourier equation is 

accurate after a short time of the initial transient. 

          A number of analytical solutions of conventional transient conduction 

equations with its prescribed boundary conditions (i.e. constant temperature, heat 

flux) are available in text of heat conduction [1,2]. The practical importance of heat 

conduction problems with periodic boundary condition was discussed by Carslaw 

and Jaeger [1], who cited applications in geophysics, experimental measurement of 

thermal diffusivity, and thermal stresses in cylinder walls of internal combustion 

engines. However, studies of periodic boundary conditions are few. Earlier 

theoretical studies on periodic boundary conditions were limited to one-dimensional 

semi-infinite bar. However, the sinusoidal wave generation in the materials has 

further motivated engineers and scientists to explore some additional solutions of 

long and short bars. In that sense, Ables et al. [3] derived a solution for a finite rod 

when one end of the bar is exposed to sinusoidal temperature oscillation and other 

end is free to radiate into the black body environment. Tomokiyo et al. [4] estimates 

thermal diffusivity of solids when one end is changed sinusoidally with constant 

angular frequency and the other end of the rod is connected to a heat sink 

maintained constant at a lower temperature. Lopez et al. [5] measured thermal 

diffusivity of semiconductors when one end is heated sinusoidally and other is 
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thermally isolated. In that analysis, heat losses from the lateral surfaces are also 

considered during the formulation of governing equation but an approximate 

derivation has been made for the expression of amplitude ratio and phase shift. 

Caulk [6] assumed temperature variations confined within a thin layer and 

calculated temperature distributions. This assumption is valid for a periodic 

boundary condition of high frequency. Zubair and Chaudhry [7] used Duhamle’s 

theorem to solve the problem in a semi-infinite solid with time dependent surface 

heat flux. Czarnetzki et al. [8] have continued the development of temperature 

oscillation theory for simultaneous measurement of thermal diffusivity and thermal 

conductivity of solids, liquids and gases. For theoretical modeling, two geometries 

are considered. In semi-infinite body, the front surface is subjected to temperature 

oscillation over the mean temperature. In finite body, on each side of the slab, 

periodic surface temperature oscillations are generated with the same constant 

angular frequency, amplitude and phase. Complex steady periodic solutions are 

determined by applying Laplace transform technique. Czarnetzki et al. [9] derived a 

temperature solution for a thin circular plate of infinite radius and a strip specimen 

with point or line heat source oscillation at the center. Hajji et al. [10] used Green’s 

function solution method for solving one-dimensional transient equation when the 

front surface of the slab is changed with periodic heat flux over the mean oscillation 

of heat flux and also, a sensitivity analysis has been done to show the set of 

parameters that can be adjusted to provide accurate results. 

           Infinite hollow cylinder geometry is considered for the solution of transient 

conduction equation with oscillating heating [11]. Pascale et al. [12] described an 

experimental study of heat transfer in oscillating flow inside a cylindrical tube. The 

inverse heat conduction principle is applied for the characterization of local heat 

transfers at the fluid–solid interface. Deepak Ganapathy et al. [13] used finite 

difference method to compute the thermal conductivity of composites with 
cylindrical particles. Jeong et al. [14] examined experimentally the influence of 

pulsation frequency on the convective heat transfer from a heated block array and 

evaluated the resonant frequency for convective heat transfer enhancement. 

Analyses of heat conduction mechanisms in suspended microstructures and 

uncertainty in measured thermal conductivity data are presented by Wenjun et al. 

[15]. In this study, steady state joule heating and electrical resistance thermometry 
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were used to measure lateral thermal conductivity of the suspended silicon/metal 

structures. 

          Chen et al. [16] proposes an efficient technique which combines the function 

specification method, the whole domain estimation approach and the linear least-

squares-error method to estimate the unknown outer-wall heat flux and the inlet 

temperature simultaneously for conjugate heat transfer within a hydrodynamically 

developed turbulent pipe flow. Zueco et al. [17] solved the two-dimensional inverse 

heat conduction problem of estimating the time-dependent (or temperature-

dependent) heat source in an orthotropic medium whose thermal properties are 

temperature-dependent. The solution of one-dimensional transient heat conduction 

equation for generalized boundary conditions has been developed by the method of 

residues and Laplace transform technique [18]. In this model, a finite circular bar is 

subjected to temperature oscillation at both the ends in the presence of heat loss 

from its lateral surface.  
 
2.2.2 Hyperbolic Model Solution 
          With the advent of science and technology involving very low temperature 

near absolute zero (cryogenic engineering) or extremely short transient durations 

(laser heating) or very high heat fluxes in nuclear engineering, some investigators 

found that the heat propagation velocity of such a problem becomes finite. To 

account for the finite propagation velocity of thermal waves, a modified Fourier law 

of heat conduction has been proposed by Cattaneo [19], Vernotte [20] and Chester 

[21]. Ulbrich [22] has derived an electrical equation, which has an analogous form 

to Vernotte’s hypothesis for hyperbolic heat conduction. According to this modified 

law, a new physical parameter, relaxation time was introduced. The relaxation time 

represents the time lag between the temperature gradient and the resulting heat 

flux vector. The concept of hyperbolic heat conduction equation has been also 

developed with several different approaches [23-27]. Since than, many analytic and 

numerical solutions of such a problems have been reported for semi-infinite and 

finite bodies under different initial and boundary conditions. Maurer and Thompson 

[28] emphasized the importance of the wave effect in response to a high heat flux 

irradiation. Kazimi and Erdman [29] investigated the interface temperature for two 
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suddenly contacting media. Wiggert [30] studied the characteristic method in 

thermal wave propagation. 

 
Semi-Infinite Bodies: 
           Baumeister and Hamill [31] studied the temperature wave in semi-infinite 

solid subjected to a suddenly applied temperature changed at the wall. Amos et al. 

[32] solved the problem of uniform temperature whose boundary is suddenly 

subjected to an increase in temperature with time. Thermal pulse wave propagation 

in semi-infinite, one-dimensional solids was predicted by B. Vick et al. [33]. In his 

treatment, a volumetric energy source was used. Glass et al.  [34] gave numerical 

solutions for a semi-infinite medium with surface radiation. The effect of 

temperature dependent thermal conductivity on the propagation of thermal wave 

was studied for a semi-infinite region under different boundary condition with a 

pulsed energy source by Glass et al. [35,36]. This effect can be important even at a 

long time after the initial transient if the thermal disturbance is oscillatory with the 

period of oscillation of the same order of magnitude as the thermal relaxation time 

[37]. A semi-infinite slab is considered for the solution of non-Fourier heat 

conduction with surface heat flux [38]. 

 
Finite Bodies:  
          Solution of the hyperbolic heat conduction equation for finite body under 

different initial and boundary conditions are available in literature. Ozisik et al. [39] 

gave an analytical solution in a finite slab with insulated boundaries. In his 

treatment, a volumetric energy source was used. Frankel et al. [40] using flux 

formulation of hyperbolic heat conduction equation gave an analytical solution for a 

finite slab under boundary condition of rectangular heat pulse. Kolesnikov [41] 

solved the transient heat conduction equation for generalized boundary conditions. 

Gembarovic et al. [42] gave an analytical solution for a finite slab under boundary 

condition of instantaneous heat pulse. Kar et al. [43] solved the problem with 

constant thermal diffusivity, where thermal conductivity, heat capacity and density 

are temperature dependent. Separation of variables and Laplace transforms are 

used in finding the solutions. Hybrid technique based on the Laplace transform and 

control volume methods can successfully be applied to suppress numerical 

oscillations in the vicinity of sharp discontinuities [44, 45]. Tang and Araki [46] 



 27  

analyze a plane slab where the front surface is exposed to heat flux, while the rear 

surface is insulated.  

          Numerous papers dealing with such and other applications have appeared in 

literature in the recent past [47-50] With more emphasis on precision material 

processing and operation with the above applications it is likely that an increase in 

the application of hyperbolic proposition will take place. These and many other 

studies have been very comprehensively reviewed by Ozisik and Tzou [51]. 

          Various studies [52-55] report the appearance of a wave behavior in 

heterogeneous materials, in dielectric materials with sub micron thickness, and 

other applications. Minkowycz et al. [56] studied a similar wave like phenomenon in 

porous media. The generalized diffusion equation for conductors, non-conductors, 

and semi-conductors with sub micron structures are developed [57,58].  

 
Recent Development: 
          Quaresma et al. [59] presented new heat-conduction equations, named 

ballistic-diffusive equations, which is derived from the Boltzmann equation. It 

showed that the new equations are the better approximation than the Fourier law 

and the Cattaneo equation for heat conduction at the scales when the device 

characteristic length, such as film thickness, is comparable to the heat-carrier mean 

free path and/or the characteristic time, such as, laser-pulse width is comparable to 

the heat-carrier relaxation time. A numerical technique with hybrid application of the 

Laplace transforms and control volume methods has been developed [60,61]. 

Temperature-dependent phase-lags are incorporated in the dual-phase-lag model 

to fully describe the experimental data of femtosecond laser heating on gold films of 

various thicknesses in the sub-micron range by Tzou et al. [62]. Certain anomalies 

in the analysis of hyperbolic equation for accurate measurement of temperature 

distribution are presented [63,64]. The lagging model with temperature-dependent 

thermal properties enables a consistent description of all the available experimental 

data for ultra fast laser heating on gold films. Pakdemirli et al. [65] solved hyperbolic 

heat conduction equation with temperature dependent thermal properties by 

employing approximate symmetry theory. Su et al. [66] studied the difference 

between the solutions of the phase lagging equation and the damped wave 

equation with considering one dimensional heat conduction in a thin, 
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homogeneous, constant cross section of finite rod where the front surface is 

exposed to heat flux, while the rear surface is insulated. Weixue et al. [67] presents 

a hybrid method to calculate direct exchange areas for an infinitely long black-

walled rectangular enclosure. The hybrid method combines the finite volume 

method with the midpoint integration scheme. Ching [68] formulated a set of non-

linear equation for the process of the inverse estimation. Lewandowska et al. [69] 

presents an analytical solution of the hyperbolic heat conduction equation for the 

case of a thin slab symmetrically heated on both sides.  

  
2.3 Measurement Techniques 
          The methods to measure the thermophysical properties of materials are 

divided into steady state and transient methods. In the steady state method, 

constant heat sources are applied at the boundary when the temperature and heat 

sources are invariant with time. The mathematical model is a steady state equation. 

On the other hand the heat sources and temperature are time dependent in 

transient method and transient governing equations are used. Some of the popular 

measurement techniques are described in this section. 

 
2.4 Steady State Methods 
          Methods that employ steady state measurement of thermal conductivity apply 

Fourier’s law of heat conduction. A one-dimensional flow is employed most 

frequently with other geometrical arrangements. Common for all steady state 

methods is that the operator tries to establish a temperature gradient over a known 

thickness of a sample, and controls the heat flow from one side to the other.  

          The standard well-known guarded hot plate method [70] is based on the 

steady-state longitudinal heat flow principle, which determines the thermal 

conductivity of the material by applying Fourier’s law. This method is generally used 

for measuring the thermal conductivity of samples that can be formed into a slab, 

whereas, radial heat flow method is more commonly used with powdered or 

granular material. Since steady state conditions may take several hours to 

establish, use of steam and water as heat sources may cause moisture migration. 

A schematic diagram is shown in Fig. (1.1), Chapter 1.  
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2.5 Transient Techniques 
2.5.1 Transient Hot-Wire Technique 
          In this method, a metal wire of defined diameter and length is contacted in 

both ends by electrical conductors, placed in contact with the sample material, 

determines how the temperature rises in the wire. The temperature-time response 

is used to calculate the sample conductivity. Simplicity of hardware and design 

makes it an ideal method for some of the liquid samples. But measuring solid 

samples is very difficult, the reason being the contact resistance. 

          The method was first described in 1888 by Schiermacher, but its first 

practical application was reported in 1949 by Van der Held and Van Drunnen [71], 

who used it to measure the thermal diffusivity of liquid. However, its application to 

other materials was somewhat slower until in the late 1960s.The next step in the 

development of transient method is the hot strip method. This is used in non-

electrically conducting materials, and the sample surfaces have to be rather smooth 

to give good readings. The further development of the strip is the transient plane 

source (TPS) technique. It is also called the Gustafsson Probe. The schematic 

diagram of transient hot-disk and heated probe has been shown in Figs. (1.3) and 

(1.4) respectively.  

          The transient hot-strip technique has been used to measure simultaneously 

thermal conductivity and thermal diffusivity of solids and liquids [72] and thermal 

conductivity of electrically conducting materials [73], effective thermal conductivity 

of copper powders [74]. Yimin Xuan et al. [75] used this technique for heat transfer 

enhancement of nanofluids. Perkins et al. [76] measured thermal conductivity of 

saturated liquid toluene by use of anodized tantalum by transient hot wire (THW) 

method at high temperatures. Different investigators [77-80] also used this 

technique to measure thermophysical properties of the sample. Although the hot-

wire method has been widely used in practice, it has some shortcomings that are 

very difficult to overcome. One major difficulty is the effects of natural convection, 

which occurs due to buoyancy effects as the wire is continuously heated. In 

addition to this, temperature variation of the wire is measured using a bridge circuit 

in which the wire acts as one bridge. Accuracy of temperature measurement is thus 

decreased by electrical noise and drift problems within the bridge circuit. The poor 
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precision in the determination of the heating time also contributes to measurement 

errors. 

 
2.5.2 Laser Flash Method 
          Parker et al. [81], in 1961 of the US Navy Radiological Defense Laboratory, 

first introduced the flash method.  The flash method measures the diffusion time 

across a thin film by probing the temperature rise at the back surface resulting from 

a heat pulse delivered to the front surface. Lasers are frequently used as the 

heating source, in which case the method is known as laser flash. The technique 

has the very distinct advantages that it does not require physical contact between 

the test sample and the heater or detector. For this reason, it is a particularly 

appropriate technique for use at high temperatures or in aggressive environments. 

The method has widespread application to a wide range of materials, including 

solid homogeneous isotropic materials, composites, polymers, glasses, metals, 

refracting materials, insulating solids, and coatings. 

          The original laser pulse method of measuring thermal diffusivity proposed by 

Parker et al. [81] assumes ideal boundary and initial conditions, infinitely short laser 

pulse, and uniform heating of the sample face. The original concept has been 

gradually improved to account for real experimental conditions. In that sense, 

Donaldson et al. [82] extended Parker’s flash method to high temperatures utilizing 

a laser pulse with radial heat flow. As an alternative to previous method, there 

appears to be potential advantages in utilizing a radial rather than axial heat flow 

for measuring thermal diffusivity. The literatures [83-90] summarize present-day 

knowledge related to an application of the flash method. Lazard et al. [91] 

described the coupled conductive-radiative transient heat transfer in a slab and 

presented a complete methodology to estimate the intrinsic diffusivity of semi-

transparent samples. Benjamin et al. [92] also investigated the problem related to 

the coupling of conduction with convective and radiative heat transfer and 

described the parameter estimation procedure.  

 
2.5.3 Thermal Comparator Method  
          The method is based on the well-known observation that when two materials 

at different temperatures are brought into contact over a small area, heat transfer 
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takes place from the hotter to cooler body, which is a function of the thermal 

conductivity of the materials. As a result, an intermediate temperature is very 

quickly attained at the point of contact. The contact temperature depends on the 

thermal conductivity of the two materials. This technique is used to measure 

thermal conductivity of bulk materials. Mukherjee et al. [93] used this method to 

measure thermal conductivity of organic liquids and liquid mixtures. Recently, 

Cheruparambil et al. [94] used the modified thermal comparator method to analyze 

the heat conduction process from the tip of the comparator to a very thin CVD 

diamond films. 

 
2.5.4 Temperature Modulated Differential Scanning Calorimeter (TMDSC)  

          In this technique, the temperature is changed linearly with superimposed 

sinusoidal temperature modulation, and the sample thermal response is observed 

in comparison with that of the thermally inert reference material. The sample 

thermal response in the form of temperature difference is separated into the 

response in phase with the temperature modulation, and it is postulated that the in-

phase response corresponds to reversible process, while the other components is 

due to non-reversible process. The purported advantages of TMDSC introduce the 

ability to separate overlapping phenomena, as well as improved resolution and 

sensitivity. There are problems associated with the interpretation of TMDSC data, 

especially when nonlinear processes, such as melting, reaction, or structural 

recovery are involved. Marcus et al. [95] measured the thermal conductivity of 

insulating materials in the range from 0.1 to 1.5 W/m 0C which generally covers, 

polymers, ceramics and glasses. Takeo [96] has presented the applicability and 

limitation of TMDSC. Sindee et al. [97] derived the relationship between the thermal 

conductivity and the apparent heat capacity as a function of sample thickness, 

frequency, and the heat transfer coefficient. Using this method, the thermal 

conductivity of automotive polymers is measured by Ismat et al. [98]. Yoon [99] 

described the details of various types of modern Calorimetry. 

       
 
 

2.5.5 3ω Method 
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          In this method, the specimen itself serves as a heater and at the same time a 

temperature sensor, if it is electrically conductive and with a temperature dependent 

electric resistance, or for electrically nonconductive specimen, a metal strip is 

artificially deposited on its surface to serve both as the heater and the sensor. Lu et 

al. [100] measured the specific heat and thermal conductivity of platinum wire 

specimens at cryogenic temperatures. Borca et al. [101] used this method, in 

conjunction with a multilayer two-dimensional heat conduction model, to measure 

thermal conductivities of three antimonide-based materials.  

 
2.5.6 Photo-Thermal Technique  
 
          Most non-contact measurements are based on photo-thermal techniques. 

Different photothermal techniques are available in the literature as transient thermo 

reflectance [102-106] or forced Rayleigh scattering [107], photothermal deflection 

technique [108-110], transient grating [111,112], and thermal wave cavity [113-

116]. Many approaches have been adopted, with the significant differences being 

related to the method of heating, and the method of temperature detection. This 

can be classified depending upon whether thermal waves were generated by 

electrical [117] or optical heating and/or upon whether the phase lag and the 

amplitude were measured optically [118] or thermo-electrically. Analysis performed 

in support of these measurements usually differs in the temporal form of periodic 

heating-electrically [119] or laser pulsed modulated heating [120,121]. 

Photoacoustic microscopy uses photothermally generated acoustic waves to 

investigate subsurface structures and photothermal wave microscopy images 

thermal wave propagation and scattering by subsurface defects using probe beam. 

The main advantage of this method is that it is a non-contacting and non-

destructive optical method.  A disadvantage is that the poor availability of desirable 

optical properties of the material.  

           
2.5.7 Temperature Oscillation Method (TOM) 
          The basic principle of this method is that if one end of a long bar shaped 

sample is heated periodically and other end is free to lose heat to an ambient, then 

the temperature of the sample at a point also varies with the same period. The 
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amplitude of the oscillation decreases exponentially along the length of the rod with 

a phase shift. The measure of these two properties of wave propagation can give 

the estimation of thermophysical properties of the sample. Using this principle, 

extensive work has been done to obtain the thermal properties of the materials.  

          The principle of this technique was first proposed by Angstrom [122] in 

the year 1861 to measure thermal diffusivity and/or thermal conductivity of a long 

bar of small cross section. Angstrom pointed out that the method yields the 

diffusivity directly, independently of the thermal conditions. He applied the theory of 

the method to determine the diffusivity of the soil from observations of soil 

temperature. Kelvin’s also used the annual temperature changes in the earth at 

various depths to estimate the conductivity of the soil. 

          Billington [123] used Angstrom’s method for measuring the thermal diffusivity 

of poor conductors of heat by plotting graphs between log of amplitude ratio verses 

length and time lag verses length. Sidles and Danielson [124] using a modification 

of this method first proposed by Angstrom have shown that a high degree of 

accuracy in the thermal diffusivity is attainable at temperatures as high as 1270K. 

They described an apparatus for measuring thermal diffusivity of metal wires about 

20 in. in length. Nii [125] measured thermal diffusivities of semiconductors at 

temperatures, which did not exceed 380 0C. Green and cowls [126] measured 

thermal diffusivity of semiconductors by Angstrom’s method. The apparatus is 

capable to measure the property between room temperature and 180C only. 

Savvides and Murray [127] described an apparatus for measuring the thermal 

diffusivity at high temperatures to 2% accuracy. The apparatus is capable of 

measuring the thermal diffusivity of a wide range of materials, such as single-crystal 

silicon, which has a high diffusivity, and low-diffusivity materials, such as Ge-Si 

alloys. A specially designed low-frequency sine-wave generator was employed to 

produce a very stable sinusoidal temperature wave. Gallego et al. [128] measured 

thermal conductivity of ribbon shaped carbon fibers by two different techniques. 

The results obtained with angstrom’s method appear to be in closer agreement with 

those estimated by other technique. Pesty et al. [129] has designed experimental 

setup to generate sinusoidal temperature oscillation in ultrahigh vacuum. Morikawa 

and Hashimoto [130] measured thermal diffusivity of Ultra Thin Film of Polyimide by 

this method. Sarit Das, et al. [131] used the same measuring technique of 
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Czarnetzki and Roetzel to measure thermal conductivity enhancement of 

nanofluids. Morikawa and Hashimoto [132] used high-speed micro-scale infrared 

camera to the observation of thermal resistance at the interface of the multi-layer 

polymer films by using a temperature wave. This method is applicable of not only to 

determine the value of thermal conductivity or diffusivity but also to observe the two 

dimensional distribution or anisotropy of the thermal property of the materials. 

Ohmyoung et al. [133] presented a technique (STWM), which can image the phase 

lag and amplitude of thermal waves with sub-micrometer resolution by scanning a 

temperature-sensing nanoscale tip across a sample surface. This method is used 

to measure the amplitude and phase lag distribution at different frequencies on a 

sample. Nandi Putra et al. [134] studied the natural convection of nanofluids. 

           
2.6 Merits and Drawbacks of Transient Techniques 
          The thermal comparator method is a technique for measuring thermal 

conductivity of bulk solids. Transient hot wire method is an ideal method for some 

liquids. One major difficulty of the hot wire method is the effect of natural 

convection. Also the accuracy is limited by the measuring precision of the 

temperature rise in the wire, which is another well-known obstacle to this technique. 

One disadvantage of the flash method is that access to the back surface requires 

thin freestanding samples and requires very precise measurement of small angles 

or phase difference. However, other methods have been developed to probe the 

front surface. A major draw back to the 3�technique is the extensive requirement of 

sample preparation, in contrast to most of the techniques using a laser as the 

heating source.  

          Some of the transient methods require expensive and/or large measurement 

setups. For example, the laser heating method requires very precise measurement 

of small angles or phase difference. The heated bar method requires elaborate 

preparation of samples, i.e., the deposition of thermocouples surfaces with silver 

filled epoxy. In contrast to other transient method, the temperature oscillation 

technique is relatively simple, inexpensive and compact, which leads to reliable and 

accurate results. This technique combines the advantages of a steady state 

measurement with the potential to measure a property describing a non-steady 

state. The method is purely thermal and the electrical components of the apparatus 
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are away from the test sample, which does not influence the experimental data. 

One of the major advantages of the temperature oscillation technique is that a high 

degree of accuracy is attainable at different temperatures ranging from liquid helium 

to high temperatures upon which oscillation is imposed. Also the temperature 

oscillation method is related to its periodic character. During every period of such a 

process a whole cycle of the change is repeated. The measurements of power 

input used to heat the system are not required. Because of this, absolute 

measurements of the temperature are not required so that only relative changes in 

magnitude of a temperature as a function of time and position must be recorded. 

The thermocouples used in this experiment therefore do not need to be calibrated. 

This makes it possible to considerably reduce random errors and to increase the 

signal to noise ratio. With the proliferation of modern computer based data 

acquisition systems, it is possible to design a strategy for accurately computing 

thermophysical properties from the measured temperature data. Although this 

method was primarily developed for measurement of homogeneous isotropic long 

bar solid materials, the method has now been successfully applied for estimation of 

advanced and more complex materials. Literature summaries present day 

knowledge related to the applications of this method to semitransparent materials, 

an isotropic media, layered structures, composites and ultra thin films and nano 

fluids.          

 
2.7 Uncertainty Analysis 
          The difference between the measured value of a property and its true value 

is called measurement error. Any measurement is affected by errors due to a 

multitude of factors; the imperfection of the instruments used and of the 

measurement methods followed, the influence of the external perturbation, the 

variation of the ambient conditions, the subjectivity of the operator, etc. An available 

result from an experiment has a little worth if no information is available on how 

correctly it describes that property. For this purpose, the measurement of 

uncertainty is the most widely accepted concept. Hence it has been felt to include a 

section on the available literature.  

          Kline and McClintok [135] have proposed a procedure for estimating the 

uncertainty of the measured quantity in experimental studies. Single sample 
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uncertainty analysis has been described in the literature by the work of Moffat [136]. 

Moffat [137] described the use of a priori uncertainty analysis in choosing proposed 

techniques with examples. The purpose of uncertainty analysis is outlined by Kline 

[138]. The techniques of multiple sample analysis are described by Abernathy 

[139]. Moffat [140] outlines a conceptual bias, which includes a residual uncertainty 

due to variability arising in the true definition of the measured variable. Colemam 

and Steele [141] have well documented the experimental uncertainties and 

discussed its importance in planning and evaluating experiments. Estimation of 

uncertainty in thermal systems analysis and design is briefly described in literature 

[142,143]. Hall et al. [144] has made a program for the evaluation of uncertainty by 

an automatic differentiation technique. Adeyinka et al. [145] evaluated experimental 

uncertainty of measured entropy production. 
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Chapter 3 

 
Derivation of General Theory of 

Temperature Oscillation 

 

3.1 Introduction 
          

 Many experimental methods have been developed over the past centuries 

to measure the fundamental thermal properties of materials. One important class 

among them is the transient techniques where temperature oscillation method is 

widely due to its experimental simplicity and less random error. In earlier studies 

different investigators have proposed different solutions based on the different 

boundary conditions to validate their results with experiments. Infact, the boundary 

conditions used in a experiment are used to solve the differential equation and the 

solution is mapped to estimate the thermophysical properties. In this chapter an 

attempt has been made to present a generalized solution which accommodates a 

wide variety of boundary conditions. In this analysis a finite circular bar with lateral 

heat transfer is considered subjected to oscillation of same frequency but different 

amplitude and phase at both the ends. For simplicity in derivation, the boundary 

conditions are considered to be complex exponential quantities where its real and 

imaginary parts yield cosine and sine wave respectively. 

          An exact expression to determine the thermophysical properties by 

measuring the real amplitude ratio and phase shift of the propagating thermal 
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waves along the specimen has been derived. In an adiabatic situation (no lateral 

surface heat loss) either amplitude ratio or phase change lead to the estimation of 

one parameters such as thermal diffusivity. In this analysis the general solution is 

reduced to simplified solution depending on the boundary conditions. 

 
 3.2 General Governing Differential Equation with Lateral 

Heat Transfer 
          The analytical method for solution of the temperature distribution in a finite 

circular bar is developed subjected to temperature oscillation at both the ends in 

the presence of heat loss from its lateral surface.  

          A finite circular bar of length L and radius r, initially at a uniform temperature 

of Ta is taken into consideration. The general differential equation and its boundary 

conditions are described by Eqs. (3.1) to (3.1c). One can obtained the solution of 

one-dimensional transient parabolic heat conduction equation for a finite rod, which 

is initially at a uniform temperature. For times t > 0 the boundary surfaces at x = 0 

and x = L are imposed with sinusoidal temperature oscillation with same constant 

angular frequency but different amplitude and phase shift. 

          Assuming constant thermophysical properties k and α  and no internal heat 

generation the unsteady one-dimensional formulation for this problem is written as: 
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The initial and boundary conditions can be expressed as,  

 T = Ta   at   t = 0, for Lx0 ≤≤                                                      (3.1a) 

Boundary conditions 

                     ( )( )001m ΦtωiexpTTT ++=    : x = 0, t > 0                                    (3.1b)                

                     ( )( )LL2m ΦtωiexpTTT ++=    : x = L, t > 0                                    (3.1c)           

where Tm1 and Tm2 are mean temperature of oscillation, T0 and TL are amplitude of 

thermal wave, 0Φ  and LΦ  are the phase angles at the both the ends of the 

specimen respectively.  

          The differential equation and its boundary conditions can be simplified by 

using temperature difference variable aTTθ −= . It reduces to 
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0θ =  t=0,     for Lx0 ≤≤                                                             (3.2a) 

( )( )001m ΦtωiexpTθθ ++=    :   x = 0, t > 0                                   (3.2b) 

( )( )LL2m ΦtωiexpTθθ ++=   :   x = 0, t > 0                                   (3.2c) 

  
3.2.1 Method of solution 
          This type of boundary value problems is not solvable by method of variable 

separation because the boundary conditions are not separable due to its non-

homogeneous [2] nature. These equations can be solved analytically either by 

splitting boundary condition method or by using Laplace transform technique. Both 

the solution methods lead to same solution but it is a matter of convience to use a 

particular method. In the case of splitting boundary condition method the equations 

and its boundary conditions are broken into space and space-time dependent 

equations where the latter can be solved by method of residue or Laplace 

transform method. In the case of direct Laplace transform method, the partial 

differential equations are initially converted to total differential in the Laplace plane.  

 
3.2.2 Splitting Boundary Condition Method 
           In this method, the governing equation and its boundary condition can be 

splitted [2] to a set of governing equations and its associated boundary conditions, 

which can be easily solved independently. The individual solutions are 

superimposed to get the final solution. In the situations where transient terms are 

required, the splitting boundary conditions do not provide any advantages over the 

direct Laplace transform. However if steady periodic solution is required the splitting 

boundary condition method can be employed to get the solution easily.   

          The fundamental equation, Eq. (3.2) can be decomposed as, 

 xx,t ψφθ +=                                                                                              

(3.3) where xψ is the solution of the steady state problem and tx,φ  is the solution of 

a transient problem. The steady state equation and its boundary conditions can be 

written as, 
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x2
x

2

ψ
rk
h2

dx
ψd

=                                                                                     (3.4)  

      1mx θψ = ,    : x = 0, t > 0                                                               (3.4a) 

      2mx θψ = ,    : x = L, t > 0                                                               (3.4b)  

The transient equation with its initial and boundary conditions are, 

x,t
x,t

2
x,t

2

φ
rk
h2

t
φ

α
1

x

φ
+

∂

∂
=

∂

∂
                                                                     (3.5) 

( )( )00t,x ΦtωiexpTφ += ,       x = 0, t > 0                                              (3.5a) 

( )( )LLt,x ΦtωiexpTφ += ,       x = L, t > 0                                              (3.5b)  

   xt,x ψφ −= ,                t = 0,   for  Lx0 ≤≤                                     (3.5c)  

The general solution of the Eq. (3.4) is,  

)xβexp(C)xβexp(Cψ 21x −+=                                                                (3.6) 

where rkh2β = . 1C  and 2C  are the arbitrary constants, which are determined by 

using boundary conditions (3.4a) and (3.4b) as, 

)βLexp()Lβexp(
)βLexp(θθC 1m2m

1 −−
−−

=                                                                  (3.7) 

)βLexp()Lβexp(
θ)Lβexp(θ

C 2m1m
2 −−

−
=                                                                  (3.8) 

By substituting the value of 1C  and 2C  in the Eq. (3.6), yields 

( ) ( )
( )Lβsinh

)xL(βsinhθxβsinhθψ 1m2m
x

−+
=                                                    (3.9)  

Taking the Laplace transform of the Eq. (3.5) and its boundary conditions yields, 

[ ] φ
rk
h2φφs

α
1

dx
φd

0t2

2
+−= =                                                                      (3.10) 

)iωs(
)iΦexp(T

φ 00

−
=     : x = 0, t > 0                                                    (3.10a) 

)iωs(
)iΦexp(T

φ LL

−
=     : x = L, t > 0                                                   (3.10b)  

The Eq. (3.10) can be rewritten by using Eq. (3.5c) as, 

α
ψ

φ
rk
h2

α
s

dx
d x

2

2
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−                                                                     (3.11) 
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Solution of this differential equation has complementary function (C.F.) and 

particular integral (P.I.), which are stated as, 

44444 844444 76 C.F.

1413 )xmexp(C)xmexp(Cφ −+=
( ) ( )

( )

444444 8444444 76 P.I.

1m2m

Lβsinhs
)xL(βsinhθxβsinhθ −+

−         (3.12) 

where 
rk
2h

α
sm1 +=                                                                                (3.13)  

Use of first boundary condition given by Eq. (3.10a), yields,  

 
s
θ

CC
)iωs(

)Φexp(T 1m
43

00 −+=
−

                                                               (3.14) 

And applying second boundary condition given by Eq. (3.10b) yields,  

s
θ

)Lmexp(C)Lmexp(C
)iωs(

)iΦexp(T 2m
1413

LL −−+=
−

                             (3.15) 

The expressions for 3C  and 4C  can be obtained from Eqs. (3.14) and (3.15) as, 

)Lmexp()Lmexp(

)Lmexp(
)iωs(

)iΦexp(T
s
θ

)iωs(
)iΦexp(T

s
θ

C
11

1
001mLL2m

3 −−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=             (3.16) 

)Lmexp()Lmexp(
)iωs(

)iΦexp(T
s
θL)(mexp

)iωs(
)Φiexp(T

s
θ

C
11

LL2m
1

001m

4 −−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=              (3.17) 

Substituting the values of 3C  and 4C  in Eq. (3.12) yields, 

( )
)Lmsinh(s

)xL(msinhθφ
1

11m −
= +

)Lmsinh(s
)Lmsinh(θ

1

12m ( )
)Lmsinh()iωs(

)xL(msinh)iexp(T

1

100

−
−Φ

+

)Lmsinh()iωs(
)Lmsinh()iΦexp(T

1

1LL

−
+

( ) ( )
( )Lβsinhs

)xL(βsinhθxβsinhθ 1m2m −+
−                     (3.18) 

          The Eq. (3.18) consists of five terms in Laplace domain. The time domain 

solution is obtained by taking Laplace inversion of these five terms. 

          The inverse transform of the first four terms are obtained by the method of 

residues and the inverse of the last term is readily available in Laplace table [147]. 

For the function F(x) and its Laplace transform F(s), are related by contour integral 

and residues,   

ds)s(Fe
i2

1)x(F
iy

iy

st∫
∞+

∞−π
= = Σ Residue of )s(Fe ts                                 (3.19) 
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Inverse transform of first term: 

          The poles of the integrand function of the first term are given by 0s =  

and                    L)rkh2()αs( + iπn=                      for .,2,1n L=  

Thus the poles are      0s =  

and       ( ){ }α)rkh2(L/πnss 2
n +−==                                                                (3.20) 

Residue of the first term is, 

   Res(I)  = ( )
⎥
⎦

⎤
⎢
⎣

⎡ −
→ )Lmsinh(s

)xL(msinh)tsexp(sθ
s
lim

1

11m
0

 

 + ( )
⎥
⎦

⎤
⎢
⎣

⎡ −−
→ )Lmsinh(s

)xL(msinh)tsexp()ss(θ
ss

lim
1

1n1m

n
                                      (3.21)  

The second term of the above expression is indeterminate form, this residue can be 

determined as,  

Res(I)  =
)Lβsinh(

)xL(βsinhθ 1m −  

+ ( ){ } ⎥⎦
⎤

⎢⎣
⎡ −

⎥
⎦

⎤
⎢
⎣

⎡
∂∂

∂−∂
→→ s

)xL(msinh)tsexp(
ss

lim
sLmsinh

s)ss(
ss

limθ 1n

n1

n

n
1m            (3.22) 

On differentiating numerator and denominators with respect to s, results the inverse 

transform of the first term as, 

Res(I) = 
)Lβsinh(

)xL(βsinhθ 1m − + ( ) [ ]∑
∞

=

−

1
21 )cosh(

)1(sinhexp2
n n

n
m inπsL

εinπtsiπnαθ            (3.23) 

Inverse transform of second term: 
          Similar to the first term, the inverse transform of second term is, 

Res(II) = 
)βLsinh(

)βxsinh(θ 2m +
( ) [ ]

∑
∞

=1
22 )cosh(

sinhexp2

n n

n
m inπsL

εinπtsiπnα
θ                        (3.24) 

Inverse transform of third term:  

          The poles of the integrand function of the third term are given by ωis =   

and               L)rkh2()αs( + iπn= ,             for .3,2,1n L= .  

Thus the poles are, ωis =   

and                 nss =  ( ){ }α)rkh2(π/Ln 2 +−=                                                        (3.25) 

The residue is given as,  
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Res(III)= ⎥
⎦

⎤
⎢
⎣

⎡
−

−−
→ L)sinh(m)ωi(s

x)(Lhmexp(st)sin)iω)(sexp(iΦTlim
1

100

ωis                    

+ ⎥
⎦

⎤
⎢
⎣

⎡
−

−−
→ )Lmsinh()ωis(

)xL(msinh)stexp()ss)(iΦexp(T
ss

lim
1

1n00

n
                           (3.26) 

On further simplifying, the above equation yields,  

Res(III) = 
)Lβ(sinh

))xL(β(sinh
)Φtω(iexp(T

1

1
00

−
+  

 + ( ) [ ]
( )∑

∞

= −
−

1n n
2

n
00 )inπcosh(iωsL

)ε1(inπsinhtsexpiπnα2
)iΦexp(T                                  

(3.27) 

where           
rk
h2iβ1 +

α
ω

=                                                                                  (3.28) 

Inverse transform of fourth term: 

          Similar to the third term, the inverse transform of forth term is 

Res(IV) = 
)Lβ(sinh
)xβ(sinh))Φtω(iexp(T

1

1
LL +  

+ ( ) ( )
( )∑

∞

= −1n n
2

n
LL )inπcosh(iωsL

iεnπsinhtsexpiπnα2
)iΦexp(T                                   (3.29) 

The Laplace inversion of the fifth term can be obtained from a standard Laplace 

transform table [147] as, 

Fifth term = ( ) ( )
( )βLsinh

)xL(βsinhθβxsinhθ 1m2m −+
−                                        (3.30)  

          The Eq. (3.3) can be written as the summation of Equations (3.9) and time 

domain solution of Eq. (3.18). Thus the combinations of Eq. (3.9),  (3.23), (3.24), 

(3.27), (3.29), and (3.30) represents solution of Eq. (3.2). It may be noted that the 

solution expressed by xψ in Eq. (3.9) get cancelled with Eq.  (3.30). Thus the final 

solution can be expressed as in two parts, steady periodic and the transient part as 

given by Equations (3.31) and (3.32) respectively as, 

Sθ   =  ( )
( )Lβsinh

)xL(βsinhθ 1m − + ( )Lβsinh
)xβsinh(θ 2m + ( )

( )Lβsinh
)xL(βsinh))Φtω(iexp(T

1

1
00

−
+    

          +  ( )
( )Lβsinh

xβsinh))Φtω(iexp(T
1

1
LL +                                                                  (3.31) 
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Tθ  = ( ) ( ){ } ( )[ ]∑
∞

= π
παεπθ+ε−πθ

1n n
2

2m1mn

)incosh(sL
in2insinh1insinhtsexp   

        + ( ) ( ) ( ){ } ( ) ( )[ ]
( )∑

∞

= −

+−

1n n
2

LL00n

)iπncosh(ωisL
iπnα2iεnπsinhiΦexpTε1inπsinhiΦexpTtsexp      (3.32) 

 
3.2.3 Direct Laplace Transform Method 
          The problem defined by Eq. (3.2) can also be solved directly by using 

Laplace transform technique without splitting the boundary conditions. The 

employment of the Laplace transform in parabolic heat conduction equation leads 

to a second order differential equation in the spatial variable, and this resulting 

differential equation is then analytically solved. The inversion of the solution leads 

to the final solution in time domain.  

          Taking the Laplace transform of the Eq. (3.2) and its boundary conditions 

yields, 

[ ] θ
rk
h2θs

α
1

dx
θd

0t2

2
+−θ= =                                                                 (3.33) 

)ωis(
)iΦexp(T

s
θθ 001m

−
+=                :    x=0, t > 0                                 (3.33a) 

 
)ωis(

)iΦexp(T
s

θθ LL2m

−
+=             :   x=0, t > 0                                 (3.33b) 

The general solution of the Eq. (3.33) is  

)xmexp(C)xmexp(Cθ 1615 −+=                                                           (3.34) 

The arbitrary constants, 5C and 6C  are expressed as, 

)Lmexp()Lmexp(

)Lmexp(
)iωs(

)iΦexp(T
s
θ

)iωs(
)iΦexp(T

s
θ

C
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1
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+
=           (3.35) 
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⎝
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+
=             (3.36) 

Substituting the value of constants 5C and 6C  into Eq. (3.34) yields, 
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+                         (3.37) 

The above equation can be written in hyperbolic functions as, 

( )
)Lmsinh(s

)xL(msinhθ
θ

1

11m −
= +

)Lmsinh(s
)xmsinh(θ

1

12m +
( )

)Lmsinh()iωs(
)xL(msinh)iΦexp(T

1

100

−
−  

 +
)Lmsinh()iωs(

)xmsinh()iΦexp(T

1

1LL

−
                                                                         (3.38) 

          This is the solution in Laplace domain. The original time domain solution is 

obtained by taking inverse transform of Eq. (3.38). Therefore terms are same as the 

first four terms of the Eq. (3.18). It may be related that the fifth term in Eq. (3.18) is 

cancelled with the Eq. (3.9) to yield the solution of the original Eq. (3.3). Hence the 

solution by direct Laplace transform is same as that of splitting boundary condition 

described by the last section in Equations (3.31) and (3.32).  

 
3.3 Derivation of Parameters for the Measurement of the 

Thermophysical Properties  
3.3.1 Exact Solution 
          For large value of time all transient disturbances fade away and the 

remaining steady periodic solution given by Eq. (3.31) is required to measure the 

amplitude ratio and phase change. The Eq. (3.31) can be further simplified for 

equal amplitudes and phases on both sides of the sample to yield the complex 

steady periodic part as, 

Sθ  = 
( )( ) ( )( )

( )2Lβcosh
2x2LβcoshΦtωiexpT

1

100 −+                                                        (3.39)                    

The ratio of the complex amplitude at any point x and at x = 0 is given by, 

( )( )
( )2κLcos

22xLκcosAZ
−

=                                                                    (3.40) 

where κ  is the wave number defined as, 
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( ) ( ) )i1(irkhα2ωκ −+=                                                                    (3.41)  

          Complex amplitude ratio given by Eq. (3.40) varies from unity to zero with 

increase in x from zero to x = L ( ∞→L ). The Eq. (3.40) can be expresses as, 

)iΦexp(AA Z −=                                                                                   (3.42) 

where the amplitude A and phase Φ can be expressed as  

2
Z

2
Z ]AIm[]ARe[A +=                                                                      (3.43) 

⎟⎟
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⎜⎜
⎝
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=

]ARe[
]AIm[arctanΦ

Z

Z                                                                               (3.44) 

Eq. (3.41) can also be written as  

  ( ) ( ) ( )[ ] 2
1

2
122 α2ωrkhrkhκ
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⎬
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⎧ ++−= - ( ) ( ) ( )[ ] 2
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⎨
⎧ ++      (3.45)               

          The quantity α2ω corresponds to the heat conduction and rkh to the thermal 

losses from the surface. Defining a quantity δ  as the half of the ratio of thermal loss 

to heat conductance as, 

rkω
hαδ =                                                                                          (3.46) 

The Eq. (3.45) can be written as, 

               κ ( ){ } ( ){ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−⎟

⎠
⎞

⎜
⎝
⎛=

2
1

2
1

2
2
1

2
1

22
1

1δ2δ2i1δ2δ2
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ω                        (3.47) 

Using, )(2 gsinhδ = , the Eq.  (3.47) can be further reduced to 

               κ [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧ +−+−⎟

⎠
⎞

⎜
⎝
⎛= 2

1
2
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gcoshgsinhigcoshgsinh
α2
ω                               (3.48) 

On simplifying and rearranging the terms 

( ) ( ) ( )[ ]f1if1α2ωκ 2
1

+−−=                                                             (3.49) 

where                       ( )2)δ2(sinhsinhf 1−=                                                          (3.50) 

Introducing dimensionless parameters  

α2ωLγ =                                                                                   (3.51)  
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Lxε =                                                                                         (3.52) 

and substituting the value of κ  into Eq. (3.40) yields 

                       

( ) ( ){ }

( ) ( ){ }
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⎜
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⎛ +−−

⎟
⎠
⎞

⎜
⎝
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=

2
γf1if1cos

2
)ε21(γf1if1cos

AZ                                              (3.53) 

Defining,          ( )( )f1ε21
2
γC −−= ,             ( )( )f1ε21

2
γE +−= , 

                         ( )f1
2
γF −= ,                       ( )f1

2
γG +=                                        (3.54) 

ZA  can be written as  

                       
)iGFcos(
)iECcos(AZ −

−
=                                                                          (3.55) 

By separation of real and imaginary part, the real amplitude ratio and phase shift 

can be expressed as 

     A
GsinhFcos
CcosEsinh

22

22

+
+

=                                                               (3.56) 

and                    
GtanhFtanEtanhCtan1
EtanhCtanGtanhFtantanΦ 1

+
−

= −                                           (3.57) 

          It can be seen from the equations the amplitude ratio and the phase shift 

depend only on the two variables γ  and f  with fixed value of ε .  So, at a fixed 

location of ε , the amplitude ratio and phase shift can be evaluated from the 

measured temperatures oscillation. The measurement of the phase difference and 

the amplitude ratio allows the measurement two properties such as α , h from the 

Eqs. (3.56) and (3.57) respectively.    

 
3.3.2 Approximate Solution 
          In many of such measurement systems, the heat quantity λrh  is small 

compared to heat conduction quantity α2ω . In such cases 1δ << . Thus Eq. (3.47) 

reduced to 

κ ( ) ( ) ( )
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⎬
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⎩
⎨
⎧ +−−= 2

1
2
1

2
1

δ21iδ21α2ω                                                  (3.58) 

By expansion and neglecting higher order terms, Eq. (3.58) yields, 
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ωκ
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⎛=                                                             (3.59) 

Substituting the value of κ  into Eq. (3.40) yields,  
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Defining,                 ( )( )δ1ε21
2
γC −−= ,        ( )( )δ1ε21

2
γE +−= , 

           ( )δ1
2
γF −= ,                  ( )δ1

2
γG +=                                    (3.61) 

Eq. (3.60) can be written as,  

)iGFcos(
)iECcos(AZ −

−
=                                                                            (3.62) 

By separation of real and imaginary part, the real amplitude ratio and phase shift 

can be expressed as, 

A
GsinhFcos
CcosEsinh

22

22

+
+

=                                                                     (3.63) 

and              

                      
GtanhFtanEtanhCtan1
EtanhCtanGtanhFtantanΦ 1

+
−

= −                                               (3.64) 

 
3.4 General Solution of Differential Equation without 

Lateral Heat Transfer 
           In many situations the measurements are carried out on the sample where 

the convective and radiative heat losses are negligible, this results an adiabatic 

surface condition. The solution of the resultant governing equations can either be 

derived from the previous expression given in section (3.2.3) or can be derived 

directly. Since, the splitting boundary conditions is not applicable for this type of 

governing differential equation, the direct Laplace transform technique seems to be 

a prominent option. In this section the important steps for the derivation is 

highlighted. 

          The governing differential equation can be reduced from Eq. (3.2) as,  
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t
θ

α
1

x
θ
2

2

∂
∂

=
∂
∂                                                                                              (3.65)  

0θ =  t = 0, for Lx0 ≤≤                                                  (3.65a)                

 ( ))Φtω(iexpTθθ 001m ++=    : x = 0, t > 0                        (3.65b)       

( ))Φtω(iexpTθθ LL2m ++=     : x = 0, t > 0                                 (3.65c)  

          The Laplace transform of Eq. (3.65) along with its initial and boundary 

conditions can be expressed as, 

                           [ ]0t2

2
θθs

α
1

dx
θd

=−=                                                                     (3.66) 

                            
)ωis(

)iΦexp(T
s
θ

θ 001m

−
+=     :  x = 0, t > 0                                    (3.66a) 

                           
)ωis(

)iΦexp(T
s

θθ LL2m

−
+=      : x = 0, t > 0                                    (3.66b)         

Since the general solution of the Eq. (3.66) is  

)xmexp(C)xmexp(Cθ 2827 −+=                                                                         (3.67) 

where            )α(sm2 =                                                                                  (3.68)               

          The arbitrary constants are 7C  and 8C  which can be determined from the 

boundary conditions (3.66a) and (3.66b) respectively. 

          It may be noted that the solution of Eq. (3.67) is same as that of Eq. (3.38) in 

Laplace domain when m1 is replaced by m2. Similarly, the solution in time domain 

can be derived from Equations (3.31) and (3.32) by replacing 1β  by 2β  and 0β → . 

The definition of relevant variables is  

αω= iβ2  and ( ){ }απ/Lns 2
n −=                                                    (3.69)     

          With the above variables the solution of Eq. (3.65) in steady periodic part and 

transient part can be expressed as, 

 =θ TS θθ +                                                                                     (3.70) 

Steady part of θ (i.e. Sθ ) is, 

Sθ  = 
L

)xL(θ 1m − +
L

xθ 2m +
)Lβsinh(

)xL(βsinh))Φtω(iexp(T
2

2
00

−
+  

      + 
)Lβsinh(
)xβsinh(

)Φtω(iexp(T
2

2
LL +                                                              (3.71) 
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Transient part of θ (i.e. Tθ ) is, 

( ) ( ){ } ( )[ ]
( )∑

∞

= π
παεπ+ε−π

=
1n n

2
2m1mn

T )incosh(sL
in2insinhθ1insinhθtsexp

θ       

+
( ) ( ) ( ){ } ( ) ( )[ ]

( )∑
∞

= πω−
παεπΦ+ε−πΦ

1n n
2

LL00n

)incosh(isL
in2insinhiexpT1insinhiexpTtsexp     (3.72)  

          For a large value of time all transient disturbances given by Eq. (3.72) fade 

away and only the remaining steady periodic solutions are required to measure the 

amplitude ratio and phase change. Eq. (3.71) is further simplified by applying same 

amplitudes and phases on both sides of the rod. Complex steady periodic solution 

yields 

Sθ 1mθ=  + 
( )( ) ( )( )

( )2Lβcosh
2x2LβcoshΦtωiexpT

2

200 −+                             (3.73)  

          Under steady state condition, the signal temperature consists of mean 

temperature 1mθ and a periodically oscillating temperature as stated by Eq. (3.73).  

          The complex amplitude ratio between any point on the specimen and at the 

surface x = 0 is given by the following equation.  

( )( )
( )2κLcos

22xLκcosAZ
−

=                                                                    (3.74) 

where κ  is the wave number given by 

 ( )i1α2ωκ −=                                                                             (3.75)  

          Following the similar procedure as described by Equations (3.42) to (3.55) 

the real part of amplitude ratio and phase shift can be expresses as, 

A
FsinhFcos
CcosCsinh

22

22

+
+

=                                                                     (3.76) 

and                
FtanhFtanCtanhCtan1

CtanhCtanFtanhFtantanΦ 1

+
−

= −                                                     

(3.77) 

In absence of lateral heat transfer the variables can be defined as, 

( )ε21
2
γC −= ,        

2
γF= , and     ( ) 21α2ωLγ=                              (3.78)                

          It can be seen from the above Equations (3.76) and (3.77) that for a fixed 

value of ε , the amplitude and phase difference depend only on one variable γ . 
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Thus measurement of γ  either from amplitude ratio or phase shift yields the 

measurement of α .   

 
3.5 Deduction of Solutions for Specific Boundary 

Conditions  
           It is found in literature that the different investigators have proposed 

different steady periodic solutions depending on the boundary conditions. Their 

solutions are readily obtained from generalized steady periodic solutions, which are 

summarized below; 

Case I 

          The solution for a rod, (0-L) having adiabatic boundary [5] condition at x=L is 

obtained by substituting 2L in place of L in generalized steady periodic solution 

given by Eq. (3.31). 

=Sθ
( )
( )βL2sinh

)xL2(βsinhθ 1m − + ( )βL2sinh
)βxsinh(θ 2m + ( )

( )Lβ2sinh
)xL2(βsinh))Φtω(iexp(T

1

1
00

−
+  

     + ( )
( )Lβ2sinh

xβsinh
))Φtω(iexp(T

1

1
LL +                                                               (3.79)  

Using symmetrical boundary condition, it can be simplified as, 

Sθ
( )
( )βLcosh

)xL(βcoshθ 1m −
= + ( )

( )Lβcosh
)xL(βcosh

)Φtω(iexp(T
1

1
00

−
+                            (3.80) 

If there is no lateral heat loss, Eq. (3.80) reduces to 

Sθ = ( )
( )Lβcosh

)xL(βcosh)Φtω(iexp(Tθ
2

2
001m

−
++                                                 (3.81) 

Case II 
          This derivation represents the solution for a finite sample when one end is 

subjected to sinusoidal boundary condition and the other end of the rod is 

connected to a heat sink maintained at constant temperature as obtained by 

Tomokiyo and Okada [4]. 

           In Eq. (3.31), by substituting ( ))Φtω(iexpT LL +  equal to zero then equation 

becomes  

 
)Lβsinh(

)xβsinh(θ
)βLsinh(

)xL(βsinhθθ 2m1m
S +

−
= +

( )
)Lβsinh(

)xL(βsinh)Φtω(iexpT

1

100 −+         (3.82) 
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          This is the solution for a finite sample when one end is subjected to 

sinusoidal boundary and other end of the rod connected to a heat sink maintained 

constant temperature.  

Case III 

          Angstrom’s result, for long sample, where one end of the rod is subjected to 

a sinusoidal temperature variation and other end tends to infinite can be derived 

from Eq. (3.31) with ∞→L . 

          The generalized steady periodic solution given by Eq. (3.31) of transient heat 

conduction can also be written as, 

( ) ( )[ ]
( ) ( )βLexpβLexp

)xL(βexp)xL(βexpθ
θ 1m

S −−
−−−−

=   + ( ) ( )[ ]
( ) ( )βLexpβLexp

βxexpβxexpθ 2m

−−
−−     

 + 
( ) ( ) ( )[ ]

( ) ( )LβexpLβexp
)xL(βexp)xL(βexp)Φtω(iexpT

11

1100

−−
−−−−+     

             + ( ) ( ) ( )[ ]
( ) ( )LβexpLβexp

xβexpxβexp)Φtω(iexpT

11

11LL

−−
−−+                                               (3.83) 

          If length of the bar tends to infinity (long samples) then second and fourth 

terms of the Eq. (3.83) becomes zero and remaining terms are further simplified as, 

( ) ( )[ ]
( ) ( )βLexpβLexp

)xL(βexp)xL(βexpθ
θ 1m

S −−
−−−−

=  

+
( ) ( ) ( )[ ]

( ) ( )LβexpLβexp
)xL(βexp)xL(βexp)Φtω(iexpT

11

1100

−−
−−−−+                  (3.84) 

It can also be written as 

( ) ( )
( ) ( )

( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
−−

−−
−

−−
β−

=
βLexpβLexp
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( )
( ) ( )⎥⎦

⎤
⎢
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−−
β−

+
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)xL(βexp
LβexpLβexp

xexpLβexp)Φti(ωexpT
11

1

11

11
00         (3.85) 

On the limiting conditions of ∞→L , Eq. (3.85) reduces to    

             ( )+−= βxexpθθ 1mS  ( ) ( )xβexp)Φtω(iexpT 100 −+                                    (3.86)  

If there is no lateral heat loss, then Eq. (3.86) reduces to 

+= 1mS θθ  ( ) ( )xβexp)Φtω(iexpT 200 −+                                         (3.87) 
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3.6 Effect of Settling Time on Measurement  
          In the transient technique, the time to achieve the pseudo-steady state is an 

important factor known as settling time [148,149]. This factor determines, the 

elapsed time required to attain the steady state. For high thermal conductivity 

materials where the attenuation is fast enough, the settling time is very small (i.e., 

order of fraction of a second). At the other extreme, for low thermal conductivity 

materials, it may be of hours.  

          A near steady state condition is assumed when time required for the 

temperature of the transient part to achieve 2% of the steady state temperature. 

This section describes the procedure to approximately estimate the settling time.  

 
3.6.1 Settling Time with Lateral Heat Transfer 
          The Eq. (3.32) can be simplified for same amplitude and phase on both sides 

of the sample as, 

=Tθ ( ) ( ) ( ){ } ( )
( ) ( )∑

∞

= πω−
ε−πππα

Φ
1n n

2
n

2

00 incoshisL
tsexp221ncos2nsinin4iexpT                 (3.88) 

The transient response for unit input can be expressed as, 

( )TθI = ( ) ( ) ( ){ } ( )
( ) ( )∑

∞

= πω−
ε−πππα

ω−
1n n

2
n

2

incoshisL
tsexp221ncos2nsinin4tiexp                (3.89)                

          The response of the signal decreases exponentially. The higher harmonics of 

the series decrease much faster than the fundamental, which persists for a longer 

time after the initial disturbance. Thus the contribution of the Eq. (3.89) may be 

approximated due to the first term of the series as, 

( )TθI = ( ) ( ){ } ( )
( )ωisL

tsexp2ε21πcosα4πtωiexp
1

2
1

−
−

−                                            (3.90) 

Where    ( ) ( )n1incosh −=π  
The real and imaginary part of this response can be written by the following two 

equations. 

         ( )TθIRe[ ] = ( ){ } ( )( )
( )22

1
2

11

ωsL
tωcossωsinωttsexp2ε21πcosα4π

+
+−                        (3.91) 

          ( )TθIIm[ ] = ( ){ } ( )( )
( )22

1
2

11

ωsL
ωtsinsωcosωttsexp2ε21πcosα4π

+
−−                       (3.92) 
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Thus the magnitude of the temperature amplitude in the transient Eq. (3.90) is 

given by ( )RTθ  = ( ){ } ( ){ }2
T

2
T ]θ[Im[I]θ[Re[I + . This can be expressed as, 

           ( )RTθ  = 
( ) ( ){ }

2
2

2
2

2

2
2

ωα
rk
2hπ

L
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αt
rk
2hπ
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+⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ −−− εππαπ

                     (3.93) 

          Introducing dimensionless parameter 2Ltα=ς , and use of quantities δ , 

γ and ε in Eq. (3.93) yields, 

        ( )RTθ  = [ ] [ ]
( ) ( )22222

22

24

)4exp221cos4

γδγπ

δπ(ε)π(π

++

−−− γς                                             (3.94) 

      Temperature amplitude of transient part = 2% of amplitude of steady part 

As per the condition, the equation for the settling time can be expressed as, 

( )
δy4π
bA02.0Ln

22s −−
=ς                                                                            (3.95) 

where            b = [ ]
( ) ( )22222 γ2δγ4π

2ε)21π(cosπ4

++

−                                                           (3.96)          

The values of sς  have been computed for the various values of the parameters 

γ , ε and δ . A graphical presentation of the settling time has been shown in Figs. 

(4.8) to (4.10). 

 
3.6.2 Settling Time without Lateral Heat Transfer   
          The settling time expression as given by Eq. (3.95) can be further simplified 

by substituting 0δ = . Without lateral heat transfer the Eq. (3.95) reduces to  

( )
2s π

bA02.0Ln
−

=ς                                                                             (3.97) 

where           b  = [ ]
( ) ( )2222 γ2π

2ε)21π(cosπ4

+

−                                                                  (3.98) 

 
3.7 Discussions 
          Theories of transient heat conduction equation with periodic boundary 

conditions have been presented based on the principle of temperature oscillation 
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technique.  In this principle, thermophysical properties of the specimen have been 

estimated by the measurement of amplitude attenuation and phase shift. The 

governing partial differential equation is formulated for physical model of a bar with 

surface heat loss in one-dimensional form. This equation has been solved for 

circular geometry of finite length subjected to sinusoidal temperature oscillation at 

both the ends. The solution of transient conduction problems consists of both 

steady, periodic and transient decaying parts. Therefore, a complete solution of this 

problem is derived in the present work. For the general applicability, the equations 

are presented in dimensionless parameters for the both dependent and 

independent parameter. The same governing equation is solved by splitting 

boundary condition method and direct Laplace transform method to show the 

correctness of the derivation. Also in situation where only steady state solutions are 

required, the splitting boundary condition method provides a direct and easy 

method of solution procedure. Different investigators have taken different boundary 

conditions for the governing equation to derive the solution. A generalized solution, 

which accommodates a wide range of boundary conditions for the general 

governing equation, has been derived. The solution for many specific boundary 

conditions can be derived from the generalized solution. The output response of 

amplitude (A) and phase shift (�) for the input signal consisting of same amplitude 

and phase at the both ends of a finite sample length has been computed for various 

values of � γ and �The computed values are shown graphically for analysis. 

          For no lateral heat loss (��the amplitude and phase are shown in Figs. (3.1) 

to (3.3). Figures (3.1) and (3.2) show respectively the amplitude and phase 

variation separately. These two figures are combined in Fig. (3.3).  These kinds of 

graphs are convenient for analyzing the experimental data in evaluation of thermal 

properties for finite sample length, without lateral heat transfer and oscillations at 

both the ends. It is observed that for dimensionless parameter )2αωLγ(= ≥ 2.6, 

the amplitude curve are sharply attenuated and also densely populated over a short 

distance (i.e., small value of ε This behavior of finite bar presumes that of a semi-

infinite system.  It can be further explained that, for a sample with γ ≥ 2.6, the 

amplitude signal at the middle of the sample is almost zero. A detailed derivation for 

the semi-infinite system has been given in Chapter 4. The sensitiveness of thermal 
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diffusivity to amplitude or phase is an important factor in measurement principle. 

Due to the large change in amplitude it is always preferable to measure the thermal 

diffusivity from the amplitude signal than from the phase shift signal. 

          The effect of lateral heat transfer has been shown in Fig. (3.4) and 

comparison of both, with and without heat transfer has been shown in Fig. (3.5). 

The nature of plots for heat transfer and without heat transfer are same, but the 

amplitude attenuation is sharper in the presence of heat transfer. A qualitative 

presentation with heat transfer shifts to the bottom of the curve, without heat 

transfer as shown in Fig. (3.5).       

          A simplified approximate solution for small lateral heat transfer has been 

derived in the section 3.3.2. The numerical results of exact and approximate 

solution are compared in Figs. (3.6) and (3.7). It is observed that the deviation is 

more pronounced for larger values of �Thus the approximate solution is valid 

for�≈�which is reasonable for small amount of lateral heat transfer.   

          Under steady state condition, the amplitude ratio or phase change is used to 

determine the thermophysical properties. The time elapsed to collect the steady 

state data is approximately determined from the settling time. The plot of settling 

time is shown in Figs. (3.8) to (3.10). Usually the midpoint of the sample is used for 

the measurement. The settling time at the mid point of the sample increases with 

increasing �It can be further explained that for the same specimen length operating 

under a constant frequency, the lower thermal diffusivity sample yields a large 

settling time. The Fig. (3.10) indicates that the transient components settle faster 

with lateral heat transfer yielding small settling time. 
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Figure 3.1 Theoretical plots for normalized amplitude ratio against the 

dimensionless quantity � for various constant values of � 
without lateral heat loss.   
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Figure 3.2 Theoretical plots for phase shift against the dimensionless 
quantity � for various constant values of � without lateral heat 
loss. 
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Figure 3.3 Theoretical plots for normalized amplitude ratio against phase shift 
for different values of � and � without lateral heat loss (� = 0). 
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Figure 3.5 Theoretical plots for the normalized amplitude ratio against the 
phase change for various constant values of �and�  with and 
without lateral heat losses.  
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Figure 3.6 Comparisons between approximate solution and exact solution for 

amplitude ratio. 
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Figure 3.7 Comparisons between approximate solution and exact solution for 

phase shift. 
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Figure 3.8 Theoretical plots for the dimensionless settling time against � for 

various constant value of � without lateral heat loss. 
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Figure 3.9 Contour plots of dimensionless settling time for different values of 
� and �without lateral heat loss. 
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Figure 3.10 Theoretical plots for the dimensionless settling time against � for 

various constant values of�with and without lateral heat losses. 
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Chapter 4 

 

Principles of Experiment for Measurement  

 

of Thermal Diffusivity 

 

 

4.1 Introduction 

          
 Thermal diffusivity of a material is measured with a relatively simple, 

inexpensive and compact technique called temperature oscillation method (TOM). 

This technique combines the advantages of a steady state measurement with the 

potential to measure a property describing a non-steady state. The method is 

purely thermal and the electrical components of the apparatus are away from the 

test sample, which does not influence the experimental data. One of the major 

advantages of the temperature oscillation technique is that a high degree of 

accuracy of thermophysical properties are attainable at different temperatures 

ranging from liquid helium to high temperatures upon which oscillation is imposed. 

In this chapter, the theory of the technique to measure thermal diffusivity, theory of 

the associated Fourier analysis and its related uncertainty analysis are discussed. 
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The subsequent chapter describes the experimental procedure to yield the desired 

results based on the application of the basic principle developed in this chapter.  

  
4.2 Mathematical Model for Measurement 
          A semi-infinite geometry of the test sample is chosen so as to have enough 

sample length to attenuate the input signal to a measurable quantity at the output 

point. The input was chosen very carefully to be a periodic oscillation since only for 

oscillatory inputs, the parabolic effects can persist after a comparatively long 

distance as opposed to instantaneous inputs such as step change used in some of 

the earlier experiments in the references. Due to the above consideration, for a 

semi-infinite sample geometry, a suitable predefined amplitude and frequency for 

the input boundary temperature variation has been chosen. A sketch of the 

coordinate system is shown in Fig. (4.1). To carry out the measurement of thermal 

diffusivity of liquid, the oscillatory inputs has got an additional advantages in that 

the two quantities of amplitude attenuation and phase shift can be measured. Thus 

two unknown quantities can be evaluated without the need of any iteration or curve 

fitting. This basic principle is used to measure thermal diffusivity. Additionally 

temperature recorded at a axial location of sample is used for modeling without any 

assumption of ideal input.  

          The mathematical model for parabolic one-dimensional conductive heat 

transfer in a semi-infinite medium is given by  

t
T

α
1

x
T
2

2

∂
∂

=
∂
∂                                                                                         (4.1) 

          The length of the semi-infinite body in the x direction is so large that the 

temperature time variation at any depth x within the material will depend only on 

conditions imposed at x = 0. The boundary condition at surface of the body (at x = 

0) is taken as sinusoidal surface temperature variations, namely 

                  )tiωexp(TTT 01m +=             : x  = 0, t > 0                                        (4.1a) 

Similarly, the boundary condition at the semi-infinite side can be depicted as, 

1mTT =                                  : ∞→x , t > 0                                     (4.1b) 

Tm1 is the mean temperature of oscillation, 0T  is the amplitude of temperature wave 
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and ω  is the frequency of oscillation. It may be noted that at the mean temperature, 

the desired thermophysical properties are evaluated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     
                                

Figure 4.1 Sketch of the coordinate system. 
           

          Using temperature difference 1mTTθ −= , the Eq. (4.1) and the associated 

boundary conditions can be reduced to the temperature difference form 

t
θ

α
1

x
θ
2

2

∂
∂

=
∂
∂                                                                                      (4.2) 

)tiωexp(Tθ 0=       : x = 0,  t > 0                                                  (4.2a) 

0θ =                       : ∞→x , t > 0                                                (4.2b)  

 
4.2.1 Solution of Governing Equation for Semi-Infinite Medium 

          Taking the Laplace transform of the Eq. (4.2) along with its boundary 

conditions yields, 

[ ]0t2

2
θθs

α
1

dx
θd

=−=                                                                             (4.3) 

( )ωis
T

θ 0

−
=                    : x = 0, t > 0                

(4.3a) 

 0θ =                            : ∞→x , t > 0                                              (4.3b) 

The general solution of the Eq. (4.3) is 

x = 0 

x = ∞ 
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                       )xmexp(C)xmexp(Cθ 21029 −+=                                                            

(4.4) 

where           )α(sm2 =                                                                                    (4.5)                

          The arbitrary constants 9C  and 10C  which can be determined by using the 

boundary conditions.  

Use of second boundary condition given by Eq. (4.3b), yields  

0C9 =                                                                                             (4.6) 

and applying first boundary condition given by Eq. (4.3a), yields 

( )iωs
T

C 0
10 −

=                                                                                     (4.7)                                     

Substituting the values of C9 and C10 in Eq. (4.4) yields, 

           ( )ωis
)xmexp(T

θ 20

−
−

=                                                                                       (4.8) 

The Laplace inversion of this equation is required to be evaluated since this does 

not appear in the table of Laplace transform. 

          For the function F(x) and its Laplace transform F(s), are related by contour 

integral and residues as,   
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)exp()exp(

2
θ 0 α

π
                                   (4.10)  

This integrand has a branch point at 0s =  and a simple pole at )ωis( =  
The residue at the pole, ωis =  is 

Res(s=iω)  = ( ) ( )αωixexptiωexpT0 −                                          (4.11) 

          To convert the Eq. (4.10) as a single valued function, the integrand 

given in Eq. (4.10) is to be modified as, 

θ  = ( )∫ −
−π ABFEDCA

0 )dsαsxexp(
iωs

exp(st)
i2

T
                                               (4.12) 

where the integration path, ABFEDCA as shown in Fig. (4.2) avoids the branch 

point at .0s =  
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Figure 4.2 Contour integral for a branch point at s=0. 

           

          The integral around the contour ABFEDCA (Fig. 4.2) is the contour integral 

for Laplace inversion in the limit as the radius R of the large circle tends to infinite, 

and that of the small circle tends to zero. As ∞→R , the integral over the arcs BF 

and CA tends to zero. Also the integral over the small circle about the origin tends 

to zero. As ∞→R , the integral over AB becomes the Bromwich integral used for 

the inversion. 

          The integral along EF and CD, )iexp(ρs π=  and )iexp(ρs π−=  are substituted 

respectively. Here the argument (angle) of s is π  on EF and π−  on CD and ρ  is 

any real value varies from ∞−  to 0 and 0 to ∞−  respectively. 

Along FE,          π= ieρs , thus, 
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Along CD,          π−= ieρs , thus, 
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Sum of integrand of FE and CD is 
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Thus the Bromwich integral can be written as, 
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Finally, the solution of Eq. (4.2) is  
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                                                  (4.17) 

The Eq. (4.17) is the response for a signal of ( )tiωexpT0 . 

For a unit signal input, the response is, 

   ( )θI   =  ( ) ( ){ }α2ωxexpα2ωixexp −−  
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          The first term of the Eq. (4.18) is the steady periodic solution and the 

second term is the transient part. For large value of time all transient disturbances 

fade away and only the remaining steady periodic solutions are required to 

measure the amplitude ratio and phase change. The steady periodic response for 

unit signal input is  

   ( )SθI = ( ) ( )α2ωxexpα2ωixexp −−                                           (4.19) 

By separation of real and imaginary part, the real amplitude response and phase 

shift can be expressed as, 

( )α2ωxexpA −=                                                                           (4.20) 

and              α=Φ 2ωx                                                                                   (4.21)                

          Measurement of the amplitude ratio or the phase difference allows the 

thermal diffusivity to be determined from Eq. (4.20) or Eq. (4.21), respectively. 

 
4.2.2 Settling Time 
          In the transient technique, the time to achieve the pseudo-steady state is an 

important factor known as settling time. Under the steady state condition, the 
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amplitude ratio or phase change is used to determine the thermophysical 

properties. It may be noted that collecting data earlier to this settling time may 

include erroneous values. For a reasonable approximation in practice, the steady 

state condition is obtained when time required for the temperature of the transient 

part to achieve 2% of the steady state temperature.  

          The response for unit signal input, given by Eq. (4.18) can be simplified by 

using the following variables: 
2uωρ = , *ωtω = , *βα2ωx =                                                       (4.22) 

where,         duuω2dρ =                                                                                    (4.23) 

Thus the steady part is, 

( )SθI = ( ) ( )** iβexpβexp −                                                                  (4.24) 

and the transient part is, 
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                          (4.25)  

Separating the real and imaginary parts, the real and imaginary integrals can be 

expressed as,  
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Thus the magnitude of the temperature amplitude in the transient Eq. (4.25) is 

given by ( )RTθ  = ( ){ } ( ){ }2
T

2
T ]θ[Im[I]θ[Re[I + . 

As per the condition given earlier, the equation for the settling time can be 

expressed as: ( ) −− *βexp02.0 ( ){ } ( ){ }2
T

2
T ]θ[Im[I]θ[Re[I + = 0                         (4.28) 

          The solution of ‘ t ’ from the Eq. (4.28) determines the settling time. For 

a low thermal conductivity material the settling time is an appreciable quantity. A 

more detailed analysis for a finite system has been shown in Chapter 3. In the 

present situation, this value will be order of seconds, which will be of no use to 

rigorously calculate from Eq. (4.28). Also this supposition is evident from the 

experiment. However, these derivations are presented to show the mathematical 

completeness. 
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4.3 Fourier Analysis 
          The temperature oscillation, in this experiment is obtained by TEC 

(Thermo Electric Cooler), which is a Peltier element. By applying a square pulse or 

sinusoidal voltage to the Peltier element whose one side is kept at a constant 

temperature bath, the other side of the Peltier element generates temperature wave 

similar to the applied voltage. Additionally, if the applied voltage is modulated over 

a D.C. component, the temperature wave of oscillating part modulated over a mean 

temperature corresponding to D.C. component of applied oscillating voltage is 

obtained.  Due to distortion, the temperature generated may not be of same shape 

as the applied voltage. Also due to the change in wave shape, the shape of 

temperature wave at the input to a sample may distort at the output from the 

sample.  

          To overcome the distortion of the temperature wave Fourier analysis is 

applied. The Fourier analysis [151,152] converts the distorted signal to sinusoidal 

signals where the fundamental frequency is relevant to the analysis. 

          In general, a periodic function of an oscillating temperature signal can be 

expressed in Fourier series as, 
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∞=

=

∞=

=

++=
n

1n
n

n

1n
n0 )tnωsin(b)tnωcos(aa

2
1T                                       (4.29) 

where oa , na  and nb are the Fourier coefficients defined as, 
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The Fourier series can also be written as the sum of cosine terms only. This can be 

obtained by substituting nnn ΦcosAa = and nnn ΦsinAb =  in Eq. (4.29), thus 
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                                                       (4.32) 

where            )b(aA 2
n

2
nn +=                                                                          (4.33) 

                     ( )nnn abarctanΦ =                                                                          (4.34) 
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Using Euler identity,  

t)(nωsinit)(nωcose tωni +=                                                           (4.35) 

Equation (4.29) can be rewritten as, 
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Hence          nnn CCa −+=                                                                           (4.39)  

and                )( nnn CCib −−=                                                                             (4.40) 

For real function (T), nC  and nC−  are the complex conjugate, where na  and nb are 

real quantities. 

          For an arbitrary periodic temperature signal, T, its FFT analysis gives the 

coefficients nC  ( n =0,1,2…) where nC− can be estimated by taking the complex 

conjugate of nC . Thus the first value of the FFT spectrum ( 0C ) gives the D.C. 

component, which is equal to the mean temperature. The amplitude and phase can 

be calculated from Eqs. (4.33) and (4.34) as, 

[ ]( ) [ ]( )2
n

2
nn CImCReA +=                                                         (4.41) 

and                [ ]
[ ]n

n
n CRe

CIm
arctanΦ =                                                                         (4.42) 

          In the measurement of amplitude and phase the fundamental 

frequency is considered. In FFT [151, 152] technique these values are obtained 

from Equations (4.41) and  (4.42) for the fundamental frequency with n =1. 

 
4.4 Theory of Error Analysis  

Measurement Error: 
          It is a well-accepted principle in engineering that all measurements have 

errors ( kδ ). These errors are the differences between the measurements and the 

true value (see Fig. 4.3). Furthermore, the total error is usually expressed in terms 
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of two components: a fixed (bias) error (Β ), and a random (precision) error ( ke ) 

such that 

kk eB +=δ                                                                                      (4.43)  

 
Precision Index: 
          The precision error is determined by taking N  repeated measurements from 

the parameter population, the characteristics of which can be approximated by the 

precision index ( XS ) defined by the familiar expression, 
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where X  is the average value of X . 

The precision index of the average of a set of N separate measurement readings is 

determined as, 
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The associated number of degrees of freedom from t -distribution is equal to 1N − . 

 

 

Figure 4.3 Measurement errors. 

 
Bias error: 
          The bias error is the systematic error, which is considered to remain constant 

during a given test. Thus, in repeated measurements of a given set, each 
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measurement has the same bias. There is no statistical equation, as (4.44) or 

(4.45), to define the bias limit, Β . Instead, it must be estimated and it is not an easy 

matter since the true value is not known. Calibration helps, as does a comparison 

of measurements in independent methods, but in general the estimate of bias must 

be based on judgments. 

 
Combining errors due to elemental error sources: 
          Errors arise from many sources. These are divided arbitrarily into three 

categories [139]: calibration errors, data acquisition errors and data reduction 

errors. In each of these sources of error there will be bias and precision 

components. 

          To obtain the precision of a given parameter, J  (like temperature, pressure, 

or flow rate), the root sum square (RSS) method is used to combine the precision 

indices from the M  sources of error. Thus 
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The number of degrees of freedom associated with JS  is calculated using the 

Welch-Satterthwaite formula as, 
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where,         ( ) ( ) 1N
kjkJ −=ν                                                                               (4.50) 

Similarly, the bias of a given parameter is given by 
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Uncertainty of a result: 
          Once the precision index and associated degrees of freedom have been 

determined for each of the variables iX in the data reduction equation, the precision 

index of the result, ,rS is found from the given functional uncertainty analysis 

expression 
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The number of degrees of freedom, ,rν associated with rS is then determined from 

the Welch-Satterthwaite formula that may be written as, 
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or in the alternate form 
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where,  the siθ  is defined as 
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The appropriate value of td is then found from the table for the t-distribution with 

degrees of freedom, rν . Similar to Eq. (4.52), the bias limit of a result is given by 
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The uncertainty of a result for the two models are given as  
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r StBU += , @ 99% coverage                                                  (4.58) 

and                ( )[ ] 5.02
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2
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RSS
r StBU += ,  @ 95% coverage                                      (4.59) 

          The student td value is a function of the degrees of freedom used in 

calculating the total contribution due to rS . For large sample size, (i.e., 30N > ), td is 

set equal to 2, otherwise, for small sample sizes of 30N ≤ , td is calculated from the 

Welch-Satterthwaite formula. 

 
Uncertainty in measurement of thermal diffusivity:  
          The functional relation for the measurement of thermal diffusivity as stated 

by Eq. (4.20) can be rewritten as, 
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The measurement errors associated with this equation are 
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Dividing Eq. (4.61) by α  and substituting the value of partial derivative leads to 
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where xxδ , pp ttδ  and AAδ  are the fractional errors in the distance between two 

thermocouples, periodic time measurement and amplitude ratio respectively. 

          The amplitude ratio is not directly measured but it is obtained from 

temperature data recorded by thermocouple. Hence, the bias error propagated in 

measurement of amplitude ratio can be obtained as, 
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where outout TTδ , inin TTδ  are the fractional errors in output and input temperature 

amplitudes response. 

          In the present experimental procedure, it is assumed that there is a single 

unknown source ( M =1) of error for the measurement of precision and bias errors. 

The number of parameters are distance, time period and amplitude ratio.  

 
Measurement of precision error: 

          From the Eq. (4.46) with M =1, the precision error contributions are 21 S,S  

and 3S  for the above mentioned three parameters. The generalized Eq. (4.52) for 

the measurement of thermal diffusivity is expressed by Eq. (4.63). 21 S,S  and 3S  

are the contribution of precision errors for distance, time period and amplitude ratio 

respectively as stated by Eq. (4.63). For the same sample holder and same wave 

generator, the contributions of precision errors for the first two parameters can be 

assumed to be zero. Thus the precision error is controlled by the parameter 3S , 

which is the amplitude ratio. Hence the degrees of freedom for the single parameter 

3S  are N -1 and this value is used to calculate td from the t-distribution table. 

  
Measurement of bias error: 

          Similar to precision error for M =1, the contributions of bias errors are 21 B,B  

and 3B  for the three parameters: distance, time period and amplitude ratio 

respectively. For the measurement of bias error in thermal diffusivity, Equations 

(4.63) and (4.64) are considered by taking the measurement errors in distance, 

time period and thermocouple. 

          For the measurement of total uncertainty Eq. (4.59) is normally accepted. 

Based on the above theory, the step by step procedure has been illustrated as a 

specimen calculation in the subsequent chapter.  
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4.5 Discussions 

          The theoretical model for experimental measurement of thermal diffusivity 

has been presented. The boundary condition of the model is implemented 

experimentally as sinusoidal temperature oscillation at one end and the other end 

behaves like a semi-infinite medium. In semi-infinite medium, measurement of 

thermal diffusivity is possible either from amplitude attenuation or phase shifting of 

the propagating thermal wave imposed at one side of the sample. 

          A theoretical expression has been derived to estimate the settling time for 

any specimen. The settling time is an important time parameter, which indicates 

elapsed time after which the steady state data is to be collected. However 

considering the present nature of specimen which has the moderate thermal 

conductivity, this settling time will be of order of second and hence no calculation 

has been shown in this regard. 

          The Fourier analysis of periodic temperature wave has been adopted to 

obtain its amplitude and phase for the fundamental frequency. This can be carried 

out by Fast Fourier Transform of the data recorded by thermocouples at input and 

output.  From the characteristic of thermal wave propagation, the thermal diffusivity 

of the specimen can be calculated from the attenuation of amplitude or from the 

phase lag of the thermal wave. 

          A measurement result without accompanying statement of uncertainty is 

incomplete. However no measurement should be considered exactly; it can only 

provide an estimate of the measurand. Thus, a systematic procedure to measure 

uncertainty in error propagation in the experimental result has been presented. 

Based on this procedure a specimen calculation has been provided in the next 

chapter. 
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Chapter 5 

Experimental Studies on the Measurement 

of Thermal Diffusivity 

5.1 Introduction 
           

Thermophysical properties, such as thermal conductivity and thermal 

diffusivity, are very important liquid properties. Accurate values of these properties 

are critical for practical engineering design as well as theoretical studies and 

analysis, especially in the fields of heat transfer and thermal processing.  

      Due to the unique characteristics of liquids, measurement of the thermal 

conductivity and thermal diffusivity is more challenging for liquids than for solids. 

Liquids do not maintain any fixed shape and can be easily changed 

compositionally, which alters their properties. Also, since liquids cannot sustain a 

shear stress, convection can occur in the presence of temperature gradients, which 

is one of the major error sources for many conventional techniques that measure 

liquid thermal conductivity and thermal diffusivity. 

          In this chapter, measurement of thermal diffusivity of liquid is presented 

based on the principle outlined in the previous chapter. Considering the intricacy in 

the measurement of thermal diffusivity of liquids, a considerable attention has been 

given in designing the sample holder along with its accessories and measuring 
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instruments. Measurement of thermal diffusivity of four liquids: ethylene glycol, 

ethanol, glycerol and water have been undertaken and the results have been 

compared with the published data. This chapter comprises description of 

apparatus, experimental data analysis and error measurement in more detail. 

 
5.2 Experimental Setup  
          The experimental setup comprises of the fabricated test cell, constant 

temperature bath unit, signal generator with amplifier, and the instruments for the 

measurement system as shown in Figs. (5.1) to (5.2). For the semi-infinite body, 

the amplitude of temperature oscillation diminishes according to Eq. (4.20). Thus 

one thermal wavelength may be defined as, 

ptαπ4=l                                                                                      (5.1) 

          At a distance of one thermal wavelength, the amplitude is reduced by a factor 

of )2exp( π− = 0.0019. It shows that the waves are very strongly attenuated. This 

implies that the solution of the semi-infinite specimen can be used for a specimen 

whose length is greater than one or two wavelengths. Thus, the space length of the 

sample has been determined from Eq. (5.1). The measurement system consists of 

specially fabricated test cell, thermostatic bath, power supply system and signal 

generator, and data acquisition system. These components are described below.  

 
5.2.1 Test Cell 
          The schematic diagram of test cell is shown in Fig. (5.3) and its photograph 

in experimental setup shown in plates (5.4) and (5.5). In the Fig. (5.3) the fabricated 

test cell consists of a cylindrical well bore in a block (1) of POM (polyoxymethylene 

material), which can be machined and drilled accurately. The diameter of the bore 

is 26 mm, outer diameter 70 mm and the length 52 mm. It contains test liquid, 

which acts as a semi-infinite medium. The cavity is closed on both the sides by the 

removable discs (2) of copper material of dimension 26 mm diameter and 12 mm 

axial length. Thus, the space for the sample has a dimension of 26 mm diameter 

and 28 mm length. For filling the sample liquid, a small hole is provided on the body 

of the test cell. The copper discs act as heating and cooling surface respectively. 

Between the disc (2) and the water-cooling chamber (4), a Peltier element (3) 
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(melcore type, CP-07) square 40 mm x 40 mm is sandwiched which generates the 

required temperature oscillation with the help of a function generator attached to 

the D.C. supply. The Peltier elements are thermoelectric modules, which are solid-

state devices (no moving parts) that convert electrical signal into a temperature 

gradient.  The electrical signal supplied through the function generator is consists of 

oscillating voltage of the required frequency modulated over a D.C. voltage. The 

cooling chambers located at the outer surface of the Peltier element are maintained 

at a constant temperature by circulating water from the constant temperature bath. 

Thus the Peltier element whose one side is kept at a constant temperature 

generates a regulated oscillating temperature over a mean temperature. For a 

semi-infinite system, the Peltier element at the far end of the sample is excited with 

a D. C. signal to maintain a constant mean temperature along the sample length.   

          At the interface of the sample material and the copper disc, a thermocouple 

(5) of 0.2 mm wire diameter is affixed. This represents the response of input signal. 

For the output signal in the thermocouple probe of 0.5 mm diameter is inserted at a 

distance of 5 mm in the sample holder. The third thermocouple is placed at a 

similar location as that of the first one to ensure semi-infinite assumption of the 

sample and to correct the mean temperature. All the thermocouples are K-type and 

these are located along the axis of the test cell. The signals of the thermocouples 

are amplified and filtered before connecting to data acquisition system, which in 

turn connected to a PC for recording the data. 

 
5.2.2 Thermostatic Bath  
          A constant temperature bath is shown in Fig. (5.6). This unit comprises a 

cooling system, heating system, temperature controller and water circulating pump. 

It is an automatic control device system, which maintains constant temperature 

between 0.00C to 500C with an accuracy of 0.10C. The function of the temperature 

bath is to maintain a constant temperature at one side face of the Peltier element 

by water circulation in the cooling chamber. The constant temperature of the bath is 

used to maintain a constant mean temperature at the other surface of the Peltier 

element. However any further control of the mean temperature is done by 

controlling the D.C. component of the modulated signal feed to the Peltier element.  
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Figure 5.1 Schematic diagram of the experimental setup for the measurement 

of thermal diffusivity of liquids. 
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Figure 5.2 Photograph of the experimental setup: (1) DC power supply, (2) 

power supply for ADAM Module, (3) amplifier, (4) ADAM 4018, (5) 
test cell, (6) signal generator, (7) PC, (8) thermostatic bath, (9) 
phase shifter. 
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Figure 5.3 Fabricated Test Cell: (1) specimen holder, (2) removable disk, (3) 
Peltier element, (4) heat sink, (5) thermocouple, (6) water 
circulating valve   (7) specimen. 

1

2 

3

4

6

7 

5



 83  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 5.4 Photograph of disassembled test cell:(i) cylindrical block (POM), 

(ii) ‘O’ring, (iii) removable disk (copper), (iv) Peltier element, (v) 
heat sink (copper), (vi) cover disk (POM), (vii) K-type thermocouple. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5 Photograph of assembled test cell. 
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Figure 5.6 Photograph of thermostatic bath. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.7 Photograph of data acquisition system (ADAM module 4018 and 
converter 4520). 
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5.2.3 Power Supply System and Signal Generator  
          The line voltage, 230V A.C., 50Hz is stabilized (servo voltage stabilizer) 

before feeding to different equipment/instruments. The signal generator generates 

the oscillating signal (0-5V) of required frequency. The time period of this signal can 

be varied from 20s to 400s depending on the requirement. If two different signals 

are required, two channels signal generator with phase shifter has to be 

incorporated. The D.C. (0-15V) power supply is used to modulate the oscillating 

signal over the D.C. voltage. The role of the amplifier is to regulate the amplitude of 

the oscillating part and also regulates the current rating (0.5-4A) for the Peltier 

element. The regulation of D.C. power source regulates the mean temperature of 

the Peltier element whose other surface is maintained at constant temperatures. 

This type of two-frequency signal generator is not available commercially. For this 

experiment it has been specially fabricated. However, in semi-infinite samples one 

signal generator is adopted. 

 
5.2.4 Data Acquisition System 
          The temperature at the input and output of the sample are measured by K-

type thermocouple probe (0.5 mm). These thermocouples are connected to a PC 

through ADAM 4000 series data acquisition modules as shown in Fig. (5.7). These 

data acquisition modules consist of ADAM 4018 (8-channel) thermocouple input 

module and ADAM 4520 (isolated RS-232 to RS-422/485) converter. The converter 

is connected to the COM port of the PC. The temperature data collected from the 

two channels are stored in computer for further analysis.  

 
5.3 Experimental Procedure 
          At the beginning of experiment the distance between thermocouples are 

checked accurately. Then the test section is filled with liquid through a hole 

provided in middle of the cell. The liquid used in experiments are ethylene glycol, 

ethanol, glycerol and water. The temperature of copper disc is given periodic 

oscillation by Peltier element at one side of the sample with a constant frequency. 

The cooling chamber is supplied with water from a constant temperature bath, 

which act as a partial controller of the mean temperature of oscillation. The 
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temperature oscillation in this element is further controlled by adjusting the D.C. 

component and oscillating component to obtained two objectives: 

a. The oscillation amplitude is adjusted to be kept small enough (of the order of 

2K) within the test liquid to retain constant fluid properties and to avoid 

natural convection in the liquid. The amplitude is not allowed to decrease too 

much to affect the accuracy of the measurement. 

b. The smaller amplitude and accurate adjustment of the mean temperature of 

oscillation by controlling D. C. component ensure that the test is carried out 

at the required temperature for the sample. 

          The measurements of temperatures are made at different positions; at the 

interface of the copper disc and on the sample, 5.0 mm from the first thermocouple, 

and at other end of the sample similar to the first location. For this purpose two K-

type thermocouples of 0.2 mm diameter are used at the interfaces of the copper 

disc and the liquid sample and one 0.5 mm diameter K-type thermocouple probe. 

Response of the thermocouples is connected to data acquisition system. This data 

acquisition system is connected to a PC for data recording and analysis. The initial 

oscillations are not used for computation because of their transient nature. After the 

equilibrium condition has been reached, temperature oscillation is recorded for a 

number of cycles. Thermocouples attached in the interface between far end and 

liquid sample assures that the oscillations are completely died down and thus the 

approximation of semi-infinite medium holds true. It may be noted that spacing 

between the two thermocouples may be adjusted depending on the sample to get a 

semi-infinite medium. 

          The thermocouple at the 5 mm inside the specimen is used to collect the 

output response for the input response at one end of the sample. By evaluating 

amplitude or phase of the temperature oscillation at the two points, the thermal 

diffusivity can be determined. In the present experiment the amplitude ratio is 

considered to measure the thermal diffusivity. The preassigned data for the 

experiments are tabulated in Table-5.1. 

 
5.4 Data Reduction and Analysis  
          Different liquid samples such as, ethylene glycol, ethanol, glycerol and water 

are taken for the measurement of thermal diffusivity. The temperature oscillation 
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data directly recorded by the data acquisition system at two points (i.e., input and 

output) during experiment are analyzed by FFT to evaluate the fundamental 

amplitude or phase. Typical temperature responses of the two thermocouples and 

its corresponding FFT results are plotted in Figs. (5.8) to (5.11) for the four 

samples.  Test results are provided in Table-5.1. The results include measurements 

of spacing between thermocouples, x, periodic time, tp, and average mean 

temperature of oscillation. The spacing between two thermocouples has been 

calculated by a Vernier caliper and the time period has been estimated from the 

signal generator. The mean temperature of oscillation has been estimated from the 

D.C. components of FFT analysis, which has been explained below. Measurement 

data of each sample is presented in tabular form, Table-5.2 to 5.5. The steps of the 

calculation procedure for the evaluation of amplitude and phase values have been 

shown by sample calculations.  

          The FFT of any periodic signal gives complex quantities ( nC ; n = 0, 1, ….). 

Thus the complex quantity of first input temperature signal in ethylene glycol is, 

0C     =  32.97379;    000000                                                                 (5.2)                

    1C     = 0.666852;   0.245693                                                                (5.3)                

          The first coefficient with zero suffixes is the D.C. component. The second 

coefficient with suffix one consists of real and imaginary parts respectively. The 

Fourier coefficients a1 and b1 can be calculated from Equations (4.39) and (4.40) to 

give 

                  a1 = 1.333704    and        b1= -0.491386                                             (5.4) 

          By substituting the values of a1 and b1 in Equations (4.33) and  (4.34), the 

amplitude and phase are obtained as, 

         Amp.1 = A1  = [(1.333704) 2 +(-o.491386) 2] 0.5 = 1.4213                             (5.5) 

and    phase ( 1Φ ) = tan-1 (-o.491386/1.333704) = -0.357 radian                         (5.6) 

          In the similar way, input and output amplitudes are calculated for each cycle 

and every liquid samples. By taking the ratio of output to input amplitudes results 

amplitude ratio. Once the amplitude ratio (Amp.2/Amp.1) has been obtained. The 

thermal diffusivity ( α ) of the sample is calculated by using Eq. (4.20). By 

substituting the corresponding experimental values x = 5.5 mm, tp = 241s and 

amplitude ratio A = 0.1217 into Eq. (4.20) the thermal diffusivity is calculated to be, 
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                      α  = 8.8905 m2/s                                                                             (5.7) 

          The calculated results of input amplitude (Amp.1), output amplitude (Amp.2), 

amplitude ratio, and thermal diffusivity are tabulated in Table-5.2 to Table-5.5 for 

each sample. The mean value of amp.1 and amp.2 are given at the end of the 

table. Also mean and standard deviation of thermal diffusivity and amplitude ratio 

are calculated using Eq. (4.45). All these values are presented at the end of the 

table for each sample. 

 
 
Table 5.1: Preassigned data for the experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Liquid Sample Spacing between 
thermocouple (mm) 

Periodic time (s) Mean temperature 
of oscillation (0C) 

Ethylene glycol 5.5 241 32.6 

Ethanol 5.5 203 32.2 

Glycerol 4.4 203 32.9 

Water 5.5 204 35.8 
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Figure 5.8 Thermocouple response of ethylene glycol at two points for (a) 
input temperature oscillation and its FFT, (b) output temperature 
oscillation and its FFT, (c) FFT of input output signals. 
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Figure 5.9 Thermocouple response of ethanol at two points for (a) input 
temperature oscillation and its FFT, (b) output temperature 
oscillation and its FFT, (c) FFT of input output signals. 
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Figure 5.10 Thermocouple response in glycerol at two points for (a) input 
temperature oscillation and its FFT, (b) output temperature 
oscillation and its FFT, (c) FFT of input output signals. 
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Figure 5.11 Thermocouple response of water at two points for (a) input 

temperature oscillation and its FFT, (b) output temperature 
oscillation and its FFT, (c) FFT of input output signals. 

Time 

Time 

Time 

Te
m

pe
ra

tu
re

 [0 C
] 

Te
m

pe
ra

tu
re

 [0 C
] 

Te
m

pe
ra

tu
re

 [0 C
] 

(hrs:min:sec)

(hrs:min:sec)

(hrs:min:sec)



 93  

 

Table 5.2: Measurement data and the calculation of thermal diffusivity for 
ethylene glycol. 

 

 

Average Amp.1:     1.4416 

Average Amp.2:      0.1767 

Thermal diffusivity:  8.9515E-08 ± 0.0692E-08 m2/s. 

Amplitude ratio:       0.1226 ±  0.000996 

 

 

Table 5.3: Measurement data and the calculation of thermal diffusivity for 
ethanol. 

 
Sl. 
No. 

Amp.1 Amp.2 Amp.2/Amp.1 Diffusivity, 
E-08 m2/s 

1 0.9065 0.1089 0.1201 10.4244 
2 0.9246 0.0937 0.1013 08.9328 
3 0.9095 0.0997 0.1096 09.5787 
4 0.9393 0.0978 0.1041 09.1477 
5 0.9076 0.0937 0.1032 09.0794 

 
Average Amp.1:      0.9175 

Average Amp.2:      0.0988 

Thermal diffusivity:  9.4326E-08 ± 0.2702E-08 m2/s. 

Amplitude ratio:       0.1077 ±  0.003401 

Sl. 
No. 

Amp.1 Amp.2 Amp.2/Amp.1 Diffusivity, 
E-08 m2/s 

1 1.4213 0.1730 0.1217 8.8905 
2 1.4484 0.1780 0.1229 8.9722 
3 1.4463 0.1796 0.1242 9.0618 
4 1.4249 0.1798 0.1262 9.2026 
5 1.4273 0.1700 0.1191 8.7100 
6 1.4813 0.1799 0.1214 8.8716 
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Table 5.4: Measurement data and the calculation of thermal diffusivity for 
glycerol. 

 
Sl. 
No. 

Amp.1 Amp.2 Amp.2/Amp.1 Diffusivity, 
E-08 m2/s 

1 0.8737 0.1397 0.1599 08.9150 
2 0.8798 0.1514 0.1721 09.6749 
3 0.9705 0.1884 0.1941 11.1499 
4 0.9438 0.1992 0.2111 12.3811 
5 0.9040 0.1651 0.1826 10.3638 
6 0.9107 0.1638 0.1799 10.1799 

 
 
Average Amp.1:       0.9138 

Average Amp.2:       0.1679 

Thermal diffusivity: 10.4441E-08 ± 0.491812E-08 m2/s. 

Amplitude ratio:        0.1833 ±  0.007243 

 

Table 5.5: Measurement data and the calculation of thermal diffusivity for 
water. 

 
 

Sl. 
No. 

Amp.1 Amp.2 Amp.2/Amp.1 Diffusivity, 
E-08 m2/s 

1 1.0777 0.1715 0.1591 13.7897 
2 1.0845 0.1809 0.1668 14.5241 
3 1.0465 0.1881 0.1797 15.8159 
4 1.0916 0.1843 0.1688 14.7222 
5 1.0790 0.1786 0.1655 14.3998 
6 1.1075 0.1797 0.1623 14.0859 

 
Average Amp.1:        1.0811 

Average Amp.2:        0.1805 

Thermal diffusivity:  14.5562E-08 ± 0.285705E-08 m2/s. 

Amplitude ratio:         0.1670 ±  0.0029 
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5.5 Error Estimation 
          Uncertainty is an estimate of experimental error. The total uncertainty or the 

total error is the sum of the norms of bias error and precision error. A detail 

description of the theory of error analysis is given in Chapter 4.4. In this section, the 

error in measurement of thermal diffusivity has been estimated from the measured 

data for the four samples, tabulated in Table-5.1 to 5.5. The total uncertainty is 

given in Table-5.6. The calculation procedure for this total uncertainty is outlined by 

an example. The calculations on ethylene glycol serves as the example.  

          The precision error is attributed by three variable; distance, time period and 

amplitude ratio. For the same sample holder and same wave generator, the 

contributions of precision error due to these variables are zero. Thus precision error 

is controlled by the amplitude ratio alone. This error evaluated from Eq. (4.63) is, 

                 rS = 

5.02

e AlogA
A2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎛ δ
=

α
δα                                                                    (5.8) 

          The value of A is the average value of amplitude ratio (0.1226). The random 

error δA (0.000996) is calculated from Eq. (4.48). The precision limit in the result 

becomes 

               rS = 
5.02

e )1226.0(log1226.0
)000996.0(2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎞
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⎝

⎛
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                             = 0.77%                                                                                   (5.9) 

           This value is tabulated in Table-5.6 under the heading random limit for 

ethylene glycol. For the total number of readings, N = 6, the number of degrees of 

freedom ν  (= N -1) is 5. Using this value of ν , t-distribution table gives,  

                                       dt  = 2.571                                                                  (5.10) 

Thus the total contribution of precision error is rd St .  

          The contribution of bias errors are attributed due to measurement of spacing 

between two thermocouple, time period, and accuracy of thermocouple. The 

spacing between thermocouple is measured by Vernier caliper whose least count is 

0.1 mm. The period time of a cycle is measured in the scale of seconds, where the 

bias error contribution is 1 second. The thermocouples are K-type. As per 

manufacturing specification the error is 0.0077 at 2850C. Considering an average 
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value over the temperature range, the bias error of 0.01K is widely accepted. These 

values are tabulated in the Table-5.6. 

          Using Equations (4.63) and (4.64)    

           rB = 
5.02

e
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          It may be noted that in the Eq. (4.64) the percentage error in output and input 

temperatures refer to the percentage error in amp.1 and amp.2 respectively. Thus 

the bias limit of thermal diffusivity for ethylene glycol is obtained as, 

             rB = 
5.02
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                  = 6.55%                                                                                            (5.12) 

          The total uncertainty in thermal diffusivity with 95% coverage is determined 

from Eq. (4.59). Hence using the numerical values from Eqs. (5.9), (5.10) and 

(5.12), the total uncertainty is estimated as,  

         ( )[ ] 5.022
r )77.0()571.2()55.6(U +=  

         = 6.85%                                                                                               (5.13)  

          The total uncertainty of different liquid samples is tabulated in Table-5.6. The 

measured value of thermal diffusivity and reported literature value are tabulated in 

Table-5.7 for comparison.  

              % Deviation = 100 X
value standard

value) measured - value (standard                      (5.14) 

          Using the standard value and measured value of thermal diffusivity of 

ethylene glycol, the % deviation becomes 

           % Deviation = 100 X
8.95

8.95) - (9.56  = 6.38%                                            (5.15) 

          The calculated total uncertainty assessment is used for plotting the error bar 

in the measurement of thermal diffusivity. The figure for error bar is shown in Fig. 

(5.12). This figure shows that the reported standard values of thermal diffusivity are 

well within experimental uncertainty of the present experiment. 
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Table 5.6: Experimental uncertainty in thermal diffusivity measurement. 
 
 

Bias error Uncertainty in diffusivity  Liquid 
sample Spacing 

between 
thermo-
couples 
(mm) 
(δx) 

Periodic 
Time 
(s) 

(δtp) 

Temp. 
Amps. 

(K) 
(δTout), 
(δTin) 

Random 
error in 

amplitude 
ratio  

(δA/A) 
% 

Bias 
limit 
(Br)
% 

Random 
limit 
(Sr) 
% 

Total 
(Ur) 
% 

Ur = 
[Br

2+(tdSr)2]0.5 

 

Ethylene 
glycol 

0.1 1 0.01 
 

0.81 6.55 0.77 06.85 

Ethanol 
 

0.1 1 0.01 
 

3.16 9.85 2.83 12.61 

Glycerol 
 

0.1 1 0.01 3.95 8.48 4.66 14.67 

Water 
 

0.1 1 0.01 
 

1.74 7.27 1.94 08.82 

 
 
  
Table 5.7: Comparison of measured thermal diffusivity of liquid samples. 
 

 

Sample 
material 

Measured value of 
thermal diffusivity 

E-08 m2/s 

Reported value    
E-08 m2/s   

  

Deviation 
from 
[153] 

Ethylene 

 glycol 

8.95 ± 6.85%(32.60C) 

 

9.56(32.60C) Perry et al. [153] 

9.19(240C) Baladers et al. [116] 

6.38 % 

Ethanol 9.43 ± 12.61%(32.20C) 

 

8.59 (32.20C) Perry et al. [153] 

9.323 (200C) Czarnetzki et al. [8]  

8.35(23.50C) Sun et al. [110] 

9.77 % 

Glycerol 10.44 ± 14.67%(32.90C) 

 

 

 

9.42 (32.90C) Perry et al. [153]  

9.705(200C) Czarnetzki et al. [8] 

9.40(23.30C) Sun et al. [110] 

10.0(17.70C) Fontana et al. [146]  

10.82 % 

Water 14.55 ± 8.82%(35.80C) 14.96 (35.80C) Perry et al. [153] 

14.12 (200C) Czarnetzki et al. [8]  

14.23(240C) Baladers et al. [116] 

14.0(17.60C) Fontana et al. [146] 

2.74 % 
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Figure 5.12 Comparison between reported and present values of thermal 

diffusivity of liquid samples. 
 
5.6 Conclusions 
          The generation of sinusoidal temperature wave and accurate measurement 

of amplitude and phase shift have been a problem in the past. In earlier, the 

temperature oscillations are established by oscillating the heat flux by an electrical 

resistance heating. A disadvantage of the resistance heater is that the time average 

of the heat supplied during each cycle cannot be equal to zero. This leads to an 

increase in the mean temperature of the bar during each cycle, which precludes the 

measurements at the initially specified temperature. In comparison to this, the 
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Peltier element operated by modulated signal proves to be stable, reproducible, 

and easy to control. However, the amplification of such a low frequency oscillating 

signal for higher current rating (3A) is critical. 

          In the measurement of liquid samples, in the present experiment, the 

amplitude of the temperature wave falls off rapidly at a short distance from the 

heated end. This requires an adequate spacing of the thermocouple for the 

amplitude measurement of output signal. On the other hand very short spacing 

results an inaccurate measurement of phase shift. Thus an appropriate spacing has 

been adopted based on the Eq. (5.1) to measure amplitude of the temperature 

wave. Also it has been observed that thermal diffusivity is more sensitive to 

amplitude attenuation. Thus, the amplitude information is used to get the 

experimental results.   

          The random error associated to the four samples is small as compared to the 

bias error. This is one of the advantages of temperature oscillation method. During 

every period, the whole cycle of changes is repeated. This reduces the random 

error and increase the signal to noise ratio. 

          The Table-5.7, presents the reliability of such experiment by comparing the 

present result with other reported values in the literature. The comparison shows an 

excellent agreement, as it is evident from the Fig. (5.12). Thus the simplicity in 

experimental procedure based on a lucid theory of temperature oscillation, 

establishes an inexpensive measurement technique, which can lead to achieve 

reliable results. 

In general, the principle of temperature oscillation is restricted during first 

order phase change. For a class of limited specialized materials, the very 

temperature oscillation brings permanent changes in thermophysical properties of 

materials due to phase change. It is very common in 2nd order phase transitions 

such as super conductor to normal conductor, ferromagnetism to Para magnetism 

etc. for these types of materials the temperature oscillation has its own limitations. 

However for commonly used engineering materials, this limitation is not required.  
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Chapter 6 

 
 
 

Conclusions and Scope for Future Work 

         

  Over the years, a number of methods have been developed to measure 

thermal transport properties of many different materials. To keep up with the fast 

development of new materials and the increasing importance of accommodating 

new applications, accurate and reliability of experimental data are essential. Also 

the use of short measuring time and prediction of a set of thermophysical properties 

from a single experiment are some of the distinctive features of an efficient 

experimental procedure. The novel transient technique based on the temperature 

oscillation method has been adopted in the present work for the measurement of 

thermophysical properties. The temperature oscillation method is a pseudo-steady 

state oscillation where it combines the advantages of a steady state measurement 

with the potential to measure a property describing a non-steady state. Short 

measuring time and prediction of a set of thermophysical properties from a single 

experiment are the inheritant properties of temperature oscillation method. 

 
 
6.1 Conclusions  
          The thesis has been organized to give detailed conclusions for each aspect 

of the work in their respective chapters. Therefore, this section provides a brief 

summary of the work and the important conclusions. A detailed literature survey 
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has been conducted in Chapter 2 to summarize the different methods including the 

currently used methods for the determination of thermophysycal properties. 

          A generalized solution based on Laplace transform has been derived in 

chapter 3. For this case, sinusoidal temperature oscillation on both sides of finite 

sample with constant angular frequency, but with different amplitudes and phases 

are considered.  The general solution has been reduced to different boundary 

conditions available in the literature. Expressions of temperature distribution in a 

finite length of the sample for different possible practical situations have also been 

presented. To illustrate the settling time for transients to settle down, the expression 

for settling time has been derived and also been presented in graphical form. 

          The mathematical model on semi-infinite medium based on Laplace 

transform for the present experimental model has been presented in Chapter 4. 

This chapter includes the theory of error analysis and also for the sake of 

mathematical completeness, settling time has been derived. In the preceding 

chapter the experimental setup along with the experimental procedure have been 

described. The oscillating heat source based on Peltier element, excited by D.C. 

voltage modulated square wave signal, seems to be the novel method to determine 

the thermal diffusivity. The measurement of amplitude attenuation for the 

fundamental frequency is more effective for the determination of thermal diffusivity 

rather than the measurement of phase change. Due to the peculiar characteristics 

of liquid, four liquid samples ethylene glycol, ethanol, glycerol and water are 

selected to validate the experimental procedure. The result shows an excellent 

agreement with the reported values in literature. Due to the periodic nature of 

temperature oscillation method, the small contribution of random error leads to yield 

a low value of total uncertainty in measurement. Thus based on the lucid theory, 

the simplicity in experimental procedure establishes an inexpensive measurement 

technique. 

 
6.2 Scope for Future Work 

• The experimentation on semi-infinite medium can be extended to finite 

samples with the presence of oscillating heat sources at both the ends of the 

sample. 
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• Temperature oscillation technique can be extended to pressurized gases to 

measure their thermophysical properties. 

• Using the Infrared technique to measure the temperature, the present 

technique can be extended to measure the thermophysical properties of the 

samples more accurately. 

• In the hyperbolic heat conduction, the temperature oscillation method has 

the potential to measure the relaxation time. 
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