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Cryptography, defined as the science and study of secret writing concerns the 

ways in which communications and data can be encoded to prevent disclosure of their 

contents through eavesdropping or message interception, using codes, ciphers and other 

methods, so that only certain people can see the real message.  

 

Security often requires that data be kept safe from unauthorized access. And the 

best line of defense is physical security (placing the machine to be protected behind 

physical walls). However, physical security is not always an option, due to cost and/or 

efficiency considerations. Instead, most computers are interconnected with each other 

openly, thereby exposing them and the communication channels that they use. With 

regards to confidentiality, cryptography is used to encrypt data residing on storage 

devices or traveling through communication channels to ensure that any illegal access is 

not successful. Also, cryptography is used to secure the process of authenticating 

different parties attempting any function on the system. Since a party wishing be granted 

a certain functionality on the system must present something that proves that they indeed 

who they say they are. That something is sometimes known as credentials and additional 

measures must be taken to ensure that these credentials are only used by their rightful 

owner. The most classic and obvious credential are passwords. Passwords are encrypted 

to protect against illegal usage. 

 

Authorization is a layer built on top of authentication in the sense that the party is 

authenticated by presenting the credentials required (passwords, smart cards ... etc.). 

After the credentials are accepted the authorization process is started to ensure that the 

requesting party has the permissions to perform the functions needed. 

 

Data integrity and Non-Repudiation are achieved by means of digital signature, a 

method that includes performing cryptography among other things. 

 

Cryptography can essentially be classified into two types, the symmetric and 

asymmetric type. With a secret or symmetric key algorithm, the key is a shared secret 

between two communicating parties. Encryption and decryption both use the same key. 
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The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are 

examples of symmetric key algorithms. 

 

With a public key (PKA) or asymmetric key algorithm, a pair of keys is used. One 

of the keys, the private key, is kept secret and not shared with anyone. The other key, the 

public key, is not secret and can be shared with anyone. When data is encrypted by one of 

the keys, it can only be decrypted and recovered by using the other key. The two keys are 

mathematically related, but it is virtually impossible to derive the private key from the 

public key. The RSA algorithm is an example of a public key algorithm 

 

Our project includes the study of the symmetric and asymmetric system of 

cryptography using DES as an example of symmetric system and RSA as an example of 

asymmetric system. DES was implemented in C++ while RSA was implemented in 

MATLAB.  
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2.1 Introduction 

A number of mathematical concepts from number theory are essential in the design of 

cryptographic algorithms. This chapter provides an overview of the concepts along with 

the proofs of the theorems used in these algorithms. Random numbers play an important 

role in key generation for cryptographic algorithms. In this section, we also provide a 

brief overview of the use of random numbers and then look at some approaches to 

generating random numbers. 

 

2.2 Modular Arithmetic  

Modular arithmetic is a system of arithmetic for integers, where numbers wrap around 

after they reach a certain value - the modulus. Given any positive integer n and any 

nonnegative integer a, if we divide a by n, we get an integer quotient q and an integer 

remainder r that obey the following relationship: 

    

Where x is the largest integer less than or equal to x. . The remainder r is often referred 

to as a residue. If a is an integer and n is a positive integer, we define a mod n to be the 

remainder when a is divided by n. The integer n is called the modulus. Thus, for any 

integer a, we can always write: 

   hence  12 mod 7 = 5;   -12 mod 7 = 2 

Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n). This is 

written as a  b (mod n) , for example 73  4 (mod 23) 
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Properties of Modular Arithmetic for Integers  

Property Expression 

Commutative laws (w + x) mod n = (x + w) mod n  

(w x x) mod n = (x x w) mod n 

Associative laws [(w + x) + y] mod n = [w + (x + y)] mod n  

[(w x x) x y] mod n = [w x (x x y)] mod n 

Distributive laws [w + (x + y)] mod n = [(w x x) + (w x y)] mod n  

[w + (x x y)] mod n = [(w + x) x (w + y)] mod n 

Identities (0 + w) mod n = w mod n  

(1 + w) mod n = w mod n 

Additive inverse (-w) For each w   Zn, there exists a z such that w + z  0 mod n 

 

 

2.3  Euclidean Algorithm 

Euclidean algorithm is a simple procedure for determining the greatest common divisor 

of two positive integers. Nonzero b is defined to be a divisor of a if a = mb for some m, 

where a, b, and m are integers. We will use the notation gcd(a, b) to mean the greatest 

common divisor of a and b. The positive integer c is said to be the greatest common 

divisor of a and b if c is a divisor of a and of b and any divisor of a and b is a divisor of c. 

An equivalent definition is the following: gcd(a, b) = max[k, such that k|a and k|b] 

Because we require that the greatest common divisor be positive, gcd(a, b) = gcd(|a|, |b|). 

Also, because all nonzero integers divide 0, we have gcd(a, 0) = |a|.  

We stated that two integers a and b are relatively prime if their only common positive 

integer factor is 1. This is equivalent to saying that a and b are relatively prime if 

gcd(a,b)= 1.  

mk:@MSITStore:F:\Proj%20stuff\Crypto\crypt_books\Cryptography%20and%20Network%20Security%20(4th%20Edition%20Prentice%20Hall).chm::/0131873164/app03.html#gloss01_030
mk:@MSITStore:F:\Proj%20stuff\Crypto\crypt_books\Cryptography%20and%20Network%20Security%20(4th%20Edition%20Prentice%20Hall).chm::/0131873164/app03.html#gloss01_030
mk:@MSITStore:F:\Proj%20stuff\Crypto\crypt_books\Cryptography%20and%20Network%20Security%20(4th%20Edition%20Prentice%20Hall).chm::/0131873164/app03.html#gloss01_030
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The Euclidean algorithm is based on the following theorem: For any nonnegative integer 

a and any positive integer b,       gcd (a,b) = gcd(b, a mod b) 

2.4 Prime Numbers 

A central concern of number theory is the study of prime numbers. Indeed, whole books 

have been written on the subject. An integer p > 1 is a prime number if and only if its 

only divisors are ± 1 and ±p. Prime numbers play a critical role in number theory and in 

the cryptographic techniques discussed later.  

If P is the set of all prime numbers, then any positive integer a can be written uniquely in 

the following form: 

 

The right-hand side is the product over all possible prime numbers p; for any particular 

value of a, most of the exponents ap will be 0. 

It is easy to determine the greatest common divisor of two positive integers if we express 

each integer as the product of primes. 

Example: 

300 =  2
2
 x 3

1
 x 5

2
 

18 =  2
1
 x 3

2
 

gcd(18,300) =  2
1
 x 3

1
 x 5

0
 = 6 

For many cryptographic algorithms, it is necessary to select one or more very large prime 

numbers at random. Thus we are faced with the task of determining whether a given large 

number is prime. There is no simple yet efficient means of accomplishing this task.  

Miller-Rabin Algorithm yields a number that is not necessarily a prime. However, the 

algorithm can yield a number that is almost certainly a prime. It is based on the 

conclusion that if n is prime, then either the first element in the list of residues, or 
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remainders, (a
q
, a

2q
,..., a

2k-1q
, a

2kq
) modulo n equals 1, or some element in the list equals 

(n-1); otherwise n is composite (i.e., not a prime). On the other hand, if the condition is 

met, that does not necessarily mean that n is prime. For example, if n = 2047 = 23 x 89, 

then n-1 = 2 x 1023. Computing, 2
1023

 mod 2047 = 1, so that 2047 meets the condition 

but is not prime. 

2.5 Fermat’s And Euler’s Theorems 

Two theorems that play important roles in public-key cryptography are Fermat's theorem 

and Euler's theorem. Fermat's theorem states the following: If p is prime and a is a 

positive integer not divisible by p, then   

Before presenting Euler's theorem, we need to introduce an important quantity in number 

theory, referred to as Euler's totient function and written (n), defined as the number of 

positive integers less than n and relatively prime to n. By convention, (1) = 1. 

Example :   (37)=36 and  (35). = 24 

For a prime number p,  (p) = p-1 

Now suppose that we have two prime numbers p and q, with p not equal q. Then it can be 

show that for n = pq,  (n) =  (pq) =  (p) x  (q) = (p-1) x (q-1) 

Euler's theorem states that for every a and n that are relatively prime: 

 

Example :  

 

2.6 The Chinese Remainder Theorem 

In essence the Chinese remainder theorem (CRT) says it is possible to reconstruct 

integers in a certain range from their residues modulo a set of pair wise relatively prime 

moduli. 
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The integers 0 through 9 in Z10, can be reconstructed from their two residues modulo 2 

and 5 (the relatively prime factors of 10). Say the known residues of a decimal digit x 

mod 2 =0 and x mod 5 = 3. Therefore, x is an even integer in Z10 whose remainder, on 

division by 5, is 3. The unique solution is x = 8. 

One of the useful features of the Chinese remainder theorem is that it provides a way to 

manipulate (potentially very large) numbers mod M in terms of tuples of smaller 

numbers. This can be useful when M is 150 digits or more. However, note that it is 

necessary to know beforehand the factorization of M.  

 

 

2.7 Random Number Generation 

Traditionally, the concern in the generation of a sequence of allegedly random numbers 

has been that the sequence of numbers be random in some well-defined statistical sense. 

The following two criteria are used to validate that a sequence of numbers is random: 

 Uniform distribution: The distribution of numbers in the sequence should be 

uniform; that is, the frequency of occurrence of each of the numbers should be 

approximately the same. 

 Independence: No one value in the sequence can be inferred from the others. 

Cryptographic applications typically make use of algorithmic techniques for random 

number generation. These algorithms are deterministic and therefore produce sequences 

of numbers that are not statistically random. However, if the algorithm is good, the 

resulting sequences will pass many reasonable tests of randomness. Such numbers are 

referred to as pseudorandom numbers. For cryptographic applications, it makes some 

sense to take advantage of the encryption logic available to produce random numbers. A 

number of means have been used, namely Cyclic Encryption method, the DES Output 

Feedback Mode method and the ANSI X9.17 PRNG method. 
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3.1 Introduction 

Symmetric encryption is referred to as Conventional Encryption or single key encryption. 

It was the only type of encryption in use prior to the development of public-key 

encryption. Conventional encryption can further be divided into the categories of 

classical and modern techniques. The hallmark of the classical technique is that the cipher 

or the key to the algorithm is shared i.e. known by the parties involved in the secured 

communication. So there are two types of cryptography: secret key and public key 

cryptography .In secret key same key is used for both encryption and decryption. In 

public key cryptography each user has a public key and a private key. In this chapter a 

very view of conventional cryptography is presented. 

3.2 Classical Encryption Techniques 

We examine a variety of algorithms in use before the computer era, before we start 

discussing DES, the most widely used symmetric cipher algorithm. 

 

Conventional encryption model 

The basic structure of all the ciphers is same. A source produces a message in plaintext, 

X. For encryption, a key K is generated. If the key is generated at the message source, 

then it must also be provided to the destination. With the message X and the encryption 

key K as input, the encryption algorithm forms the cipher text Y = E(K, X). The intended 

receiver, in possession of the key, is able to invert the transformation: X = D(K, Y) to 

receive the transmitted message. 
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Caesar Cipher 

The Caesar cipher involves replacing each letter of the alphabet with the letter standing n 

places further down the alphabet. 

Monoalphabetic Ciphers 

Caesar cipher is far from secure. A dramatic increase in the key space can be achieved by 

allowing an arbitrary substitution. A single cipher alphabet (mapping from plain alphabet 

to cipher alphabet) is used per message. 

Playfair Cipher 

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in 

the plaintext as single units and translates these units into ciphertext digrams 

Hill Cipher
 

The encryption algorithm takes m successive plaintext letters and substitutes for them m 

ciphertext letters. The substitution is determined by m linear equations in which each 

character is assigned a numerical value (a = 0, b = 1 ... z = 25). For m = 3, the system can 

be described as follows: 

 

Or C = KP mod 26, where C and P are column vectors of length 3, representing the 

plaintext and cipher text, and K is a 3 x 3 matrix, representing the encryption key. 

C = E(K, P) = KP mod 26  for decryption we get P = D(K, P) = K
1
C mod 26 = K

1
KP = P 

where K
1
 is the matrix inverse of K. 

Polyalphabetic Ciphers 

A set of related monoalphabetic substitution rules is used. A key determines which 

particular rule is chosen for a given transformation. 
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One-Time Pad 

A random key that is as long as the message, so that the key need not be repeated. In 

addition, the key is to be used to encrypt and decrypt a single message, and then is 

discarded. Each new message requires a new key of the same length as the new message. 

Such a scheme, known as a one-time pad 

Transposition Techniques 

A very different kind of mapping is achieved by performing some sort of permutation on 

the plaintext letters, simplest such cipher is the rail fence technique, in which the 

plaintext is written down as a sequence of diagonals and then read off as a sequence of 

rows 

Rotor Machines 

Before the introduction of DES, the most important application of the principle of 

multiple stages of encryption was a class of systems known as rotor machines. The 

machine consists of a set of independently rotating cylinders through which electrical 

pulses can flow. Each cylinder has 26 input pins and 26 output pins, with internal wiring 

that connects each input pin to a unique output pin. 

Steganography 

The methods of steganography conceal the existence of the message. A simple form of 

steganography, is one in which an arrangement of words or letters within an apparently 

innocuous text spells out the real message. For example, the sequence of first letters of 

each word of the overall message spells out the hidden message 

3.3 Block Cipher Principles 

Most symmetric block encryption algorithms in current use are based on a structure 

referred to as a Feistel block cipher. A block cipher operates on a plaintext block of n bits 

to produce a ciphertext block of n bits. There are 2
n
 possible different plaintext blocks 

and, for the encryption to be reversible (i.e., for decryption to be possible), each must 
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produce a unique ciphertext block. Such a transformation is called reversible, or 

nonsingular. 

Feistel proposed that we can approximate the ideal block cipher by utilizing the concept 

of a product cipher, which is the execution of two or more simple ciphers in sequence in 

such a way that the final result or product is cryptographically stronger than any of the 

component ciphers. The essence of the approach is to develop a block cipher with a key 

length of k bits and a block length of n bits, allowing a total of 2
k
 possible 

transformations, rather than the 2
n
! Transformations available with the ideal block cipher. 

In particular, Feistel proposed the use of a cipher that alternates substitutions and 

permutations. In fact, this is a practical application of a proposal by Claude Shannon to 

develop a product cipher that alternates confusion and diffusion functions. 

 

The figure given alongside depicts the structure 

proposed by Feistel. They are a plaintext block of 

length 2w bits and a key K. The plaintext block is 

divided into two halves, L0 and R0. The two 

halves of the data pass through n rounds of 

processing and then combine to produce the 

ciphertext block. Each round i has as inputs Li-1 

and Ri-1, derived from the previous round, as well 

as a subkey Ki, derived from the overall K. In 

general, the subkeys Ki are different from K and 

from each other. All rounds have the same 

structure. A substitution is performed on the left 

half of the data. This is done by applying a round 

function F to the right half of the data and then 

taking the exclusive-OR of the output of that function and the left half of the data. The 

round function has the same general structure for each round but is parameterized by the 

round subkey Ki. Following this substitution, a permutation is performed that consists of 
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the interchange of the two halves of the data. The process of decryption with a Feistel 

cipher is essentially the same as the encryption process. The rule is as follows: Use the 

ciphertext as input to the algorithm, but use the subkeys Ki in reverse order. That is, use 

Kn in the first round, Kn-1 in the second round, and so on until K1 is used in the last round. 

This is a nice feature because it means we need not implement two different algorithms, 

one for encryption and one for decryption. 

3.4 The Data Encryption Standard 

The most widely used encryption scheme is based on the Data Encryption Standard 

(DES) adopted in 1977 by the National Bureau of Standards, now the National Institute 

of Standards and Technology (NIST), as Federal Information Processing Standard 46 

(FIPS PUB 46). The algorithm itself is referred to as the Data Encryption Algorithm 

(DEA). For DES, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm 

transforms 64-bit input in a series of steps into a 64-bit output. The same steps, with the 

same key, are used to reverse the encryption. 

 

 



 22 

The above shows the internal structure of a single round of DES. The left and right halves 

of each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) 

and R (right). As in any classic Feistel cipher, the overall processing at each round can be 

summarized in the following formulas:  

Li = Ri-1     

Ri = Li-1 x F(Ri-1, Ki) 

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 

bits by using a table that defines a permutation plus an expansion that involves 

duplication of 16 of the R bits. The resulting 48 bits are XORed with Ki. This 48-bit 

result passes through a substitution function that produces a 32-bit output, which is 

permuted as defined by a table. The role of the S-boxes in the function F is illustrated in 

the following figure. 

 

 The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input 

and produces 4 bits as output. These transformations are defined in a given table, which 

is interpreted as follows: The first and last bits of the input to box Si form a 2-bit binary 

number to select one of four substitutions defined by the four rows in the table for Si. The 
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middle four bits select one of the sixteen columns. The decimal value in the cell selected 

by the row and column is then converted to its 4-bit representation to produce the output.  

Key Generation 

Returning to earlier figure, we see that a 64-bit key is used as input to the algorithm. The 

bits of the key are numbered from 1 through 64; every eighth bit is ignored. The key is 

first subjected to a permutation governed by a table labeled Permuted Choice One. The 

resulting 56-bit key is then treated as two 28-bit quantities, labeled C0 and D0. At each 

round, Ci-1 and Di-1 are separately subjected to a circular left shift, or rotation, of 1 or 2 

bits, as governed by another table. These shifted values serve as input to the next round. 

They also serve as input to Permuted Choice Two, which produces a 48-bit output that 

serves as input to the function F(Ri-1, Ki). 

DES Decryption 

Decryption uses the same algorithm as encryption, except that the application of the 

subkeys is reversed. 

3.6 DES Design Criteria 

The criteria used in the design of DES, focused on the design of the S-boxes and on the P 

function that takes the output of the S boxes. The criteria for the S-boxes are as follows: 

 No output bit of any S-box should be too close a linear function of the input bits. 

Specifically, if we select any output bit and any subset of the six input bits, the 

fraction of inputs for which this output bit equals the XOR of these input bits should 

not be close to 0 or 1, but rather should be near 1/2. 

 Each row of an S-box (determined by a fixed value of the leftmost and rightmost 

input bits) should include all 16 possible output bit combinations. 

 If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least 

two bits. 

 If two inputs to an S-box differ in the two middle bits exactly, the outputs must 

differ in at least two bits. 
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 If two inputs to an S-box differ in their first two bits and are identical in their last 

two bits, the two outputs must not be the same. 

 For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of 

inputs exhibiting that difference may result in the same output difference. 

 This is a criterion similar to the previous one, but for the case of three S-boxes. 

The criteria for the permutation P are as follows: 

 The four output bits from each S-box at round i are distributed so that two of them 

affect (provide input for) "middle bits" of round (i + 1) and the other two affect end 

bits. The two middle bits of input to an S-box are not shared with adjacent S-boxes. 

The end bits are the two left-hand bits and the two right-hand bits, which are shared 

with adjacent S-boxes. 

 The four output bits from each S-box affect six different S-boxes on the next round, 

and no two affect the same S-box. 

 For two S-boxes j, k, if an output bit from Sj affects a middle bit of Sk on the next 

round, then an output bit from Sk cannot affect a middle bit of Sj. This implies that 

for j = k, an output bit from Sj must not affect a middle bit of Sj. 

Number of Rounds 

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even 

for a relatively weak F. In general, the criterion should be that the number of rounds is 

chosen so that known cryptanalytic efforts require greater effort than a simple brute-force 

key search attack.  

Design of Function F 

The heart of a Feistel block cipher is the function F, this function relies on the use 

of S-boxes. Function F provides the element of confusion in a Feistel cipher. Thus, 

it must be difficult to "unscramble" the substitution performed by F. One obvious 

criterion is that F be nonlinear. The more nonlinear F, the more difficult any type 

of cryptanalysis will be. We would like the algorithm to have good avalanche 
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properties, in general, this means that a change in one bit of the input should 

produce a change in many bits of the output. Another criterion is the bit independence 

criterion (BIC), which states that output bits j and k should change independently when 

any single input bit i is inverted, for all i, j, and k.  

S-Box Design 

One of the most intense areas of research in the field of symmetric block ciphers is that of 

S-box design. In essence, we would like any change to the input vector to an S-box to 

result in random-looking changes to the output. The relationship should be nonlinear and 

difficult to approximate with linear functions. One obvious characteristic of the S-box is 

its size. An n x m S-box has n input bits and m output bits. DES has 6 x 4 S-boxes.. 

Larger S-boxes, by and large, are more resistant to differential and linear cryptanalysis. 

On the other hand, the larger the dimension n, the (exponentially) larger the lookup table. 

Thus, for practical reasons, a limit of n equal to about 8 to 10 is usually imposed. Another 

practical consideration is that the larger the S-box, the more difficult it is to design it 

properly. All linear combinations of S-box columns should be bent. Bent functions are a 

special class of Boolean functions that are highly nonlinear according to certain 

mathematical criteria. For larger S-boxes, such as 8 x 32, the question arises as to the best 

method of selecting the S-box entries in order to meet the type of criteria we have been 

discussing. Nyberg, suggests the following approaches 

 Random: Use some pseudorandom number generation or some table of random 

digits to generate the entries in the S-boxes. This may lead to boxes with 

undesirable characteristics for small sizes (e.g., 6 x 4) but should be acceptable for 

large S-boxes (e.g., 8 x 32). 

 Random with testing: Choose S-box entries randomly, then test the results against 

various criteria, and throw away those that do not pass. 

 Human-made: This is a more or less manual approach with only simple 

mathematics to support it. This approach is difficult to carry through for large S-

boxes. 
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 Math-made: Generate S-boxes according to mathematical principles. By using 

mathematical construction, S-boxes can be constructed that offer proven security 

against linear and differential cryptanalysis, together with good diffusion. 

Key Schedule Algorithm 

A final area of block cipher design, and one that has received less attention than S-box 

design, is the key schedule algorithm. With any Feistel block cipher, the key is used to 

generate one subkey for each round. In general, we would like to select subkeys to 

maximize the difficulty of deducing individual subkeys and the difficulty of working 

back to the main key.  
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4.1 Introduction:  

Public-Key Algorithms are symmetric, that is to say the key that is used to encrypt the 

message is different from the key used to decrypt the message. The encryption key, 

known as the Public key is used to encrypt a message, but the message can only be 

decoded by the person that has the decryption key, known as the private key.  

 

This type of encryption has a number of advantages over traditional symmetric Ciphers. 

It means that the recipient can make their public key widely available- anyone wanting to 

send them a message uses the algorithm and the recipient's public key to do so. An 

eavesdropper may have both the algorithm and the public key, but will still not be able to 

decrypt the message. Only the recipient, with the private key can decrypt the message.  

 

Advantage of public-key algorithm is that they are more computationally intensive than 

symmetric algorithms, and therefore encryption and decryption take longer. This may not 

be significant for a short text message, but certainly is for bulk data encryption.  

 

4.2 The Basic Principle:  

In order to decrypt a message, Bob (the recipient) has to know the key. However, it may 

be difficult for Alice (the sender) to tell Bob what the key is. If they simply agree on a 

key bye-mail for example, Eve could be listening in on their e-mail conversation and thus 

also learn what the key is. Public key cryptography was invented to solve this problem.  

 

When using public-key cryptography, Alice and Bob both have their own key pairs. A 

key pair consists of a public key and a private-key. If the public-key is used to encrypt 

something, then it can be decrypted only using the private-key. And similarly, if the 

private-key is used to encrypt something, then it can be decrypted only using the public-

key. It is not possible to figure out what the private-key is given only the public-key, or 

vice versa. 

 

This makes it possible for Alice and Bob to simply send their public keys to one another, 

even if the channel they are using to do so is insecure. It is no problem that Eve now gets 

a copy of the public keys. If Alice wants to send a secret message to Bob, she encrypts 
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the message using Bob's public key. Bob then takes his private key to decrypt the 

message. Since Eve does not have a copy of Bob's private key, she cannot decrypt the 

message. Of course this means that Bob has to carefully guard his private key. With 

public key cryptography it is thus possible for two people who have never met to securely 

exchange messages. Figure below illustrates the public-key encryption process. 

 

 

 

 

4.3 Advantage and Disadvantage of Public-Key Cryptography Compared with 

Secret-Key Cryptography:  

1. The primary advantage of public-key cryptography is increased security and 

convenience. Private keys never need to transmitted or revealed to anyone. In a 

secret-key system, by contrast, the secret keys must be transmitted (either 

manually or through a communication channel), and there may be a chance that 

an enemy can discover the secret keys during their transmission.  
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2. Another major advantage of public-key systems is that they can provide a method 

for digital signatures. Authentication via secret-key systems requires the sharing 

of some secret and sometimes requires trust of a third party as well. As a result, a 

sender can repudiate a previously authenticated message by claiming that the 

shared secret was somehow compromised by one of the parties sharing the secret. 

For example, the Kerberos secret-key authentication system involves a central 

database that keeps copies of the secret keys of all users; an attack on the 

database would allow widespread forgery. Public-key authentication, on the other 

hand, prevents this type of repudiation; each user has sole responsibility for 

protecting his or her private key. This property of public-key authentication is 

often called non-repudiation.  

 

3. A disadvantage of using public-key cryptography for encryption is speed; there 

are popular secret-key encryption methods that are significantly faster than any 

currently available public-key encryption method. Nevertheless, public-key 

cryptography can be used with secret-key cryptography to get the best of both 

worlds. For encryption, the best solution is to combine public- and secret-key 

systems in order to get both the security advantages of public-key systems and 

the speed advantages of secret-key systems. The public-key system can be used 

to encrypt a secret key, which is used to encrypt the bulk of a file or message. 

Such a protocol is called a digital envelope.  

 

4. Public-key cryptography may be vulnerable to impersonation, however, even if 

users' private keys are not available. A successful attack on a certification 

authority will allow an adversary to impersonate whomever the adversary 

chooses to by using a public-key certificate from the compromised authority to 

bind a key of the adversary's choice to the name of another user.  

 

5. In some situations, public-key cryptography is not necessary and secret-key 

cryptography alone is sufficient. This includes environments where secure secret 

key agreement can take place, for example by users meeting in private. It also 

includes environments where a single authority knows and manages all the keys 
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(e.g., a closed banking system) Since the authority knows everyone's keys 

already, there is not much advantage for some to be "public" and others "private" 

Also, public-key cryptography is usually not necessary in a single-user 

environment. For example, if you want to keep your personal files encrypted, you 

can do so with any secret-key encryption algorithm using, say, your personal 

password as the secret key. In general, public-key cryptography is best suited for 

an open multi-user environment.  

 

6. Public-key cryptography is not meant to replace secret-key cryptography, but 

rather to supplement it, to make it more secure. The first use of public-key 

techniques was for secure key exchange in an otherwise secret-key system; this is 

still one of its primary functions. Secret-key cryptography remains extremely 

important and is the subject of ongoing study and research. Some secret-key 

cryptosystems are discussed in the sections on Block Cipher and Stream Cipher.  

 

 

4.4 The RSA Algorithm:  

 

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. Adleman, 

is the most widely used public key Cryptosystem. It may be used to provide both secrecy 

and digital signatures and its security is based on the intractability of the integer 

factorization. The RSA scheme is a block cipher in which the plaintext and ciphertext are 

integers between 0 and n 1 for some n. A typical size for n is 1024 bits, or 309 decimal 

digits. That is, n is less than 2
1024

. 

 

Description of the Algorithm 

The scheme makes use of an expression with exponentials. Plaintext is encrypted in 

blocks, with each block having a binary value less than some number n. That is, the block 

size must be less than or equal to log2(n); in practice, the block size is i bits, where 2
i
 < n 

<2
i+1

. Encryption and decryption are of the following form, for some plaintext block M 

and ciphertext block C: 
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C = M
e
 mod n 

M = C
d
 mod n = (M

e
)

d
 mod n = M

ed
 mod n 

Both sender and receiver must know the value of n. The sender knows the value of e, and 

only the receiver knows the value of d. Thus, this is a public-key encryption algorithm 

with a public key of PU = {e, n} and a private key of PU = {d, n}. For this algorithm to 

be satisfactory for public-key encryption, the following requirements must be met: 

1. It is possible to find values of e, d, n such that M
ed

 mod n = M for all M < n. 

2. It is relatively easy to calculate mod M
e
 mod n and C

d
 for all values of M < n. 

3. It is infeasible to determine d given e and n. 

We need to find a relationship of the form M
ed

 mod n = M 

The preceding relationship holds if e and d are multiplicative inverses modulo (n), 

where  (n) is the Euler totient function. For p, q prime, (pq) = (p-1)(q-1) The 

relationship between e and d can be expressed as 

 

This is equivalent to saying 

ed 1 mod  (n)          and       d e
1
 mod  (n) 

That is, e and d are multiplicative inverses mod  (n).According to the rules of modular 

arithmetic, this is true only if d (and therefore e) is relatively prime to  (n). Equivalently, 

gcd(  (n),d) = 1 
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Exponentiation in Modular Arithmetic 

Both encryption and decryption in RSA involve raising an integer to an integer power, 

mod n. If the exponentiation is done over the integers and then reduced modulo n, the 

intermediate values would be gargantuan, we can make use of a property of modular 

arithmetic: 

[(a mod n) x (b mod n)] mod n = (a x b) mod n 

Thus, we can reduce intermediate results modulo n. This makes the calculation practical. 

Another consideration is the efficiency of exponentiation, because with RSA we are 

dealing with potentially large exponents. To see how efficiency might be increased, 
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consider that we wish to compute x
16

. A straightforward approach requires 15 

multiplications: 

However, we can achieve the same final result with only four multiplications if we 

repeatedly take the square of each partial result, successively forming x
2
, x

4
, x

8
, x

16
. As 

another example, suppose we wish to calculate x
11

 mod n for some integers x and n. 

Observe that x
11

 = x
1+2+8

 = (x)(x
2
)(x

8
). In this case we compute x mod n, x

2
 mod n, x

4
 

mod n, and x
8
 mod n and then calculate [(x mod n) x (x

2
 mod n) x (x

8
 mod n) mod n 

Efficient Operation Using the Public Key 

To speed up the operation of the RSA algorithm using the public key, a specific choice of 

e is usually made. The most common choice is 65537 (2
16

 1); two other popular choices 

are 3 and 17. Each of these choices has only two 1 bits and so the number of 

multiplications required to perform exponentiation is minimized. 

However, with a very small public key, such as e = 3, RSA becomes vulnerable to a 

simple attack. It is required that during key generation the user selects a value of e that is 

relatively prime to  (n). Thus, for example, if a user has preselected e = 65537 and then 

generated primes p and q, it may turn out that gcd(  (n),e)  1, Thus, the user must 

reject any value of p or q that is not congruent to 1 (mod 65537). 

Key Generation 

Before the application of the public-key cryptosystem, each participant must generate a 

pair of keys. This involves the following tasks: 

 Determining two prime numbers, p and q 

 Selecting either e or d and calculating the other 

First, consider the selection of p and q. Because the value of n = pq will be known to any 

potential adversary, to prevent the discovery of p and q by exhaustive methods, these 

primes must be chosen from a sufficiently large set (i.e., p and q must be large numbers). 

On the other hand, the method used for finding large primes must be reasonably efficient. 
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In summary, the procedure for picking a prime number is as follows. 

 Pick an odd integer n at random (e.g., using a pseudorandom number generator). 

 Pick an integer a < n at random. 

 Perform the probabilistic primality test, such as Miller-Rabin, with a as a 

parameter. If n fails the test, reject the value n and go to step 1. 

 If n has passed a sufficient number of tests, accept n; otherwise, go to step 2. 

This is a somewhat tedious procedure. However, remember that this process is performed 

relatively infrequently: only when a new pair (PU, PR) is needed. 

Having determined prime numbers p and q, the process of key generation is completed by 

selecting a value of e and calculating d or, alternatively, selecting a value of d and 

calculating e. Assuming the former, then we need to select an e such that gcd(  (n), e) = 1 

and then calculate d e
1
(mod  (n)). Fortunately, there is a single algorithm that will, at 

the same time, calculate the greatest common divisor of two integers and, if the gcd is 1, 

determine the inverse of one of the integers modulo the other. The algorithm is  referred 

to as the extended Euclid's algorithm Thus, the procedure is to generate a series of 

random numbers, testing each against (n) until a number relatively prime to (n) is 

found.  
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IMPLEMENTATION RESULTS 
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5.1 DES implementation in C++ 

 

 

 

 

 

Sample Input: 

MESSAGE STRING: 3578456 

Sample Output: 

ENCRYPTED TEXT:  n[º∞DO?î 

DECRYPTED TEXT: 3578456 
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5.2 RSA Implementation in MATLAB 

  

 

 

 

Sample Input: 

MESSAGE STRING: 3578456 

Sample Output: 

ENCRYPTED TEXT:  

661158563262329883532246275541663642484052302643233367609541125901381631

069896866825909248772323539167776373328927570186671687141740560620156781

350655173505128544460826199973767187342513413599258607022016921428012442

701974470570649450979274900523901664537086266094485628438393044081266464

59691999953052623390 

DECRYPTED TEXT: 3578456 
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