
APPLICATION OF
DIGITAL SIGNAL PROCESSING

ON
TMS320C6713 DSK

A PROJECT REPORT
Submitted in partial fulfillment of the requirements for the award of the degree

Of

BACHELOR OF TECHNOLOGY
IN

ELECTRONICS AND INSTRUMENTATION ENGINEERING

by

MANAS MURMU (10407030)

Department of Electronics and Communication Engineering
National Institute Of Technology, Rourkela

Pin-769008, Orissa, INDIA
2007 – 2008

APPLICATION OF
DIGITAL SIGNAL PROCESSING

ON
TMS320C6713 DSK

A PROJECT REPORT
Submitted in partial fulfillment of the requirements for the award of the degree

Of

BACHELOR OF TECHNOLOGY
IN

ELECTRONICS AND INSTRUMENTATION ENGINEERING

by

MANAS MURMU (10407030)

Under the guidance of
Dr.S.K.PATRA

Department of Electronics and Communication Engineering
National Institute Of Technology, Rourkela

Pin-769008, Orissa, INDIA
2007 – 2008

National Institute of Technology
Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Application of digital signal processing on

TMS320C6713 DSK” submitted by Sri Manas Murmu in partial fulfillments for the

requirements for the award of Bachelor of Technology Degree in Electronics & Instrumentation

Engineering at National Institute of Technology, Rourkela (Deemed University) is an authentic

work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University / Institute for the award of any Degree or Diploma.

Date: Prof. S. K. PATRA

 Dept. of Electronics & Communication Engg
National Institute of Technology

 Rourkela - 769008

i

ACKNOWLEDGEMENT

We place on record and warmly acknowledge the continuous encouragement, invaluable

supervision, timely suggestions and inspired guidance offered by our guide Prof. S.K.Patra,

Professor, Department of Electronics and Communication Engineering, National Institute of

Technology, Rourkela, in bringing this report to a successful completion.

We are grateful to Prof. G.Panda, Head of the Department of Electronics and Communication

Engineering, for permitting us to make use of the facilities available in the department to carry

out the project successfully. Last but not the least we express our sincere thanks to all of our

friends who have patiently extended all sorts of help for accomplishing this undertaking.

Finally we extend our gratefulness to one and all who are directly or indirectly involved in the

successful completion of this project work.

.

 Manas Murmu
 (10407030)

ii

ABSTRACT

Signal processing concepts are often presented in a very mathematical and abstract format. This

can discourage students from further exploration because of the apparent irrelevance to real

world problems. A common solution is to provide a hands-on laboratory to illustrate applications

of abstract concepts. However, hardware-based digital signal processing (DSP) laboratories –

which are typically incorporated into senior-level signal processing courses – usually emphasize

programming the DSP chip rather than exploring algorithms and applications.

This paper is an report on the familiarization process of the TMS320C6713 and the

implementation of digital signal processing projects. The Texas Instruments C6713 DSK

platform, which can be programmed using SIMULINK (The Mathworks, Inc.). This gives us

added advantage of easily writing codes on MATLAB and implementing it on the DSP

processors.

iii

TABLE OF CONTENTS

Acknowledgements i

Abstract ii

Table of Contents iii

List of Figures and Tables v

Chapter 1: Introduction 1

1.1 Introduction 2

1.2 History, Development, and Advantages of TMS320 DSPs 3

1.3 Difference between DSPs and other Microprocessors 3

1.4 Important feature of DSP’s 4

1.5 Typical Applications for the TMS320 Family 7

Chapter 2: TMS320C6713 DSK 8

2.1 Introduction 9

2.2 Diagrams of TMS320C6713 DSK 9

2.3 Features 10

2.4 Functional Overview 11

2.5 Architecture 11

2.6 Peripherals of TMS320C6713 15

Chapter 3: Programming the TMS320C6713 21

3.1 Introduction 22

3.2 Power On Self Test (POST) 22

3.3 Code Composer Studio 23

3.4 Steps involved in programming 26

3.5 Matlab Simulink Modelling 30

3.6 Problems faced during the implementation of Chassaing/kehtarnavaz 31
 examples

iv

Chapter 4: Programming the TMS320C6713 33

4.1.Sinegraph 34

4.2.Create a project in CCS 37

4.3.Building and running of project 37

Chapter 5: Conclusion 40

References 42

v

List of Figures and Tables

Figure 1.4 DSP ‘s architecture

Figure 2.2.1 Block Diagram of TMS320C6713 DSK

Figure 2.2.2 Board Diagram of TMS320C6713 DSK

Figure 2.5.1 Simplified block diagram of TMS320C67xx family

Figure 2.5.1.1 TMS320C67X data path

Table 2.5.3.1: Functional Units and Descriptions

Figure 3.1. Simplified Code Composer Studio IDE Development Flow

Figure 3.1. Diagnostic Utility Check

Figure 3.4.1. Connecting C6713 DSK

Figure 3.4.2.1 Code composer Studio

Figure 3.4.2.2 After including all necessary files

Figure 3.4.3.1 Compiler Comments

Figure 3.3.4.1 Load Program.

Figure 3.4.4.2 Program running.

Fig 3.5.1 Dissection of model system in matlab coding

Fig 3.5.2 Steps in the modeling of a system using simulink

Figure 4.3.1 Time domain graph property dialog

Figure 4.3.2 Frequency domain graph property dialog

1

 Chapter 1

INTRODUCTION

2

1.1. Introduction

Digital signal processing is one of the core technologies, in rapidly growing application

areas, such as wireless communications, audio and video processing and industrial control. The

number and variety of products that include some form of digital signal processing has grown

dramatically over the last few years. DSP has become a key component, in many of the

consumer, communications, medical and industrial products which implement the signal

processing using microprocessors, Field Programmable Gate Arrays (FPGAs), Custom ICs etc.

Due to increasing popularity of the above mentioned applications, the variety of the DSP-capable

processors has expanded greatly. DSPs are processors or microcomputers whose hardware,

software, and instruction sets are optimized for high-speed numeric processing applications, an

essential for processing digital data, representing analog signals in real time. The DSP processors

have gained increased popularity because of the various advantages like reprogram ability in the

field, cost-effectiveness, speed, energy efficiency etc.

Digital signal processors such as the TMS320C6x (C6x) family of processors are like fast

special-purpose microprocessors with a specialized type of architecture and an instruction set

appropriate for signal processing. The C6x notation is used to designate a member of Texas

Instruments’ (TI) TMS320C6000 family of digital signal processors. The architecture of the C6x

digital signal processor is very well suited for numerically intensive calculations. Based on a

very-long-instruction-word (VLIW) architecture, the C6x is considered to be TI’s most powerful

processor. Digital signal processors are used for a wide range of applications, from

ommunications and controls to speech and image processing. The general-purpose digital signal

processor is dominated by applications in communications (cellular). Applications embedded

digital signal processors are dominated by consumer products. They are found in cellular phones,

fax/modems, disk drives, radio, printers, hearing aids, MP3 players, high-definition television

(HDTV), digital cameras, and so on. These processors have become the products of choice for a

number of consumer applications, since they have become very cost-effective.They can handle

different tasks, since they can be reprogrammed readily for a different application.

3

DSP techniques have been very successful because of the development of low-cost

software and hardware support. For example, modems and speech recognition can be less

expensive using DSP techniques. DSP processors are concerned primarily with real-time signal

processing. Realtime processing requires the processing to keep pace with some external event,

whereas non-real-time processing has no such timing constraint.The external event to keep pace

with is usually the analog input.Whereas analog-based systems with discrete electronic

components such as resistors can be more sensitive to temperature changes, DSP-based systems

are less affected by environmental conditions. DSP processors enjoy the advantages of

microprocessors. They are easy to use, flexible, and economical.

1.2. History, Development, and Advantages of TMS320 DSPs

Advantages of DSP’s over Analog Circuits

• Can implement complex linear or nonlinear algorithms.

• Can modify easily by changing software.

• Reduced parts count makes fabrication easier.

• High reliability

1.3. Difference between DSPs and Other Microprocessors

Over the past few years it is seen that general purpose computers are capable of performing

two major tasks.

(1) Data Manipulation, and

(2) Mathematical Calculations

All the microprocessors are capable of doing these tasks but it is difficult to make a

device which can perform both the functions optimally, because of the involved technical trade

offs like the size of the instruction set, how interrupts are handled etc. As a broad generalization

these factors have made traditional microprocessors such as Pentium Series, primarily directed

at data manipulation. Similarly DSPs are designed to perform the mathematical calculations

needed in Digital Signal Processing,

4

Data manipulation involves storing and sorting of information. For instance, a word processing

program does a basic task of storing, organizing and retrieving of the information. This is

achieved by moving data from one location to another and testing for inequalities (A=B, A<B

etc.). While mathematics is occasionally used in this type of application, it is infrequent and does

not significantly affect the overall execution speed. In comparison to this, the execution speed of

most of the DSP algorithms is limited almost completely by the number of multiplications and

additions required.

In addition to performing mathematical calculations very rapidly, DSPs must also have a

predictable execution time, [1]. Most DSPs are used in applications where the processing is

continuous, not having a defined start or end. The cost, power consumption, design difficulty etc

increase along with the execution speed, which makes an accurate knowledge of the execution

time, critical for selecting proper device, as well as algorithms that can be applied. DSPs can also

perform the tasks in parallel instead of serial in case of traditional microprocessors.

1.4. Important feature of DSP’s

As the DSP processors are designed and optimized for implementation of various DSP algorithms,
most processors share various common features to support the high performance, repetitive,
numeric intensive tasks.

5

1.4.1 MACs and Multiple Execution Units

The most commonly known and used feature of a DSP processor is the ability to perform one or

more multiply-accumulate operation (also called as “MACs”) in a single instruction cycle. The

MAC operation is useful in DSP algorithms that involve computing a vector dot product, such as

digital filters, correlation, and Fourier transforms. The MAC operation becomes useful as the

DSP applications typically have very high computational requirements in comparison to other

types of computing tasks, since they often must execute DSP algorithms (such as FIR filtering)

in real time on lengthy segments of signals sampled at 10-100 KHz or higher. To facilitate this

DSP processors often include several independent execution units that are capable of operating

in parallel.

1.4.2 Efficient Memory Access

DSP processors also share a feature of efficient memory access i.e. the ability to complete

several accesses to memory in a single instruction cycle. Due to Harvard architecture in DSPs,

i.e. physically separate storage and signal pathways for instructions and data, and pipelined

structure the processor is able to fetch an instruction while simultaneously fetching operands

and/or storing the result of previous instruction to memory. In some recently available DSPs a

further optimization is done by including a small bank of RAM near the processor core, often

termed as L1 memory, which is used as an instruction cache. When a small group of instructions

is executed repeatedly, the cache is loaded with these instructions thus making the bus available

for data fetches, instead of instruction fetches.

1.4.3 Circular Buffering

The need of processing the digital signals in real time, where in the output (processed samples)

have to be produced at the same time at which the input samples are being acquired, evolves the

concept of Circular Buffering. For instance this is needed in telephone communication, hearing

aids, radars etc. Circular buffers are used to store the most recent values of a continually updated

signal. Circular buffering allows processors to access a block of data sequentially and then

automatically wrap around to the beginning address exactly the pattern used to access

6

coefficients in FIR filter. Circular buffering also very helpful in implementing first-in, first-out

buffers, commonly used for I/O and for FIR delay lines

1.4.4 Dedicated Address Generation Unit

The dedicated address generation units also help speed up the performance of the

arithmetic processing on DSP. Once an appropriate addressing registers have been configured,

the address generation unit operates in the background. (i.e. without using the main data path of

the processor). The address required for operand access is now formed by the address generation

unit in parallel with the execution of the arithmetic instruction. DSP processor address generation

units typically support a selection of addressing modes tailored to DSP applications. The most

common of these is register-indirect addressing with post-increment, which is used in situations

where a repetitive computation is performed on data stored sequentially in memory. Some

processors also support bit-reversed addressing, which increases the speed of certain fast Fourier

transform (FFT) algorithms.

1.4.5 Specialized Instruction Sets

The instruction sets of the digital signal processors are designed to make maximum use of

the processors’ resources and at the same time minimize the memory space required to store the

instructions. Maximum utilization of the DSPs’ resources ensures the maximum efficiency and

minimizing the storage space ensures the cost effectiveness of the overall system.

To ensure the maximum use of the underlying hardware of the DSP, the instructions are designed

to perform several parallel operations in a single instruction, typically including fetching of data

in parallel with main arithmetic operation. For achieving minimum storage requirements the

DSPs’ instructions are kept short by restricting which register can be used with which operations

and which operations can be combined in an instruction.

Some of the latest processors use VLIW (very long instruction word) architectures, where in

multiple instructions are issued and executed per cycle. The instructions in such architectures are

short and designed to perform much less work compared to those of conventional DSPs thus

requiring less memory and increased speed because of the VLIW architecture.

7

1.5. Typical Applications for the TMS320 Family

8

 Chapter 2

TMS320C6713 DSK

9

2.1. Introduction

The TMS320C6x are the first processors to use velociTI architecture, having implemented the

VLIW architecture. The TMS320C62x is a 16-bit fixed point processor and the ‘67x is a floating

point processor, with 32-bit integer support. The discussion in this chapter is focused on the

TMS320C67x processor. The architecture and peripherals associated with this processor are also

discussed.

The C6713 DSK is a low-cost standalone development platform that enables users to evaluate

and develop applications for the TI C67xx DSP family. The DSK also serves as a hardware

reference design for the TMS320C6713 DSP. Schematics, logic equations and application notes

are available to ease hardware development and reduce time to market.

2.2. Diagrams of TMS320C6713 DSK

Fig 2.2.1 Block diagram of TMS320C6713 DSK

10

Fig 2.2.2 Board diagram of TMS320C6713 DSK

2.3. Features

The DSK comes with a full compliment of on-board devices that suit a wide variety of

application environments. Key features include:

• A Texas Instruments TMS320C6713 DSP operating at 225 MHz.

• An AIC23 stereo codec

• 16 Mbytes of synchronous DRAM

• 512 Kbytes of non-volatile Flash memory (256 Kbytes usable in default

• configuration)

• 4 user accessible LEDs and DIP switches

• Software board configuration through registers implemented in CPLD

• Configurable boot options

• Standard expansion connectors for daughter card use

• JTAG emulation through on-board JTAG emulator with USB host

• interface or external emulator

• Single voltage power supply (+5V)

11

2.4. Functional Overview

The DSP on the 6713 DSK interfaces to on-board peripherals through a 32-bit wide EMIF

(External Memory InterFace). The SDRAM, Flash and CPLD are all connected to the bus. EMIF

signals are also connected daughter card expansion connectors which are used for third party

add-in boards.

The DSP interfaces to analog audio signals through an on-board AIC23 codec and four 3.5 mm

audio jacks (microphone input, line input, line output, and headphone output). The codec can

select the microphone or the line input as the active input. The analog output is driven to both the

line out (fixed gain) and headphone (adjustable gain) connectors. McBSP0 is used to send

commands to the codec control interface while McBSP1 is used for digital audio data. McBSP0

and McBSP1 can be re-routed to the expansion connectors in software.

A programmable logic device called a CPLD is used to implement glue logic that ties the board

components together. The CPLD has a register based user interface that lets the user configure

the board by reading and writing to its registers.

The DSK includes 4 LEDs and a 4 position DIP switch as a simple way to provide the user with

interactive feedback. Both are accessed by reading and writing to the CPLD registers.

An included 5V external power supply is used to power the board. On-board switching voltage

regulators provide the +1.26V DSP core voltage and +3.3V I/O supplies. The board is held in

reset until these supplies are within operating specifications.

Code Composer communicates with the DSK through an embedded JTAG emulator

with a USB host interface. The DSK can also be used with an external emulator

through the external JTAG connector.

2.5. Architecture

The simplified architecture of TMS320C6713 is shown in the Figure 3.1 below. The

processor consists of three main parts: CPU, peripherals and memory.

12

Figure 2.5.1: Simplified block diagram of TMS320C67xx family

2.5.1. Central Processing Unit

The CPU contains program fetch unit, Instruction dispatch unit, instruction decode unit.

The CPU fetches advanced very-long instruction words (VLIW) (256 bits wide) to supply up to

eight 32-bit instructions to the eight functional units during every clock cycle. The VLIW

architecture features controls by which all eight units do not have to be supplied with instructions

if they are not ready to execute. The first bit of every 32-bit instruction determines if the next

instruction belongs to the same execute packet as the previous instruction, or whether it should

be executed in the following clock as a part of the next execute packet. Fetch packets are always

256 bits wide; however, the execute packets can vary in size. The variable-length execute

packets are a key memory-saving feature, distinguishing the C67x CPU from other VLIW

architectures. The CPU also contains two data paths (Containing registers A and B respectively)

in which the processing takes place. Each data path has four functional units (.L, .M, .S and .D).

13

The functional units execute logic, multiply, shifting and data address operation. Figure 2.2

shows the simplified block diagram of the two data paths.

Figure 2.5.1.1: TMS320C67X data path

All instructions except loads and stores operate on the register. All data transfers between the

register files and memory take place only through two data-addressing units (.D1 and .D2). The

CPU also has various control registers, control logic and test, emulation and logic. Access to

control registers is provided from data path B.

2.5.2. General Purpose Register Files

The CPU contains two general purpose register files A and B. These can be used for data

or as data address pointers. Each file contains sixteen 32-bit registers (A0-A15 for file A and B0-

B15 for file B). The registers A1, A2, B0, B1, B2 can also be used as condition registers. The

registers A4-A7 and B4-B7 can be used for circular addressing.

These registers provide 32-bit and 40-bit fixed-point data. The 32-bit data can be stored in any

register. For 40-bit data, processor stores least significant 32 bits in an even register and

remaining 8 bits in upper (odd) register.

14

2.5.3. Functional Units

The CPU features two sets of functional units. Each set contains four units and a register

file. One set contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2,

.M2, .S2, and .L2. The two register files each contain sixteen 32-bit registers for a total of 32

general-purpose registers. The two sets of functional units, along with two register files, compose

sides A and B of the CPU. Each functional unit has two 32-bit read ports for source operands and

one 32-bit write port into a general purpose register file. The functional units . L1, .S1, .M1, and

.D1 write to register file A and the functional units .L2, .S2, .M2, and .D2 write to register file B.

As each unit has its own 32-bit write port, all eight ports can be used in parallel in every cycle.

The .L, .S, and .M functional units are ALUs. They perform 32-bit/40-bit arithmetic and logical

operations. .S unit also performs branching operations and .D units perform linear and circular

address calculations. Only .S2 unit performs accesses to control register file.

Table 2.1 describes the functional unit along with its description.

Table 2.5.3.1: Functional Units and Descriptions

15

2.5.4. Memory System

The memory system of the TMS320C671x series processor implements a modified

Harvard architecture, providing separate address spaces for instruction and data memory.

The processor uses a two-level cache-based architecture and has a powerful and diverse set of

peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1

data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2)

consists of a 256K-byte memory space that is shared between program and data space. 64K bytes

of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations

of the two. The remaining 192K bytes in L2 serve as mapped SRAM.

2.6. Peripherals of TMS320C6713

The TMS320C67x devices contain peripherals for communication with off-chip memory,

co-processors, host processors and serial devices. The following subsections discuss the

peripherals of ‘C6713 processor.

2.6.1 Enhanced DMA

The enhanced direct memory access (EDMA) controller transfers data between regions in

the memory map without interference by the CPU. The EDMA provides transfers of data to and

from internal memory, internal peripherals, or external devices in the background of CPU

operation. The EDMA has sixteen independently programmable channels allowing sixteen

different contexts for operation.

The EDMA can read or write data element from source or destination location respectively in

memory. EDMA also provides combined transfers of data elements such as frame transfer and

block transfer. Each EDMA channel has an independently programmable number of data

elements per frame and number of frames per block.

The EDMA has following features:

• Background operation: The DMA operates independently of the CPU.

• High throughput: Elements can be transferred at the CPU clock rate.

• Sixteen channels: The EDMA can keep track of the contexts of sixteen independent

transfers.

16

• Split operation: A single channel may be used simultaneously to perform both receive

and transmit element transfers to or from two peripherals and memory.

• Programmable priority: Each channel has independently programmable priorities versus

the CPU.

• Each channel’s source and destination address registers can have configurable indexes for

each read and write transfer. The address may remain constant, increment, decrement, or

be adjusted by a programmable value.

• Programmable-width transfers: Each channel can be independently configured to transfer

bytes, 16-bit half words, or 32-bit words.

• Authentication: Once a block transfer is complete, an EDMA channel may automatically

reinitialize itself for the next block transfer.

• Linking: Each EDMA channel can be linked to a subsequent transfer to perform after

completion.

• Event synchronization: Each channel is initiated by a specific event. Transfers may be

either synchronized by element or by frame.

2.6.2 Host Port Interface

The Host-Port Interface (HPI) is a 16-bit wide parallel port through which a host processor

can directly access the CPUs memory space. The host device functions as a master to the

interface, which increases ease of access. The host and CPU can exchange information via

internal or external memory. The host also has direct access to memory-mapped peripherals.

The HPI is connected to the internal memory via a set of registers. Either the host or the CPU

may use the HPI Control register (HPIC) to configure the interface. The host can access the host

address register (HPIA) and the host data register (HPID) to access the internal memory space of

the device. The host accesses these registers using external data and interface control signals.

The HPIC is a memory-mapped register, which allows the CPU access.

The data transactions are performed within the EDMA, and are invisible to the user.

17

2.6.3 External Memory Interface

The external memory interface (EMIF) supports an interface to several external devices,

allowing additional data and program memory space beyond that which is included on-chip.

The types of memories supported include:

• Synchronous burst SRAM (SBSRAM)

• Synchronous DRAM (SDRAM)

• Asynchronous devices, including asynchronous SRAM, ROM, and FIFOs. The

EMIF provides highly programmable timings to these interfaces.

• External shared-memory devices

There are two data ordering standards in byte-addressable microcontrollers exist:

• Little-endian ordering, in which bytes are ordered from right to left, the most significant

byte having the highest address.

• Big-endian ordering, in which bytes are ordered from left to right, the most significant

byte having the lowest address.

The EMIF reads and writes both big- and little-endian devices. There is no distinction between

ROM and asynchronous interface. For all memory types, the address is internally shifted to

compensate for memory widths of less than 32 bits.

2.6.4 Multichannel Buffered Serial Port

The C62x/C67x multichannel buffered serial port (McBSP) is based on the standard serial

port interface found on the TMS320C2000 and C5000 platforms. The standard serial port

interface provides:

• Full-duplex communication

• Double-buffered data registers, which allow a continuous data stream

• Independent framing and clocking for reception and transmission

• Direct interface to industry-standard codecs, analog interface chips (AICs), and other

serially connected A/D and D/A devices

• External shift clock generation or an internal programmable frequency shift clock

18

• Multichannel transmission and reception of up to 128 channels.

• An element sizes of 8-, 12-, 16-, 20-, 24-, or 32-bit.

• μ-Law and A-Law companding.

• 8-bit data transfers with LSB or MSB first.

• Programmable polarity for both frame synchronization and data clocks.

• Highly programmable internal clock and frame generation.

Data communication between McBSP and the devices interfaced takes place via two different

pins for transmission and reception – data transmit (DX) and data receive (RX) respectively.

Control information in the form of clocking and frame synchronization is communicated via

CLKX, CLKR, FSX, and FSR. 32-bit wide control registers are used to communicate McBSP

with peripheral devices through internal peripheral bus. CPU or DMA write the DATA to be

transmitted to the Data transmit register (DXR) which is shifted out to DX via the transmit shift

register (XSR). Similarly, receive data on the DR pin is shifted into the receive shift register

(RSR) and copied into the receive buffer register (RBR). RBR is then copied to DRR, which can

be read by the CPU or the DMA controller. This allows internal data movement and external

data communications simultaneously.

2.6.5 Timers

The ’C62x/C67x has two 32-bit general-purpose timers that can be used to:

• Time events

• Count events

• Generate pulses

• Interrupt the CPU

• Send synchronization events to the DMA controller

The timer works in one of the two signaling modes depending on whether clocked by an internal

or an external source. The timer has an input pin (TINP) and an output pin (TOUT). The TINP

pin can be used as a general purpose input, and the TOUT pin can be used as a general-purpose

output.

19

When an internal clock is provided, the timer generates timing sequences to trigger peripheral or

external devices such as DMA controller or A/D converter respectively. When an external clock

is provided, the timer can count external events and interrupt the CPU after a specified number

of events.

2.6.6 Multichannel Audio Serial Port

The ‘C6713 processor includes two Multichannel Audio Serial Ports (McASP). The

McASP interface modules each support one transmit and one receive clock zone. Each of the

McASP has eight serial data pins which can be individually allocated to any of the two zones.

The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The

C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo

signal. Serial data in each zone may be transmitted and received on multiple serial data pins

simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S)

format,

In addition, the McASP transmitter may be programmed to output multiple S/PDIF IEC60958,

AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full

implementation of user data and channel status fields.

The McASP also provides extensive error-checking and recovery features, such as the bad clock

detection circuit for each high-frequency master clock which verifies that the master clock is

within a programmed frequency range.

2.6.7 Power Down Logic

Most of the operating power of CMOS logic is dissipated during circuit switching, from one

logic state to another. By preventing some or all of the chip’s logic from switching, significant

power savings can be realized without losing any data or operational context. Power-down mode

PD1 blocks the internal clock inputs at the boundary of the CPU, preventing most of its logic

from switching, effectively shutting down the CPU. Additional power savings are accomplished

in power-down mode PD2, in which the entire on chip clock structure (including multiple

buffers) is halted at the output of the PLL. Power-down mode PD3 shuts down the entire internal

clock tree (like PD2) and also disconnects the external clock source (CLKIN) from reaching the

20

PLL. Wake-up from PD3 takes longer than wake-up from PD2 because the PLL needs to be

relocked, just as it does following power up.

21

 Chapter 3

Programming the TMS320C6713

22

3.1. Introduction

Figure 3.1. Simplified Code Composer Studio IDE Development Flow

3.2. Power On Self Test (POST)

• Power up DSK and watch LEDs

• Power On Self Test (POST) program stored in FLASH memory automatically executes

• POST takes 10-15 seconds to complete

• All DSK subsystems are automatically tested

• During POST, a 1kHz sinusoid is output from the AIC23 codec for 1 second

• Listen with headphones or watch on oscilloscope

• If POST is successful, all four LEDs blink 3 times and then remain on
• Use DSK diagnostic utility to test DSK functionality

23

3.3. Code Composer Studio (CCS)

CCS provides an IDE to incorporate the software tools. CCS includes tools for code generation,

such as a C compiler, an assembler, and a linker. It has graphical capabilities and supports real-

time debugging. It provides an easy-to-use software tool to build and debug programs.

The C compiler compiles a C source program with extension .c to produce an assembly source

file with extension.asm.The assembler assembles an.asm source file to produce a machine

language object file with extension.obj. The linker combines object files and object libraries as

input to produce an executable file with extension.out. This executable file represents a linked

common object file format (COFF), popular in Unix-based systems and adopted by several

makers of digital signal processors [25]. This executable file can be loaded and run directly on

the C6713 processor. A linear optimizer optimizes this source file to create an assembly file

with extension .asm (similar to the task of the C compiler).

To create an application project, one can “add” the appropriate files to the project.

Compiler/linker options can readily be specified. A number of debugging features are available,

including setting breakpoints and watching variables; viewing memory, registers, and mixed C

and assembly code; graphing results; and monitoring execution time. One can step through a

program in different ways (step into, over, or out).

Real-time analysis can be performed using real-time data exchange (RTDX). RTDX allows for

data exchange between the host PC and the target DSK, as well as analysis in real time without

stopping the target. Key statistics and performance can be monitored in real time. Through the

joint team action group (JTAG), communication with on-chip emulation support occurs to

control and monitor program execution. The C6713 DSK board includes a JTAG interface

through the USB port.

3.3.1. CCS installation and Support

Use the USB cable to connect the DSK board to the USB port on the PC. Use the 5-V power

supply included with the DSK package to connect to the +5-V power connector on the DSK to

turn it on. Install CCS with the CD-ROM included with the DSK, preferably using the c:\C6713

structure (in lieu of c:\ti as the default).

24

The CCS icon should be on the desktop as “C6713DSK CCS” and is used to launch CCS.The

code generation tools (C compiler, assembler, linker) are used with CCS version 2.x.

CCS provides useful documentations included with the DSK package on the following (see the

Help icon):

1. Code generation tools (compiler, assembler, linker, etc.)

2. Tutorials on CCS, compiler, RTDX

3. DSP instructions and registers

4. Tools on RTDX, DSP/basic input/output system (DSP/BIOS), and so on. An extensive amount

of support material (pdf files) is included with CCS.There are also examples included with CCS

within the folder c:\C6713\examples. They illustrate the board and chip support library files,

DSP/BIOS, and so on. CCS Version 2.x was used to build and test the examples included in this

book.A number of files included in the following subfolders/directories within c:\C6713

(suggested structure during CCS installation) can be very useful:

1. myprojects: a folder supplied only for your projects. All the folders in the accompanying book

CD should be placed within this subdirectory.

2. bin: contains many utilities.

3. docs: contains documentation and manuals.

4. c6000\cgtools: contains code generation tools.

5. c6000\RTDX: contains support files for real-time data transfer.

6. c6000\bios: contains support files for DSP/BIOS.

7. examples: contains examples included with CCS.

8. tutorial: contains additional examples supplied with CCS.

3.3.2. Useful Types of Files

You will be working with a number of files with different extensions. They include:

1. file.pjt: to create and build a project named file

2. file.c: C source program

3. file.asm: assembly source program created by the user, by the C compiler, or by the linear

optimizer

4. file.sa: linear assembly source program.The linear optimizer uses file.sa as input to produce an

assembly program file.asm

5. file.h: header support file

25

6. file.lib: library file, such as the run-time support library file rts6700.lib

7. file.cmd: linker command file that maps sections to memory

8. file.obj: object file created by the assembler

9. file.out: executable file created by the linker to be loaded and run on the C6713 processor

10. file.cdb: configuration file when using DSP/BIOS

3.3.3. Support Files

The following support files located in the folder support (except the library files) are used for

most of the examples and projects discussed in this book:

1. C6713dskinit.c: contains functions to initialize the DSK, the codec, the serial ports, and for

I/O. It is not included with CCS.

2. C6713dskinit.h: header file with function prototypes. Features such as those used to select the

mic input in lieu of line input (by default), input gain, and so on are obtained from this header

file (modified from a similar file included with CCS).

3. C6713dsk.cmd: sample linker command file. This generic file can be changed when using

external memory in lieu of internal memory.

4. Vectors_intr.asm: a modified version of a vector file included with CCS to handle interrupts.

Twelve interrupts, INT4 through INT15, are available, and INT11 is selected within this vector

file.They are used for interrupt-driven programs.

5. Vectors_poll.asm: vector file for programs using polling.

6. rts6700.lib,dsk6713bsl.lib,csl6713.lib: run-time, board, and chip support library files,
respectively. These files are included with CCS and are located in C6000\cgtools\lib,
C6000\dsk6713\lib, and c6000\bios\lib, respectively.

26

3.4. Steps involved in programming

3.4.1 Connecting the C6713 DSK

27

3.4.2 Programming
1 Create a folder called “myprojects” on the desktop.

Figure 3.4.2.1: Code composer Studio.

2 Run the C6713 DSK Code Composer Studio (C6713 DSK CCS).

3 Go to Project ¦ New, create a project called dtmf.

4 Make sure the Project Type is Executalble (.out) and Target is TMS329C67XX.

5 Download the dtmf.cdb file from http://www.ece.mtu.edu/labs/EElabs/EE3306/resources.

6 Once the project is created, go to Project ¦ Add files to project, add the DSK6713 Board

support Library (BSL)file. This library will simplify the communication with the board using C

language. The file is located at C:\ti\c6000\dsk6713\lib\dsk6713bsl.lib. More information about

this library can be found in Help¦ TMS320C6713 DSK ¦ Software ¦ Board Support

Library.

28

7 Next, include the “dtmf.cdb” file from the webpage. This configuration file will setup all the

DSP/BIOS correctly for the use of this lab.

8 Finally, you can create a new file and begin the laboratory assignment. Remember to save the

file as “dtmf.c” and include it to the project in order for it to run.

Figure 3.4.2.2: After including all necessary files.

3.4.3 Compiling into Machine Language
1 After writing the code, the next step is to compile the code to machine language. Go to Project

¦ Build.

2 The Build command will compile all the files that are include in this project and make an

executable file for the DSP.

3 Compiler results are shown at the bottom of the window.

29

Figure 3.4.3.1: Compiler Comments.

3.4.4 Loading program into DSP Processor
1 Finally, to run the program, load the program into the DSP. Go to File � Load Program.

Load the executable file (.out) that the compiler generated (generally in the Debug directory

of the project).

Figure 3.3.4.1: Load Program.

30

2 The run the file loaded into the DSP. Go to Debug � Run.

Figure 3.4.4.2: Program running.

3.5 Matlab Simulink Modelling

Fig 3.5.1 Dissection of model system in matlab coding

31

Fig 3.5.2 Steps in the modeling of a system using simulink

3.6 Problems faced during the implementation of Chassaing/kehtarnavaz
examples

3.6.1. During the compilation, the compiler can’t find some header (.h) files

Solution:-

Add C:\CCStudio_v3.1\C6000\dsk6713\include to the search path

32

3.6.2. During Compilation, the linker can’t find some libraries ?

Solution :-

Remove hard links to libraries and add libraries and add libraries and manually to
the project.

3.6.3. During Compilation, you get warnings about “far calls” to data ?

Solution :-

Set the memory model to “data = far”

33

 Chapter 4

IMPLEMENTATION

34

4.1. Sinegraph

The main loop of the code writes each data point in the sine wave table out to the codec using the

AIC23 codec package of the BSL. Each write function sends a single 16 bit sample to the codec.

In this case the same data is sent out twice, once to the left channel and once to the right channel.

The codec is configured to accept data at a rate of 48,000 stereo samples per second. Since the

sine table is 48 entries long, the resulting output wave will be a 1KHz sine wave with the same

output on both the left and right channels.

The serial port is used to transmit data to the codec at a much slower rate than the DSP can

process data. It accepts data 16 bits at a time and shifts them out slowly one at a time. The write

function returns a 1 if the write is completed successfully or a 0 if the serial channel is busy. The

while() loop around the writes waits while the serial port is busy so program can be synchronized

to the data rate of the codec.

Program :--

// sine graph . c
// The C6713 Board Support Library (BSL) has s e v e r a l
// modules , each of which has it ’ s own inc l u d e f i l e .
// The f i l e dsk6713 . h must be used in e very program
// t h a t us e s the BSL. This example a l s o i n c l u d e s
// d s k 6 7 1 3 l e d . h and ds k6713 dip . h because it uses
// the LED and DIP c o n t r o l on the board
#include ” dsk6713 . h”
#include ” dsk671 3 aic23 . h”
#include ” dsk6713 led . h”
#include ” dsk6713 dip h”
// t a b l e index
short loop = 0 ;
// gain f a c t o r
short gain = 1 0 ;
// output b u f f e r
Int16 o u t b u f f e r [2 5 6]
// s i z e o f b u f f e r
const short BUFFERLENGTH = 256;
// counter f o r b u f f e r
int i = 0 ;
// Codec c o n f i g u r a t i o n
DSK6713 AIC23 Config c o n f i g = { \ 0x0017 , /_ 0 DSK6713 AIC23 LEFTINVOL\ 0x0017 ,
/_ 1 DSK6713 AIC23 RIGHTINVOL\ 0x00d8 , /_ 2 DSK6713 AIC23 LEFTHPVOL\ 0x00d8 ,

35

/_ 3 DSK6713 AIC23 RIGHTHPVOL\ 0x0011 , /_ 4 DSK6713 AIC23 ANAPATH\ 0x0000 , /_
5 DSK6713 AIC23 DIGPATH\ 0x0000 , /_ 6 DSK6713 AIC23 POWERDOWN\ 0x0043 , /_ 7
DSK6713 AIC23 DIGIF\ 0x0081 , /_ 8 DSK6713 AIC23 SAMPLERATE\ 0x0001 /_ 9
DSK6713 AIC23 DIGACT\
};
// Lookup t a b l e
Int16 s i n e t a b l e [4 8] = { 0x0000 , 0x10b4 , 0x2120 , 0 x30fb , 0 x 3 f f f , 0x4dea ,
0x5a81 , 0x658b , 0x6ed8 , 0 x763f , 0x7ba1 , 0 x7ee5 ,
0 x 7 f f d , 0 x7ee5 , 0x7ba1 , 0 x76ef , 0x6ed8 , 0x658b ,

0x5a81 , 0x4dea , 0 x 3 f f f , 0 x30fb , 0x2120 , 0x10b4 ,
0x0000 , 0 xe f4c , 0xdee0 , 0 xcf06 , 0xc002 , 0xb216 ,
0 xa57f , 0x9a75 , 0x9128 , 0x89c1 , 0 x845f , 0x811b ,
0x8002 , 0x811b , 0 x845f , 0x89c1 , 0x9128 , 0x9a76 ,
0 xa57f , 0xb216 , 0xc002 , 0 xcf06 , 0xdee0 , 0 xe f 4 c
};
Uint32 f s = DSK6713 AIC23 FREQ 48KHZ ;
// main () − Main code rout ine , i n i t i a l i z e s BSL and
// runs LED a p p l i c a t i o n
void main ()
{ DSK6713 AIC23 CodecHandle hCodec ;
// I n i t i a l i z e the board suppor t l i b r a r y , must be f i r s t
// BSL c a l l
DSK6713 init () ;
// I n i t i a l i z e the LED and DIP swi t c h modules o f the BSL
DSK6713 LED init () ;
DSK6713 DIP init () ;
// St a r t the codec
hCodec = DSK6713 AIC23 openCodec (0 , &c o n f i g) ;
// DIP Swi tch API
// DSK6713 DIP get (Uint32 dipNum)
// Return v a lue 0 S p e c i f i e d swi t c h i s o f f
// Return v a lue 1 S p e c i f i e d swi t c h i s on
// i n f i n i t e loop
while (1)
{ i f (DSK6713 DIP get (0) == 0)
{// turn LED#0 on
DSK6713 LED on (0) ;
o u t b u f f e r [i] = s i n e t a b l e [loop] ;
// wh i l e (r e t u r n v a l u e i s not z e ro)
// s e e DSK6713 AIC23 write (. . .)
// send data to l e f t channel
// output e v e ry Ts SW0

0x5a81 , 0x4dea , 0 x 3 f f f , 0 x30fb , 0x2120 , 0x10b4 ,
0x0000 , 0 xe f4c , 0xdee0 , 0 xcf06 , 0xc002 , 0xb216 ,
0 xa57f , 0x9a75 , 0x9128 , 0x89c1 , 0 x845f , 0x811b ,

36

0x8002 , 0x811b , 0 x845f , 0x89c1 , 0x9128 , 0x9a76 ,
0 xa57f , 0xb216 , 0xc002 , 0 xcf06 , 0xdee0 , 0 xe f 4 c
};
Uint32 f s = DSK6713 AIC23 FREQ 48KHZ ;
// main () − Main code rout ine , i n i t i a l i z e s BSL and
// runs LED a p p l i c a t i o n
void main ()
{ DSK6713 AIC23 CodecHandle hCodec ;
// I n i t i a l i z e the board suppor t l i b r a r y , must be f i r s t
// BSL c a l l
DSK6713 init () ;
// I n i t i a l i z e the LED and DIP swi t c h modules o f the BSL
DSK6713 LED init () ;
DSK6713 DIP init () ;
// St a r t the codec
hCodec = DSK6713 AIC23 openCodec (0 , &c o n f i g) ;
// DIP Swi tch API
// DSK6713 DIP get (Uint32 dipNum)
// Return v a lue 0 Specified switch i s o f f
// Return v a lue 1 Specified switch i s on
// i n f i n i t e loop
while (1)
{ i f (DSK6713 DIP get (0) == 0)
{// turn LED#0 on
DSK6713 LED on (0) ;
o u t b u f f e r [i] = s i n e t a b l e [loop] ;
// while (r e t u r n v a l u e i s not z e ro)
// see DSK6713 AIC23 write (. . .)
// send data to l e f t channel
// output every Ts SW0

The array out_buffer[]stores the sine data for plotting within CCS The statement while(1) within

the function main creates an infinite loop. When dip switch #0 is pressed, LED#0 turns on and

the sinusoid is generated. The loop index is incremented until the end of the table is reached,

after which it is re-initialized to zero. The following two commands are used to initialize and

shut down the audio codec and are found at the beginning and end of all programs that use the

BSL codec module.

DSK6713 openCodec ()

returns a handle that is passed to each of the other codec functions.

37

hCodec = DSK6713 AIC23 openCodec (0 , &c o n f i g) ;

opens the codec and

hCodec = DSK6713 AIC23 closeCodec (0 , &c o n f i g) ;

closes the codec.

4.2. Create a Project in CCS

1 Type the code and save as sinegraph.c

2 Create a project in CCS (Project!New). Save the project as sinegraph.pjt

3 Add sinegraph.c to the project.

4 Add the required library files to project (ti/c6000/dsk6713/lib/).

5 Scan file dependencies (Project ! Scan file dependencies).

6 Set the appropriate compiler options (Project ! Build options). The following compiler
options are suggested.

• For the ’Basic’ category:

target version : C670x
gen. debug info : full
opt speed vs size: speed most critical
prog level opt :none

• For ’Feedback’ category:
interlisting : opt/c and ASM(-s)

• For ’Preprocessor’ category :
Define symbols:CHIP_6713

4.3. Building and running of the project

The project can now be built and run.

1 Select Project ! Rebuild All or press the toolbar with the three down arrows.This compiles

and assembles the source file(s). The resulting object files are then linked with the library

files. This creates an executable file sinegraph.out. that can be loaded into the C6713

processor and run. The building process causes all the dependent files to be included (in

case one forgets to scan for all the file dependencies).

38

2 Select File ! Load Program in order to load sinegraph.outto the DSK. It should be in the

folder sinegraph\Debug.Select Debug ! Run or use the toolbar with the running man.

Connect a speaker to the LINE OUT connector on the DSK. Press the dip switch #0.

Plotting with CCS The output buffer is updated continuously every 256 points .CCS can be used

to plot the current output data stored in the buffer out_buffer.

1 Select View!Graph!Time/Frequency. Change the Graph Property Dialog so that the options

are as indicated in figure 3. The starting address of the output buffer is out_buffer.The other

options can be left as default.

2 Choose a fast Fourier transform (FFT) order so that the frame size is 2 order. Press OK and

verify that the FFT magnitude plot is as shown (figure 4) .The spike at 1000 Hz represents

the frequency of the sinusoid generated.

Figure 4.3.1: Time domain graph property dialog

39

Figure 4.3.2: Frequency domain graph property dialog

40

 Chapter 5

CONCLUSION

41

There are many applications for which the Digital Signal Processor becomes an ideal choice as

they provide the best possible combination of performance, power and cost. Most of the DSP

applications can be simplified into multiplications and additions, so the MAC formed a main

functional unit in early DSP processors. The designers later incorporated more features, like

pipelining, SIMD, VLIW etc, in the processors to deliver improved performance.

There has been a drive to develop new benchmarking schemes as the improvement in the

processor architecture made the earlier benchmarking schemes, obsolete and less reliable.

Power issues are gaining importance as DSP processors are incorporated in to handheld, mobile

and portable devices. This leads to development of an important class of DSP processors namely

fixed-point processors.

Based on the current trends seen in the DSP processor development we may predict that the

manufacturers will follow the path of general purpose processors. With new IC manufacturing

technologies available we may expect to see more on-chip peripherals and memory; and in fact

the system on chip may not be too far away.

42

References :-
[1] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Second

Edition, California Technical Publishing, 1999.

[2] Berkeley Design Technology, Inc., “The Evolution of DSP Processors”, World Wide Web,

http://www.bdti.com/articles/evolution.pdf, Nov. 2006.

[3] Berkeley Design Technology, Inc., “Choosing a Processor: Benchmark and Beyond”, World

Wide Web,

http://www.bdti.com/articles/20060301_TIDC_Choosing.pdf, Nov. 2006.

[4] University of Rochester, “DSP Architectures: Past, Present and Future”, World Wide Web,

http://www.ece.rochester.edu/research/wcng/papers/CAN_r1.pdf, Nov. 2006.

[5] Gene Frantz, “Digital Signal Processor Trends”, Proceedings of the IEEE Micro, Vol. 20,

No. 6, 2000, pp. 52-59.

[6] Texas Instruments, TMS320VC5510/5510A, Fixed-Point Digital Signal Processors, Data

Manual, Dallas, TX, July 2006.

[7] Texas Instruments, TMS320C62X/C67X, Programmers’ Guide, Dallas, TX, May 1999.

[8] Texas Instruments, TMS320C6000, Peripherals, Reference Guide, Dallas, TX, March 2001.

[9] Texas Instruments, Inc TMS320C55x, Technical Overview, Dallas, TX, Feb. 2000.

[10] Texas Instruments, TMS320C6713B, Floating-Point Digital Signal Processors, Data Sheet,

Dallas, TX, June 2006.

[11] Texas Instruments, TMS320C55x DSP Peripherals Overview Reference Guide, Dallas, TX,

April 2006.

	1
	2
	full

