APPLICATION OF
DIGITAL SIGNAL PROCESSING
ON
TMS320C6713 DSK

A PROJECT REPORT
Submitted in partial fulfillment of the requirements for the award of the degree
of

BACHELOR OF TECHNOLOGY
IN
ELECTRONICS AND INSTRUMENTATION ENGINEERING

by

MANAS MURMU (10407030)

z, <
AVsTlTuTE S

[ROURKELA|]

Department of Electronics and Communication Engineering
National Institute Of Technology, Rourkela
Pin-769008, Orissa, INDIA
2007 — 2008

APPLICATION OF
DIGITAL SIGNAL PROCESSING
ON
TMS320C6713 DSK

A PROJECT REPORT
Submitted in partial fulfillment of the requirements for the award of the degree
of

BACHELOR OF TECHNOLOGY
IN
ELECTRONICS AND INSTRUMENTATION ENGINEERING

by
MANAS MURMU (10407030)

Under the guidance of
Dr.S.K.PATRA

ROURKELA

Department of Electronics and Communication Engineering
National Institute Of Technology, Rourkela
Pin-769008, Orissa, INDIA
2007 — 2008

l <
{STroTe

[ROURKELA]

National Institute of Technology
Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Application of digital signal processing on
TMS320C6713 DSK” submitted by Sri Manas Murmu in partial fulfillments for the
requirements for the award of Bachelor of Technology Degree in Electronics & Instrumentation
Engineering at National Institute of Technology, Rourkela (Deemed University) is an authentic

work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University / Institute for the award of any Degree or Diploma.

Date: Prof. S. K. PATRA
Dept. of Electronics & Communication Engg
National Institute of Technology
Rourkela - 769008

ACKNOWLEDGEMENT

We place on record and warmly acknowledge the continuous encouragement, invaluable
supervision, timely suggestions and inspired guidance offered by our guide Prof. S.K.Patra,
Professor, Department of Electronics and Communication Engineering, National Institute of

Technology, Rourkela, in bringing this report to a successful completion.

We are grateful to Prof. G.Panda, Head of the Department of Electronics and Communication
Engineering, for permitting us to make use of the facilities available in the department to carry
out the project successfully. Last but not the least we express our sincere thanks to all of our
friends who have patiently extended all sorts of help for accomplishing this undertaking.

Finally we extend our gratefulness to one and all who are directly or indirectly involved in the

successful completion of this project work.

Manas Murmu
(10407030)

ABSTRACT

Signal processing concepts are often presented in a very mathematical and abstract format. This
can discourage students from further exploration because of the apparent irrelevance to real
world problems. A common solution is to provide a hands-on laboratory to illustrate applications
of abstract concepts. However, hardware-based digital signal processing (DSP) laboratories —
which are typically incorporated into senior-level signal processing courses — usually emphasize
programming the DSP chip rather than exploring algorithms and applications.

This paper is an report on the familiarization process of the TMS320C6713 and the
implementation of digital signal processing projects. The Texas Instruments C6713 DSK

platform, which can be programmed using SIMULINK (The Mathworks, Inc.). This gives us
added advantage of easily writing codes on MATLAB and implementing it on the DSP

processors.

TABLE OF CONTENTS

Acknowledgements i
Abstract i

Table of Contents iii

examples

List of Figures and Tables %
Chapter 1: Introduction 1
1.1 Introduction 2
1.2 History, Development, and Advantages of TMS320 DSPs 3
1.3 Difference between DSPs and other Microprocessors 3
1.4 Important feature of DSP’s 4
1.5 Typical Applications for the TMS320 Family 7
Chapter 2: TMS320C6713 DSK 8
2.1 Introduction 9
2.2 Diagrams of TMS320C6713 DSK 9
2.3 Features 10
2.4 Functional Overview 11
2.5 Architecture 11
2.6 Peripherals of TMS320C6713 15
Chapter 3: Programming the TMS320C6713 21
3.1 Introduction 22
3.2 Power On Self Test (POST) 22
3.3 Code Composer Studio 23
3.4 Steps involved in programming 26
3.5 Matlab Simulink Modelling 30
3.6 Problems faced during the implementation of Chassaing/kehtarnavaz 31

Chapter 4: Programming the TMS320C6713
4.1.Sinegraph

4.2.Create a project in CCS
4.3.Building and running of project

Chapter 5: Conclusion

References

33
34
37
37

40

42

Figure 1.4
Figure 2.2.1
Figure 2.2.2
Figure 25.1
Figure 2.5.1.1
Table 2.5.3.1:
Figure 3.1.
Figure 3.1.
Figure 3.4.1.
Figure 3.4.2.1
Figure 3.4.2.2
Figure 3.4.3.1
Figure 3.3.4.1
Figure 3.4.4.2
Fig 3.5.1

Fig 3.5.2
Figure 4.3.1
Figure 4.3.2

List of Figures and Tables

DSP ‘s architecture

Block Diagram of TMS320C6713 DSK

Board Diagram of TMS320C6713 DSK

Simplified block diagram of TMS320C67xx family
TMS320C67X data path

Functional Units and Descriptions

Simplified Code Composer Studio IDE Development Flow
Diagnostic Utility Check

Connecting C6713 DSK

Code composer Studio

After including all necessary files

Compiler Comments

Load Program.

Program running.

Dissection of model system in matlab coding

Steps in the modeling of a system using simulink
Time domain graph property dialog

Frequency domain graph property dialog

Chapter 1

INTRODUCTION

1.1. Introduction

Digital signal processing is one of the core technologies, in rapidly growing application
areas, such as wireless communications, audio and video processing and industrial control. The
number and variety of products that include some form of digital signal processing has grown
dramatically over the last few years. DSP has become a key component, in many of the
consumer, communications, medical and industrial products which implement the signal
processing using microprocessors, Field Programmable Gate Arrays (FPGAs), Custom ICs etc.
Due to increasing popularity of the above mentioned applications, the variety of the DSP-capable
processors has expanded greatly. DSPs are processors or microcomputers whose hardware,
software, and instruction sets are optimized for high-speed numeric processing applications, an
essential for processing digital data, representing analog signals in real time. The DSP processors
have gained increased popularity because of the various advantages like reprogram ability in the

field, cost-effectiveness, speed, energy efficiency etc.

Digital signal processors such as the TMS320C6x (C6x) family of processors are like fast
special-purpose microprocessors with a specialized type of architecture and an instruction set
appropriate for signal processing. The C6x notation is used to designate a member of Texas
Instruments’ (TT) TMS320C6000 family of digital signal processors. The architecture of the C6x
digital signal processor is very well suited for numerically intensive calculations. Based on a
very-long-instruction-word (VLIW) architecture, the C6x is considered to be TI’s most powerful
processor. Digital signal processors are used for a wide range of applications, from
ommunications and controls to speech and image processing. The general-purpose digital signal
processor is dominated by applications in communications (cellular). Applications embedded
digital signal processors are dominated by consumer products. They are found in cellular phones,
fax/modems, disk drives, radio, printers, hearing aids, MP3 players, high-definition television
(HDTV), digital cameras, and so on. These processors have become the products of choice for a
number of consumer applications, since they have become very cost-effective.They can handle

different tasks, since they can be reprogrammed readily for a different application.

DSP techniques have been very successful because of the development of low-cost
software and hardware support. For example, modems and speech recognition can be less
expensive using DSP techniques. DSP processors are concerned primarily with real-time signal
processing. Realtime processing requires the processing to keep pace with some external event,
whereas non-real-time processing has no such timing constraint. The external event to keep pace
with 1s usually the analog input.Whereas analog-based systems with discrete electronic
components such as resistors can be more sensitive to temperature changes, DSP-based systems
are less affected by environmental conditions. DSP processors enjoy the advantages of

microprocessors. They are easy to use, flexible, and economical.

1.2. History, Development, and Advantages of TMS320 DSPs

Advantages of DSP’s over Analog Circuits
» Can implement complex linear or nonlinear algorithms.
* (Can modify easily by changing software.
* Reduced parts count makes fabrication easier.
* High reliability

1.3. Difference between DSPs and Other Microprocessors

Over the past few years it is seen that general purpose computers are capable of performing
two major tasks.
(1) Data Manipulation, and
(2) Mathematical Calculations

All the microprocessors are capable of doing these tasks but it is difficult to make a

device which can perform both the functions optimally, because of the involved technical trade
offs like the size of the instruction set, how interrupts are handled etc. As a broad generalization
these factors have made traditional microprocessors such as Pentium Series, primarily directed
at data manipulation. Similarly DSPs are designed to perform the mathematical calculations

needed in Digital Signal Processing,

Data manipulation involves storing and sorting of information. For instance, a word processing
program does a basic task of storing, organizing and retrieving of the information. This is
achieved by moving data from one location to another and testing for inequalities (A=B, A<B
etc.). While mathematics is occasionally used in this type of application, it is infrequent and does
not significantly affect the overall execution speed. In comparison to this, the execution speed of
most of the DSP algorithms is limited almost completely by the number of multiplications and

additions required.

In addition to performing mathematical calculations very rapidly, DSPs must also have a
predictable execution time, [1]. Most DSPs are used in applications where the processing is
continuous, not having a defined start or end. The cost, power consumption, design difficulty etc
increase along with the execution speed, which makes an accurate knowledge of the execution
time, critical for selecting proper device, as well as algorithms that can be applied. DSPs can also

perform the tasks in parallel instead of serial in case of traditional microprocessors.

1.4. Important feature of DSP’s

As the DSP processors are designed and optimized for implementation of various DSP algorithms,
most processors share various common features to support the high performance, repetitive,
numeric intensive tasks.

1.4.1 MACs and Multiple Execution Units

The most commonly known and used feature of a DSP processor is the ability to perform one or
more multiply-accumulate operation (also called as “MACs”) in a single instruction cycle. The
MAC operation is useful in DSP algorithms that involve computing a vector dot product, such as
digital filters, correlation, and Fourier transforms. The MAC operation becomes useful as the
DSP applications typically have very high computational requirements in comparison to other
types of computing tasks, since they often must execute DSP algorithms (such as FIR filtering)
in real time on lengthy segments of signals sampled at 10-100 KHz or higher. To facilitate this
DSP processors often include several independent execution units that are capable of operating

in parallel.

1.4.2 Efficient Memory Access

DSP processors also share a feature of efficient memory access i.e. the ability to complete
several accesses to memory in a single instruction cycle. Due to Harvard architecture in DSPs,
i.e. physically separate storage and signal pathways for instructions and data, and pipelined
structure the processor is able to fetch an instruction while simultaneously fetching operands
and/or storing the result of previous instruction to memory. In some recently available DSPs a
further optimization is done by including a small bank of RAM near the processor core, often
termed as L1 memory, which is used as an instruction cache. When a small group of instructions
is executed repeatedly, the cache is loaded with these instructions thus making the bus available

for data fetches, instead of instruction fetches.

1.4.3 Circular Buffering

The need of processing the digital signals in real time, where in the output (processed samples)
have to be produced at the same time at which the input samples are being acquired, evolves the
concept of Circular Buffering. For instance this is needed in telephone communication, hearing
aids, radars etc. Circular buffers are used to store the most recent values of a continually updated
signal. Circular buffering allows processors to access a block of data sequentially and then

automatically wrap around to the beginning address exactly the pattern used to access

5

coefficients in FIR filter. Circular buffering also very helpful in implementing first-in, first-out

buffers, commonly used for I/O and for FIR delay lines

1.4.4 Dedicated Address Generation Unit

The dedicated address generation units also help speed up the performance of the
arithmetic processing on DSP. Once an appropriate addressing registers have been configured,
the address generation unit operates in the background. (i.e. without using the main data path of
the processor). The address required for operand access is now formed by the address generation
unit in parallel with the execution of the arithmetic instruction. DSP processor address generation
units typically support a selection of addressing modes tailored to DSP applications. The most
common of these is register-indirect addressing with post-increment, which is used in situations
where a repetitive computation is performed on data stored sequentially in memory. Some
processors also support bit-reversed addressing, which increases the speed of certain fast Fourier

transform (FFT) algorithms.

1.4.5 Specialized Instruction Sets

The instruction sets of the digital signal processors are designed to make maximum use of
the processors’ resources and at the same time minimize the memory space required to store the
instructions. Maximum utilization of the DSPs’ resources ensures the maximum efficiency and
minimizing the storage space ensures the cost effectiveness of the overall system.

To ensure the maximum use of the underlying hardware of the DSP, the instructions are designed
to perform several parallel operations in a single instruction, typically including fetching of data
in parallel with main arithmetic operation. For achieving minimum storage requirements the
DSPs’ instructions are kept short by restricting which register can be used with which operations
and which operations can be combined in an instruction.

Some of the latest processors use VLIW (very long instruction word) architectures, where in
multiple instructions are issued and executed per cycle. The instructions in such architectures are
short and designed to perform much less work compared to those of conventional DSPs thus

requiring less memory and increased speed because of the VLIW architecture.

1.5. Typical Applications for the TMS320 Family

o Telecommunications: telephone line modems, FAX,
cellular telephones, wireless networks, speaker phones,

ANSWETITIE 1T .ﬁ.l".h mes

& Voice /Speech: speech digitization and compression,

volce maill, speaker verification, and speech synthesis

¢ Automotive: engine control, antilock brakes, active
suspension, airbag control, and system diagnosis

o Control Systems: head positioning servo systems in
disk drives, laser printer control, robot control, engine
and motor control, and numerieal control of automatic

machine tools

o Military: radar and sonar signal processing,
navigation systems, missile guidance, HF radio
frequency modems, secure spread spectrum radios, and

Secure Vo iC‘E‘

o, ultrasound

- I"\"I-Glili.l::].]: hearing LLZi.E].E, I'Ir'IR:[in‘mginc_,

imaging, and patient monitoring

(=]

o Instrumentation: spectrum analvsis, transient
analysis, signal generators

o Image Processing: HDTV, image enhancement,
image compression and transmission, 3-I) rotation,

and animation

Chapter 2

TMS320C6713 DSK

2.1. Introduction

The TMS320C6x are the first processors to use velociTI architecture, having implemented the
VLIW architecture. The TMS320C62x is a 16-bit fixed point processor and the ‘67x is a floating
point processor, with 32-bit integer support. The discussion in this chapter is focused on the
TMS320C67x processor. The architecture and peripherals associated with this processor are also

discussed.

The C6713 DSK is a low-cost standalone development platform that enables users to evaluate
and develop applications for the TI C67xx DSP family. The DSK also serves as a hardware
reference design for the TMS320C6713 DSP. Schematics, logic equations and application notes

are available to ease hardware development and reduce time to market.

2.2. Diagrams of TMS320C6713 DSK

L
2512y 20 T Memory Exp
£
e LI B I 6
oo R o
o @
P ;%
Voltage]
Reg
: Embedded Peripheral Exp |
Le | JTAc
ol §F e
n': o Ext. olololo) Septi [LED | [DIP_|
E a JTAG b 0123 0123

Fig 2.2.1 Block diagram of TMS320C6713 DSK

microphone line input line output headphone output |

THE&E'BCE?I .‘.l- DK ¥

16 MEG SDRAM

OC power input WSE port DIP 31-::I|-35 LEDs resetswitch

Fig 2.2.2 Board diagram of TMS320C6713 DSK

2.3. Features

The DSK comes with a full compliment of on-board devices that suit a wide variety of
application environments. Key features include:

e A Texas Instruments TMS320C6713 DSP operating at 225 MHz.

e An AIC23 stereo codec

e 16 Mbytes of synchronous DRAM

e 512 Kbytes of non-volatile Flash memory (256 Kbytes usable in default

e configuration)

e 4 user accessible LEDs and DIP switches

e Software board configuration through registers implemented in CPLD

e Configurable boot options

e Standard expansion connectors for daughter card use

e JTAG emulation through on-board JTAG emulator with USB host

e interface or external emulator

e Single voltage power supply (+5V)

10

2.4. Functional Overview

The DSP on the 6713 DSK interfaces to on-board peripherals through a 32-bit wide EMIF
(External Memory InterFace). The SDRAM, Flash and CPLD are all connected to the bus. EMIF
signals are also connected daughter card expansion connectors which are used for third party
add-in boards.

The DSP interfaces to analog audio signals through an on-board AIC23 codec and four 3.5 mm
audio jacks (microphone input, line input, line output, and headphone output). The codec can
select the microphone or the line input as the active input. The analog output is driven to both the
line out (fixed gain) and headphone (adjustable gain) connectors. McBSPO is used to send
commands to the codec control interface while McBSP1 is used for digital audio data. McBSPO
and McBSP1 can be re-routed to the expansion connectors in software.

A programmable logic device called a CPLD is used to implement glue logic that ties the board
components together. The CPLD has a register based user interface that lets the user configure
the board by reading and writing to its registers.

The DSK includes 4 LEDs and a 4 position DIP switch as a simple way to provide the user with
interactive feedback. Both are accessed by reading and writing to the CPLD registers.

An included 5V external power supply is used to power the board. On-board switching voltage
regulators provide the +1.26V DSP core voltage and +3.3V 1/O supplies. The board is held in
reset until these supplies are within operating specifications.

Code Composer communicates with the DSK through an embedded JTAG emulator

with a USB host interface. The DSK can also be used with an external emulator

through the external JTAG connector.

2.5. Architecture

The simplified architecture of TMS320C6713 is shown in the Figure 3.1 below. The

processor consists of three main parts: CPU, peripherals and memory.

11

Program RAM DATA RAM

1 G o Ak — -

:::;;I\ Internal Buses ' DMA
External EMIF 2 | Serial Por
Memory .D1 Jl

i 'y
-Syne. Ml M2 g Host Port
~ASYIC. L1 L2 PREY
Boot Load
51 52
ARegs. | B Regs. f— Timers
Control Registers —
CPU —¥ PwrDown

Figure 2.5.1: Simplified block diagram of TMS320C67xx family

2.5.1. Central Processing Unit

The CPU contains program fetch unit, Instruction dispatch unit, instruction decode unit.
The CPU fetches advanced very-long instruction words (VLIW) (256 bits wide) to supply up to
eight 32-bit instructions to the eight functional units during every clock cycle. The VLIW
architecture features controls by which all eight units do not have to be supplied with instructions
if they are not ready to execute. The first bit of every 32-bit instruction determines if the next
instruction belongs to the same execute packet as the previous instruction, or whether it should
be executed in the following clock as a part of the next execute packet. Fetch packets are always
256 bits wide; however, the execute packets can vary in size. The variable-length execute
packets are a key memory-saving feature, distinguishing the C67x CPU from other VLIW
architectures. The CPU also contains two data paths (Containing registers A and B respectively)

in which the processing takes place. Each data path has four functional units (.L, .M, .S and .D).

12

The functional units execute logic, multiply, shifting and data address operation. Figure 2.2

shows the simplified block diagram of the two data paths.

s 51 52 | -
o
- » Li L2 |« -
Register | Register
file A Py - o file B
- M1 M2 e -
i D1 D2 & |
T |)
T T
Memory

Figure 2.5.1.1: TMS320C67X data path

All instructions except loads and stores operate on the register. All data transfers between the
register files and memory take place only through two data-addressing units (.D1 and .D2). The
CPU also has various control registers, control logic and test, emulation and logic. Access to

control registers is provided from data path B.

2.5.2. General Purpose Register Files

The CPU contains two general purpose register files A and B. These can be used for data
or as data address pointers. Each file contains sixteen 32-bit registers (A0-A15 for file A and BO-
B15 for file B). The registers Al, A2, B0, B1, B2 can also be used as condition registers. The
registers A4-A7 and B4-B7 can be used for circular addressing.

These registers provide 32-bit and 40-bit fixed-point data. The 32-bit data can be stored in any
register. For 40-bit data, processor stores least significant 32 bits in an even register and

remaining 8 bits in upper (odd) register.

13

2.5.3. Functional Units

The CPU features two sets of functional units. Each set contains four units and a register
file. One set contains functional units .L1, .S1, M1, and .D1; the other set contains units .D2,
M2, .S2, and .L2. The two register files each contain sixteen 32-bit registers for a total of 32
general-purpose registers. The two sets of functional units, along with two register files, compose
sides A and B of the CPU. Each functional unit has two 32-bit read ports for source operands and
one 32-bit write port into a general purpose register file. The functional units . L1, .S1, .M1, and
.D1 write to register file A and the functional units .L2, .S2, .M2, and .D2 write to register file B.
As each unit has its own 32-bit write port, all eight ports can be used in parallel in every cycle.
The .L, .S, and .M functional units are ALUs. They perform 32-bit/40-bit arithmetic and logical
operations. .S unit also performs branching operations and .D units perform linear and circular
address calculations. Only .S2 unit performs accesses to control register file.

Table 2.1 describes the functional unit along with its description.

Functional Unit Description

32/40-bit arithmetic and compare operations

Left most 1, 0. bit counting for 32 bits

Normalization count for 32 and 40 bits

32 bit logical operations

32/64-bit IEEE floating-point arithmetic
Floating-point/fixed-point conversions

32-bit arithmetic operations

32/40 bt shifts and 32-bit bit-field operations

32 bit logical operations

Branching

.S unit (.S1, .S2) Constant generation

Register transfers to/from the control register file
32/64-bit IEEE floating-point compare operations
32/64-bit IEEE floating-point reciprocal and square root
reciprocal approximation

16 x 16 bit multiplies

32 X 32-bit multiplies

Single-precision (32-bit) floating-point IEEE multiplies
Double-precision (64-bit) floating-point IEEE multiplies
.D unit (D1, .D2) 32-bit add. subtract. linear and circular address calculation

Lunit (L1, .L2)

M unit (M1, M2)

Table 2.5.3.1: Functional Units and Descriptions

14

2.5.4. Memory System

The memory system of the TMS320C671x series processor implements a modified
Harvard architecture, providing separate address spaces for instruction and data memory.
The processor uses a two-level cache-based architecture and has a powerful and diverse set of
peripherals. The Level 1 program cache (L1P) is a 4K-byte direct-mapped cache and the Level 1
data cache (L1D) is a 4K-byte 2-way set-associative cache. The Level 2 memory/cache (L2)
consists of a 256K-byte memory space that is shared between program and data space. 64K bytes
of the 256K bytes in L2 memory can be configured as mapped memory, cache, or combinations

of the two. The remaining 192K bytes in L2 serve as mapped SRAM.

2.6. Peripherals of TMS320C6713

The TMS320C67x devices contain peripherals for communication with off-chip memory,
co-processors, host processors and serial devices. The following subsections discuss the

peripherals of ‘C6713 processor.

2.6.1 Enhanced DMA

The enhanced direct memory access (EDMA) controller transfers data between regions in
the memory map without interference by the CPU. The EDMA provides transfers of data to and
from internal memory, internal peripherals, or external devices in the background of CPU
operation. The EDMA has sixteen independently programmable channels allowing sixteen
different contexts for operation.

The EDMA can read or write data element from source or destination location respectively in
memory. EDMA also provides combined transfers of data elements such as frame transfer and
block transfer. Each EDMA channel has an independently programmable number of data
elements per frame and number of frames per block.
The EDMA has following features:

e Background operation: The DMA operates independently of the CPU.

e High throughput: Elements can be transferred at the CPU clock rate.

e Sixteen channels: The EDMA can keep track of the contexts of sixteen independent

transfers.

15

e Split operation: A single channel may be used simultaneously to perform both receive
and transmit element transfers to or from two peripherals and memory.

e Programmable priority: Each channel has independently programmable priorities versus
the CPU.

e Each channel’s source and destination address registers can have configurable indexes for
each read and write transfer. The address may remain constant, increment, decrement, or
be adjusted by a programmable value.

e Programmable-width transfers: Each channel can be independently configured to transfer
bytes, 16-bit half words, or 32-bit words.

e Authentication: Once a block transfer is complete, an EDMA channel may automatically
reinitialize itself for the next block transfer.

e Linking: Each EDMA channel can be linked to a subsequent transfer to perform after
completion.

¢ Event synchronization: Each channel is initiated by a specific event. Transfers may be

either synchronized by element or by frame.

2.6.2 Host Port Interface

The Host-Port Interface (HPI) is a 16-bit wide parallel port through which a host processor

can directly access the CPUs memory space. The host device functions as a master to the
interface, which increases ease of access. The host and CPU can exchange information via
internal or external memory. The host also has direct access to memory-mapped peripherals.
The HPI is connected to the internal memory via a set of registers. Either the host or the CPU
may use the HPI Control register (HPIC) to configure the interface. The host can access the host
address register (HPIA) and the host data register (HPID) to access the internal memory space of
the device. The host accesses these registers using external data and interface control signals.
The HPIC is a memory-mapped register, which allows the CPU access.

The data transactions are performed within the EDMA, and are invisible to the user.

16

2.6.3 External Memory Interface

The external memory interface (EMIF) supports an interface to several external devices,
allowing additional data and program memory space beyond that which is included on-chip.
The types of memories supported include:
» Synchronous burst SRAM (SBSRAM)
* Synchronous DRAM (SDRAM)
* Asynchronous devices, including asynchronous SRAM, ROM, and FIFOs. The
EMIF provides highly programmable timings to these interfaces.

» External shared-memory devices

There are two data ordering standards in byte-addressable microcontrollers exist:
e Little-endian ordering, in which bytes are ordered from right to left, the most significant
byte having the highest address.
e Big-endian ordering, in which bytes are ordered from left to right, the most significant

byte having the lowest address.

The EMIF reads and writes both big- and little-endian devices. There is no distinction between
ROM and asynchronous interface. For all memory types, the address is internally shifted to

compensate for memory widths of less than 32 bits.

2.6.4 Multichannel Buffered Serial Port

The C62x/C67x multichannel buffered serial port (McBSP) is based on the standard serial
port interface found on the TMS320C2000 and C5000 platforms. The standard serial port

interface provides:

o Full-duplex communication

o Double-buffered data registers, which allow a continuous data stream

o Independent framing and clocking for reception and transmission

o Direct interface to industry-standard codecs, analog interface chips (AICs), and other
serially connected A/D and D/A devices

o External shift clock generation or an internal programmable frequency shift clock

17

o Multichannel transmission and reception of up to 128 channels.

° An element sizes of 8-, 12-, 16-, 20-, 24-, or 32-bit.

e u-Law and A-Law companding.

J 8-bit data transfers with LSB or MSB first.

o Programmable polarity for both frame synchronization and data clocks.

. Highly programmable internal clock and frame generation.

Data communication between McBSP and the devices interfaced takes place via two different
pins for transmission and reception — data transmit (DX) and data receive (RX) respectively.
Control information in the form of clocking and frame synchronization is communicated via
CLKX, CLKR, FSX, and FSR. 32-bit wide control registers are used to communicate McBSP
with peripheral devices through internal peripheral bus. CPU or DMA write the DATA to be
transmitted to the Data transmit register (DXR) which is shifted out to DX via the transmit shift
register (XSR). Similarly, receive data on the DR pin is shifted into the receive shift register
(RSR) and copied into the receive buffer register (RBR). RBR is then copied to DRR, which can
be read by the CPU or the DMA controller. This allows internal data movement and external

data communications simultaneously.

2.6.5 Timers

The *C62x/C67x has two 32-bit general-purpose timers that can be used to:
o Time events

o Count events

. Generate pulses

o Interrupt the CPU

o Send synchronization events to the DMA controller

The timer works in one of the two signaling modes depending on whether clocked by an internal
or an external source. The timer has an input pin (TINP) and an output pin (TOUT). The TINP
pin can be used as a general purpose input, and the TOUT pin can be used as a general-purpose

output.

18

When an internal clock is provided, the timer generates timing sequences to trigger peripheral or
external devices such as DMA controller or A/D converter respectively. When an external clock
is provided, the timer can count external events and interrupt the CPU after a specified number

of events.

2.6.6 Multichannel Audio Serial Port

The ‘C6713 processor includes two Multichannel Audio Serial Ports (McASP). The
MCcASP interface modules each support one transmit and one receive clock zone. Each of the
MCcASP has eight serial data pins which can be individually allocated to any of the two zones.
The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The
C6713B has sufficient bandwidth to support all 16 serial data pins transmitting a 192 kHz stereo
signal. Serial data in each zone may be transmitted and received on multiple serial data pins
simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S)
format,

In addition, the McASP transmitter may be programmed to output multiple S/PDIF IEC60958,
AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full
implementation of user data and channel status fields.

The McASP also provides extensive error-checking and recovery features, such as the bad clock
detection circuit for each high-frequency master clock which verifies that the master clock is

within a programmed frequency range.

2.6.7 Power Down Logic

Most of the operating power of CMOS logic is dissipated during circuit switching, from one
logic state to another. By preventing some or all of the chip’s logic from switching, significant
power savings can be realized without losing any data or operational context. Power-down mode
PD1 blocks the internal clock inputs at the boundary of the CPU, preventing most of its logic
from switching, effectively shutting down the CPU. Additional power savings are accomplished
in power-down mode PD2, in which the entire on chip clock structure (including multiple
buffers) is halted at the output of the PLL. Power-down mode PD3 shuts down the entire internal

clock tree (like PD2) and also disconnects the external clock source (CLKIN) from reaching the

19

PLL. Wake-up from PD3 takes longer than wake-up from PD2 because the PLL needs to be

relocked, just as it does following power up.

20

Chapter 3

Programming the TMS320C6713

21

3.1. Introduction

Design Code & bhuild
cenceptual — greate project,
' write source code,
planning

T T

configuration file

Debug
syniax checking,
probe points,
logging, ete.

T

Analyze

real-time

debugging,
statistics, tracing

Figure 3.1. Simplified Code Composer Studio IDE Development Flow

3.2. Power On Self Test (POST)

e Power up DSK and watch LEDs

.
e POST takes 10-15 seconds to complete

e All DSK subsystems are automatically tested

e During POST, a 1kHz sinusoid is output from the AIC23 codec for 1 second
e Listen with headphones or watch on oscilloscope

e IfPOST is successful, all four LEDs blink 3 times and then remain on

o

Use DSK diagnostic utility to test DSK functionality

Power On Self Test (POST) program stored in FLASH memory automatically executes

| 29 671 305K Diagnostics e
Fervnl | fdvanced |
Owaial Diagnostic Test Disgnosic Slehss: Abcut
& USH Disgnestcs
& Emulaion Disgroshics e e
i [E)SP'rlil::'nuﬂ:s [Component | vale | -
Atemel Hemay Uity Fevicion 112 Foaal Enna
Flah Diaoroslics
% Cod=c Disgrosic: Rt D5
@& LEC Diagroslics
Dip 5wl Disgrashics Savehsz
Hep |

|22 671 305K Diagnostics

Diapneetic Rasdls

Gieneial | advanced |

Owe=ial Diagnoetic Test Disgno=tic Slahss:

& USH Disgnotics

DEP Disgnestcz

Emulaion Disgrashics e

Extema Memap
Flest D agroslics
Cod=c Disgroslics
LED Diagroslics
Drip Sl Disoniaslics

0 &0 R O

[lapncsic Raadie

|~ Flunring DSP dagrests,
~» Rurring esbemal memaiy deprosics.
~» Furiing Flash dagrcslcs.
~» Funrieg codss diagnodize

— |=» Furring LEL dizgnostic:.

= [Furning DIFardich diagncetics
Stepping dagnotic sale

-

3.3. Code Composer Studio (CCYS)

CCS provides an IDE to incorporate the software tools. CCS includes tools for code generation,
such as a C compiler, an assembler, and a linker. It has graphical capabilities and supports real-
time debugging. It provides an easy-to-use software tool to build and debug programs.

The C compiler compiles a C source program with extension .c to produce an assembly source
file with extension.asm.The assembler assembles an.asm source file to produce a machine
language object file with extension.obj. The linker combines object files and object libraries as
input to produce an executable file with extension.out. This executable file represents a linked
common object file format (COFF), popular in Unix-based systems and adopted by several
makers of digital signal processors [25]. This executable file can be loaded and run directly on
the C6713 processor. A linear optimizer optimizes this source file to create an assembly file
with extension .asm (similar to the task of the C compiler).

To create an application project, one can “add” the appropriate files to the project.
Compiler/linker options can readily be specified. A number of debugging features are available,
including setting breakpoints and watching variables; viewing memory, registers, and mixed C
and assembly code; graphing results; and monitoring execution time. One can step through a
program in different ways (step into, over, or out).

Real-time analysis can be performed using real-time data exchange (RTDX). RTDX allows for
data exchange between the host PC and the target DSK, as well as analysis in real time without
stopping the target. Key statistics and performance can be monitored in real time. Through the
joint team action group (JTAG), communication with on-chip emulation support occurs to
control and monitor program execution. The C6713 DSK board includes a JTAG interface

through the USB port.

3.3.1. CCS installation and Support

Use the USB cable to connect the DSK board to the USB port on the PC. Use the 5-V power
supply included with the DSK package to connect to the +5-V power connector on the DSK to
turn it on. Install CCS with the CD-ROM included with the DSK, preferably using the ¢:\C6713

structure (in lieu of ¢.\# as the default).

23

The CCS icon should be on the desktop as “C6713DSK CCS” and is used to launch CCS.The
code generation tools (C compiler, assembler, linker) are used with CCS version 2.x.

CCS provides useful documentations included with the DSK package on the following (see the
Help icon):

1. Code generation tools (compiler, assembler, linker, etc.)

2. Tutorials on CCS, compiler, RTDX

3. DSP instructions and registers

4. Tools on RTDX, DSP/basic input/output system (DSP/BIOS), and so on. An extensive amount
of support material (pdf files) is included with CCS.There are also examples included with CCS
within the folder c¢:\C6713\examples. They illustrate the board and chip support library files,
DSP/BIOS, and so on. CCS Version 2.x was used to build and test the examples included in this
book.A number of files included in the following subfolders/directories within ¢:\C6713
(suggested structure during CCS installation) can be very useful:

1. myprojects: a folder supplied only for your projects. All the folders in the accompanying book
CD should be placed within this subdirectory.

. bin: contains many utilities.

. docs: contains documentation and manuals.

. ¢6000\cgtools: contains code generation tools.

. ¢c6000\RTDX: contains support files for real-time data transfer.

. ¢6000\bios: contains support files for DSP/BIOS.

. examples: contains examples included with CCS.

o N oo o B W DN

. tutorial: contains additional examples supplied with CCS.

3.3.2. Useful Types of Files

You will be working with a number of files with different extensions. They include:

1. file.pjt: to create and build a project named file

2. file.c: C source program

3. file.asm: assembly source program created by the user, by the C compiler, or by the linear
optimizer

4. file.sa: linear assembly source program.The linear optimizer uses file.sa as input to produce an
assembly program file.asm

5. file.h: header support file

24

6. file.lib: library file, such as the run-time support library file rts6700.1ib

7. file.cmd: linker command file that maps sections to memory

8. file.obj: object file created by the assembler

9. file.out: executable file created by the linker to be loaded and run on the C6713 processor
10. file.cdb: configuration file when using DSP/BIOS

3.3.3. Support Files

The following support files located in the folder support (except the library files) are used for

most of the examples and projects discussed in this book:

1. C6713dskinit.c: contains functions to initialize the DSK, the codec, the serial ports, and for
I/O. It is not included with CCS.

2. C6713dskinit.h: header file with function prototypes. Features such as those used to select the
mic input in lieu of line input (by default), input gain, and so on are obtained from this header
file (modified from a similar file included with CCS).

3. C6713dsk.cmd: sample linker command file. This generic file can be changed when using
external memory in lieu of internal memory.

4. Vectors_intr.asm: a modified version of a vector file included with CCS to handle interrupts.
Twelve interrupts, INT4 through INT15, are available, and INT11 is selected within this vector
file.They are used for interrupt-driven programs.

5. Vectors_poll.asm: vector file for programs using polling.

6. rts6700.1ib,dsk6713bsl.lib,csl6713.1ib: run-time, board, and chip support library files,
respectively. These files are included with CCS and are located in C6000\cgtools\lib,
C6000\dsk6713\lib, and c6000\bios\lib, respectively.

25

3.4. Steps involved in programming

3.4.1 Connecting the C6713 DSK

| &

Fie Edt Yiew Froject GEL Option Profle Took DSRIBIOS Window Help

&L b) reaknoint
% @ﬁn“ﬂl Breakpiints...
Probe Points...
g I Step Into Fil
Step Ower Fil
g’ H .
m‘ d E Stap Out Shift+F11
Run F&
ED L Fles Hakt Shift I’:S
- Prjecs finimate Alt+F5
Run Free ChHFS
Run ta Cursor CHHFLD
Set FC to Cursar Crbtshift+F10

Multiple Cperation..,

Asserbly/Source Stepping ¥

Reset CPL iy
Restaft CorHShift4FS
(a0 Man i

Reset Emulator ChrHshift+R

Restore Depug State

Enihle Thread Level Diebugging. .
Rezhtime Made
Eriahle Puds Pealtime Mods

¥ Flush Fipaling on Halt

W 00 o | \ Tonge

26

3.4.2 Programming
1 Create a folder called “myprojects” on the desktop.

/06713 DSK/CPU_1 - (67xx - Code Composer Studio "C6713 DSK Tools =101
File Edit “ew Project Debug Profiler GEL Option Tools PEC DSPJEIOS Window Help
B E[SBR[= HEasmew|cissnEE 43 %4 s
| = e EE XU E> %
L FECIIEE LT IR
™ Fl=s
‘{{—}: Li"| GEL files
& e Cl Projects
H
3 Projeck Creation
ot i
o Project Marme: |c|tmr
& Location: |C:\m-n<xxﬁ:‘vl:l:ml’\
=
£ Eroject Type: | Executable [out]
Target |TM9320|:3?:~<><
i
o]
[CPU HALTED [[For Help, press F1 ’_’_I_’_ 7
Figure 3.4.2.1: Code composer Studio.
2 Runthe C6713 DSK Code Composer Studio (C6713 DSK CCS).
3 Goto Project © New, create a project called dtmf.
4 Make sure the Project Type is Executalble (.out) and Target is TMS329C67XX.
5 Download the dtmf.cdb file from http://www.ece.mtu.edu/labs/EElabs/EE3306/resources.
6 Once the project is created, go to Project Add files to project, add the DSK6713 Board

support Library (BSL)file. This library will simplify the communication with the board using C
language. The file is located at C:\ti\c6000\dsk6713\lib\dsk6713bsl.lib. More information about
this library can be found in Help® TMS320C6713 DSK Software Board Support
Library.

27

7 Next, include the “dtmf.cdb” file from the webpage. This configuration file will setup all the
DSP/BIOS correctly for the use of this lab.

8 Finally, you can create a new file and begin the laboratory assignment. Remember to save the

file as “dtmf.c” and include it to the project in order for it to run.

W AP DR CIL L = Dl P = Canide Doonimaperrs SUudio: "0 715 DS Toods - [Unithed *] = E
BBe (R Yer Pupa [ebug Pofle G0 Qpen Lok PIC DS fnded beb SRS
o R e e C R RRG B GE iR ET 4%
Fanich = T A AR (NS
e OBMEEEL | eS| o
™ [Fre e i
| e e k=
o '—'“"':“‘ - = DEP-BIOS is configured using the DEP-BIOE configuration tool. Settings
- n-i]_.' i ';:-" = Far this example are stored in 6 copfigaraticn File called dtsf.cdb, At
] Py :mj * goRpile time, Code Composer will awte-gensratce DEP-PIOS related Files
P S :rrlml‘; L = based on thess settipgs. A beoder file called ledcfg.h containe the
E aracubod Pl = resultis of the autogeneration and must be included for proper cperation.
0 _']d-mlriqd_ :‘ The nare aof the file 19 taken from dimf,edb and adding =fg.h,
I‘i (2] arieraieie :
& j:;w = Your Code herell ||
aimi
s 2] b Dol it
z L donsin
=
e
23]
Le -
[Filw View F:I-Em-lsml-n | - o
2
AR vusa / el .
[eru e L | [o ek, proms Pl Lnaz, i I |

Figure 3.4.2.2: After including all necessary files.

3.4.3 Compiling into Machine Language
1 After writing the code, the next step is to compile the code to machine language. Go to Project
@ Build.

2 The Build command will compile all the files that are include in this project and make an

executable file for the DSP.

3 Compiler results are shown at the bottom of the window.

28

1

T | & RIN%
Mo ODROEEA 2¥ s a0
Fles =

b settings.
= results of the sutogererstion ard must b
Tia mams af the & talsn Prem desi.

-

s Wour Cads haralll

‘-\s%,u
u ; poyl
=5

E

¥ Fig]

E i

Rebuild All

fA{/OO | w

Draevion [REmmaa] | ‘ Compiler windows

R Fe el gresi F1. B iE, EaE

Figure 3.4.3.1: Compiler Comments.

3.4.4 Loading program into DSP Processor
1 Finally, to run the program, load the program into the DSP. Go to File [1 Load Program.

Load the executable file (.out) that the compiler generated (generally in the Debug directory

of the project).
Look in: | (2 Debug -]« £ EE-
(=t our.
File: nanme: | | Open I
Files of twpe: I".u:uut j Cancel |
Help |
&

Figure 3.3.4.1: Load Program.

29

2

¥ Studi [Desars ntly]
EdOe [& Yen Bruwt Qibug Pk GL Opton ook FOC UEPINCS Widow leb
ST = BRI
[miee [eas E T

Ble 0GMEOEEd 2B eE| o

The run the file loaded into the DSP. Go to Debug [Run.

Pl e 00004E4E 000C0363 B.52 83
l P O0O04E4C 00004264 || LOW.DIT1 *+A0[0x2].AD
2 || e O0O04ELD Hop '
1 & vkt B 00004854 EXTU.51 A0, 14,31,
O0004ESE 0P
o I -"'n"‘;.,;;‘;‘\"':"" 00004E5C HOP
o = O0004EED eraxt,
4 dind.cd
A DOAGMELD £ Ix4E7D
5 J?‘.:.-fu = OO004E B4 / C5R, B0
; iy OO004EES /. 80,81
e it OOOB4EES O0O03CTAZ AND. 52 2. B0.BO
x o~ OOO04ETD 008003RE MViC.52 80, C5R
Run — a4 e O00Q4ET4 00000000 MOP
| il &N"“?‘ - BO0QMETE 00ADIDGE LEW.B2T1 ~1BP [0x 101,41
3 s OO004E7C AR MVE.52 1x0001, B4
B O0003EED HOP]
2 - ODUO04EE4 SUB.LZK Al.B4.B4
00004EBE STwW.D2T2 B4.=+DP[0x10]
= DOOQMERD [Al] B.g2 D 4ED4
& DOOO4ESD A0 11 [ALl MV.5ix B3,A1
O0004E 94 A1) LOW.BETZ w+DF [0B] .84
['A1] [0xB]
& oo00aEaE 56 [iat] o aor DR [0u0] A1
1 D00Q4ESC 0000000
O0004EAD 008452F B4, ALAL
UOOUIERE DOBAZEDN 1,A1AL
O0O04EAR A0003C93 SWI_F_oxec
OOO04EAC B 1 [
O0004EED & 7 B4, w4 0P [0x10]
O0004EE4 90801S6C “DP[0x15].A41
00004FRR 0000001 !
O0QQ4EEC 00000000 ||
00004ECD Dx4ED4
" +BF (050,90
83,41
O0004ECT +
OODOGEDD 2 .81 B3.AL
O0004ED4 00041362 B.52L Al
M ONO04EDA OO843TAD AND. 51X 1.B1.A1
m— T dtmlopit - Bebmg -------——---------—----—-
\TInpluginstbioshgesnfgen” demf edb
"1 Iebi00 oy ton ds binnel6x” =g =g ={r"C: T myprojectsdtat-Debug” -d°_DEBUG" =nver00 =@ debug.lkf
"¢ TIneEd00egtools bintoléx® -4 -9 -Ir"Ci/ Tl mrprojects dtaf-Debug" -4 DEBUG" -nvE700 -8"Debug.lki
"o TIeBi0 e tonls binelby® ~g -q ~fr C Tl mpprojsctasdtnt Dabug” -d°_DEBUG" -muBT00 -@"babug.1kE
STIne6di0hegtools binvelbe® - Debug. 1kE*
AT s/ Ll i
CPUPALED. For belp, preat F1

Figure 3.4.4.2: Program running.

3.5 Matlab Simulink Modelling

”
-
-—f
”
’—‘ ’/
f’ ,’
d’ -
. -~
T
Fe Edt Vew Smihon Fowet Tods Hep
NEES L8R 22 »s g
Rasdy 100% ol ;ih
."'-..-\
S
o
AU
\
AY
\
AY
Simulink Project N

Model {
™ Wame

}
Block {
BlockType

Mame
}

Line {
SreBlock
DstBlock

}

Line {
SrcBlock
DetBlock

}

"mmltiplier”

Inpeort
Tnl”

Fen
"Multiplier”

Qutport
Ozl

Tnl"

“Multipliar”

“Multipliar”

COatl"

mdl file

Fig 3.5.1 Dissection of model system in matlab coding

30

File Edil Yiew Simution Forna] Took Hap
O H&E | R[S Rmes |y =

Reoz Sz 0000z J0.0265
1)

ngh level lnngungt’; EI:’__.EI_.@ '\"f " b0tz 30 onzez-to oon = Bl

Siﬂmlink wluiltip i | —
I N
. [
Coala
A=y N [od=ds =

Simulink Tool i
Medium level lanquage

ﬁ Cos
S :’%)

[

Medium level language Low level la
Cer C++ or assembly

Fig 3.5.2 Steps in the modeling of a system using simulink

3.6 Problems faced during the implementation of Chassaing/kehtarnavaz

examples
3.6.1. During the compilation, the compiler can’t find some header (.h) files

Solution:-

Add C:\CCStudio_v3.1\C6000\dsk6713\include to the search path

[Buitd Options for Sined_LED.pjt {Debug) 2= |

General Compler | Linker | Link Order |

[i EACEStdio w313y Projectshaned_LED Debud "
FMCACCS b 0_v3 IWCRO0MhAskGT ! Shinclude’” -4 CHIP_B713" -mvE7 10

Calegon:

- Pieprocessor
Include Seach Path (i) udio w2 14CE000%cokET] Hinclude

Basie

P rOJeCt => pavaneed | B Deline Synbol <) [
Filzs .

Undefine Sumbol [l
. . seembly

Build Options | [|rewesia frow 5
Fiepiacesecr i
Diagnastics I~ Continug with Compilation [-ppa)

T Help |

31

3.6.2. During Compilation, the linker can’t find some libraries ?
Solution :-

Remove hard links to libraries and add libraries and add libraries and manually to
the project.

T Build Options for Loop_stere.pjt {Debug) B

General | Compler Linker | Link Order |

-g-c-m"\DebugtLoop_store.mep'' -0 \DebughLoop_stoe. oul
es6T000ID" -I'DSkET1 3bel lib” s BT SR

— Problem is caused by a bad path for
Bt fesdl brres the include libraries in the linker

Output Module: [3]

Output Filename [-o} :.\Demg\Loop_storaout Optlons {P rDJ'ect -> Bulld Opt Ions ->
Map Filenarme [-m): ADebugsLoop_store may =
Aut:nit Mozl |Hm-Time Arohitlalizah':n [c] v| LI n ker ta b)

Heap Size [-heap). ’7
Stack Size [stack]: '7
P A fix for this is do remove rts6700.lib,

Cade Entry Paint [-2]: |

Libtay Sesrch Pt 7 DSK6713bsl.lib, and csl6713.lib from
Include Libraries [g |ts6700. b DS KETT 30l ibucal67 13 10 the Ilnker Opt|0ns and add these flleS
remove these ¢ manually (Project -> Add files to

o1 _== 1 = I| project...)

3.6.3. During Compilation, you get warnings about “far calls” to data ?
Solution :-

Set the memory model to “data = far”

[Build Options for SineG_LED. pjt (Pebug) A=
General Compler]Linker | Link rder |

-g -5 -F"CACCSbudic_ w31 \HyProjects\ane8_LED\Dabug’
T SCCS udio_wd 1SCE000Ndsk 671 Bhinclude' -d' CHIF_E713" -mvE710

e m_model data=far

Calegorn: Advanced

Basic RTS Madfications: Defrz Mo RTS Funes hd
Adv anced

Feedhack Buto [rine Threshold [-oil:
ilsle:embh.u Endianness: Little Endiar -

Parzar b ermory Models: |Far (-mem_nodeldata=fer] |
EWOC“W RTS Call Far Apgegate
1 alls:
e Fa [-memn_modeldatast ar)
Aliasng Hear [--mem_madel: data=rear

[~ Interrupt Threshold (mit [

| Speculale Theshold(mhy [

[Tum Off Softwaie Fipelning [-mu)

[0Id 5400 Alignment Compatibility [-mb)

[Tum Off Rearder of Azsociatve Flogting Pt Ope [me)
I Usze Function Subsections: (-mal

[Hislonic C Pointer bo Const Afas Disambiguation [-ox]

| ak | Cancel Help

32

Chapter 4

IMPLEMENTATION

4.1. Sinegraph

The main loop of the code writes each data point in the sine wave table out to the codec using the
AIC23 codec package of the BSL. Each write function sends a single 16 bit sample to the codec.
In this case the same data is sent out twice, once to the left channel and once to the right channel.
The codec is configured to accept data at a rate of 48,000 stereo samples per second. Since the
sine table is 48 entries long, the resulting output wave will be a 1KHz sine wave with the same
output on both the left and right channels.

The serial port is used to transmit data to the codec at a much slower rate than the DSP can
process data. It accepts data 16 bits at a time and shifts them out slowly one at a time. The write
function returns a 1 if the write is completed successfully or a 0 if the serial channel is busy. The
while() loop around the writes waits while the serial port is busy so program can be synchronized

to the data rate of the codec.

Program :--

// sine graph . ¢

/I The C6713 Board Support Library (BSL) hasseveral
// modules , each of which hasit’sownincludefile.
// The fil e dsk6713 . h must be used in e very program
//thatusesthe BSL. Thisexamplealsoincludes
//dsk67131ed.handdsk6713 dip . h because it uses
// the LED and DIP contr o1 on the board

#include ” dsk6713 . h”

#include ” dsk671 3 aic23 . h”

#include ” dsk6713 led . h”

#include ” dsk6713 dip h”

//tableindex

short loop=0;

/lgainfactor

short gain=10;

/loutputbuffer

Intl6outbuffer[256]

//sizeofbuffer

const short BUFFERLENGTH = 256;

/I counter forbuffer

inti=0;

//Codecconfiguration

DSK6713 AIC23 Configconfig={\0x0017,/ 0DSK6713 AIC23 LEFTINVOL\ 0x0017 ,
/1 DSK6713 AIC23 RIGHTINVOL\ 0x00d8 ,/ 2 DSK6713 AIC23 LEFTHPVOL\ 0x00d8 ,

34

/3 DSK6713 AIC23 RIGHTHPVOL\ 0x0011,/ 4 DSK6713 AIC23 ANAPATH)\ 0x0000, /
5 DSK6713 AIC23 DIGPATH\ 0x0000 ,/ 6 DSK6713 AIC23 POWERDOWN\ 0x0043 ,/ 7
DSK6713 AIC23 DIGIF\ 0x0081 ,/ 8 DSK6713 AIC23 SAMPLERATE\ 0x0001 /9
DSK6713 AIC23 DIGACT\

}s

// Lookuptable
Intl6sinetable[48]={0x0000,0x10b4,0x2120,0x30fb,0x 3 fff, Ox4dea,
0x5a81 , 0x658b , 0x6ed8 , 0 x763f, 0x7bal , 0 x7ee5 ,

0x7ffd,0x7ee5, 0x7bal , 0 x76ef, 0x6ed8 , 0x658b ,

0x5a81,0x4dea,0x 3 fff, 0x30fb, 0x2120, 0x10b4 ,
0x0000 , 0 xe f4c , OxdeeO , 0 xcf06 , 0xc002 , 0xb216 ,
0 xa57f, 0x9a75 , 0x9128 , 0x89¢cl , 0 x845f, 0x811b ,
0x8002 , 0x811b, 0 x845f, 0x89cl , 0x9128 , 0x9a76 ,
0 xa57f, 0xb216 , 0xc002 , 0 xcf06 , OxdeeO , 0 xe f4 c
§3
Uint32 fs = DSK6713 AIC23 FREQ 48KHZ ;

// main () — Main code routine,initializes BSL and
//rTuns LEDapplication

void main ()

{ DSK6713 AIC23 CodecHandle hCodec ;
//Tnitializetheboard supportlibrary, mustbefirst
//BSLcall

DSK6713 init () ;
//Tnitializethe LED and DIP swi t ¢ h modules o fthe BSL
DSK6713 LED init () ;

DSK6713 DIP init () ;

/I 'St ar tthe codec

hCodec = DSK6713 AIC23 openCodec (0, &config);

// DIP Swi tch API

// DSK6713 DIP get (Uint32 dipNum)
//Returnvalue0Specifiedswitchisoff
//Returnvaluel Specifiedswitchison
//infinite loop

while (1)

{1f(DSK6713 DIP get (0)==0)

{// tarn LED#0 on

DSK6713 LED on (0) ;
outbuffer[i]=sinetable[loop];
//while(returnvalueisnotzero)

//'se e DSK6713 AIC23 write (...)

// send data to | e f't channel

// output e v ery Ts SWO

0x5a81 , Ox4dea,0x 3 fff, 0x30fb, 0x2120, 0x10b4 ,
0x0000 , 0 xe f4c , Oxdee0 , 0 xcf06 , 0xc002 , 0xb216 ,
0 xa57f, 0x9a75 , 0x9128 , 0x89c1 , 0 x845f, 0x811b

35

0x8002 , 0x811b , 0 x845f, 0x89¢cl , 0x9128 , 0x9a76 ,

0 xa57f, 0xb216 , 0xc002 , 0 xcf06 , OxdeeO , 0 xe f4 ¢

}5

Uint32 fs = DSK6713 AIC23 FREQ 48KHZ ;

// main () — Main code routine,initializes BSL and
//rTuns LEDapplication

void main ()

{ DSK6713 AIC23 CodecHandle hCodec ;
//Tnitializetheboardsupportlibrary, mustbefirst
//BSLcall

DSK6713 init () ;

//Tnitializethe LED and DIP swit ¢ h modules o fthe BSL
DSK6713 LED init () ;

DSK6713 DIP init () ;

// St ar t the codec

hCodec = DSK6713 AIC23 openCodec (0, &config);
// DIP Swi tch API

// DSK6713 DIP get (Uint32 dipNum)

// Return v a lue 0 Specified switchiso ff

// Return v a lue 1 Specified switch i s on
//finfinite loop

while (1)

{1f(DSK6713 DIP get (0) ==0)

{// turn LED#0 on

DSK6713 LED on (0);
outbuffer[i]=sinetable[loop];

//while (returnvalueisnotzero)

/I see DSK6713 AIC23 write (.. .)

// send data to 1 e f't channel

// output every Ts SWO

The array out buffer[]stores the sine data for plotting within CCS The statement while(1) within
the function main creates an infinite loop. When dip switch #0 is pressed, LED#0 turns on and
the sinusoid is generated. The loop index is incremented until the end of the table is reached,
after which it is re-initialized to zero. The following two commands are used to initialize and
shut down the audio codec and are found at the beginning and end of all programs that use the

BSL codec module.

DSK6713 openCodec ()

returns a handle that is passed to each of the other codec functions.

36

hCodec = DSK6713 AIC23 openCodec (0, &config);

open

s the codec and

hCodec = DSK6713 AIC23 closeCodec (0, &config);

closes the codec.

4.2.
1

SN n B~ W

4.3.

Create a Project in CCS

Type the code and save as sinegraph.c

Create a project in CCS (Project!New). Save the project as sinegraph.pjt
Add sinegraph.c to the project.

Add the required library files to project (ti/c6000/dsk6713/1ib/).

Scan file dependencies (Project ! Scan file dependencies).

Set the appropriate compiler options (Project ! Build options). The following compiler
options are suggested.

* For the ’Basic’ category:
target version : C670x
gen. debug info : full
opt speed vs size: speed most critical
prog level opt :none
* For ’Feedback’ category:
interlisting : opt/c and ASM(-s)
* For ’Preprocessor’ category :
Define symbols:CHIP 6713

Building and running of the project

The project can now be built and run.

1

Select Project ! Rebuild All or press the toolbar with the three down arrows.This compiles
and assembles the source file(s). The resulting object files are then linked with the library

files. This creates an executable file sinegraph.out. that can be loaded into the C6713

processor and run. The building process causes all the dependent files to be included (in

case one forgets to scan for all the file dependencies).

37

2 Select File ! Load Program in order to load sinegraph.outto the DSK. It should be in the
folder sinegraph\Debug.Select Debug ! Run or use the toolbar with the running man.

Connect a speaker to the LINE OUT connector on the DSK. Press the dip switch #0.

Plotting with CCS The output buffer is updated continuously every 256 points .CCS can be used

to plot the current output data stored in the buffer out buffer.

1 Select View!Graph!Time/Frequency. Change the Graph Property Dialog so that the options
are as indicated in figure 3. The starting address of the output buffer is out buffer.The other
options can be left as default.

2 Choose a fast Fourier transform (FFT) order so that the frame size is 2 order. Press OK and
verify that the FFT magnitude plot is as shown (figure 4) .The spike at 1000 Hz represents

the frequency of the sinusoid generated.

o
Single Time =i

Grapn Title Graphical Display

Start Addrezs out_buter

Acquisibon Buffer Size 56

Il Iiera sl 1

Dizplap Data See b

DSPData ype 16-bit dgrned mbeger

Q-waue 1]

S amplireg Hale [Hz) BOOO

Plot D ata Fom Laft ko Tight

Left-shifted Data Display Yz

ALtz als Or

DL Yalue 1] =
Axes L isplay Ur

Time Displey Uit 1

Statuz Bar Desplay On j

0K | Concel | kep |

Figure 4.3.1: Time domain graph property dialog

38

B8 Graph Property Dialog

D e [=
Graph Title Graphical Display

Signal Type Feal

Stat Addrass cut_buffer

Acquisibon Buiffer S ze 256

Inafex: Increment 1

FFT Framesize 256

FFT Order 8

FFT Windowang Function Rectange

Display Peak and Hald O

DSF Data Type 16bit zigned miteger —
[-walue]

S amplireg A ate [Hz) 8000

Pl Crata From Left to Right

Lefi-shifted Diala Display ez

ALtoscale On ,ﬂ

0K | Cancel | Hep |

Figure 4.3.2: Frequency domain graph property dialog

39

Chapter 5

CONCLUSION

There are many applications for which the Digital Signal Processor becomes an ideal choice as
they provide the best possible combination of performance, power and cost. Most of the DSP
applications can be simplified into multiplications and additions, so the MAC formed a main
functional unit in early DSP processors. The designers later incorporated more features, like
pipelining, SIMD, VLIW etc, in the processors to deliver improved performance.

There has been a drive to develop new benchmarking schemes as the improvement in the
processor architecture made the earlier benchmarking schemes, obsolete and less reliable.

Power issues are gaining importance as DSP processors are incorporated in to handheld, mobile
and portable devices. This leads to development of an important class of DSP processors namely
fixed-point processors.

Based on the current trends seen in the DSP processor development we may predict that the
manufacturers will follow the path of general purpose processors. With new IC manufacturing
technologies available we may expect to see more on-chip peripherals and memory; and in fact

the system on chip may not be too far away.

41

References :-

[1] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Second
Edition, California Technical Publishing, 1999.

[2] Berkeley Design Technology, Inc., “The Evolution of DSP Processors”, World Wide Web,
http://www.bdti.com/articles/evolution.pdf, Nov. 2006.

[3] Berkeley Design Technology, Inc., “Choosing a Processor: Benchmark and Beyond”, World
Wide Web,

http://www.bdti.com/articles/20060301 TIDC Choosing.pdf, Nov. 2006.

[4] University of Rochester, “DSP Architectures: Past, Present and Future”, World Wide Web,
http://www.ece.rochester.edu/research/weng/papers/CAN _rl.pdf, Nov. 2006.

[5] Gene Frantz, “Digital Signal Processor Trends”, Proceedings of the IEEE Micro, Vol. 20,
No. 6, 2000, pp. 52-59.

[6] Texas Instruments, TMS320VC5510/55104, Fixed-Point Digital Signal Processors, Data
Manual, Dallas, TX, July 2006.

[7] Texas Instruments, TMS320C62X/C67X, Programmers’ Guide, Dallas, TX, May 1999.

[8] Texas Instruments, TMS320C6000, Peripherals, Reference Guide, Dallas, TX, March 2001.
[9] Texas Instruments, Inc TMS320C55x, Technical Overview, Dallas, TX, Feb. 2000.

[10] Texas Instruments, TMS320C6713B, Floating-Point Digital Signal Processors, Data Sheet,
Dallas, TX, June 2006.

[11] Texas Instruments, TMS320C55x DSP Peripherals Overview Reference Guide, Dallas, TX,
April 2006.

42

	1
	2
	full

