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ABSTRACT 

  
 

Introduction 

 A watchdog timer is a computer hardware timing device that triggers a system reset if the 

main program, due to some fault condition, such as a hang, neglects to regularly service the 

watchdog (writing a “service pulse” to it, also referred to as “petting the dog”). The intention is 

to bring the system back from the hung state into normal operation. Such a timer has got various 

important applications, one of them being in ATMs (Automated Teller Machine) which we have 

studied and designed in our project. 

 

Steps involved 

1. Coding using  VHDL 

The key advantage of VHDL when used for systems design is that it allows the 

behaviour of the required system to be described (modeled) and verified (simulated) before 

synthesis tools translate the design into real hardware (gates and wires).n information 

theory. To start coding in VHDL, one needs a simulation toolI. The simulation tool that we 

have used here is Xilinx ISI9.1i.First the required code for timer circuit was written in 

VHDL and simulated so as to obtain the required output waveforms. 

2. Burning the code on Spartan-II kit 

After the coding was completed, VHDL model is translated into the "gates and 

wires" that are mapped onto a programmable logic device. The programmable logic device 

used here is Spartan-2 

 

Experimental work 

 The above coding and burning methods were completed and the output was observed on 

FPGA kit. The timer code was implemented using VHDL while burning was done using 

Spartan-2 kit. 
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Most embedded systems need to be self-reliant. It's not   usually possible to wait for someone to 

reboot them if the software hangs. Some embedded designs, such as space probes, are simply not 

accessible to human operators. If their software ever hangs, such systems are permanently 

disabled. In other cases, the speed with which a human operator might reset the system would be 

too slow to meet the uptime requirements of the product. A watchdog timer is a piece of 

hardware that can be used to automatically detect software anomalies and reset the                         

processor if any occur. Generally speaking, a watchdog   timer is based on a counter that counts 

down from some initial value to zero. The embedded software selects the                         

counter's initial value and periodically restarts it. If   the counter ever reaches zero before the 

software restarts it, the software is presumed to be malfunctioning and the processor's reset 

signal is asserted. The processor (and the embedded software it’s running) will be restarted as if 

a human operator had cycled the power. The process of restarting the watchdog timer's counter                         

is sometimes called "kicking the dog." The appropriate visual metaphor is that of a man being 

attacked by a   vicious dog. If he keeps kicking the dog, it can't ever   bite him. But he must keep 

kicking the dog at regular intervals to avoid a bite. Similarly, the software must                         

restart the watchdog timer at a regular rate, or risk being restarted. Watchdog timers may also 

trigger control systems to move into a safety state, such as turning off motors, high-voltage 

electrical outputs, and other potentially dangerous subsystems until the fault is cleared. For 

example, a watchdog timer can be implemented with a x-bit counter in a system working with a 

clock signal of y MHz, therefore, the system will shut down if the timer is not reset in a period of  

seconds. Watch dog timers have got various important applications one of them being in ATMs 

which we have studied and designed in our project. 
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2.1 Introduction 

VHDL is a language for describing digital electronic systems. It arose out of the United States 
Government’s Very High Speed Integrated Circuits (VHSIC) program, initiated in 1980. In the 
course of this program, it became clear that there was a need for a standard language for 
describing the structure and function of integrated circuits (ICs). Hence the VHSIC Hardware 
Description Language (VHDL) was developed, and subsequently adopted as a standard by the 
Institute  of Electrical and Electronic Engineers (IEEE) in the US.VHDL is designed to fill a 
number of needs in the design process. Firstly, it allows description of the structure of a design 
that is how it is decomposed into sub-designs, and how those sub-designs are interconnected. 
Secondly, it allows the specification of the function of designs using familiar programming 
language forms. Thirdly, as a result, it allows a design to be simulated before being 
manufactured, so that designers can quickly compare alternatives and test for correctness without 
the delay and expense of hardware prototyping. The purpose of this booklet is to give you a 
quick introduction to VHDL.This is done by informally describing the facilities provided by the 
language, and using examples to illustrate them. This booklet does not fully describe every 
aspect of the language. For such fine details, you should consult the IEEE Standard VHDL 
Language Reference Manual. However, be warned: the standard is like a legal document, and is 
very difficult to read unless you are already familiar with the language. This booklet does cover 
enough of the language for substantial model writing. It assumes you know how to write 
computer programs using a conventional programming language such as Pascal, C or Ada. The 
remaining chapters of this booklet describe the various aspects of VHDL in a bottom-up manner. 
Chapter2 describes the facilities of VHDL which most resemble normal sequential programming 
languages. These include data types, variables, expressions, sequential statements and 
subprograms. Then examines the facilities for describing the structure of a module and how it it 
decomposed into sub-modules. Then covers aspects of VHDL that integrate the programming 
language features with a discrete event timing model to allow simulation of behaviour. These 
facilities are combined to form a complete model of a system. Then there is a potpourri of more 
advanced features which you may find useful for modeling more complex systems. Throughout 
this booklet, the syntax of language features is presented in Backus-Naur Form (BNF). The 
syntax specifications are drawn from the IEEE VHDL Standard. Concrete examples are also 
given to illustrate the language features. In some cases, some alternatives are omitted from BNF 
productions where they are not directly relevant to the context. For this reason, the full syntax is 
included in Appendix A, and should be consulted as a reference. 
 
One should be attentive towards the following points: 
1) The purpose of VHDL. 
2) The overall structure of VHDL 
3) The VHDL development and execution sequence 
4) The VHDL simulation cycle 
5) Basic VHDL object types and declarations 
6) The syntax and semantics of basic VHDL sequential statements 
7) The syntax and semantics of basic VHDL concurrent statements 
8) VHDL modeling techniques for the simulation and evaluation of gate-level 
     digital circuits. 
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                                Figure 1-1. Example of a structural description. 

 

 

 
 
2.2 Describing Structure 

 

A digital electronic system can be described as a module with inputs and/or outputs. The 

electrical values on the outputs are some function of the values on the inputs. Figure1-1(a) shows 

an example of this view of a digital system. The module F has two inputs, A and B, and an 

output Y.Using VHDL terminology, we call the module F a design entity, and the 

inputs and outputs are called ports. One way of describing the function of a module is to describe 

how it is composed of sub-modules. Each of the sub-modules is an instance of some 

entity, and the ports of the instances are connected using signals Figure1-1(b) shows how the 

entity F might be composed of instances of entities G, H and I. This kind of description is called 

a structural description. Note that each of the entities G, H and I might also have a structural 

description. 
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2.3 Describing Behaviour 

 In many cases, it is not appropriate to describe a module structurally. One such 

case is a module which is at the bottom of the hierarchy of some other structural description. For 

example, if you are designing a system using IC packages bought from an IC shop, you do not 

need to describe the internal structure of an IC. In such cases, a description of the function 

performed by the module is required, without reference to its actual internal structure. Such a 

description is called a functional or behavioral description. To illustrate this, suppose that the 

function of the entity F in Figure1-1(a) is the exclusive-or function. Then a behavioural 

description of F could be the Boolean function 

          

More complex behaviours cannot be described purely as a function of inputs. In systems with 

feedback, the outputs are also a function of time. VHDL solves this problem by allowing 

description of behaviour in the form of an executable program.  

 
 
 
 

2.3.1 Discrete Event Time Model 
 

 Once the structure and behaviour of a module have been specified, it is possible to 

simulate the module by executing its behavioural description. This is done by simulating the 

passage of time in discrete steps. At some simulation time, a module input may be stimulated by 

changing the value on an input port. The module reacts by running the code of its behavioural 

description and scheduling new values to be placed on the signals connected to its output ports at 

some later simulated time. This is called scheduling a transaction on that signal. If the new value 

is different from the previous value on the signal, an event occurs, and other modules with input 

ports connected to the signal may be activated. The simulation starts with an initialization phase, 

and then proceeds by repeating a two-stage simulation cycle. In the initialization phase, all 

signals are given initial values, the simulation time is set to zero, and each module’s behaviour 

program is executed. This usually results in transactions being scheduled on output signals for 

some later time. In the first stage of a simulation cycle, the simulated time is advanced to the 

earliest time at which a transaction has been scheduled. All transactions scheduled for that time 

are executed, and this may cause events to occur on some signals. In the second stage, all 



 7 

modules which react to events occurring in the first stage have their behaviour program 

executed. These programs will usually schedule further transactions on their output signals. 

When all of the behaviour programs have finished executing, the simulation cycle repeats. If 

there are no more scheduled transactions, the whole simulation is completed. The purpose of the 

simulation is to gather information about the changes in system state over time. This can be done 

by running the simulation under the control of a simulation monitor. The monitor allows signals 

and other state information to be viewed or stored in a trace file for later analysis. It may also 

allow interactive stepping of the simulation process, much like an interactive program debugger. 

 
 

2.3.2 A Quick Example 
          In this section we will look at a small example of a VHDL description of a two-bit counter 
to give you a feel for the language and how it is used. We start the description of an entity by 
specifying its external interface, which includes a description of its ports. So the counter might 
be defined as: 
entity count2 is 
generic (prop_delay: Time := 10 ns); 
port (clock : in bit; 
q1, q0 : out bit); 
end count2; 
This specifies that the entity count2 has one input and two outputs, all of which are bit values, 
that is, they can take on the values '0' or '1'. It also defines a generic constant called prop_delay 
which can be used to control the operation of the entity (in this case its propagation delay). If no 
value is 

                 
 
explicitly given for this value when the entity is used in a design, the default value of 10ns will 

be used. An implementation of the entity is described in an architecture body. There may be 
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more than one architecture body corresponding to a single entity specification, each of which 

describes a different view of the entity. Behavioural description of counter could be written as: 

   architecture behaviour of count2 is 
begin 
  count_up: process (clock) 
    variable count_value : natural := 0; 
  begin 
    if clock = '1' then 
   count_value := (count_value + 1) mod 4; 
   q0 <= bit'val(count_value mod 2) after prop_delay; 
   q1 <= bit'val(count_value / 2) after prop_delay; 
   end if; 
  end process count_up; 
end behaviour; 

This process has a variable called count_value to store the current state of the counter. 

The variable is initialized to zero at the start of simulation, and retains its value between 

activations of the process. When the clock input changes from '0' to '1', the state variable is 

incremented, and transactions are scheduled on the two output ports based on the new value. The 

assignments use the generic constant prop_delay to determine how long after the clock change 

the transaction should be scheduled. When control reaches the end of the process body, the 

process is suspended until another change occurs on clock. The two-bit counter might also be 

described as a circuit composed of two T-flip-flops and an inverter, as shown in Figure1-2. This 

can be written in VHDL as: 

architecture structure of count2 is 
component t_flipflop 
port (ck : in bit; q : out bit); 
end component; 
component inverter 
port (a : in bit; y : out bit); 
end component; 
signal ff0, ff1, inv_ff0 : bit; 
begin 
bit_0 : t_flipflop port map (ck => clock, q => ff0); 
inv : inverter port map (a => ff0, y => inv_ff0); 
bit_1 : t_flipflop port map (ck => inv_ff0, q => ff1); 
q0 <= ff0; 
q1 <= ff1; 
end structure; 

In this architecture, two component types are declared, t_flipflop and inverter, and three 

internal signals are declared. Each of the components is then instantiated, and the ports of the 

instances are mapped onto signals and ports of the entity. For example, bit_0 is an instance of 

the t_flipflop component, with its ck port connected to the clock port of the count2 entity, and 

its q port connected to the internal signal ff0. The last two signal assignments update the entity 

ports whenever the values on the internal signals change. 
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3.1 What is FPGA? 

 

   FPGA stands for Field Programmable Gate Array. It  is a semiconductor device 

containing programmable logic components and programmable interconnects. The 

programmable logic components can be programmed to duplicate the functionality of basic logic 

gates such as AND, OR, XOR, NOTor more complex combinational functions such as decoders 

or simple mathematical functions. In most FPGAs, these programmable logic components (or 

logic blocks, in FPGA parlance) also include memory elements, which may be simple flip flops 

or more complete blocks of memories. 

A hierarchy of programmable interconnects allows the logic blocks of an FPGA to be 

interconnected as needed by the system designer, somewhat like a one-chip 

programmablebreadboard. These logic blocks and interconnects can be programmed after the 

manufacturing process by the customer/designer (hence the term "field programmable", i.e. 

programmable in the field) so that the FPGA can perform whatever logical function is needed. 

FPGAs are generally slower than their application specific integrated circuit (ASIC) 

counterparts, as they can't handle as complex a design, and draw more power. However, they 

have several advantages such as a shorter time to market, ability to re-program in the field to fix 

bugs, and lower non recurring engineering cost costs. Vendors can sell cheaper, less flexible 

versions of their FPGAs which cannot be modified after the design is committed. The 

development of these designs is made on regular FPGAs and then migrated into a fixed version 

that more resembles an ASIC. Complex programmable logic devices, or CPLDs, are another 

alternative. 

The typical basic architecture consists of an array of configurable logic blocks (CLBs) 

and routing channels. Multiple I/O Pads may fit into the height of one row or the width of one 

column in the array. Generally, all the routing channels have the same width (number of wires). 
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An application circuit must be mapped into an FPGA with adequate resources. 

The typical FPGA logic block consists of a 4-input look-up (LUT), andflip-flop, as 

shown below. 

 
 

Logic block 

 

There is only one output, which can be either the registered or the unregistered LUT 

output. The logic block has four inputs for the LUT and a clock input. Since clock signals (and 

often other high-fanout signals) are normally routed via special-purpose dedicated routing 

networks in commercial FPGAs, they and other signals are separately managed. 

For this example architecture, the locations of the FPGA logic block pins are shown 

below. 

 
Logic Block Pin Locations 

Each input is accessible from one side of the logic block, while the output pin can 

connect to routing wires in both the channel to the right and the channel below the logic block.  
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3.2 Introduction to Spartan-II 

 The Spartan-II 2.5V Field-Programmable Gate Array family gives users high 

performance, abundant logic resources, and a rich feature set, all at an exceptionally low price. 

The six-member family offers densities ranging from 15,000 to 200,000 system gates, as shown 

in Table 1. System performance is supported up to 200 MHz. Spartan-II devices deliver more 

gates, I/Os, and features per dollar than other FPGAs by combining advanced process technology 

with a streamlined Virtex-based architecture. Features include block RAM (to 56K bits), 

distributed RAM (to 75,264 bits), 16 selectable I/O standards, and four DLLs. Fast, predictable 

interconnect means that successive design iterations continue to meet timing requirements. The 

Spartan-II family is a superior alternative to mask-programmed ASICs. The FPGA avoids the 

initial cost, lengthy development cycles, and inherent risk of conventional ASICs. Also, FPGA 

programmability permits design upgrades in the field with no hardware replacement necessary 

(impossible with ASICs). 

 Features 

Second generation ASIC replacement technology 

- Densities as high as 5,292 logic cells with up to 

200,000 system gates 

- Streamlined features based on Virtex architecture 

- Unlimited reprogrammability 

- Very low cost 

- Advanced 0.18 micron process 

 

   • System level features 

  - SelectRAM+™ hierarchical memory: 

 · 16 bits/LUT distributed RAM 

· Configurable 4K bit block RAM 

· Fast interfaces to external RAM 
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- Fully PCI compliant 

- Low-power segmented routing architecture 

- Full readback ability for verification/observability 

- Dedicated carry logic for high-speed arithmetic 

- Efficient multiplier support 

- Cascade chain for wide-input functions 

- Abundant registers/latches with enable, set, reset 

- Four dedicated DLLs for advanced clock control 

- Four primary low-skew global clock distribution nets 

- IEEE 1149.1 compatible boundary scan logic 

 

• Versatile I/O and packaging 

- Pb-free package options 

- Low-cost packages available in all densities 

- Family footprint compatibility in common packages 

- 16 high-performance interface standards 

- Hot swap Compact PCI friendly 

- Zero hold time simplifies system timing 

 

• Fully supported by powerful Xilinx development system 

- Foundation ISE Series: Fully integrated software 

- Alliance Series: For use with third-party tools 

- Fully automatic mapping, placement, and routing 
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3.3 General Overview 

  

The Spartan-II family of FPGAs have a regular, flexible, programmable architecture of 

Configurable Logic Blocks (CLBs), surrounded by a perimeter of programmable Input/Output 

Blocks (IOBs). There are four Delay-Locked Loops (DLLs), one at each corner of the die. Two 

columns of block RAM lie on opposite sides of the die, between the CLBs and the IOB columns. 

These functional elements are interconnected by a powerful hierarchy of versatile routing 

channels Spartan-II FPGAs are customized by loading configuration data into internal static 

memory cells. Unlimited reprogramming cycles are possible with this approach. Stored values in 

these cells determine logic functions and interconnections implemented in the FPGA. 

Configuration data can be read from an external serial PROM (master serial mode), or written 

into the FPGA in slave serial, slave parallel, or Boundary Scan modes. Spartan-II FPGAs are 

typically used in high-volume applications where the versatility of a fast programmable solution 

adds benefits. Spartan-II FPGAs are ideal for shortening product development cycles while 

offering a cost-effective solution for high volume production. Spartan-II FPGAs achieve high-

performance, low-cost operation through advanced architecture and semiconductor technology. 

Spartan-II devices provide system clock rates up to 200 MHz. Spartan-II FPGAs offer the most 

cost-effective solution while maintaining leading edge performance. In addition to the 

conventional benefits of high-volume programmable logic solutions, Spartan-II FPGAs also 

offer on-chip synchronous single-port and dual-port RAM (block and distributed form), DLL 

clock drivers, programmable set and reset on all flip-flops, fast carry logic, and many other 

features. 
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Spartan-II Product Avaibility 
 

Table 2 shows the maximum user I/Os available on the device and the number of user 

I/Os available for each device/package combination. The four global clock pins are usable as 

additional user I/Os when not used as a global clock pin. These pins are not included in user I/O 

counts. 
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Ordering Information 
 
             Spartan-II devices are available in both standard and Pb-free packaging options for all 
device/package combinations. The 
Pb-free packages include a special "G" character in the ordering code. 
Standard Packaging 

 
Pb-Free Packaging 
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Device Part Marking 
 

           
 
 

 

3.4 Architectural Description 

  

                The Spartan-II user-programmable gate array, shown in Figure 1    is composed   

of   five major configurable elements: 

• IOBs provide the interface between the package pins 

and the internal logic 

• CLBs provide the functional elements for constructing 

most logic 

• Dedicated block RAM memories of 4096 bits each 

• Clock DLLs for clock-distribution delay compensation 

and clock domain control 

• Versatile multi-level interconnect structure 
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As can be seen in Figure 1, form the central logic structure with easy access to all support 

and routing structures. The IOBs are located around all the logic and memory elements for easy 

and quick routing of signals on and off the chip. Values stored in static memory cells control all 

the configurable logic elements and interconnect resources. These values load into the memory 

cells on power-up, and can reload if necessary to change the function of the device. Each of these 

elements will be discussed in detail in the following sections. 

 

 

 

 

 

INPUT/OUTPUT BLOCK 

The Spartan-II IOB, as seen in Figure 1, features inputs and outputs that support a wide 

variety of I/O signaling standards. These high-speed inputs and outputs are capable of supporting 

various state of the art memory and bus interfaces. Table 1 lists several of the standards which 

are supported along with the required reference, output and termination voltages needed to meet 

the standard.The three IOB registers function either as edge-triggered D-type flip-flops or as 

level-sensitive latches. Each IOB has a clock signal (CLK) shared by the three registers and 

independent Clock Enable(CE) for each register. In addition to the CLK and CE control signals, the 

three registers share a Set/Reset (SR). For each register, this signal can be independently 

configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an 

asynchronous Clear. A feature not shown in the block diagram, but controlled by the software, is 

polarity control. The input and output buffers and all of the IOB control signals have independent 

polarity controls. Optional pull-up and pull-down resistors and an optional weak-keeper circuit 

are attached to each pad. Prior to configuration all outputs not involved in configuration are 

forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are 

inactive, but inputs may optionally be pulled up.  
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35 Processes Involved 

 The sequence of steps necessary to configure Spartan-II devices can be divided 

into three different phases. 

• Initiating Configuration 

• Configuration memory clear 

• Loading data frames 

• Start-up 

These can be represented in the form of a flow chart in the following manner: 
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Initiating Configuration 

 There are two different ways to initiate the configuration process: 

applying power to the device or asserting the PROGRAM input.  Configuration on power-up 

occurs automatically unless it is delayed by the user, as described in a separate section below. 

The waveform for configuration on power-up is shown in Figure 11, page 13. Before 

configuration can begin, VCCO Bank 2 must be greater than 1.0V. Furthermore, all VCCINT 

power pins must be connected to a 2.5Vsupply. For more information on delaying configuration, 

see Clearing Configuration Memory. Once in user operation, the device can be re-configured 

simply by pulling the PROGRAM pin Low. The device acknowledges the beginning of the 

configuration process by driving DONE Low, then enters the memory-clearing phase. 

 
 
Clearing Configuration Mode 

The device indicates that clearing the configuration memory is in progress by driving 

INIT Low. At this time, the user can delay configuration by holding either PROGRAM or INIT 

Low, which causes the device to remain in the memory clearing phase. Note that the 

bidirectional INIT line is driving a Low logic level during memory clearing. Thus, to avoid 

contention, use an open-drain driver to keep INIT Low. With no delay in force, the device 

indicates that the memory is completely clear by driving INIT High. The FPGA samples its 

mode pins on this Low-to-High transition.  

 

 

 

Loading Configuration Data 

Once INIT is High, the user can begin loading configuration data frames into the device. 

The details of loading the configuration data are discussed in the sections treating the 

configuration modes individually. The sequence of operations necessary to load configuration 

data using the serial modes is shown in figure. 
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CRR Error Checking 

During the loading of configuration data, a CRC value embedded in the configuration file 

is checked against a CRC value calculated within the FPGA. If the CRC values do not match, the 

FPGA drives INIT Low to indicate that a frame error has occurred and configuration is aborted. 

To reconfigure the device, the PROGRAM pin should be asserted to reset the configuration 

logic. Recycling power also resets the FPGA for configuration. 

Start Up 

The start-up sequence oversees the transition of the FPGA from the configuration state to 

full user operation. A match of CRC values, indicating a successful loading of the configuration 

data, initiates the sequence. During start-up, the device performs four operations: 

1. The assertion of DONE. The failure of DONE to go High may indicate the unsuccessful 

loading of configuration data. 

2. The release of the Global Three State net. This activates I/Os to which signals are assigned. 

The remaining I/Os stay in a high-impedance state with internal weak pull-down resistors 

present. 

3. Negates Global Set Reset (GSR). This allows all flip-flops to change state. 

4. The assertion of Global Write Enable (GWE). This allows all RAMs and flip-flops to change 

state. 
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By default, these operations are synchronized to CCLK. The entire start-up sequence lasts 

eight cycles, called C0-C7, after which the loaded design is fully functional. The default timing 

for start-up is shown in the top half of figure. The four operations can be selected to switch on 

any CCLK cycle C1-C6 through settings in the Xilinx Development Software. Heavy lines show 

default settings. The bottom half of figureshows another commonly used version of the start-up 

timing known as Sync-to-DONE. This version makes the GTS, GSR, and GWE events 

conditional upon the DONE pin going High. This timing is important for a daisy chain of 

multiple FPGAs in serial mode, since it ensures that all FPGAs go through start-up together, 

after all their DONE pins have gone High. Sync-to-DONE timing is selected by setting the GTS, 

GSR, and GWE cycles to a value of DONE in the configuration options. This causes these 

signals to transition one clock cycle after DONE externally transitions high. 
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4.1 Introduction 

  

        Today, microcontrollers are being used in harsh environments where electrical noise 

and electromagnetic interference (EMI) are abundant. In environments like this, it is beneficial if 

the system contains resources to help ensure proper operation. In many systems, a commonly 

used technique for verifying proper operation is the incorporation of a watchdog timer. A 

watchdog timer is fundamentally a time measuring device that is used in conjunction with, or as 

part of, a microprocessor and is capable of causing the microprocessor to be reset. In a properly 

designed system, the watchdog will cause a reset when the microprocessor is not operating 

correctly, thereby eliminating the faulty condition. In a typical application, the watchdog timer is 

configured to reset the processor after a predetermined time interval. If the processor is operating 

correctly, it will restart the watchdog before the end of the interval. After being restarted, the 

watchdog will begin timing another predetermined interval. If the watchdog is not restarted by 

the processor before the end of the interval, a watchdog timeout occurs. This results in the 

processor being reset. If the system software has been designed correctly, and there has been no 

hardware failure, the reset will cause the system to operate properly again. Of course, the reset 

condition must be a safe state. For instance, it would not be wise to have the reset state of a disk 

drive controller enabling the write head. Many systems have been designed using an external 

watchdog timer. The need for this additional external component is eliminated, however, with 

the DS80C320. The DS80C320 contains its own, very capable internal watchdog timer. The 

features and the use of this watchdog timer are the subject of this application note. 

  

Watchdog timers may be more complex, attempting to save debug information onto a 

persistent medium; i.e. information useful for debugging the problem that caused the fault. In 

this case a second, simpler, watchdog timer ensures that if the first watchdog timer does not 

report completion of its information saving task within a certain amount of time, the system will 

reset with or without the information saved. The most common use of watchdog timers is in 

embedded systems, where this specialized timer is often a built-in unit of a microcontroller. 
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Watchdog timers may also trigger control systems to move into a safety state, such as 

turning off motors, high-voltage electrical outputs, and other potentially dangerous subsystems 

until the fault is cleared. 

For example, a watchdog timer can be implemented with a x-bit counter in a system 

working with a clock signal of y MHz, therefore, the system will shut down if the timer is not 

reset in a period of  seconds. 

 

 

4.2General Use of Watchdog Timer 

The primary application of a watchdog timer is as a system monitor (as discussed in 

detail in the section below). With a watchdog timer, a system can be designed to be very good at 

detecting and correcting an out-of-control microprocessor. A system using a watchdog timer is 

particularly well suited to detecting bit errors. Momentary bit errors can be caused by such things 

as soft memory failures and electromagnetic discharges into memory devices and their 

interfaces. These can cause temporary bit polarity flipping of data into and out of the processor. 

When this occurs while fetching program information, the microprocessor will begin executing 

erroneous code. Potentially, the processor could begin executing operands instead of op-codes. 

When the processor begins executing this bad code, it will not properly execute the code that 

restarts the watchdog. After the timeout interval, the watchdog will cause a processor reset. In a 

properly designed system, the reset will correct the error. Regardless of how capable a watchdog 

timer might be, it cannot resolve all reliability issues. There are certain failures that cannot be 

corrected by a reset. For instance, a watchdog timer cannot prevent the corruption of data. In its 

basic form, the watchdog restart is dependent on proper program execution, and generally, does 

not depend on the values in data memory. Unless corruption of data affects program flow or 

some extra measures are taken, data corruption will not cause a watchdog timeout. Of course, 

self diagnostic software can be written in such a way as to make restarting the watchdog 

contingent on verification of data memory. While this approach can be very effective and is quite 

common, it is beyond the scope of this document to discuss in detail. 
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Also note that a watchdog timer cannot detect a fault instantaneously. By definition, the 

watchdog timer must reach the end of a predetermined time interval before it resets the 

processor. This fact explains why a minimum possible timeout interval should be selected. In this 

way, a minimum amount of time expires before an out-of-control condition is corrected. 

 

The Watchdog as a System Supervisor 

The most common use of the High-Speed Micro's watchdog timer is as a system 

supervisor. While it can be used in a number of different ways, some of which will be discussed 

in this document, system supervisor is the most common application. In system supervisor mode, 

the timer is restarted periodically by the processor as described above. If the processor runs out 

of control, the watchdog will not be restarted; it will timeout, and subsequently will cause the 

processor to be reset.  

In the High-Speed Micro, the watchdog timer is driven by the main system clock that is 

supplied to a series of dividers. The divider output is selectable, and determines the interval 

between timeouts. When the timeout is reached, an interrupt flag will be set, and if enabled, a 

reset will occur 512 clocks later. The interrupt flag will cause an interrupt to occur if its 

individual enable bit is set and the global interrupt enable is set. The reset and interrupt are 

completely discrete functions that may be acknowledged or ignored, together or separately for 

various applications.  

When using the watchdog timer as a system monitor, the watchdog’s reset function 

should be used. If the interrupt function were used, the purpose of the watchdog would be 

defeated. To explain, assume the system is executing errant code prior to the watchdog interrupt. 

The interrupt would temporarily force the system back into control by vectoring the CPU to the 

interrupt service routine. Restarting the watchdog and exiting by an RETI or RET would return 

the processor to the lost position prior to the interrupt. By using the watchdog reset function, the 

processor is restarted from the beginning of the program, and thereby placed into a known state.  

This is not to say that the DS80C320 watchdog’s interrupt function is not useful for the 

system monitor application. Since the reset occurs 512 clocks after the interrupt, a short interrupt 

service routine can be used to store critical variables before the reset occurs. This may allow the 

system to return to proper operation in a state that more closely resembles the conditions before 

the failure. Of course, if the data is the source of the error, storing it without correction would be 
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of no benefit. For any specific system, the approach taken is a function of the system and the 

level of reliability required. 

 As mentioned above, the watchdog timer in the DS80C320 is driven by the main system 

clock that is passed through a series of dividers. The divider output may be selected by the user, 

allowing a timeout of 217, 220, 223, or 226 clocks. If enabled, a reset of the processor will occur 

512 clocks later. Table 1 shows the reset time intervals associated with different crystal 

frequencies. 

 
 

 
As can be seen, there is a range of timeout intervals available. The interval selected 

should be based on several issues. The first objective is to select an interval that represents the 

maximum time the processor can be allowed to run out of control. For example, a system that 

issues a position command to a robotic arm every 500 milliseconds ideally would not use a 

timeout interval greater than this. Keeping the timeout interval shorter ensures that there will be 

at most one bad command issued to the arm. 

 
 

The other primary concern in setting the watchdog timeout interval is the ability to locate 

the restart commands within the system software. This can be a very complicated issue, 

depending on the nature of the system software. The most desirable approach is to have a single 

location within a single main loop of the system software that restarts the watchdog timer. The 

time required to pass through the main program loop will determine the required timeout 

interval. 

 
 

The above approach assumes that the system software flow is linear enough to allow it. 

Some programs are too convoluted and their flow is too non-linear to allow this approach. With a 
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program structure like that, it is difficult to locate the correct points for watchdog restarts. One 

possible solution to this problem is to use the DS80C320’s watchdog timer itself to assist in 

determining the appropriate restart locations. This method uses the watchdog's interrupt 

capability and is described in detail in a section below. 

 
 

In some systems, the software is too complex or the program flow is too variable to allow 

a complete and thorough analysis. It may be impossible to determine that all program paths have 

been covered by a watchdog restart. In this case, a different approach may be used. In this case, 

diagnostic software may be developed to test the system. This diagnostic software will be called 

at periodic intervals, perhaps using the interrupt feature of the watchdog timer. If the diagnostics 

pass, the watchdog is restarted. If not, the watchdog times out and the processor is reset. Of 

course in this case, the test must be thorough enough to be effective. The exact approach used in 

a given system may be any of the above or some combination of each, as appropriate for the 

application. 

 

 

WATCHDOG RESET EXAMPLE 

A short program illustrating most of the basic watchdog timer functions is shown below. 

This program illustrates how to initialize the watchdog timer so that when it times out, it will 

cause a reset. The program illustrates one of the DS80C320 watchdog timer’s unique features. 

Software that changes the watchdog’s operation must perform a timed access operation. A timed 

access operation is a sequence of steps that must be executed together in sequence; otherwise the 

access fails. The example program shows the timed access being used for restarting the 

watchdog and enabling its reset. As can be seen, the value 0AAh is first written to the timed 

access register (TA). Next, the value 055h is written to the TA register. Finally, the protected bit 

is modified. These instructions must be executed in the sequence shown with no interruption to 

gain access to the protected bit. Further details on timed access operation may be found in the 

High-Speed Micro User’s Guide. The watchdog timer bits that are protected by the timed access 

procedure are the Enable Watchdog Timer Reset (EWT = WDCON.1) bit, the Watchdog 

Interrupt Flag (WDIF = WDCON.3) bit, and the Restart Watchdog Timer (RWT = WDCON.0) 

bit. 
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WD_RST.ASM Program 

;; 

This program demonstrates the use of the watchdog timer in 

; the DS80C320. It uses the timer’s reset capability. When 

; running, the program sets port 1’s pins low to indicate 

; the processor is idle waiting for the watchdog to timeout. When 

; the watchdog times out, the processor is reset causing the port 

; pins to return high. A delay is written into the program so that 

; the port pins will be high long enough to be seen if attached to 

; LEDs. 

; 

; * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * 

;; 

Reset Vector 

; 

ORG 00h 

SJMP START 

; 

; * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * 

;; 

Main program body 

; 

ORG 080h 

; 

START: ORL CKCON, #080h ; Set Watchdog timeout period 2**23 

; (approximately 758 mS @ 11.059 MHz) 

;; 

In a real application, the next three lines would be placed 

; at various locations in the program to restart the watchdog 

; before it times out. 

; 

MOV TA, #0AAh ; Restart Watchdog timer 
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MOV TA, #055h ; using timed 

SETB RWT ; access. 

;; 

MOV TA, #0AAh ; Enable Watchdog timer reset 

MOV TA, #055h ; using timed 

SETB EWT ; access. 

;; 

MOV R1, #0FFh ; Create a delay loop so the port 

LOOP: MOV R2, #0FFh ; pins are high long enough after 

DJNZ R2, $ ; a reset to be seen. 

DJNZ R1, LOOP 

; 

MOV P1, #00 ; P1 = 0, Reset causes P1 = 1 

; 

MOV PCON, #01h ; Go to idle mode waiting for reset 

SJMP $ 

;; 

; * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * 

; 

END 

 

 

4.3THE WATCHDOG TIMER AS A LONG INTERVAL TIMER 

A slightly different application of the High-Speed Micro’s watchdog timer is as a long 

interval timer. In this application, the interrupt is enabled using the Enable Watchdog Timer 

Interrupt (EWDI=EIE.4) bit and the reset is left disabled. When the timeout occurs, the 

Watchdog Timer will set the WDIF bit (WDCON.3), and an interrupt will occur if the global 

interrupt enable bit (EA=IE.7) is set. The Watchdog Interrupt Flag will indicate the source of the 

interrupt and must be cleared by software. As shown in the table above, intervals from 5.26 ms to 

2.68 seconds are available with a 25 MHz crystal. This interval is significantly longer than any 

possible using the standard 16-bit timers. Another short program illustrating features of the 

watchdog timer is shown below. This program demonstrates how the watchdog timer and 
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interrupts must be initialized so that a timeout causes an interrupt. A short interrupt service 

routine is included. 

; * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * 

;;; 

WD_INT.ASM Program 

;; 

This program demonstrates the use of the watchdog timer of 

APPLICATION NOTE 80 

5 of 6 

; the 80C320. It uses the timer’s interrupt generating capability. 

; For purposes of demonstration, the program toggles Port 1’s pins 

; each time the watchdog’s Interrupt Service Routine is entered. 

;; 

$MODS320 

; 

; * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * 

;; 

Reset Vector 

; 

ORG 00h 

SJMP START 

; 

; * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * 

;; 

Watchdog Interrupt Vector 

; 

ORG 063h 

; 

MOV TA, #0AAh ; Restart watchdog timer 

MOV TA, #055h ; using timed 

SETB RWT ; access. 

; 
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MOV TA, #0AAh ; Clear watchdog interrupt flag 

MOV TA, #055h ; using timed 

CLR WDIF ; access. 

; 

CPL A ; Complement port 1 to show the 

MOV P1, A ; interrupt routine was entered. 

; 

RETI ; Return from interrupt. 

;; 

; * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * 

;; 

Main program body 

; 

ORG 080h 

; 

START: 

ORL CKCON, #040h ; Set Watchdog timeout period 2**20 

; (approximately 94.8 mS @ 11.059 MHz) 

; 

MOV TA, #0AAh ; Restart Watchdog timer 

MOV TA, #055h ; using timed 

SETB RWT ; access. 

; 

SETB EWDI ; Enable Watchdog Interrupt and 

SETB EA ; set global interrupt enable 

; 

Here: MOV PCON, #01 ; Go to Idle mode and wait 

SJMP Here ; After interrupt, go back to idle 

;; 

; * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * 

; 

END 
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THE WATCHDOG TIMER AS AN AID IN LOCATING RESTART 

INSTRUCTIONS 

As discussed above, locating the watchdog restart instructions in the system software can 

sometimes be difficult. The structure of the system software and the complexity of its flow 

determine the task’s level of difficulty. In the DS80C320, the watchdog timer itself can be used 

to assist in this activity. The general approach for this is to allow the watchdog to cause an 

interrupt and, from within the service routine, determine where in the code the interrupt 

occurred. By placing the watchdog restart instructions prior to this point you can be assured that 

the watchdog will be restarted before the timeout (when the software flow follows this particular 

branch). This process is repeated until no more watchdog interrupts occur. If the program flow is 

linear and not data-dependent, the system will function as desired. The previous software 

example provides most of the software necessary to perform this function. As a first step, 

however, the desired maximum timeout interval should be determined and the code modified for 

this value. As always, the timeout selected is a function of the system and how long the micro  an 

be allowed to run out of control. After modifying the software to initialize the desired watchdog 

timeout interval, the following instructions should be added to the Interrupt Service Routine. 

They will cause the processor to display the address of the instruction that would have been 

executed if the interrupt had not occurred. If this display mechanism is not convenient for the 

system implementation, the address can be converted to ASCII and output on one of the serial 

ports. 

MOV R0, SP ; Get SP contents 

MOV P3, @R0 ; Display high address byte 

DEC R0 ; Point to low address byte 

MOV P1, @R0 ; Display low address byte 

SJMP $ ; Stop here 

The instructions above move the contents of the Stack Pointer to R0, which is then used 

to point to the data pushed onto the stack when the interrupt was acknowledged. This address 

reflects the next instruction that would have been executed if the interrupt had not occurred. The 

high byte of the address is displayed on Port 3 pins, and the low byte of the address is displayed 

on Port 1 pins. If instructions to restart the watchdog timer are placed before this address, the 

watchdog will never reach timeout. 
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4.4 APPLICATION OF WATCHDOG TIMER IN ATMs  

 

An automated teller machine or automatic teller machine (ATM) is a computerized 

telecommunications device that provides a financial institution's customers a method of financial 

transactions in a public space without the need for a human clerk or bank teller. On most modern 

ATMs, the customer identifies him or herself by inserting a plastic ATM card with a magnetic 

stripe or a plastic smartcard with a chip, that contains his or her card number and some security 

information, such as an expiration date or CVC (CVV). Security is provided by the customer 

entering a personal identification number (PIN). 

 

A major issue related with ATMs is that related to its timing control.That is what happens 

if a person enters his card and doesn’t enter any value?????Won’t it be a test of patience for the 

customers standing in the long queue??? Here the watchdog timer comes to the rescue. The 

system waits for pre defined time period and if it exceeds that time period without any input to 

it,then it indicates that using some indicator. The indicator remains high as long  as there is no 

input.And once some input comes, the timer is reset and the indicator is turned off.Normal 

operation can resume after that.  

 

 So, watchdog timer is indeed a very useful component and has got its application ranging 

over various fields. Its application in ATMs is one such field which we have studied and 

designed as a part of our project. 
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5.1 Coding 

 The code is written in VHDL. The simulator used is Xilinx and the FPGA used is 

Spartan-II,about which we have already discussed in previous chapters.The experiment can be 

classified into the following stages:- 

 

• Getting acquainted with VHDL-The various knowledge required for operating VHDL 

like knowing about its syntax, architecture components etc. was studied and practiced by 

performing simpler examples. 

 

• Learning the required circuits: The various circuits of timers,counters etc was studied 

from various digital books and rough diagram of the circuit was prepared. 

 

• Writing the program code :Then the required code for the timer was written using VHDL 

and its errors were checked for. 

 

• Simulating the code using xilinx:Then using xilinx simulator, the written code was 

simulated .The various errors and warning were taken care of.And finally the test bench 

waveform was obtained and studied. 

 

• Burning the code on FPGA:Then the code was burned using the Spartan-II kit and 

various necessary methods were carried out till we get the required output on the FPGA 

board. 
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5.2 Source Code 
---------------------------------------------------------------------------------- 
            library IEEE; 
 

use IEEE.STD_LOGIC_1164.ALL; 

 

use IEEE.STD_LOGIC_ARITH.ALL; 

 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity testclk is 

 

Port (  

 

  clkin: in STD_LOGIC; ---------the clk of FPGA 

 

  reset : in STD_LOGIC;-----------the reset  

 

  exin : in std_logic;----------the input to the system 

 

  msg : out std_logic;----------the output signallin lack of input 

  

      clkout : out  STD_LOGIC );--------------divided clk 

 

end testclk; 

 

architecture Behavioral of testclk is 

 

signal toggle : std_logic := '0'; 

 

signal xu : std_logic_vector(22 downto 0); 

 

begin 
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process(clkin,reset,exin) 

begin 

if reset = '1' then 

 xu <= (others => '0'); 

 clkout <= '1'; 

 

elsif rising_edge(clkin) then 

 

  xu <= xu+1; 

  if  exin = '1' then 

  xu <= (others => '0'); 

  msg <= '0';--resettin the output 

  end if; 

 

  if exin = '0' and xu = "11111111111111111111111" then 

  msg <= '1';--settin the interrupt 

  end if; 

 

  if (xu = "11111111111111111111111") then 

  toggle <= not toggle;--for toglin the clk out 

  clkout <= toggle; 

  xu <= (others => '0'); 

 end if; 

 

end if; 

 

end process; 

 

end Behavioral; 

clear all; 
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6.3 Conclusion 

 We successfully designed a timer for ATM application and observed its output, both as 

test bench waveform and on Spartan-II kit. 
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